JP2006250305A - Linear motion thrust cylindrical roller bearing - Google Patents

Linear motion thrust cylindrical roller bearing Download PDF

Info

Publication number
JP2006250305A
JP2006250305A JP2005070314A JP2005070314A JP2006250305A JP 2006250305 A JP2006250305 A JP 2006250305A JP 2005070314 A JP2005070314 A JP 2005070314A JP 2005070314 A JP2005070314 A JP 2005070314A JP 2006250305 A JP2006250305 A JP 2006250305A
Authority
JP
Japan
Prior art keywords
cylindrical
portions
cylindrical roller
axial dimension
roller bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005070314A
Other languages
Japanese (ja)
Inventor
Kenichi Shibazaki
健一 柴崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2005070314A priority Critical patent/JP2006250305A/en
Publication of JP2006250305A publication Critical patent/JP2006250305A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/001Bearings for parts moving only linearly adjustable for alignment or positioning
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C29/00Bearings for parts moving only linearly
    • F16C29/04Ball or roller bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2240/00Specified values or numerical ranges of parameters; Relations between them
    • F16C2240/40Linear dimensions, e.g. length, radius, thickness, gap
    • F16C2240/50Crowning, e.g. crowning height or crowning radius

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Bearings For Parts Moving Linearly (AREA)
  • Rolling Contact Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide structure sufficiently suppressing a wear volume between outer circumferential faces of a plurality of cylindrical rollers 1 and a mating face and sufficiently securing rolling fatigue lives of the faces. <P>SOLUTION: A condition of 0.7≤X≤0.95 is satisfied, when an axial dimension of each cylindrical roller 1 is L<SB>t</SB>, an axial length of a cylindrical face part formed to the outer circumferential face of teach cylindrical roller 1 is L<SB>s</SB>, an axial dimension of each of crowning parts 15, 15 is L<SB>c</SB>, and an axial dimension of each of chamfered parts 16, 16 is C, and a parameter X=L<SB>s</SB>/(L<SB>t</SB>-2C) is satisfied. By adopting the structure, the above problem is solved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明に係る直動型スラスト円筒ころ軸受は、各種機械装置を構成する、互いに直線方向に相対変位する1対の部材同士の間に組み込んで、これら両部材同士の間に加わるスラスト荷重を支承しつつ、これら両部材同士の直線方向の相対変位を自在とする為に利用する。   The linear motion type thrust cylindrical roller bearing according to the present invention is incorporated between a pair of members constituting various mechanical devices and relatively displaced in a linear direction, and supports a thrust load applied between these two members. However, it is used to make the relative displacement in the linear direction between these two members free.

上述の様な用途で使用可能な直動型スラスト円筒ころ軸受として、例えば図1〜4に示す様なものが考えられている。この図1〜4に示した直動型スラスト円筒ころ軸受は、複数個の円筒ころ1、1と、これら各円筒ころ1、1を保持する為の保持器2とを備える。このうちの複数個の円筒ころ1、1は、同一の仮想平面(図1の紙面に平行な平面。図3、4に一点鎖線αで示す。)内にそれぞれの中心軸を互いに平行に又は同心に配置している。具体的には、図1に示す様に、上記各円筒ころ1、1の軸方向(図1の左右方向)と直交する方向(図1の上下方向)に隣り合う各円筒ころ1、1同士で、軸方向の位相を凡そ半ピッチずつずらせて、千鳥状に配置している。   As a linear motion type thrust cylindrical roller bearing that can be used in the above-described applications, for example, those shown in FIGS. The direct acting type thrust cylindrical roller bearing shown in FIGS. 1 to 4 includes a plurality of cylindrical rollers 1 and 1 and a cage 2 for holding the cylindrical rollers 1 and 1. Among these, the plurality of cylindrical rollers 1, 1 are parallel to each other in the same virtual plane (a plane parallel to the paper surface of FIG. 1, indicated by a one-dot chain line α in FIGS. They are arranged concentrically. Specifically, as shown in FIG. 1, the cylindrical rollers 1, 1 adjacent to each other in a direction (vertical direction in FIG. 1) orthogonal to the axial direction (left-right direction in FIG. 1) of the cylindrical rollers 1, 1. Thus, the phases in the axial direction are shifted by about a half pitch and arranged in a staggered manner.

