JP2006249576A - Gas supply tube for plasma treatment - Google Patents

Gas supply tube for plasma treatment Download PDF

Info

Publication number
JP2006249576A
JP2006249576A JP2006012405A JP2006012405A JP2006249576A JP 2006249576 A JP2006249576 A JP 2006249576A JP 2006012405 A JP2006012405 A JP 2006012405A JP 2006012405 A JP2006012405 A JP 2006012405A JP 2006249576 A JP2006249576 A JP 2006249576A
Authority
JP
Japan
Prior art keywords
gas
gas supply
supply pipe
container
vapor deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006012405A
Other languages
Japanese (ja)
Inventor
Koji Yamada
幸司 山田
Hiroshi Fujimoto
博 藤本
Masahiko Shimazu
正彦 島津
Akira Kobayashi
亮 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Seikan Group Holdings Ltd
Original Assignee
Toyo Seikan Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Seikan Kaisha Ltd filed Critical Toyo Seikan Kaisha Ltd
Priority to JP2006012405A priority Critical patent/JP2006249576A/en
Publication of JP2006249576A publication Critical patent/JP2006249576A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a gas supply tube for plasma treatment, wherein clogging is hardly caused by the sticking of vapor deposition components, and further, the peeling of the stuck vapor deposition components is effectively suppressed, and uniform gas supply can be performed stably over a long period. <P>SOLUTION: In the gas supply tube which is inserted to the inside of a vessel held inside a plasma treatment chamber, for supplying gas for plasma treatment into the vessel, a gas flow passage is extended in the axial direction, also at least the surface part in the tube wall is formed of a porous body, and, gas blowout holes with a diameter of ≥0.2 mm are formed at suitable intervals in the axial direction or circumferential direction in the tube wall. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プラスチックボトルなどの容器の内面に、プラズマCVD法により蒸着膜を形成する際に使用するプラズマ処理用ガス供給管に関するものである。   The present invention relates to a plasma processing gas supply pipe used when forming a deposited film on the inner surface of a container such as a plastic bottle by a plasma CVD method.

化学蒸着法(CVD)は、常温では反応の起こらない原料ガスを用いて、高温雰囲気での気相成長により、基体表面に反応生成物を膜状に析出させる技術であり、半導体の製造、金属やセラミックの表面改質等に広く採用されている技術であり、最近ではプラスチックボトル等の容器の表面改質、特にガスバリアー性の向上にも用いられるようになりつつある。   Chemical vapor deposition (CVD) is a technology that deposits reaction products in the form of a film on the surface of a substrate by vapor phase growth in a high-temperature atmosphere using a source gas that does not react at room temperature. The technology is widely used for surface modification of ceramics and ceramics, and is recently being used for surface modification of containers such as plastic bottles, particularly for improving gas barrier properties.

プラズマCVDとは、プラズマを利用して薄膜成長を行うものであり、基本的には、減圧下において原料ガスを含むガスを高電界による電気的エネルギーで放電させ、分解させ、生成する物質を気相中或いは基板上での化学反応を経て、基板上に堆積させるプロセスから成る。プラズマ状態は、グロー放電によって実現されるものであり、グロー放電の方式によって、マイクロ波グロー放電によるプラズマCVD法や高周波グロー放電によるプラズマCVD法などが知られている。   Plasma CVD is a method of growing a thin film using plasma. Basically, a gas containing a raw material gas is discharged under a reduced pressure with electric energy by a high electric field, decomposed, and a generated substance is gasified. It consists of a process of depositing on a substrate via a chemical reaction in phase or on the substrate. The plasma state is realized by glow discharge, and a plasma CVD method using microwave glow discharge, a plasma CVD method using high-frequency glow discharge, and the like are known depending on the glow discharge method.

マイクロ波、高周波のいずれによるプラズマCVD法においても、容器内面に蒸着膜を形成するには、プラズマ処理室内に容器を保持し、この容器内に反応性ガス(プラズマ処理用ガス)を供給するためのガス供給管を挿入し、少なくとも容器内を所定の真空度に減圧し、容器の内部に反応性ガスを供給しながら、マイクロ波或いは高周波によるグロー放電を容器内で発生させることにより、容器内面に蒸着膜を形成するものである。   In both the microwave and high frequency plasma CVD methods, in order to form a deposited film on the inner surface of the container, the container is held in the plasma processing chamber and a reactive gas (plasma processing gas) is supplied into the container. The inner surface of the container is generated by generating a glow discharge by microwave or high frequency in the container while supplying a reactive gas to the inside of the container while reducing the pressure in the container to a predetermined degree of vacuum. A vapor deposition film is formed on the substrate.

