JP2006249563A - Method for blowing oxygen or oxygen-containing gas in arc furnace - Google Patents

Method for blowing oxygen or oxygen-containing gas in arc furnace Download PDF

Info

Publication number
JP2006249563A
JP2006249563A JP2005071834A JP2005071834A JP2006249563A JP 2006249563 A JP2006249563 A JP 2006249563A JP 2005071834 A JP2005071834 A JP 2005071834A JP 2005071834 A JP2005071834 A JP 2005071834A JP 2006249563 A JP2006249563 A JP 2006249563A
Authority
JP
Japan
Prior art keywords
oxygen
molten metal
containing gas
furnace
lance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005071834A
Other languages
Japanese (ja)
Inventor
Kiyosuke Mori
喜代助 森
Shinjiro Uchida
親司朗 内田
Seiji Ichiki
清治 一木
Keiji Kiuchi
啓嗣 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
OSAKA SEITETSU KK
Nippon Steel Corp
Original Assignee
OSAKA SEITETSU KK
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by OSAKA SEITETSU KK, Nippon Steel Corp filed Critical OSAKA SEITETSU KK
Priority to JP2005071834A priority Critical patent/JP2006249563A/en
Publication of JP2006249563A publication Critical patent/JP2006249563A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Abstract

<P>PROBLEM TO BE SOLVED: To provide a simple method for blowing an oxygen or oxygen-containing gas with an equipment constitution where the wear of refractories at the furnace bottom can be suppressed as the effect of stirring molten metal by the blowing of the oxygen or oxygen-containing gas is retained, and further, running cost including maintenance in the operation can be suppressed, and simultaneously, to suppress the reduction of furnace temperature and to improve dust collection effect by sealing the inside of the furnace. <P>SOLUTION: An oxygen or oxygen-containing gas is blown into molten metal from a lance 20 fixedly mounted on the outer part of the furnace wall in an arc furnace. The blowing is performed in such a manner that the position of a discharge port 22 for an oxygen or oxygen-containing gas at the tip part 21 of the lance is made far by ≥700 mm in the vertical direction from a molten metal face, also, regarding the angle at which the oxygen or oxygen-containing gas discharged from the discharge port rushes in the molten metal face, in the face in the vertical direction, its angle from the molten metal face is controlled to the range of 30 to 60°, and the blowing speed of the oxygen or oxygen-containing gas from the discharge port at the tip part of the lance is decided so that its rushing speed onto the surface of the molten metal is controlled to the range of 150 to 300 m/s. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、金属材料の溶解、溶融金属の精錬に使用されるアーク炉の炉壁に設けられるランスから酸素または酸素含有ガスを吹き込む方法に関するものである。   The present invention relates to a method of blowing oxygen or an oxygen-containing gas from a lance provided on a furnace wall of an arc furnace used for melting a metal material and refining molten metal.

金属材料(例えば金属スクラップなど)の溶解および溶融状態になった溶融金属の脱炭や加熱を目的としたアーク式電気炉においては、酸素または酸素含有ガスを吹き込む方法はしばしば用いられてきた。   In an arc electric furnace for the purpose of decarburization and heating of a molten metal in a molten state and a molten state of a metal material (for example, metal scrap), a method of blowing oxygen or an oxygen-containing gas has often been used.

特に、最近のアーク炉は金属材料を溶解・溶融させた後に精錬が完了し溶融金属を炉外の取り鍋に排出する際に、出来るだけ炉内スラグを出さないために、出鋼口が偏芯している炉底偏芯出鋼方式アーク炉が多く設置されるようになった。   In particular, in recent arc furnaces, when the metal material is melted and melted, refining is completed, and when the molten metal is discharged to the ladle outside the furnace, the steel outlet is unevenly distributed so as not to generate slag in the furnace as much as possible. A large number of cored core-centered steel arc furnaces have been installed.

このようなアーク炉において酸素または酸素含有ガスを吹き込む方法としては、従来、消耗式のパイプを溶融金属の中に浸漬させる方法が採用されてきたが、パイプコストの削減やパイプ消耗時の供給作業の廃止を目的に、特許文献1に示されるように、酸素または酸素含有ガスを水冷されたランスから吹き込む方法として、溶融金属の表面から水冷式ランスの吹き出し位置までの高さhが300mmから700mmの範囲で、かつ溶融金属の表面と水冷式ランスの吹き出し方向の成す角度θが30度以上で、かつ〔数1〕の計算式を用いて吹き込み点での吹き込みによる溶融金属のへこみ深さLと溶融金属の浴深さHとの比率を0.4から0.7の範囲となるように吹き込むことが提案されている。   As a method of blowing oxygen or an oxygen-containing gas in such an arc furnace, a method of immersing a consumable pipe in molten metal has been conventionally used. However, pipe cost reduction and supply work when the pipe is consumed As a method for blowing oxygen or oxygen-containing gas from a water-cooled lance as shown in Patent Document 1, the height h from the surface of the molten metal to the blowing position of the water-cooled lance is 300 mm to 700 mm. And the angle θ between the surface of the molten metal and the blowing direction of the water-cooled lance is 30 degrees or more, and the depth L of the molten metal by blowing at the blowing point using the formula of [Equation 1] It has been proposed that the ratio of the molten metal bath depth H be blown so as to be in the range of 0.4 to 0.7.