又、上記保持器2は、全体を正方形の板状に構成しており、それぞれが上記各円筒ころ1、1を1個ずつ転動自在に保持自在な複数の略矩形のポケット3、3を備える。この様な保持器2は、それぞれが金属板に打ち抜き加工及び曲げ加工を施す事により全体を正方形状に造られた1対の素子4a、4b同士を、互いに組み合わせる事により構成している。即ち、これら各素子4a、4bはそれぞれ、正方形の平板部5a、5bと、これら各平板部5a、5bの幅方向両端縁部分をそれぞれ同方向に直角に折り曲げる事により形成した1対ずつの鍔部6a、6bとを備える。そして、図3に示す様に、これら両鍔部6a、6b同士を互いに嵌合させると共に、一方(図3の上方)の素子4aを構成する各鍔部6a、6aの先端縁(図3の下端縁)の複数個所を、他方(図3の下方)の素子4bの外周面にかしめ付ける事により、これら両素子4a、4b同士を非分離に結合している。そして、この状態で、これら両素子4a、4bを構成する平板部5a、5bにそれぞれ複数個ずつ形成した略矩形の透孔7、7を互いに整合させる事により、上記各ポケット3、3を構成している。即ち、これら各ポケット3、3はそれぞれ、互いに対向した1対ずつの透孔7、7により構成している。   The cage 2 is formed in a square plate shape as a whole, and each of the cage 2 has a plurality of substantially rectangular pockets 3 and 3 that can hold the cylindrical rollers 1 and 1 so as to roll one by one. Prepare. Such a cage 2 is configured by combining a pair of elements 4a and 4b, each of which is formed into a square shape by punching and bending each metal plate. That is, each of the elements 4a and 4b has a pair of square plates 5a and 5b formed by bending the widthwise end edges of each of the plates 5a and 5b at right angles in the same direction. Parts 6a and 6b. Then, as shown in FIG. 3, the flanges 6a and 6b are fitted to each other, and the leading edges (in FIG. 3) of the flanges 6a and 6a constituting the element 4a on one side (upper side in FIG. 3). The two elements 4a and 4b are non-separated from each other by caulking a plurality of positions (lower edge) to the outer peripheral surface of the other element 4b (downward in FIG. 3). In this state, each of the pockets 3 and 3 is configured by aligning a plurality of substantially rectangular through holes 7 and 7 formed on the flat plate portions 5a and 5b constituting the elements 4a and 4b. is doing. That is, each of these pockets 3 and 3 is constituted by a pair of through holes 7 and 7 facing each other.

又、上記各ポケット3、3を構成する各透孔7、7の内縁のうち、これら各ポケット3、3の幅方向(図1〜2の上下方向、図4の左右方向)両側に存在する、互いに平行な1対の直線縁部8、8の長さ方向中間部には、それぞれ上記各透孔7、7の中心部に向けて突出する係合突部9、9を設けている。そして、これら係合突部9、9同士の間隔(上記各ポケット3、3の開口部の幅寸法)Wp を、上記各円筒ころ1、1の外周面の直径D1 よりも小さく(Wp <D1 )している。この様な寸法規制を行なう事により、上記各ポケット3、3の内側から上記各円筒ころ1、1が脱落する事を防止している。尚、図示の様な直動型スラスト円筒ころ軸受を製造する過程で、上記各円筒ころ1、1は、上記各係合突部9、9を弾性変形させながら上記各ポケット3、3内に押し込むか、或は、上記保持器2を構成する1対の素子4a、4b同士を互いに組み合わせる際に、これら両素子4a、4b同士の間に挟み込む様にして、上記各ポケット3、3内に配置する。 Moreover, it exists in the width direction (the up-down direction of FIGS. 1-2, the left-right direction of FIG. 4) of each pocket 3, 3 among the inner edges of each through-hole 7, 7 which comprises each said pocket 3, 3. Engaging protrusions 9 and 9 projecting toward the center of each of the through holes 7 and 7 are provided at the intermediate portions in the longitudinal direction of the pair of straight edge portions 8 and 8 parallel to each other. Then, the W p (width dimension of the opening of the pockets 3, 3) these engaging projections 9,9 interval between, smaller than the diameter D 1 of the outer peripheral surface of each cylindrical roller 1, 1 (W p <and D 1) was. By performing such dimensional restrictions, the cylindrical rollers 1 and 1 are prevented from falling off from the inside of the pockets 3 and 3. In the course of manufacturing a linear motion type thrust cylindrical roller bearing as shown in the figure, the cylindrical rollers 1 and 1 are placed in the pockets 3 and 3 while elastically deforming the engaging protrusions 9 and 9, respectively. Or when the pair of elements 4a and 4b constituting the cage 2 are combined with each other, the two elements 4a and 4b are sandwiched between the elements 3a and 4b in the pockets 3 and 3, respectively. Deploy.

上述の様に構成する直動型スラスト円筒ころ軸受の使用時には、上記各円筒ころ1、1を、互いに平行に配置した1対の平面10、11(図4にのみ図示)同士の間に挟持する。そして、この状態で、これら両平面10、11を備えた1対の部材12、13(図4にのみ図示)同士の間に加わるスラスト荷重を支承しつつ、これら両部材12、13同士が、前記仮想平面αと平行で且つ上記各円筒ころ1、1の軸方向と直交する方向(図1の上下方向、図3の表裏方向、図4の左右方向)に関して相対変位する事を可能とする。   When the direct acting type thrust cylindrical roller bearing configured as described above is used, the cylindrical rollers 1 and 1 are sandwiched between a pair of planes 10 and 11 (shown only in FIG. 4) arranged in parallel to each other. To do. And in this state, while supporting the thrust load applied between a pair of members 12 and 13 (shown only in FIG. 4) provided with these both planes 10 and 11, these both members 12 and 13 It is possible to make relative displacement in directions parallel to the virtual plane α and perpendicular to the axial direction of the cylindrical rollers 1 and 1 (up and down direction in FIG. 1, front and back direction in FIG. 3, and left and right direction in FIG. 4). .