従って、容器内面に均一な厚みの蒸着膜を形成するためには、反応性のガスを容器内に均一に供給することが必要であり、このようなガス供給管として、多孔質体のポアがガス吹き出し孔となる多孔質パイプや、金属管などの壁面に穿孔等によりガス吹き出し孔を形成した有孔パイプなどが提案されている(特許文献1参照)。
特開2003−54532号公報
Therefore, in order to form a vapor deposition film having a uniform thickness on the inner surface of the container, it is necessary to uniformly supply a reactive gas into the container. As such a gas supply pipe, a porous body pore is provided. A porous pipe serving as a gas blowing hole or a perforated pipe in which a gas blowing hole is formed by drilling or the like on a wall surface of a metal pipe or the like has been proposed (see Patent Document 1).
JP 2003-54532 A

しかしながら、特許文献1に示されているような多孔質パイプからなるガス供給管を用いて、プラズマCVD法による蒸着膜を容器内面に形成するときには、蒸着膜を繰り返し形成していくうちに、ガス供給管の外周面に蒸着膜成分の付着を生じてしまい、該供給管のガス孔に目詰まりが生じてしまうという問題があった。このような目詰まりを生じてしまうと、例えばガス供給管の先端部分からの反応ガスの吹き出しがほとんどとなってしまい、この結果、ガス供給管の先端に対面している容器の底部に蒸着膜が厚く形成されてしまい、容器の胴部内面などの蒸着膜の厚みは極めて薄くなってしまうという不都合を生じる。また、特許文献1に記載されているような有孔パイプでは、ガス吹き出し孔が比較的大きいため、管壁に蒸着成分の付着が生じたとしても目詰まりは生じ難いものの、管壁に付着した蒸着成分が蒸着プロセス中に管壁から剥がれ落ち、蒸着膜を形成すべき容器内面に異物として付着してしまい、この結果、蒸着膜の厚みや組成にばらつきを生じてしまい、所望の特性を得られないという問題があった。従って、このような問題を生じるため、従来公知のガス供給管は、頻繁に交換しなければならず、その改善が求められているのが現状である。   However, when forming a vapor deposition film by a plasma CVD method on the inner surface of the container using a gas supply pipe made of a porous pipe as shown in Patent Document 1, the gas is repeatedly formed while the vapor deposition film is repeatedly formed. There has been a problem that vapor deposition film components adhere to the outer peripheral surface of the supply pipe and the gas holes of the supply pipe are clogged. When such clogging occurs, for example, the reaction gas is almost blown out from the tip of the gas supply pipe, and as a result, the vapor deposition film is formed on the bottom of the container facing the tip of the gas supply pipe. As a result, the thickness of the deposited film such as the inner surface of the body of the container becomes extremely thin. Moreover, in the perforated pipe as described in Patent Document 1, since the gas blowout holes are relatively large, clogging hardly occurs even if the vapor deposition component adheres to the tube wall, but adheres to the tube wall. Vapor deposition components peel off from the tube wall during the vapor deposition process and adhere as foreign matter to the inner surface of the container on which the vapor deposition film is to be formed, resulting in variations in the thickness and composition of the vapor deposition film and obtaining desired characteristics. There was a problem that it was not possible. Therefore, in order to cause such a problem, the conventionally known gas supply pipe must be frequently replaced, and the improvement is demanded at present.

従って本発明の目的は、蒸着成分の付着による目詰まりを生じにくく、しかも付着した蒸着成分の剥がれが有効に抑制され、長期間にわたって安定に均一なガス供給を行うことが可能なプラズマ処理用のガス供給管を提供することにある。   Therefore, an object of the present invention is to provide a plasma processing apparatus that is less likely to be clogged due to adhesion of vapor deposition components, and that effectively prevents peeling of the deposited vapor deposition components and can stably supply a uniform gas over a long period of time. It is to provide a gas supply pipe.

本発明によれば、プラズマ処理室内に保持された容器の内部に挿入され、該容器内にプラズマ処理用ガスを供給するためのガス供給管において、
軸方向にガス流路が延びており且つ管壁の少なくとも表面部が粗面で形成されており、該管壁には、軸方向或いは周方向に適当な間隔を置いて、径が0.2mm以上のガス吹き出し孔が形成されていることを特徴とするプラズマ処理用ガス供給管が提供される。
According to the present invention, in the gas supply pipe inserted into the container held in the plasma processing chamber and supplying the plasma processing gas into the container,
The gas flow path extends in the axial direction, and at least the surface portion of the tube wall is formed with a rough surface. The tube wall has a diameter of 0.2 mm at an appropriate interval in the axial direction or the circumferential direction. A gas supply pipe for plasma processing is provided in which the above gas blowing holes are formed.

本発明におけるプラズマ処理用ガス供給管においては、
1.前記管壁が多孔質体から形成されていること、
2.前記管壁が焼結体から形成されていること、
3.前記管壁の表面がアルマイト処理によって形成されていること、
が好適である。
In the gas supply pipe for plasma processing in the present invention,
1. The tube wall is formed of a porous body;
2. The tube wall is formed of a sintered body;
3. The surface of the tube wall is formed by alumite treatment;
Is preferred.