また、特許文献2に示されるように、アーク炉の作業口からランスを挿入し、溶融金属の浴面の上方から酸化性ガスを吹き込むことによって溶融金属に生ずる凹部の深さLと、溶融金属の静止浴の深さHが0.2≦L/H≦0.3を満足する範囲内で酸化性ガスを溶融金属の浴面の上方から吹込むことが提案されている。   Further, as shown in Patent Document 2, the depth L of the concave portion generated in the molten metal by inserting a lance from the working port of the arc furnace and blowing an oxidizing gas from above the bath surface of the molten metal, and the molten metal It has been proposed that the oxidizing gas is blown from above the bath surface of the molten metal within a range where the depth H of the still bath satisfies 0.2 ≦ L / H ≦ 0.3.

さらに、アーク炉の作業口を極力閉じた操業を行なうために、アーク炉の炉壁の外方に固定装着させて酸素または酸素含有ガスを吹き込む方法としては、特許文献3および特許文献4に示されるように、溶融金属浴の上方で高速主ガス(主に酸素)流れと同軸的に燃料および二次酸素を炉に注入し、燃料を二次酸素で燃焼させて高速主ガス流れの周囲に火炎エンベロープを形成し、そして高速主ガス流れを浴に送り、そこで火炎エンベロープが実質上炉内の高速主ガス流れの全長を浴まで延長させることを目的とした炉への供給方法が提案されている。
特開平6−192718号公報 特開2003−201509号公報 特開平10−259413号公報 特開平10−263384号公報
Further, Patent Document 3 and Patent Document 4 show methods for injecting oxygen or an oxygen-containing gas while being fixedly mounted on the outside of the arc furnace wall in order to perform an operation in which the work port of the arc furnace is closed as much as possible. As shown, the fuel and secondary oxygen are injected into the furnace coaxially with the high-speed main gas (mainly oxygen) flow above the molten metal bath, and the fuel is burned with secondary oxygen to surround the high-speed main gas flow. A furnace feed method has been proposed in which a flame envelope is formed and a high velocity main gas stream is sent to the bath where the flame envelope substantially extends the full length of the high velocity main gas flow in the furnace to the bath. Yes.
JP-A-6-192718 JP 2003-151509 A Japanese Patent Laid-Open No. 10-259413 JP-A-10-263384

しかしながら、たとえば特許文献1や特許文献2に示される方法では、電気炉の作業口をオープンにした状態で水冷式のランスを挿入して操業を行なうため、作業口からの空気の侵入量が多くなり炉内の温度低下となるとともに集塵効果が低下する。また1本の水冷式ランスを作業口から挿入しているため、溶融金属全体の攪拌効果を高めるために前後・上下・左右に駆動出来る為の装置が付随していることから整備頻度が増加することと、特に作業口と反対側の出鋼口側への熱伝達効率が低いため、特に炉底偏芯方式アーク炉においては、出鋼側に張り出した空間に存在する溶融金属の温度上昇が遅い欠点を有している。特に特許文献2に示される方法においては、ソフトブローにて酸化性ガスを吹込むため、出鋼側に張り出した空間に存在する溶融金属の温度上昇が悪い欠点が顕著に現われてくる。   However, in the methods disclosed in Patent Document 1 and Patent Document 2, for example, a water-cooled lance is inserted and the operation is performed with the work opening of the electric furnace open, so that a large amount of air enters from the work opening. As the temperature in the furnace becomes lower, the dust collection effect decreases. In addition, since a single water-cooled lance is inserted from the work port, the frequency of maintenance increases because a device that can be driven back and forth, up and down, and left and right is attached to enhance the stirring effect of the entire molten metal. In particular, since the heat transfer efficiency to the steel outlet side opposite to the work port is low, the temperature rise of the molten metal existing in the space protruding to the steel output side is particularly high in the furnace bottom eccentric type arc furnace. Has a slow drawback. In particular, in the method disclosed in Patent Document 2, since the oxidizing gas is blown by soft blow, the disadvantage that the temperature rise of the molten metal existing in the space projecting to the steel output side is remarkable appears.