尚、上記各円筒ころ1、1の外周面と上記各平面10、11とは、互いに線接触するが、これら各面の転がり疲れ寿命を確保する為には、これら各面同士の線接触部の両端部に、エッジロードに基づく過大な面圧が作用しない様にする事が重要となる。この為に、図示の構造の場合には、図5に詳示する(径方向の寸法を軸方向の寸法に比べて誇張して示す)様に、上記各円筒ころ1の外周面の軸方向両端寄り部分に、それぞれクラウニングを施している。即ち、これら各円筒ころ1は、外周面の軸方向中間部を円筒面部14とし、同じく軸方向両端寄り部分をそれぞれクラウニング部15、15とし、更にこれら各クラウニング部15、15と軸方向両端面との連続部をそれぞれ面取り部16、16としている。この様に、上記各円筒ころ1の外周面の母線形状は、上記円筒面部14に対応する部分が、これら各円筒ころ1の中心軸に平行な直線部となっている。又、上記各クラウニング部15、15に対応する部分がそれぞれ、軸方向両側に向かう程外径が小さくなる方向に傾斜した、曲率半径R15が十分に大きい曲線部となっている。更に、上記各面取り部16、16に対応する部分がそれぞれ、軸方向両側に向かう程外径が小さくなる方向に傾斜した、曲率半径R16が十分に小さい(R16≪R15)曲線部となっている。又、これら直線部及び各曲線部は、互いに滑らかに連続している。そして、この様に円筒面部14と各面取り部16、16との間にクラウニング部15、15を設ける事により、上記各円筒ころ1、1の外周面と上記各平面10、11との線接触部の両端部に、エッジロードに基づく過大な面圧が作用しない様にしている。 The outer peripheral surfaces of the cylindrical rollers 1 and 1 and the flat surfaces 10 and 11 are in line contact with each other. In order to ensure the rolling fatigue life of these surfaces, the line contact portions between these surfaces are used. It is important that excessive surface pressure based on edge load does not act on both ends of the plate. For this reason, in the case of the structure shown in the figure, the axial direction of the outer peripheral surface of each cylindrical roller 1 is shown in detail in FIG. 5 (the radial dimension is exaggerated as compared with the axial dimension). Crowning is applied to the ends. That is, each of these cylindrical rollers 1 has an axially intermediate portion on the outer peripheral surface as a cylindrical surface portion 14, similarly, portions near both axial ends are crowned portions 15, 15, respectively, and each of these crowning portions 15, 15 and both axial end surfaces. The chamfered portions 16 and 16 are continuous portions. As described above, in the generatrix shape of the outer peripheral surface of each cylindrical roller 1, the portion corresponding to the cylindrical surface portion 14 is a linear portion parallel to the central axis of each cylindrical roller 1. Further, the portions corresponding to the crowning portions 15 and 15 are curved portions having a sufficiently large curvature radius R15 that is inclined in a direction in which the outer diameter becomes smaller toward the both sides in the axial direction. Further, a portion corresponding to each of the chamfered portions 16, 16 is inclined in a direction in which the outer diameter decreases toward the both sides in the axial direction, and a curved portion having a sufficiently small radius of curvature R 16 (R 16 << R 15 ) It has become. Further, the straight line portions and the curved line portions are smoothly continuous with each other. Then, by providing the crowning portions 15, 15 between the cylindrical surface portion 14 and the chamfered portions 16, 16 in this way, line contact between the outer peripheral surface of the cylindrical rollers 1, 1 and the flat surfaces 10, 11 is achieved. An excessive surface pressure based on the edge load is prevented from acting on both ends of the portion.

ところで、上述した様な直動型スラスト円筒ころ軸受の使用時、上記各円筒ころ1、1の外周面は上記各平面10、11に対し、転がり接触する。但し、運転条件によっては、これら各面同士の接触部に、滑りが発生する場合もある。この様に各面同士の接触部で滑りが発生した場合、これら各面で発生する摩耗粉の総体積Vは、それぞれ次の(1)式で表す事ができる(例えば、非特許文献1参照)。