本発明においては、管壁の少なくとも表面が粗面で形成されていると共に、ガス吹き出し孔が0.2mm以上の径を有するものであること(即ち、多孔質体のポアではなく、穿孔等の後加工によって形成された大きな孔で吹き出し孔が形成されていることを意味する)が重要な特徴である。即ち、ガス吹き出し孔が大きな径を有しているため、管壁表面に蒸着成分が付着した場合にも、ガス吹き出し孔の目詰まりが有効に防止される。例えば、多孔質体のポアによってガス吹き出し孔が形成されている場合には、蒸着成分の付着によって容易に目詰まりを生じてしまうため、反応性ガスの供給が不均一となり、蒸着膜の厚みムラなどが発生してしまう。また、管壁表面に蒸着成分の付着が生じたとしても、その表面が凹凸のある粗面や多孔質体等で形成されているため、付着した蒸着成分はしっかりと管壁表面に保持され、この結果、蒸着成分の脱落による容器内面への異物の付着が有効に回避され、厚みや組成が均一の蒸着膜を形成することができる。例えば、表面が平滑な金属材料などから形成されている管では、付着した蒸着成分が容易に脱落してしまうため、容器内面への異物の付着を生じてしまうこととなる。   In the present invention, at least the surface of the tube wall is formed with a rough surface, and the gas blowing hole has a diameter of 0.2 mm or more (that is, not a pore of a porous body, such as a perforation). An important feature is that the blowout holes are formed by large holes formed by post-processing. That is, since the gas blowing holes have a large diameter, clogging of the gas blowing holes can be effectively prevented even when a vapor deposition component adheres to the tube wall surface. For example, when the gas blowing holes are formed by the pores of the porous body, clogging easily occurs due to adhesion of the vapor deposition components, so that the supply of the reactive gas becomes uneven and the thickness of the vapor deposition film becomes uneven. Etc. will occur. In addition, even if deposition components adhere to the tube wall surface, because the surface is formed of an uneven rough surface or a porous body, the deposited components are firmly held on the tube wall surface, As a result, it is possible to effectively avoid the adhesion of foreign matters to the inner surface of the container due to the removal of the vapor deposition components, and a vapor deposition film having a uniform thickness and composition can be formed. For example, in a tube formed of a metal material having a smooth surface, the deposited components easily fall off, and foreign matter adheres to the inner surface of the container.

このように本発明によれば、長期間にわたって繰り返しプラズマ処理を行った場合にも、容器内面への異物の付着を生じることなく、安定して均一なガス供給を行うことができる。   As described above, according to the present invention, even when the plasma treatment is repeatedly performed over a long period of time, it is possible to stably and uniformly supply a gas without causing foreign matter to adhere to the inner surface of the container.

本発明を、以下、添付図面に示す具体例に基づいて詳細に説明する。
図1は、本発明のガス供給管を用いて実施されるプラズマ処理による容器内面の蒸着膜の形成プロセスを示す概念図であり、マイクロ波CVDを例にとって示した図である。
図2は、本発明のガス供給管の好適例を示す断面側面図である。
Hereinafter, the present invention will be described in detail based on specific examples shown in the accompanying drawings.
FIG. 1 is a conceptual diagram showing a process for forming a vapor deposition film on the inner surface of a container by plasma processing performed using the gas supply pipe of the present invention, and is a diagram illustrating microwave CVD as an example.
FIG. 2 is a cross-sectional side view showing a preferred example of the gas supply pipe of the present invention.

即ち、マイクロ波CVDを例にとってプラズマ処理による容器内面への蒸着膜の形成プロセスを説明すると、図1に示されているように、プラズマ処理室1には、導波管などのマイクロ波供給部材3が接続されている。尚、プラズマ処理室1は、電磁波(マイクロ波)閉じ込めのため、金属製のチャンバによって形成されている。このプラズマ処理室1内に処理すべき容器(例えばプラスチックボトル)5が倒立状態に保持され、この容器5内に、本発明のガス供給管10が挿入されている。ガス供給管10は、容器5の全体にできるだけ均等に反応性ガスが供給されるように、その付け根部が容器5の首部内に位置するように配置される。   That is, the process of forming a deposited film on the inner surface of the container by plasma processing will be described taking microwave CVD as an example. As shown in FIG. 1, the plasma processing chamber 1 has a microwave supply member such as a waveguide. 3 is connected. The plasma processing chamber 1 is formed of a metal chamber for confining electromagnetic waves (microwaves). A container (for example, plastic bottle) 5 to be processed is held in an inverted state in the plasma processing chamber 1, and the gas supply pipe 10 of the present invention is inserted into the container 5. The gas supply pipe 10 is disposed so that the base portion thereof is located in the neck portion of the container 5 so that the reactive gas is supplied to the entire container 5 as evenly as possible.

尚、図1においては、プラズマ処理室1内の排気或いは給気機構等は省略されており、またガス供給管10は、概略で示し、その詳細な構造は図2に示されている。   In FIG. 1, the exhaust or supply mechanism or the like in the plasma processing chamber 1 is omitted, and the gas supply pipe 10 is schematically shown, and its detailed structure is shown in FIG.

プラズマ処理に際しては、所定の排気機構により容器5の内部を真空状態に維持し、同時に、容器5の外圧による変形を防止するために、プラズマ処理室1内(容器5の外部)も減圧状態にする。この場合、容器5内は、マイクロ波が導入されてグロー放電が発生するように、減圧の程度が高く、一方、プラズマ処理室1は、マイクロ波が導入されてもグロー放電が発生しないように、その減圧の程度は低い。   During plasma processing, the inside of the container 5 is maintained in a vacuum state by a predetermined exhaust mechanism, and at the same time, the inside of the plasma processing chamber 1 (outside the container 5) is also in a reduced pressure state in order to prevent deformation of the container 5 due to external pressure. To do. In this case, the degree of decompression is high in the container 5 so that microwaves are introduced and glow discharge is generated, while the plasma processing chamber 1 is such that glow discharges are not generated even when microwaves are introduced. The degree of decompression is low.