また、特許文献3および特許文献4に示される方法では、特に出鋼側に張り出した空間に存在する溶融金属の浴深さは、炉内に保有する溶融金属量が100ton級のアーク炉においても500mm〜600mm程度であるため、超音速状態を保ったままのガスを溶融金属中に吹き込むと、前述した特許文献1に示されるように、溶融金属のへこみ深さが大きくなり、炉底の耐火物の損耗が大きくなる。更に、燃料および二次酸素を注入するための注入孔がランス先端の炉内面に向いているため、炉内からのスプラッシュやスラグにより注入孔が詰まらないように、金属材料の溶解初期段階から常に燃料および二次酸素を吹き込むか、孔詰まり防止用のパージガスを吹き込む必要があるため、ガスの制御系が複雑となり、燃料費とともに整備費用がかかるためランニングコストの増となっている。   Further, in the methods shown in Patent Document 3 and Patent Document 4, the bath depth of the molten metal existing in the space projecting to the steel output side is particularly high even in an arc furnace having a 100 ton class molten metal held in the furnace. Since it is about 500 mm to 600 mm, if a gas that is kept in a supersonic state is blown into the molten metal, as shown in Patent Document 1 described above, the depth of the indentation of the molten metal is increased, and the fire resistance of the furnace bottom is increased. Increased wear and tear of objects. Furthermore, since the injection hole for injecting fuel and secondary oxygen faces the furnace inner surface at the tip of the lance, it is always from the initial stage of melting of the metal material so that the injection hole is not clogged by splash or slag from inside the furnace. Since it is necessary to blow in fuel and secondary oxygen or purge gas for preventing clogging of holes, the gas control system becomes complicated, and the maintenance cost as well as the fuel cost increases, so the running cost increases.

本発明の目的は、溶融金属への酸素または酸素含有ガスの吹込みによる攪拌効果を維持しつつ、炉底の耐火物の損耗を抑制することが可能で、更には操業における整備を含めたランニングコストを抑えられる設備構成としたシンプルな酸素または酸素含有ガスの吹き込み方法を提供すると同時に、炉内を密閉化し炉内温度の低下を抑制し集塵効果を向上させるものである。更に、炉底偏芯出鋼方式アーク炉において、出鋼側に張り出した炉内空間内の溶融金属の攪拌効果を向上させるものである。   The object of the present invention is to suppress the wear of the refractory at the bottom of the furnace while maintaining the stirring effect by blowing oxygen or oxygen-containing gas into the molten metal, and further, running including maintenance in operation In addition to providing a simple oxygen or oxygen-containing gas blowing method with an equipment configuration capable of reducing costs, the furnace is sealed to prevent a decrease in furnace temperature and to improve the dust collection effect. Furthermore, in the furnace bottom eccentric steelmaking type arc furnace, the stirring effect of the molten metal in the furnace space overhanging to the steel output side is improved.

本発明における酸素または酸素含有ガスの吹き込み方法は、金属材料を溶解及び精錬するアーク炉の炉壁の外方に固定装着されたランスにより、炉壁内の溶融金属表面上に上方より酸素または酸素含有ガスを吹き込む方法において、ランス先端部の酸素または酸素含有ガスの吐出口の位置を溶融金属面から鉛直方向で700mm以上遠ざけ、かつ吐出口から吐出される酸素または酸素含有ガスの溶融金属面に突入する角度を鉛直方向の面において溶融金属面からの角度が30゜から60゜の範囲とし、酸素または酸素含有ガスの溶融金属表面上での突入速度を150m/秒から300m/秒の範囲となるようにランス先端部の吐出口からの吹込み速度を決定して吹き込むことを特徴とするものである。   In the method of blowing oxygen or oxygen-containing gas in the present invention, the oxygen or oxygen is introduced from above onto the surface of the molten metal in the furnace wall by a lance fixedly mounted outside the furnace wall of the arc furnace for melting and refining the metal material. In the method of blowing the contained gas, the position of the discharge port of oxygen or oxygen-containing gas at the tip of the lance is kept 700 mm or more away from the molten metal surface in the vertical direction, and on the molten metal surface of oxygen or oxygen-containing gas discharged from the discharge port The angle of entry is in the range of 30 ° to 60 ° from the molten metal surface in the vertical plane, and the entry speed of oxygen or oxygen-containing gas on the molten metal surface is in the range of 150 m / sec to 300 m / sec. In this manner, the blowing speed from the discharge port at the tip of the lance is determined and blown.

また、平面取り付け位置をアーク炉の黒鉛電極において最も出鋼口側に配置された電極の最外端面から出鋼口側で、かつ炉体鉄皮の内側の範囲に配置し、酸素または酸素含有ガスの平面的な吹き出し方向をアーク炉の炉芯と出鋼口芯とを結ぶ軸線に対し90度±20度とすることを特徴とするものである。   In addition, the plane mounting position is arranged in the range from the outermost end surface of the electrode arranged on the side of the steel outlet to the side of the steel outlet in the graphite electrode of the arc furnace, and inside the furnace core, and contains oxygen or oxygen The planar blowing direction of the gas is 90 ° ± 20 ° with respect to the axis line connecting the core of the arc furnace and the steel outlet core.