Figure 2006250305
尚、この(1)式の右辺の各記号の意味は、以下の通りである。
K:摩耗係数
W:上記各面同士の接触部に作用している法線方向の荷重(ころ荷重)
L:滑り距離
H:摩耗が生じた面の硬さ By the way, when the direct acting type thrust cylindrical roller bearing as described above is used, the outer peripheral surfaces of the cylindrical rollers 1 and 1 are in rolling contact with the flat surfaces 10 and 11, respectively. However, depending on the operating conditions, slippage may occur at the contact portion between these surfaces. In this way, when slippage occurs at the contact portions between the surfaces, the total volume V of the wear powder generated on each surface can be expressed by the following equation (1) (see, for example, Non-Patent Document 1). ).
Figure 2006250305
The meaning of each symbol on the right side of the equation (1) is as follows.
K: Wear coefficient W: Load in the normal direction acting on the contact portion between the above surfaces (roller load)
L: Sliding distance H: Hardness of the surface on which wear has occurred

又、上述した様に、上記各円筒ころ1、1の外周面と上記各平面10、11とは互いに線接触するが、この線接触部の長さをSc とすると、上記(1)式の関係から、互いに接触する上記各面の摩耗深さdは、それぞれ次の(2)式で表す事ができる。

Figure 2006250305
尚、この(2)式の右辺のLr は、転がり距離である。この(2)式から分かる様に、上記各面の摩耗深さdは、これら各面同士の線接触部の長さSc に反比例する。従って、これら各面の摩耗は、この線接触部の長さSc を大きくする事により、減少させる事ができる。 Further, as described above, but in line contact with each other and the outer peripheral surface and the respective planes 10, 11 of each cylindrical roller 1,1, when the length of the line contact portion and S c, equation (1) From the above relationship, the wear depth d of each of the surfaces in contact with each other can be expressed by the following equation (2).
Figure 2006250305
Note that L r on the right side of the equation (2) is a rolling distance. As can be seen from this equation (2), the wear depth d of the respective surfaces is inversely proportional to the length S c of the contact lines of these surfaces to each other. Therefore, wear of these surfaces is, by increasing the length S c of the line contact portion, can be reduced.

そこで、次に、上記線接触部の長さSc を如何にして大きくできるかに就いて説明する。この線接触部の長さSc は、上記ころ荷重Wの大きさにより変化する。即ち、このころ荷重Wがゼロ(W=0)の場合には、上記各円筒ころ1、1に弾性変形が生じない為、これら各円筒ころ1、1の外周面のうち、上記円筒面部14のみが、上記各平面10、11に接触した状態となる。従って、この場合、上記線接触部の長さSc は、上記円筒面部14の軸方向寸法Ls となる。これに対し、上記ころ荷重Wがゼロでない(W>0)場合には、上記各円筒ころ1、1が上記各平面10、11同士の間で押し潰される方向に弾性変形する為、上記各円筒ころ1、1の外周面は、上記円筒面部14だけでなく、上記各クラウニング部15、15の少なくとも一部(上記円筒面部14に隣接する部分)も、上記各平面10、11に接触する様になる。従って、この場合、上記線接触部の長さSc は、上記円筒面部14の軸方向寸法Ls と、上記各クラウニング部15、15の少なくとも一部の軸方向寸法(この一部の軸方向寸法は、上記ころ荷重Wが大きくなる程大きくなる)との総和となる。従って、これらの関係から分かる様に、上記線接触部の長さSc は、上記各円筒ころ1、1の軸方向寸法Lt に対する上記円筒面部14の軸方向寸法Ls の割合を大きくする事により、大きくする事ができる。 Accordingly, next, described with regard to whether it increases in the how the length S c of the line contact portion. Length S c of the line contact portion is changed by the size of the roller load W. That is, when the roller load W is zero (W = 0), the cylindrical rollers 1 and 1 are not elastically deformed. Only the planes 10 and 11 are in contact with each other. Accordingly, in this case, the length S c of the line contact portion is the axial dimension L s of the cylindrical surface portion 14. On the other hand, when the roller load W is not zero (W> 0), the cylindrical rollers 1 and 1 are elastically deformed in the direction in which they are crushed between the planes 10 and 11. The outer peripheral surfaces of the cylindrical rollers 1 and 1 contact not only the cylindrical surface portion 14 but also at least a part of the crowning portions 15 and 15 (portions adjacent to the cylindrical surface portion 14) in contact with the flat surfaces 10 and 11. It becomes like. Therefore, in this case, the length S c of the line contact portion has an axial dimension L s of the cylindrical surface portion 14, at least a portion of the axial dimension (of the portion axially of the respective crowning portions 15 The dimension is the sum of the above and the larger the roller load W). Therefore, as can be seen from these relationships, the length S c of the line contact portion increases the ratio of the axial dimension L s of the cylindrical surface portion 14 to the axial dimension L t of the cylindrical rollers 1, 1. You can make it bigger.