上記のようにして容器5の内外を所定の減圧状態に保持した後、ガス供給管10により容器5内に反応性ガスを導入し、マイクロ波伝送部材3を通してプラズマ処理室1内にマイクロ波を導入し、グロー放電によるプラズマを発生させる。このプラズマ中での電子温度は数万Kであり、ガス粒子の温度は数100Kであるのに比して約2桁ほど高く、熱的に非平衡の状態であり、低温のプラスチック基体に対しても有効にプラズマ処理を行うことができる。   After maintaining the inside and outside of the container 5 in a predetermined reduced pressure state as described above, a reactive gas is introduced into the container 5 through the gas supply pipe 10, and microwaves are introduced into the plasma processing chamber 1 through the microwave transmission member 3. Introduce and generate plasma by glow discharge. The electron temperature in this plasma is tens of thousands of K, the temperature of gas particles is about two orders of magnitude higher than that of several hundred K, and is in a thermally non-equilibrium state, compared to a low-temperature plastic substrate. However, plasma treatment can be performed effectively.

上記のプラズマによって反応性ガスが反応し、容器5の内面に蒸着膜が堆積されていくこととなる。このようなプラズマ処理を行って容器5の内面に所定厚みの蒸着膜を形成した後、反応性ガスの導入及びマイクロ波の導入を停止すると共に、プラズマ処理室1内や容器5の内部に冷却空気を徐々に導入して、容器5の内外を常圧に復帰させ、プラズマ処理された容器5をプラズマ処理室1外に取り出す。   The reactive gas is reacted by the plasma, and a vapor deposition film is deposited on the inner surface of the container 5. After performing such plasma treatment to form a vapor deposition film having a predetermined thickness on the inner surface of the vessel 5, the introduction of the reactive gas and the introduction of the microwave are stopped, and the inside of the plasma treatment chamber 1 and the vessel 5 is cooled. Air is gradually introduced to return the inside and outside of the container 5 to normal pressure, and the plasma-treated container 5 is taken out of the plasma processing chamber 1.

上記のプラズマ処理に際して、容器5としては任意のプラスチックから形成されているものを使用することができ、容器5の形状も制限されず、ボトル、カップ、チューブ等の任意の形状であってよい。   In the above plasma treatment, the container 5 may be made of any plastic, and the shape of the container 5 is not limited, and may be any shape such as a bottle, a cup, and a tube.

また反応性ガスとしては、容器5の内面に形成する蒸着膜の種類に応じて、適宜のものが使用される。例えば、薄膜を構成する原子、分子或いはイオンを含む化合物を気相状態にして、適当なキャリアーガスにのせたものを使用するのがよい。炭素膜や炭化物膜の形成には、メタン、エタン、エチレン、アセチレンなどの炭化水素類が使用される。また、シリコン膜の形成には四塩化ケイ素、シラン、有機シラン化合物、有機シロキサン化合物等が使用される。チタン、ジルコニウム、錫、アルミニウム、イットリウム、モリブデン、タングステン、ガリウム、タンタル、ニオブ、鉄、ニッケル、クロム、ホウ素などのハロゲン化物(塩化物)や有機金属化合物も使用することができる。更に、酸化物膜の形成には酸素ガス、窒化物膜の形成には窒素ガスやアンモニアガスが使用される。これらの原料ガスは、形成させる薄膜の化学的組成に応じて、2種以上のものを適宜組み合わせて用いることができる。尚、キャリアーガスとしては、アルゴン、ネオン、ヘリウム、キセノン、水素などが適している。   As the reactive gas, an appropriate gas is used according to the type of vapor deposition film formed on the inner surface of the container 5. For example, it is preferable to use a compound containing atoms, molecules or ions constituting the thin film in a gas phase and placed on a suitable carrier gas. Hydrocarbons such as methane, ethane, ethylene, and acetylene are used for forming the carbon film and the carbide film. For forming the silicon film, silicon tetrachloride, silane, an organic silane compound, an organic siloxane compound, or the like is used. Halides (chlorides) such as titanium, zirconium, tin, aluminum, yttrium, molybdenum, tungsten, gallium, tantalum, niobium, iron, nickel, chromium, and boron, and organometallic compounds can also be used. Further, oxygen gas is used for forming the oxide film, and nitrogen gas or ammonia gas is used for forming the nitride film. These source gases can be used in appropriate combination of two or more kinds depending on the chemical composition of the thin film to be formed. As the carrier gas, argon, neon, helium, xenon, hydrogen and the like are suitable.

上述したプラズマ処理に用いる本発明のガス供給管10は、図2に示されているような構造を有している。即ち、このガス供給管10の内部には、付け根部分から先端部分に向かって軸方向に延びているガス流路10aが形成されており、このガス流路10aの付け根部分は開放され、所定の給気系に接続され、所定の反応性ガスがガス流路10aに導入されるようになっている。   The gas supply pipe 10 of the present invention used for the above-described plasma processing has a structure as shown in FIG. That is, a gas flow path 10a extending in the axial direction from the root portion toward the tip end portion is formed inside the gas supply pipe 10, and the base portion of the gas flow path 10a is opened to a predetermined level. A predetermined reactive gas is connected to the air supply system and introduced into the gas flow path 10a.