本発明の効果は、次のとおりである。   The effects of the present invention are as follows.

1.酸素または酸素含有ガスを吹き込むランスを炉体側壁に固定装着して取り付けるため、作業口を作業口扉によってほとんどの操業時間に閉じることが可能となり、炉内の密閉化によって炉内温度の低下を抑制し、更に集塵効果を向上させることが可能となる。 1. A lance that blows oxygen or oxygen-containing gas is fixedly attached to the side wall of the furnace body, so that the work port can be closed during most operating hours by the work port door, and the furnace temperature is reduced by sealing the furnace. It is possible to suppress and further improve the dust collection effect.

2.ランス先端部の酸素または酸素含有ガスの吐出口の位置を溶融金属面から鉛直方向で700mm以上遠ざけ、かつ吐出口から吐出される酸素または酸素含有ガスの溶融金属面に突入する角度を鉛直方向の面において溶融金属面からの角度が30゜から60゜の範囲とし、酸素または酸素含有ガスの溶融金属表面上での突入速度を150m/秒から300m/秒の範囲となるようにランス先端部の吐出口からの吹込み速度を決定して吹き込むことにより、溶融金属の攪拌効果を充分に教授しつつ、ランスや対向面の水冷式パネルや耐火物への損傷を抑えることが可能となる。 2. The position of the oxygen or oxygen-containing gas discharge port at the tip of the lance is 700 mm or more away from the molten metal surface in the vertical direction, and the angle at which the oxygen or oxygen-containing gas discharged from the discharge port enters the molten metal surface in the vertical direction The angle of the surface of the lance is 30 ° to 60 ° at the surface, and the rush speed of oxygen or oxygen-containing gas on the molten metal surface is in the range of 150 m / sec to 300 m / sec. By determining the blowing speed from the discharge port and blowing it, it is possible to suppress damage to the lance, the water-cooled panel and the refractory on the opposite surface while fully teaching the stirring effect of the molten metal.

3.ランスを黒鉛電極の最も出鋼口側に位置する黒鉛電極の最外端面よりも出鋼口側で、炉体鉄皮の内側までの範囲内に取り付け、かつ炉芯と出鋼口芯を結ぶ軸線に対して90度±20度となる方向にランス先端部の吐出口を配置することにより、溶融金属への攪拌効率が向上し、酸素効率が向上する。 3. Attach the lance within the range from the outermost end surface of the graphite electrode located on the most steel outlet side of the graphite electrode to the inside of the furnace core, and connect the furnace core to the steel outlet core. By disposing the discharge port at the tip of the lance in the direction of 90 ° ± 20 ° with respect to the axis, the stirring efficiency to the molten metal is improved and the oxygen efficiency is improved.

4.ランスが固定装着されているため、ランスを駆動させる機構を全く必要としないため、設備メンテナンス費用が削減される。 4). Since the lance is fixedly mounted, no mechanism for driving the lance is required, so that the equipment maintenance cost is reduced.

5.ランス内には酸素または酸素含有ガスのみを流すため、二次燃焼用の燃料や燃料用酸素を必要としないため、ランニングコストを抑制することが可能である。 5. Since only oxygen or oxygen-containing gas is allowed to flow through the lance, no fuel for secondary combustion or oxygen for fuel is required, so that the running cost can be suppressed.

以下に、本発明のアーク炉用酸素または酸素含有ガスを吹き込む方法について図1〜図4に示す一実施例に基づいて説明する。図1は、アーク炉、特に3相交流アーク炉で炉底偏芯出鋼方式のアーク炉の断面図、図2は本発明のアーク炉用酸素または酸素含有ガスを吹き込むためのランスの取り付けを断面して示す使用状態説明図、図3は図1のアーク炉の平面断面図、図4は横軸にランス先端部の吐出口の出口から溶融金属表面までの軸線距離Lを示し、縦軸にランス先端部の吐出口出口の吐出速度V0を示すグラフである。   Below, the method of blowing in oxygen or an oxygen-containing gas for an arc furnace according to the present invention will be described based on one embodiment shown in FIGS. FIG. 1 is a cross-sectional view of an arc furnace, particularly a three-phase AC arc furnace, which is a bottom-centered steel arc furnace, and FIG. 2 is an installation of a lance for blowing oxygen or oxygen-containing gas for the arc furnace of the present invention. FIG. 3 is a plan sectional view of the arc furnace shown in FIG. 1, FIG. 4 is a horizontal axis showing the axial distance L from the outlet of the discharge port at the tip of the lance to the molten metal surface, and the vertical axis It is a graph which shows the discharge speed V0 of the discharge outlet exit of a lance front-end | tip part.