ところが、上記各円筒ころ1、1の軸方向寸法Lt に対する上記円筒面部14の軸方向寸法Ls の割合を大きくし過ぎると、上記各クラウニング部15、15の軸方向寸法Lc の割合を十分に確保できなくなる。この結果、上記ころ荷重Wが大きくなった場合に、上記各平面10、11に対して上記各クラウニング部15、15の全体が接触し易くなり、上記線接触部の両端部でエッジロードに基づく過大な面圧が作用し易くなる為、好ましくない。 However, if the ratio of the axial dimension L s of the cylindrical surface portion 14 to the axial dimension L t of the cylindrical rollers 1 and 1 is excessively increased, the ratio of the axial dimension L c of the crowning portions 15 and 15 is increased. It will not be possible to secure enough. As a result, when the roller load W is increased, the entire crowning portions 15 and 15 are easily brought into contact with the flat surfaces 10 and 11 and are based on edge loads at both ends of the line contact portion. Since excessive surface pressure is likely to act, it is not preferable.

山本、兼田、「トライボロジー」、理工学社、2001年2月25日、第1版、第4刷、p189Yamamoto, Kaneda, "Tribology", Science and Engineering, February 25, 2001, 1st edition, 4th edition, p189

本発明の直動型スラスト円筒ころ軸受は、上述の様な事情に鑑み、各円筒ころの軸方向寸法に対する円筒面部(1対のクラウニング部)の軸方向寸法の割合を規制する事により、これら各円筒ころの外周面と相手面との摩耗量の低減と、これら各面の転がり疲れ寿命の確保とを高次元で両立できる構造を実現すべく発明したものである。   The direct acting type thrust cylindrical roller bearing according to the present invention takes these circumstances into consideration, by restricting the ratio of the axial dimension of the cylindrical surface part (a pair of crowning parts) to the axial dimension of each cylindrical roller The present invention has been invented to realize a structure that can reduce the wear amount between the outer peripheral surface and the mating surface of each cylindrical roller and ensure the rolling fatigue life of each surface at a high level.

本発明の直動型スラスト円筒ころ軸受は、同一の仮想平面内にそれぞれの中心軸を互いに平行に又は同心に配置した複数本の円筒ころと、これら各円筒ころを転動自在に保持する為の複数の矩形のポケットを有する保持器とを備える。そして、上記各円筒ころは、外周面の軸方向中間部を円筒面部とし、同じく軸方向両端寄り部分をそれぞれクラウニング部とし、これら各クラウニング部と軸方向両端面との連続部をそれぞれ面取り部としている。
特に、本発明の直動型スラスト円筒ころ軸受の場合には、上記各円筒ころの軸方向寸法をLt とし、上記円筒面部の軸方向寸法をLs とし、上記各面取り部の軸方向寸法をCとし、パラメータX=Ls /(Lt −2C)とした場合に、0.7≦X≦0.95の条件を満たす。
The direct acting type thrust cylindrical roller bearing of the present invention has a plurality of cylindrical rollers in which the respective central axes are arranged in parallel or concentrically within the same virtual plane, and each of these cylindrical rollers is held in a freely rolling manner. And a cage having a plurality of rectangular pockets. And each said cylindrical roller makes the axial direction intermediate part of an outer peripheral surface a cylindrical surface part, and also makes a part near an axial direction both ends each crowning part, and each continuous part of each said crowning part and axial direction both end surface makes a chamfering part, respectively. Yes.
In particular, in the case of the direct acting type thrust cylindrical roller bearing of the present invention, the axial dimension of each cylindrical roller is L t , the axial dimension of the cylindrical surface portion is L s, and the axial dimension of each chamfered portion. Is C and the parameter X = L s / (L t −2C), the condition of 0.7 ≦ X ≦ 0.95 is satisfied.

上述の様に構成する本発明の直動型スラスト円筒ころ軸受の場合には、上記パラメータXを適切な範囲(0.7≦X≦0.95)に規制している為、複数個の円筒ころの外周面と相手面との摩耗量の低減と、これら各面の転がり疲れ寿命の確保とを、高次元で両立させる事ができる。   In the case of the direct acting type thrust cylindrical roller bearing of the present invention configured as described above, since the parameter X is restricted to an appropriate range (0.7 ≦ X ≦ 0.95), a plurality of cylinders Reduction of the amount of wear between the outer peripheral surface of the roller and the mating surface and securing of the rolling fatigue life of each surface can be achieved at a high level.

本発明を完成させる過程で行なった評価試験に就いて説明する。本実施例では、この評価試験を行なう為のサンプルとして、前述の図1〜5に示した基本構成を有する直動型スラスト円筒ころ軸受を採用した。尚、各部の寸法は、以下の通りである。
保持器2の幅寸法Wh :70mm
円筒ころ1の総数:25本
円筒ころ1の軸方向寸法Lt :8mm
円筒ころ1(円筒面部14)の直径D1 :5mm
面取り部16の軸方向寸法C:0.5mm
An evaluation test performed in the process of completing the present invention will be described. In this example, a direct acting type thrust cylindrical roller bearing having the basic configuration shown in FIGS. 1 to 5 was employed as a sample for performing this evaluation test. In addition, the dimension of each part is as follows.
Width dimension W h of cage 2: 70 mm
Total number of cylindrical rollers 1: Axial dimension L t of 25 cylindrical rollers 1: 8 mm
Diameter D 1 of cylindrical roller 1 (cylindrical surface portion 14): 5 mm
Axial dimension C of chamfered portion 16: 0.5 mm