また、このガス供給管10の壁面には、レーザ加工、打ち抜き等の加工手段によって、ガス吹き出し孔12が、軸方向に適当な間隔で、さらには周方向にも適当な間隔を置いて、全体にわたってほぼ均等に分散して形成されている。   Further, gas blowing holes 12 are formed on the wall surface of the gas supply pipe 10 at appropriate intervals in the axial direction and further at appropriate intervals in the circumferential direction by processing means such as laser processing and punching. Over almost uniformly distributed.

また、上記のガス流路10aは、一定の径のまま先端部分まで延びて、先端壁を貫通していてもよいが、一般には、図2に示されているように、先端壁を貫通している部分(10bで示す)は、ガス吹き出し孔12と同程度の径に絞られていることが好ましい。先端壁が閉じられていると容器5の底部へのガス供給が不十分となり、また、ガス流路10aの先端壁部分10bの径がガス吹き出し孔12よりも大きいと、先端壁部分10bからのガスの吹き出し量が他の部分よりも大きくなってしまうおそれがあるからである。   Further, the gas flow path 10a may extend to the distal end portion with a constant diameter and penetrate the distal end wall, but generally penetrates the distal end wall as shown in FIG. The portion (shown by 10b) is preferably narrowed to the same diameter as the gas blowing hole 12. If the tip wall is closed, the gas supply to the bottom of the container 5 is insufficient, and if the diameter of the tip wall portion 10b of the gas flow path 10a is larger than the gas blowing hole 12, the tip wall portion 10b This is because the amount of gas blowout may be larger than other portions.

本発明においては、上記のガス吹き出し孔12の径が0.2mm以上であることが重要である。即ち、ガス吹き出し孔12の径を大きく設定することにより、蒸着成分の付着によるガス吹き出し孔12の目詰まりを有効に回避することができる。また、この径を必要以上に大きくすると、逆にガスの吹き出し量が不均一となり易く、このため、この径は、3mm以下であることが好ましい。   In the present invention, it is important that the diameter of the gas blowing hole 12 is 0.2 mm or more. That is, by setting the diameter of the gas blowing hole 12 large, clogging of the gas blowing hole 12 due to adhesion of the vapor deposition component can be effectively avoided. On the other hand, if the diameter is increased more than necessary, the amount of gas blown out tends to be non-uniform. For this reason, the diameter is preferably 3 mm or less.

また、本発明においては、上記ガス供給管10の管壁の少なくとも表面が粗面で形成されていなければならない。即ち、管壁表面を凹凸のある粗面で形成することにより、前述したプラズマ処理を実行することによって管壁表面に蒸着成分が付着したとしても、付着した蒸着成分は管壁表面にしっかりと保持されるため、その脱落が有効に抑制され、蒸着成分の脱落による容器内面への異物の付着を有効に回避することができるのである。   In the present invention, at least the surface of the tube wall of the gas supply tube 10 must be formed with a rough surface. That is, by forming the tube wall surface with a rough rough surface, even if vapor deposition components adhere to the tube wall surface by performing the plasma treatment described above, the deposited vapor deposition components are firmly held on the tube wall surface. Therefore, the dropout is effectively suppressed, and the adhesion of foreign matter to the inner surface of the container due to the dropout of the vapor deposition component can be effectively avoided.

従って、本発明のガス供給管10は、表面を粗面とするため、一般には、多孔質体や焼結体で形成されていることが好ましい。例えば、アルミナに代表される各種のセラミック粉末や、ブロンズ粉粒体或いはステンレススチール粉粒体などを用いての焼結により、ガス供給管10を形成することができる。一般に、公称ろ過精度が300μm以下、特に1乃至150μmの範囲となるような目開き(即ち、ポアの大きさの程度を示す)を有していることが好ましい。尚、公称ろ過精度とは、多孔質体をフィルターとして用いる場合に使用されている特性値の一つであり、例えば公称濾過精度130μmとは、この多孔質体をフィルターに使用したとき、上記粒径の異物を捕獲できることを意味するものである。
また、表面が多孔質体で形成されていればよいため、例えば金属加工によって形成されたアルミニウム製の管の表面にアルマイト処理を行うことによって、アルマイト層からなる多孔質層を形成することによってガス供給管10を形成することもできる。
Therefore, in general, the gas supply pipe 10 of the present invention is preferably formed of a porous body or a sintered body in order to make the surface rough. For example, the gas supply pipe 10 can be formed by sintering using various ceramic powders typified by alumina, bronze powder particles, stainless steel powder particles, or the like. In general, it is preferable to have an opening (that is, the degree of pore size) such that the nominal filtration accuracy is 300 μm or less, particularly 1 to 150 μm. The nominal filtration accuracy is one of characteristic values used when a porous material is used as a filter. For example, the nominal filtration accuracy of 130 μm is the above-mentioned particle size when this porous material is used for a filter. This means that a foreign substance having a diameter can be captured.
In addition, since the surface only needs to be formed of a porous body, for example, by performing alumite treatment on the surface of an aluminum tube formed by metal processing, a gas is formed by forming a porous layer made of an alumite layer. The supply pipe 10 can also be formed.

尚、管壁表面を形成する多孔質体中のポアは、ガス吹き出し孔として機能するものではないため、ポアからのガスの吹き出しが生じないように該多孔質体は緻密に形成されていてよい。   In addition, since the pore in the porous body forming the tube wall surface does not function as a gas blowing hole, the porous body may be densely formed so that gas blowing from the pore does not occur. .