図1において、アーク炉は主に金属スクラップを装入するために上部が開放となっている炉体1、上部の開放部を覆うための炉蓋2、アークを発光させるための黒鉛電極3から構成され、3相交流アーク炉の場合は3本の黒鉛電極が使用される。また、炉底偏芯出鋼方式アーク炉においては、張り出し部4が出鋼側に吐出している。   In FIG. 1, an arc furnace is mainly composed of a furnace body 1 whose upper part is open for charging metal scrap, a furnace lid 2 for covering the open part of the upper part, and a graphite electrode 3 for emitting arc. In the case of a three-phase AC arc furnace, three graphite electrodes are used. Further, in the furnace bottom eccentric steelmaking type arc furnace, the overhanging portion 4 is discharged to the steeling side.

炉体1の炉体鉄皮11の内部は上方に水冷式パネル5が取り付けられ、下部はアークによって溶解したスクラップの溶融金属6を保有するために耐火物7によって構成されており、その耐火物7の張り出し部には鉛直方向に溶融金属を取り鍋(図示せず)に排出するための開口(出鋼口)8が設けられ、スクラップの溶解及び溶融金属の精錬中に溶融金属が外部に流出しないように出鋼口蓋9にて閉止している。   A water-cooled panel 5 is attached to the inside of the furnace body iron skin 11 of the furnace body 1, and the lower part is composed of a refractory 7 for holding a molten metal 6 of scrap melted by an arc. 7 is provided with an opening (steel outlet) 8 for discharging molten metal in a vertical direction to a ladle (not shown), and the molten metal is exposed to the outside during melting of the scrap and refining of the molten metal. It is closed with a steel output pawl 9 so as not to flow out.

一般的には、出鋼口側の張り出し側と対面側に内部の確認点検や溶融金属の温度測定、サンプリング作業のため作業口10が開口され、前述の作業を行なわない時は作業口扉14にて塞いでいる。炉底偏芯出鋼方式アーク炉における溶融金属の深さは、炉体中心部の溶融金属深さh0が最も深く、出鋼口に近づくにつれて浅くなり、100tonクラスのアーク炉においてはh0は約1000mmの深さに対し、h1は約500mm〜600mm程度となる。   In general, the work port 10 is opened for the internal inspection and inspection, the temperature measurement of the molten metal, and the sampling work on the projecting side and the facing side on the steel exit side. When the above work is not performed, the work port door 14 is opened. It is closed at. The depth of the molten metal in the furnace bottom eccentric steel arc furnace is deepest at the molten metal depth h0 at the center of the furnace body and becomes shallower as it approaches the outlet, and h0 is about 100 tons in the 100 ton class arc furnace. For a depth of 1000 mm, h1 is about 500 mm to 600 mm.

図2は、図1のアーク炉に本発明の酸素または酸素含有ガスを吹込むためのランス20の取り付け配置を示す断面図である。   FIG. 2 is a cross-sectional view showing the mounting arrangement of the lance 20 for blowing oxygen or oxygen-containing gas of the present invention into the arc furnace of FIG.

ランス20の先端部21が炉体1の外壁を構成する炉体鉄皮11の開口12と前述した水冷式パネル5の開口13を貫通し、炉体鉄皮11側の取付座32とランス20側の取付座23とで固定装着されている。   The tip 21 of the lance 20 passes through the opening 12 of the furnace body skin 11 constituting the outer wall of the furnace body 1 and the opening 13 of the water-cooled panel 5 described above, and the mounting seat 32 and the lance 20 on the furnace body skin 11 side. It is fixedly attached to the side mounting seat 23.

ランス20は中央に酸素または酸素含有ガスが通過しうる中央管と、炉内の高温熱負荷から保護するための冷却水を給水、排水するための内管および外管との3重管にて構成される水冷式であることが望ましい。   The lance 20 is a triple pipe including a central pipe through which oxygen or oxygen-containing gas can pass in the center, and an inner pipe and an outer pipe for supplying and draining cooling water for protection from high temperature heat load in the furnace. It is desirable that it be a water-cooled type.

溶融金属6の表面からランス20の先端部21の酸素または酸素含有ガスの吐出口22までの鉛直方向の高さHを700mm以上の高さになるようにランス20は固定装着されており、その理由は吐出口22の位置を溶融金属面に近づけると酸素または酸素含有ガスによる攪拌効果は大きくなるが、溶融金属の飛散量が多くなることと、溶融金属内に未溶解の金属スクラップが存在し突然酸素と反応しボイリングしたり、炉壁に付着した溶融金属の固体化したものが溶融金属内に落下した場合に多量の溶融金属が跳ね上がるのが約300〜400mmであり、その溶融金属にてランス先端部が損傷せずに、かつ飛散した溶融金属にて吐出口が詰らないためには、高さが700mm以上であれば大丈夫であることを経験的に確証しているためである。   The lance 20 is fixedly mounted so that the vertical height H from the surface of the molten metal 6 to the oxygen or oxygen-containing gas discharge port 22 at the tip 21 of the lance 20 is 700 mm or more. The reason is that when the position of the discharge port 22 is brought close to the molten metal surface, the stirring effect by oxygen or an oxygen-containing gas increases, but the amount of scattered molten metal increases, and there is undissolved metal scrap in the molten metal. It is about 300-400mm that a large amount of molten metal jumps up when it suddenly reacts with oxygen and undergoes boiling, or when the molten metal solidified on the furnace wall falls into the molten metal. This is because it has been empirically confirmed that if the height of the lance tip is 700 mm or more, the lance tip is not damaged and the discharge port is not clogged with scattered molten metal. That.