又、上記各円筒ころ1、1を挟持する1対の平面10、11は、前記仮想平面αに平行で且つ上記各円筒ころ1、1の軸方向に対して直交する方向(図4の左右方向)に関して互いに往復相対変位するものとし、この際に上記各円筒ころ1、1が上記各平面10、11に対して転がり/滑り往復運動するストロークsを、2mmに設定した。   A pair of planes 10 and 11 sandwiching the cylindrical rollers 1 and 1 are parallel to the virtual plane α and perpendicular to the axial direction of the cylindrical rollers 1 and 1 (left and right in FIG. 4). In this case, the strokes s in which the cylindrical rollers 1 and 1 roll / slide back and forth with respect to the planes 10 and 11 are set to 2 mm.

そして、上記各円筒ころ1、1の軸方向寸法Lt に対する円筒面部14の軸方向寸法Ls の割合を種々変化させた場合の、これら各円筒ころ1、1の外周面及び上記各平面10、11の摩耗深さdを、それぞれ前記(2)式により求める事で、パラメータX{=Ls /(Lt −2C)}と、摩耗による軸受幅Wb (図4)の減少量との関係を求めた。図6に、その結果を示す。尚、この図6では、上記軸受幅Wb の減少量を、上記パラメータXが0.43の場合の減少量を「1」とする比で表している(同図の縦軸)。又、本実施例では、上記各円筒ころ1、1の軸方向寸法Lt に対する上記円筒面部14の軸方向寸法Ls の割合を種々変化させた場合の、これら各円筒ころ1、1の外周面及び上記各平面10、11の転がり疲れ寿命を、それぞれ従来から知られている計算式により求める事で、上記パラメータXと、上記転がり疲れ寿命(X=0.4の場合の転がり疲れ寿命を「1」とする寿命比)との関係を求めた。図7に、その結果を示す。尚、これら図6〜7の関係を求める場合に、1対のクラウニング部15、15の曲率半径R15は、これら各クラウニング部15、15と上記各平面10、11との接触部でエッジロードが発生しない範囲に於いて最大となる様に設定した。 Then, the axial direction when the dimension and the ratio of L s while varying the outer peripheral surface and the respective plane 10 of the cylindrical rollers 1,1 cylindrical portions 14 relative to the axial dimension L t of each cylindrical roller 1,1 11 is obtained by the above equation (2), the parameter X {= L s / (L t −2C)} and the reduction amount of the bearing width W b due to wear (FIG. 4) Sought the relationship. FIG. 6 shows the result. In FIG. 6, the amount of decrease in the bearing width W b is represented by a ratio in which the amount of decrease when the parameter X is 0.43 is “1” (the vertical axis in the figure). In the present embodiment, the outer circumferences of the cylindrical rollers 1 and 1 when the ratio of the axial dimension L s of the cylindrical surface portion 14 to the axial dimension L t of the cylindrical rollers 1 and 1 is variously changed. By calculating the rolling fatigue life of the surface and each of the planes 10 and 11 using a conventionally known calculation formula, the parameter X and the rolling fatigue life (when X = 0.4, the rolling fatigue life is obtained. The relationship with the life ratio “1”) was determined. FIG. 7 shows the result. 6 to 7, the radius of curvature R 15 of the pair of crowning portions 15, 15 is the edge load at the contact portion between each of these crowning portions 15, 15 and each of the above planes 10, 11. It was set so that it would be the maximum in the range where no occurrence occurred.

先ず、図6に示した結果から明らかな様に、上記摩耗による軸受幅Wb の減少量は、上記パラメータXが大きくなる程、小さくなる。従って、この摩耗による軸受幅Wb の減少量を抑える為には、上記パラメータXをできるだけ大きくするのが好ましいと言える。 First, as is apparent from the results shown in FIG. 6, the amount of decrease in the bearing width W b due to wear decreases as the parameter X increases. Therefore, it can be said that it is preferable to increase the parameter X as much as possible in order to suppress the reduction amount of the bearing width W b due to this wear.