本発明において、上述したガス供給管10の長さは、容器5の首部から底部の近傍にまで達するような長さを有していればよいが、金属材料によりガス供給管10が形成されている場合には、その長さLを、プラズマ処理室1の大きさやマイクロ波伝送部材3の位置などによって定められるマイクロ波の1/2波長の関数によって定めることが好ましい。即ち、金属製の供給管10の長さをこのように設定して容器5内に挿入してプラズマ処理を行うことにより、容器5の軸方向に沿っての電界強度分布が安定し、蒸着膜の厚みムラを防止することができるからである。   In the present invention, the gas supply pipe 10 described above may have a length that extends from the neck of the container 5 to the vicinity of the bottom, but the gas supply pipe 10 is formed of a metal material. If it is, the length L is preferably determined by a function of a half wavelength of the microwave determined by the size of the plasma processing chamber 1 and the position of the microwave transmission member 3. That is, by setting the length of the metal supply pipe 10 in this way and inserting it into the container 5 to perform the plasma treatment, the electric field strength distribution along the axial direction of the container 5 is stabilized, and the vapor deposition film This is because uneven thickness can be prevented.

また、上述した例では、マイクロ波グロー放電によるプラズマ処理を例にとって説明したが、上記のような本発明のガス供給管10は、高周波グロー放電によるプラズマ処理にも適用できる。高周波によるプラズマ処理は、容器の外面の近傍に高周波外部電極を設け、容器の内部にアース電極を設け、高周波を発生させることによりプラズマ処理を行う点や、容器内の真空度等の微細な条件を除けば、基本的にはマイクロ波の場合と同様にしてプラズマ処理が行われる。従って、本発明のガス供給管10を用いることにより、やはり蒸着成分の付着による目詰まりや、付着した蒸着成分の脱落による容器5の内面への異物の付着を有効に抑制することができる。   In the above-described example, the plasma processing by microwave glow discharge has been described as an example. However, the gas supply pipe 10 of the present invention as described above can also be applied to plasma processing by high-frequency glow discharge. In the plasma treatment by high frequency, a high frequency external electrode is provided in the vicinity of the outer surface of the container, a ground electrode is provided inside the container, and plasma treatment is performed by generating a high frequency, and a minute condition such as a degree of vacuum in the container. The plasma treatment is basically performed in the same manner as in the case of microwaves. Therefore, by using the gas supply pipe 10 of the present invention, it is possible to effectively suppress clogging due to adhesion of vapor deposition components and adhesion of foreign matters to the inner surface of the container 5 due to falling off of the deposited vapor deposition components.

上述した構造を有する本発明のガス供給管10によれば、蒸着成分の付着によるガス供給孔の目詰まりや容器内面への異物付着を有効に回避できるため、長期にわたって安定に繰り返しプラズマ処理を行うことができる。   According to the gas supply pipe 10 of the present invention having the above-described structure, clogging of the gas supply hole due to adhesion of vapor deposition components and foreign matter adhesion to the inner surface of the container can be effectively avoided, so that plasma treatment is stably and repeatedly performed over a long period of time. be able to.

以下の実施例により、本発明の優れた効果を説明する。
[共通条件]
プラズマ処理対象である基材には、口部呼び径がφ28mmのPETボトルを用いた。処理用ガスには、有機ケイ素化合物ガス及び酸素ガスを用い、ガス流量は、それぞれ2sccm及び20sccmとした。プラズマ処理の際のボトル内部及び外部の真空度は、それぞれ20Pa及び7000Paに調整し、マイクロ波を供給した際にボトル内部のみにプラズマが励起されるようにした。マイクロ波は市販のマイクロ波電源(2.45GHz)を用いて発振させ、500Wの出力でプラズマ処理室内に供給した。なお、プラズマ処理時間はプラズマ点火から10秒間とした。
[評価]
上記一連の処理を24時間連続的に運転し、ガス供給管への蒸着膜成分の付着状況を確認した。
The following examples illustrate the superior effects of the present invention.
[Common conditions]
A PET bottle having a mouth nominal diameter of φ28 mm was used as the substrate to be plasma treated. As the processing gas, an organosilicon compound gas and an oxygen gas were used, and the gas flow rates were 2 sccm and 20 sccm, respectively. The degree of vacuum inside and outside the bottle during the plasma treatment was adjusted to 20 Pa and 7000 Pa, respectively, so that the plasma was excited only inside the bottle when microwaves were supplied. The microwave was oscillated using a commercially available microwave power source (2.45 GHz) and supplied into the plasma processing chamber with an output of 500 W. The plasma treatment time was 10 seconds after plasma ignition.
[Evaluation]
The above-described series of treatments were continuously operated for 24 hours, and the state of deposition of the deposited film components on the gas supply pipe was confirmed.

[実験例]
表1に示すような供給管仕様とキリ穴径の条件組み合わせで実験を行った。ここでSUS焼結体は、公称ろ過精度10μmの円筒管を使用した。比較例4にある螺旋加工とは、供給管表面にピッチ0.75mmの1条ねじ加工したものである。
[Experimental example]
Experiments were performed with a combination of supply pipe specifications and drill hole conditions as shown in Table 1. Here, a cylindrical tube with a nominal filtration accuracy of 10 μm was used as the SUS sintered body. The spiral machining in Comparative Example 4 is one in which a single thread having a pitch of 0.75 mm is machined on the surface of the supply pipe.