上記特許文献1に示されるランスによる吹込み方法においては、300〜700mmの高さの範囲に設定した場合、ボイリング発生時などには炉外に緊急退避可能であるが、炉体の外方に固定装着した場合は退避が不可能なため700mm以上遠ざけることが安全上も好ましい。   In the blowing method by the lance shown in the above-mentioned Patent Document 1, when the height is set within a range of 300 to 700 mm, emergency evacuation can be performed outside the furnace at the time of occurrence of boiling, but the outside of the furnace body. Since it cannot be retracted when it is fixedly mounted, it is preferable from a safety standpoint to keep it at least 700 mm away.

また、溶融金属6の表面への吐出口22からの酸素または酸素含有ガスの吐出角度θは、30度から60度の範囲としており、この理由は30度未満になるとランスの対向面側の水冷式パネル5に溶融金属が多量に飛散し損傷させる危険度が高くなり、60度を超えるとランス先端部に溶融金属が飛散し損傷させる危険度が高くなるからである。   Further, the discharge angle θ of oxygen or oxygen-containing gas from the discharge port 22 to the surface of the molten metal 6 is in the range of 30 to 60 degrees. This is because there is a high risk that the molten metal scatters and damages the expression panel 5 in a large amount, and when it exceeds 60 degrees, there is a high risk that the molten metal scatters and damages the tip of the lance.

図2において、ランス先端部の吐出口22からの吐出速度をV0とした場合、酸素または酸素含有ガスの吐出軸方向の距離をLとした時の溶融金属6の表面に突入する時の突入速度Vaは、乱流理論と誤差曲線理論から下記の(1)式から求めることが出来る。
Va/V0=A×D0/X・exp[−B/X] …(1)
上式において、
Va :ノズル出口からX距離離れた位置でのガス流速(m/秒)
V0 :ノズル出口におけるガス流速(m/秒)
D0 :ノズル径(cm)
X :ノズル出口からの距離(cm)
A :定数
B :定数
In FIG. 2, when the discharge speed from the discharge port 22 at the tip of the lance is V0, the rush speed at the time of rushing into the surface of the molten metal 6 when the distance in the discharge axis direction of oxygen or oxygen-containing gas is L. Va can be obtained from the following equation (1) from turbulent flow theory and error curve theory.
Va / V0 = A × D0 / X · exp [−B / X 2 ] (1)
In the above formula,
Va: Gas flow velocity (m / sec) at a position X distance away from the nozzle outlet
V0: gas flow velocity at the nozzle outlet (m / sec)
D0: Nozzle diameter (cm)
X: Distance from nozzle outlet (cm)
A: Constant
B: Constant

上記の(1)式から求めたグラフを図4に示す。横軸にランス先端部の吐出口の出口から溶融金属表面までの軸線距離Lを示し、縦軸にランス先端部の吐出口出口の吐出速度V0を示す。   The graph calculated | required from said (1) Formula is shown in FIG. The abscissa indicates the axial distance L from the outlet of the lance tip to the molten metal surface, and the ordinate indicates the discharge speed V0 of the outlet of the lance tip.

従来の消耗式パイプにて酸素または酸素含有ガスを吹込む場合、溶融金属内の攪拌効果を教授出来るように酸素または酸素含有ガスのパイプ出口速度は、酸素または酸素含有ガスの圧力との関係からも約300m/秒程度の吐出速度にて操業が行なわれてきた。   When oxygen or oxygen-containing gas is blown into a conventional consumable pipe, the pipe outlet speed of oxygen or oxygen-containing gas is related to the pressure of oxygen or oxygen-containing gas so that the stirring effect in the molten metal can be taught. However, operation has been performed at a discharge speed of about 300 m / sec.