ところが、図7に示した結果から明らかな様に、上記パラメータXが0.9弱の値に達する迄の区間では、このパラメータXが大きくなる程、上記各面の転がり疲れ寿命(寿命比)が長くなる傾向を示すのに対し、上記パラメータXが0.9弱の値を越えた区間では、このパラメータXが大きくなるのに従い、上記各面の転がり疲れ寿命(寿命比)が急激に短くなる傾向を示す。尚、上記パラメータXが0.9弱の値を越えた区間でこの様な傾向を示す理由は、上記パラメータXが0.9弱の値を越えると、1対のクラウニング部15、15の軸方向寸法Lc が不足し、これら各クラウニング部15、15の互いに反対側の端縁部分で、上記各円筒ころ1、1の外周面と上記各平面10、11との線接触部に、エッジロードに基づく過大な面圧が発生する為である。特に、パラメータX=1になる(Xが最大になる)点では、上記各クラウニング部15、15の軸方向寸法Lc がゼロとなり(クラウニング部がなくなり)、上記円筒面部14の両端部に上記各面取り部16、16が連続する構造となる為、上記エッジロードが最大となって、当該区間での転がり疲れ寿命(寿命比)が最小となる。従って、この転がり疲れ寿命(寿命比)を確保する観点より、上記パラメータXを大きくし過ぎる(1に近づけ過ぎる)のは好ましくない。 However, as is clear from the results shown in FIG. 7, in the interval until the parameter X reaches a value of less than 0.9, the rolling fatigue life (life ratio) of each surface increases as the parameter X increases. However, in the section where the parameter X exceeds a value of less than 0.9, as the parameter X increases, the rolling fatigue life (life ratio) of each surface decreases rapidly. Show the trend. The reason why such a tendency is exhibited in the section where the parameter X exceeds a value of less than 0.9 is that if the parameter X exceeds a value of less than 0.9, the axis of the pair of crowning portions 15 and 15 The direction dimension Lc is insufficient, and the edge portions on the opposite sides of each of the crowning portions 15 and 15 have edges at the line contact portions between the outer peripheral surfaces of the cylindrical rollers 1 and 1 and the planes 10 and 11, respectively. This is because an excessive surface pressure based on the load is generated. In particular, at the point where the parameter X = 1 (X becomes maximum), the axial dimension L c of each of the crowning portions 15, 15 becomes zero (the crowning portion disappears), and the above-described portions are formed at both ends of the cylindrical surface portion 14. Since the chamfered portions 16 and 16 are continuous, the edge load is maximized, and the rolling fatigue life (life ratio) in the section is minimized. Therefore, it is not preferable to make the parameter X too large (too close to 1) from the viewpoint of securing this rolling fatigue life (life ratio).

そこで、本発明の場合には、上述の図6〜7に示した各結果に基づき、上記各円筒ころ1、1の外周面と上記各平面10、11との摩耗量の低減と、これら各面の転がり疲れ寿命の確保とを、高次元で両立できる様にすべく、上記パラメータXを、0.7≦X≦0.95{好ましくは、0.775≦X≦0.925(より好ましくは、0.85≦X≦0.9)}の範囲に規制する事とした。   Therefore, in the case of the present invention, based on the results shown in FIGS. 6 to 7 described above, the amount of wear between the outer peripheral surfaces of the cylindrical rollers 1 and 1 and the flat surfaces 10 and 11, The parameter X is set to 0.7 ≦ X ≦ 0.95 {preferably 0.775 ≦ X ≦ 0.925 (more preferably) so that the rolling fatigue life of the surface can be ensured at a high level. Is regulated within the range of 0.85 ≦ X ≦ 0.9)}.

尚、本発明の直動型スラスト円筒ころ軸受を実施する場合、保持器の平面形状は、正方形(図1参照)に限らず、用途に合わせた各種の形状を採用する事ができる。又、寸法に関しても、用途に合わせた各種の寸法を採用する事ができる。更に、上述した実施例では、保持器に形成した各ポケットの内面形状を、これら各ポケットの内側から円筒ころが脱落するのを防止できる形状としたが、本発明を実施する場合、上記各ポケットの内面形状は、円筒ころの脱落防止を図れない形状であっても良い。   In addition, when implementing the linear motion type thrust cylindrical roller bearing of the present invention, the planar shape of the cage is not limited to a square (see FIG. 1), and various shapes according to the application can be adopted. In addition, regarding the dimensions, various dimensions can be adopted according to the application. Furthermore, in the embodiment described above, the inner surface shape of each pocket formed in the cage is a shape that can prevent the cylindrical roller from falling off from the inside of each pocket. The inner surface shape may be a shape that cannot prevent the cylindrical roller from falling off.

本発明の対象となる直動型スラスト円筒ころ軸受の1例を示す平面図。The top view which shows an example of the linear motion type thrust cylindrical roller bearing used as the object of this invention. 図1のA部拡大図。The A section enlarged view of FIG. 図1のB−B断面図。BB sectional drawing of FIG. 図3のD−D断面を拡大して示す図。The figure which expands and shows the DD cross section of FIG. 径方向の寸法を軸方向の寸法に比べて誇張して示す、円筒ころの部分側面図。The partial side view of a cylindrical roller which exaggerates and shows the dimension of radial direction compared with the dimension of an axial direction. 本発明を完成させる過程で理論計算を行なう事により求めた、パラメータXと、摩耗による軸受幅Wb の減少量の比との関係を示すグラフ。The graph which shows the relationship between the parameter X calculated | required by performing theoretical calculation in the process of completing this invention, and the reduction | decrease ratio of the bearing width Wb by wear. 同じく、パラメータXと各面の寿命比との関係を示すグラフ。Similarly, the graph which shows the relationship between the parameter X and the life ratio of each surface.