Figure 2006249576
Figure 2006249576

[実施例1〜3]
表1から、本発明の請求範囲を満足する実験条件(実施例1〜3)では、連続使用4日後において、ガス供給管の目詰まりや蒸着時に付着したカスの脱落発生がなく非常に良好であった。
[Examples 1 to 3]
From Table 1, under the experimental conditions (Examples 1 to 3) satisfying the claims of the present invention, after 4 days of continuous use, the gas supply pipe is not clogged or the residue attached during vapor deposition does not occur, which is very good. there were.

[比較例1〜4]
比較例1のようにキリ穴がない場合や比較例2のようにキリ穴径が0.2mm未満となるような小径の場合、ガス供給管表面への蒸着成分の堆積が目詰まりとなり、その結果、連続使用日数が低下した。また、比較例3のようにガス供給管表面が未処理の場合には、蒸着時に付着したカスの脱落が短時間で発生した。比較例4のようにガス供給管表面を螺旋形状に加工した場合、蒸着成分のトラップ効果は見られず最終的には蒸着時に付着したカスの脱落が発生した。
[Comparative Examples 1-4]
When there is no drill hole as in Comparative Example 1 or when the drill hole diameter is as small as less than 0.2 mm as in Comparative Example 2, deposition of vapor deposition components on the surface of the gas supply pipe becomes clogged. As a result, the continuous use days decreased. In addition, when the surface of the gas supply pipe was not treated as in Comparative Example 3, dropping of the residue adhering during vapor deposition occurred in a short time. When the surface of the gas supply pipe was processed into a spiral shape as in Comparative Example 4, the trapping effect of the vapor deposition component was not observed, and eventually the residue attached during vapor deposition occurred.

本発明のガス供給管を用いて実施されるプラズマ処理による容器内面の蒸着膜の形成プロセスを示す概念図であり、マイクロ波CVDを例にとって示した図である。It is the conceptual diagram which shows the formation process of the vapor deposition film of the container inner surface by the plasma processing implemented using the gas supply pipe | tube of this invention, and is the figure shown taking microwave CVD as an example. 本発明のガス供給管の好適例を示す断面側面図である。It is a sectional side view showing a suitable example of a gas supply pipe of the present invention.

符号の説明Explanation of symbols

10:ガス供給管
12:ガス吹き出し孔
10: Gas supply pipe 12: Gas blowout hole

Claims (4)

プラズマ処理室内に保持された容器の内部に挿入され、該容器内にプラズマ処理用ガスを供給するためのガス供給管において、
軸方向にガス流路が延びており且つ管壁の少なくとも表面部が粗面で形成されており、該管壁には、軸方向或いは周方向に適当な間隔を置いて、径が0.2mm以上のガス吹き出し孔が形成されていることを特徴とするプラズマ処理用ガス供給管。
In a gas supply pipe for supplying a plasma processing gas into the container inserted into a container held in the plasma processing chamber,
The gas flow path extends in the axial direction, and at least the surface portion of the tube wall is formed with a rough surface. The tube wall has a diameter of 0.2 mm at an appropriate interval in the axial direction or the circumferential direction. A gas supply pipe for plasma processing, wherein the gas blowing holes are formed.
前記管壁が多孔質体から形成されている請求項1に記載のプラズマ処理用ガス供給管。   The plasma processing gas supply pipe according to claim 1, wherein the pipe wall is formed of a porous body. 前記管壁が焼結体から形成されている請求項1に記載のプラズマ処理用ガス供給管。   The plasma processing gas supply pipe according to claim 1, wherein the pipe wall is formed of a sintered body. 前記管壁の表面がアルマイト処理によって形成されている請求項1に記載のプラズマ処理用ガス供給管。   The plasma processing gas supply pipe according to claim 1, wherein a surface of the pipe wall is formed by alumite treatment.
JP2006012405A 2005-02-14 2006-01-20 Gas supply tube for plasma treatment Pending JP2006249576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006012405A JP2006249576A (en) 2005-02-14 2006-01-20 Gas supply tube for plasma treatment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005035749 2005-02-14
JP2006012405A JP2006249576A (en) 2005-02-14 2006-01-20 Gas supply tube for plasma treatment

Publications (1)

Publication Number Publication Date
JP2006249576A true JP2006249576A (en) 2006-09-21

Family

ID=37090364

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006012405A Pending JP2006249576A (en) 2005-02-14 2006-01-20 Gas supply tube for plasma treatment

Country Status (1)

Country Link
JP (1) JP2006249576A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191484A (en) * 2011-06-28 2011-09-21 上海宏力半导体制造有限公司 Reaction gas source injection pipe, furnace tube and semiconductor manufacturing device
WO2013040127A2 (en) * 2011-09-15 2013-03-21 Applied Materials, Inc. Gas delivery and distribution for uniform process in linear-type large-area plasma reactor
US9530622B2 (en) 2014-01-13 2016-12-27 Samsung Display Co., Ltd. Sputtering device and gas supply pipe for sputtering device