しかしながら、溶融金属の炉内における浴深さが1000mm前後ある場合は300m/秒程度の速度で吹込んでも溶融金属下部の耐火物を損傷させることはないが、特に炉底偏芯出鋼方式のアーク炉においては、前述のように500mmから600mmの浴深さとなるため300m/秒の吐出速度で吹込むと耐火物を損傷させることになる。そこで、本発明者らは、100tonクラスの炉底偏芯出鋼式アーク炉において、溶融金属の浴深さに応じて酸素または酸素含有ガスのパイプからの吐出速度を変化させ、耐火物に損傷を与えない吐出速度を調査した結果、浴深さに比例させて吐出速度を低下させることが望ましいことを確認した。   However, when the bath depth of the molten metal in the furnace is around 1000 mm, even if it is blown at a speed of about 300 m / second, the refractory under the molten metal is not damaged. In the arc furnace, since the bath depth is 500 mm to 600 mm as described above, the refractory is damaged when blown at a discharge speed of 300 m / sec. Therefore, the present inventors changed the discharge rate of oxygen or oxygen-containing gas from the pipe in accordance with the bath depth of the molten metal in a 100-ton class bottom-centered steel arc furnace and damaged the refractory. As a result of investigating the discharge speed that does not give water, it was confirmed that it is desirable to decrease the discharge speed in proportion to the bath depth.

従って、溶融金属の浴深さ500mm〜1000mmのアーク炉においては、浴深さに比例させ溶融金属表面における酸素または酸素含有ガスの突入速度を150m/秒から300m/秒の範囲となるようにランス先端部の吐出口出口速度を設定する必要がある。150m/秒未満になると出鋼側の溶融金属の攪拌効果が低下し、溶融金属の温度上昇速度が遅くなることを、実際の操業結果より見出したためである。   Therefore, in an arc furnace having a molten metal bath depth of 500 mm to 1000 mm, the lance is adjusted so that the rush speed of oxygen or oxygen-containing gas on the surface of the molten metal is in the range of 150 m / sec to 300 m / sec in proportion to the bath depth. It is necessary to set the outlet outlet speed at the tip. This is because it has been found from the actual operation results that when the speed is less than 150 m / sec, the stirring effect of the molten metal on the steel output side decreases, and the temperature rise rate of the molten metal becomes slow.

図2において、H=700mm、θ=45度とした場合のLは約1000mmとなるため、図4からL=1000mmにおいて、Vaが150m/秒以上を確保するためのV0は約510m/秒以上の吐出速度を確保すれば良いことになり、マッハ数に換算すると約1.5以上となる。   In FIG. 2, L is about 1000 mm when H = 700 mm and θ = 45 degrees. Therefore, from FIG. 4, V0 for securing Va of 150 m / sec or more at L = 1000 mm is about 510 m / sec or more. It is sufficient to ensure a discharge speed of approximately 1.5 or more when converted to the Mach number.

次に図3は、炉底偏芯出鋼方式における本吹き込み方法に関するランスの取り付け配置を示す平面断面図である。一般的に炉体が炉体中心に円形状の平面形状を有しているため溶融金属も炉体中心を芯として円形状を呈しており、出鋼口側に移動するにつれ細長い楕円形状となっている。   Next, FIG. 3 is a plan cross-sectional view showing the mounting arrangement of the lance relating to the main blowing method in the furnace bottom eccentric steel extraction method. Generally, since the furnace body has a circular planar shape at the center of the furnace body, the molten metal also has a circular shape with the center of the furnace body as the core, and becomes an elongated elliptical shape as it moves toward the steel outlet. ing.

また、3相交流アーク炉においては黒鉛電極は平面的に炉体中心を芯とした正三角形配置をしているため、黒鉛電極に酸素または酸素含有ガスがアタックし黒鉛電極の損耗を早めないためと、ランス対向面の水冷式パネル及び耐火物上面への酸素アタックによる損傷を与えないために、ランスは黒鉛電極の最も出鋼口側に位置する黒鉛電極の最外端面31よりも出鋼口側で、炉体鉄皮11の内側までの範囲となるLaの範囲内に取り付けることが望ましい。   In a three-phase AC arc furnace, the graphite electrodes are arranged in a regular triangle centered on the center of the furnace body in a plane, so that oxygen or oxygen-containing gas attacks the graphite electrode and does not accelerate the wear of the graphite electrode. In order not to damage the water-cooled panel and the refractory top surface of the lance-facing surface due to oxygen attack, the lance has a steel outlet more than the outermost end face 31 of the graphite electrode located closest to the steel outlet. It is desirable to install in the range of La which becomes the range to the inner side of the furnace body skin 11 on the side.

また、酸素または酸素含有ガスによる溶融金属に対する攪拌効果を充分に教授させるためには、溶融金属円形面の半径R軸線に対する接線方向に吹き込むことが最も有効である。従って、炉体中心と出鋼口中心を結ぶ軸線に対して概ね直角となる方向にランス先端部の吐出口を配置することが最も有効的な吹き込み方法となる。   In order to sufficiently teach the stirring effect on the molten metal by oxygen or an oxygen-containing gas, it is most effective to blow in the tangential direction with respect to the radius R axis of the molten metal circular surface. Therefore, the most effective blowing method is to dispose the discharge port at the tip of the lance in a direction substantially perpendicular to the axis connecting the furnace body center and the steel outlet center.