符号の説明Explanation of symbols

1 円筒ころ
2 保持器
3 ポケット
4a、4b 素子
5a、5b 平板部
6a、6b 鍔部
7 透孔
8 直線縁部
9 係合突部
10 平面
11 平面
12 部材
13 部材
14 円筒面部
15 クラウニング部
16 面取り部
DESCRIPTION OF SYMBOLS 1 Cylindrical roller 2 Cage 3 Pocket 4a, 4b Element 5a, 5b Flat plate part 6a, 6b Eaves part 7 Through-hole 8 Straight edge 9 Engagement protrusion 10 Plane 11 Plane 12 Member 13 Member 14 Cylindrical part 15 Crowning part 16 Chamfering Part

Claims (1)

同一の仮想平面内にそれぞれの中心軸を互いに平行に又は同心に配置した複数本の円筒ころと、これら各円筒ころを転動自在に保持する為の複数の矩形のポケットを有する保持器とを備え、上記各円筒ころは、外周面の軸方向中間部を円筒面部とし、同じく軸方向両端寄り部分をそれぞれクラウニング部とし、これら各クラウニング部と軸方向両端面との連続部をそれぞれ面取り部としている直動型スラスト円筒ころ軸受であって、上記各円筒ころの軸方向寸法をLt とし、上記円筒面部の軸方向寸法をLs とし、上記各面取り部の軸方向寸法をCとし、パラメータX=Ls /(Lt −2C)とした場合に、0.7≦X≦0.95の条件を満たす事を特徴とする直動型スラスト円筒ころ軸受。 A plurality of cylindrical rollers in which the respective central axes are arranged in parallel or concentrically within the same virtual plane, and a cage having a plurality of rectangular pockets for holding the respective cylindrical rollers in a rollable manner. Each cylindrical roller has an axially intermediate portion of the outer peripheral surface as a cylindrical surface portion, and also portions near both axial ends are crowned portions, and continuous portions of these crowning portions and both axial end surfaces are chamfered portions, respectively. A linear thrust cylindrical roller bearing, wherein the axial dimension of each cylindrical roller is L t , the axial dimension of the cylindrical surface portion is L s, and the axial dimension of each chamfered portion is C A direct acting type thrust cylindrical roller bearing characterized by satisfying a condition of 0.7 ≦ X ≦ 0.95 when X = L s / (L t −2C).
JP2005070314A 2005-03-14 2005-03-14 Linear motion thrust cylindrical roller bearing Pending JP2006250305A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070314A JP2006250305A (en) 2005-03-14 2005-03-14 Linear motion thrust cylindrical roller bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070314A JP2006250305A (en) 2005-03-14 2005-03-14 Linear motion thrust cylindrical roller bearing

Publications (1)

Publication Number Publication Date
JP2006250305A true JP2006250305A (en) 2006-09-21

Family

ID=37091022

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070314A Pending JP2006250305A (en) 2005-03-14 2005-03-14 Linear motion thrust cylindrical roller bearing

Country Status (1)

Country Link
JP (1) JP2006250305A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115921A (en) * 2006-11-02 2008-05-22 Nsk Ltd Moving device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008115921A (en) * 2006-11-02 2008-05-22 Nsk Ltd Moving device

Similar Documents

Publication Publication Date Title
US8858081B2 (en) Sliding bearing
JP5160538B2 (en) Radial roller bearings, especially single row spherical roller bearings
WO2013145355A1 (en) Rolling bearing device
US20100098364A1 (en) Roller with cage assembly
JP2006125427A (en) Thrust needle roller bearing
JP5251431B2 (en) Tapered roller bearing
WO2017026274A1 (en) Shaft coupling structure
JP5890514B2 (en) Roller and rolling guide device using this roller
JP2006250305A (en) Linear motion thrust cylindrical roller bearing
JP2007100738A (en) Roller bearing
JP2015102144A (en) Self-aligning roller bearing
JP6490243B2 (en) Cross roller bearing
JP4364610B2 (en) Roller bearing
JP4483803B2 (en) Thrust cylindrical roller bearing
JP2006250271A (en) Linear motion thrust cylindrical roller bearing
JP2006250285A (en) Linear motion thrust cylindrical roller bearing
KR101076099B1 (en) Retainer for Roller Bearing and Manufacturing Method of The Same
US20230366428A1 (en) Foil air bearing having herringbone pattern
JP2007071292A (en) Roller bearing
JP2006242369A (en) Direct acting type cylindrical thrust roller bearing
JP2008281066A (en) Ball bearing
WO2017026273A1 (en) Tolerance ring
JP2007333024A (en) Deep groove ball bearing for transmission
US20150377291A1 (en) Cage part for a rolling bearing cage
JP2014043900A (en) Rolling bearing

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070507