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050663A (en) * 1996-07-29 1998-02-20 Sumitomo Metal Ind Ltd Manufacturing electrode and plasma processor having electrodes
JPH10321559A (en) * 1997-05-19 1998-12-04 Hitachi Ltd Manufacture of semiconductor device
JPH1187098A (en) * 1997-09-03 1999-03-30 Toshiba Corp Plasma processor
JP2003234300A (en) * 2002-02-12 2003-08-22 Toshiba Ceramics Co Ltd Member for semiconductor treatment device and semiconductor treatment device
JP2004010992A (en) * 2002-06-10 2004-01-15 Toppan Printing Co Ltd Method of producing layered product
JP2004043789A (en) * 2000-02-24 2004-02-12 Mitsubishi Heavy Ind Ltd Plasma treatment device and method for producing carbon coating-formed plastic container
JP2004165460A (en) * 2002-11-13 2004-06-10 Anelva Corp Plasma processing apparatus
JP2004250750A (en) * 2003-02-20 2004-09-09 Toppan Printing Co Ltd Apparatus for forming thin film on inner surface of tubular plastic structure
JP2005022727A (en) * 2003-07-04 2005-01-27 Mitsubishi Heavy Ind Ltd Device for forming barrier film on plastic container inside face, and method for producing plastic container whose inside face is coated with barrier film

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050663A (en) * 1996-07-29 1998-02-20 Sumitomo Metal Ind Ltd Manufacturing electrode and plasma processor having electrodes
JPH10321559A (en) * 1997-05-19 1998-12-04 Hitachi Ltd Manufacture of semiconductor device
JPH1187098A (en) * 1997-09-03 1999-03-30 Toshiba Corp Plasma processor
JP2004043789A (en) * 2000-02-24 2004-02-12 Mitsubishi Heavy Ind Ltd Plasma treatment device and method for producing carbon coating-formed plastic container
JP2003234300A (en) * 2002-02-12 2003-08-22 Toshiba Ceramics Co Ltd Member for semiconductor treatment device and semiconductor treatment device
JP2004010992A (en) * 2002-06-10 2004-01-15 Toppan Printing Co Ltd Method of producing layered product
JP2004165460A (en) * 2002-11-13 2004-06-10 Anelva Corp Plasma processing apparatus
JP2004250750A (en) * 2003-02-20 2004-09-09 Toppan Printing Co Ltd Apparatus for forming thin film on inner surface of tubular plastic structure
JP2005022727A (en) * 2003-07-04 2005-01-27 Mitsubishi Heavy Ind Ltd Device for forming barrier film on plastic container inside face, and method for producing plastic container whose inside face is coated with barrier film

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102191484A (en) * 2011-06-28 2011-09-21 上海宏力半导体制造有限公司 Reaction gas source injection pipe, furnace tube and semiconductor manufacturing device
WO2013040127A2 (en) * 2011-09-15 2013-03-21 Applied Materials, Inc. Gas delivery and distribution for uniform process in linear-type large-area plasma reactor
WO2013040127A3 (en) * 2011-09-15 2013-05-02 Applied Materials, Inc. Gas delivery and distribution for uniform process in linear-type large-area plasma reactor
US9530622B2 (en) 2014-01-13 2016-12-27 Samsung Display Co., Ltd. Sputtering device and gas supply pipe for sputtering device

Similar Documents

Publication Publication Date Title
JP4929727B2 (en) Gas supply pipe for plasma processing
JP2003054532A (en) Chemical plasma processing method for container inner surface
JP4145361B2 (en) How to coat edges with diamond-like carbon
JP5055834B2 (en) Gas supply pipe for plasma processing
EP2503023B1 (en) Processing gas supply member for a microwave plasma processing device
JP2003515676A (en) Method of manufacturing functional layer using plasma radiation source
JP2006249576A (en) Gas supply tube for plasma treatment
JP2011162857A (en) Coating pretreatment method, diamond film coating method, and coating film removing method
KR910009841B1 (en) Apparatus and process for arc vapor depositing a coating in an evacuated chamber
EP1614770B1 (en) Microwave plasma processing method
US5112649A (en) Method of depositing micro-crystalline solid particles by hot filament cvd
JP2003171785A (en) Method of removing hard surface film
JP4380185B2 (en) Chemical plasma treatment method for inner surface of plastic bottle
KR100494976B1 (en) Process for manufacturing WC based powder by vapor reaction under atmospheric pressure
JP4379042B2 (en) Gas supply member for plasma processing used for formation of vapor deposition film by plasma CVD method, and method for forming vapor deposition film using the gas supply member
JP2004149922A (en) Method of depositing metal oxide film
JP2003027236A (en) Hard carbon film deposition method and hard carbon film coated tool member
JPH07150358A (en) Diamond coating method by microwave plasma cvd
JP2935200B2 (en) Apparatus and method for depositing solids, especially very finely divided substances, and use of this method
JP5039120B2 (en) Alumina member for plasma processing apparatus and method for manufacturing alumina member for plasma processing apparatus
JP3830123B2 (en) Surface-coated cemented carbide and method for producing the same
JP2006144084A (en) Method for producing thin film
KR960008149B1 (en) Method for coating a diamond thin film of dies for drawing
Breus et al. Formation of 2D Carbon Nanosheets and Carbon-Shelled Copper Nanoparticles in Glow Discharge
JP4873037B2 (en) Non-pressure resistant plastic container

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20130510

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20130523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130618

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20131029