図3において、θの振れ角度を反時計方向(出鋼口側)に振りすぎると、ランス吐出口から対向面の水冷式パネルまたはその下部の耐火物までの距離が短くなり、酸素アタックによる損傷が大きくなり、逆に時計方向(黒鉛電極側)に振りすぎると、黒鉛電極への酸素アタックによる損耗が大きくなるため、酸素アタックによるこれらの影響を抑制しながら溶融金属の攪拌効果を維持するためにも、ランスからの酸素吐出方向の振れ角度θは±20度の範囲内に取り付けることが望ましい。 In FIG. 3, if the swing angle of θ 2 is swung too much counterclockwise (on the steel outlet side), the distance from the lance discharge port to the water-cooled panel on the opposite surface or the refractory on the lower side is shortened, resulting in oxygen attack. If the damage increases and conversely swings in the clockwise direction (graphite electrode side) too much, wear due to oxygen attack on the graphite electrode increases, so the effect of stirring the molten metal is maintained while suppressing these effects of oxygen attack. For this reason, it is desirable that the deflection angle θ 2 in the direction of oxygen discharge from the lance is within a range of ± 20 degrees.

アーク炉、特に3相交流アーク炉で炉底偏芯出鋼方式のアーク炉を模式的に示す部分断面図である。It is a fragmentary sectional view which shows typically the arc furnace of an arc furnace, especially a 3-phase alternating current arc furnace of a furnace bottom eccentric steeling system. 本発明のアーク炉用酸素または酸素含有ガスを吹き込むためのランスの取り付けを断面して示す使用状態説明図である。It is use condition explanatory drawing which shows the attachment of the lance for blowing in oxygen for oxygen for an arc furnace of this invention, or oxygen-containing gas in a cross section. 図1のアーク炉においての本発明のアーク炉用酸素または酸素含有ガスを吹き込むためのランスの取り付けを平面的に示す使用状態説明図である。It is a use condition explanatory drawing which shows the attachment of the lance for blowing in oxygen or the oxygen containing gas for arc furnaces of this invention in the arc furnace of FIG. 1 planarly. 横軸にランス先端部の吐出口の出口から溶融金属表面までの軸線距離Lを示し、縦軸にランス先端部の吐出口出口の吐出速度V0を示すグラフである。The horizontal axis shows the axial distance L from the outlet of the discharge port at the tip of the lance to the molten metal surface, and the vertical axis shows the discharge speed V0 at the outlet of the discharge port at the tip of the lance.

符号の説明Explanation of symbols

1 炉体
2 炉蓋
3 黒鉛電極
4 張り出し部
5 水冷式パネル
6 溶融金属
7 耐火物
8 開口(出鋼口)
9 出鋼口蓋
10 作業口
11 炉体鉄皮
12 開口
13 開口
14 作業口扉
20 ランス
21 ランス先端部
22 吐出口
23 ランス側取付座
31 黒鉛電極の最外端面
32 炉体側取付座
DESCRIPTION OF SYMBOLS 1 Furnace body 2 Furnace lid 3 Graphite electrode 4 Overhang part 5 Water-cooled panel 6 Molten metal 7 Refractory 8 Opening (steel opening)
DESCRIPTION OF SYMBOLS 9 Steel outlet cover 10 Working port 11 Furnace iron shell 12 Opening 13 Opening 14 Working port door 20 Lance 21 Lance tip part 22 Discharge port 23 Lance side mounting seat 31 Outermost end surface of graphite electrode 32 Furnace side mounting seat

Claims (2)

金属材料を溶解及び精錬するアーク炉の炉壁の外方に固定装着されたランスにより、炉壁内の溶融金属表面上に上方より酸素または酸素含有ガスを吹き込む方法において、ランス先端部の酸素または酸素含有ガスの吐出口の位置を溶融金属面から鉛直方向で700mm以上遠ざけ、かつ吐出口から吐出される酸素または酸素含有ガスの溶融金属面に突入する角度を鉛直方向の面において溶融金属面からの角度が30゜から60゜の範囲とし、酸素または酸素含有ガスの溶融金属表面上での突入速度を150m/秒から300m/秒の範囲となるようにランス先端部の吐出口からの吹込み速度を決定して吹き込むことを特徴とする酸素または酸素含有ガスを吹き込む方法。   In a method in which oxygen or an oxygen-containing gas is blown from above onto the surface of the molten metal in the furnace wall by a lance fixedly attached to the outside of the furnace wall of the arc furnace for melting and refining the metal material, The position of the discharge port of the oxygen-containing gas is at least 700 mm away from the molten metal surface in the vertical direction, and the angle at which the oxygen or oxygen-containing gas discharged from the discharge port enters the molten metal surface is perpendicular to the molten metal surface. Blowing from the discharge port at the tip of the lance so that the angle of air is in the range of 30 ° to 60 °, and the rush speed of oxygen or oxygen-containing gas on the molten metal surface is in the range of 150 m / sec to 300 m / sec. A method of blowing oxygen or an oxygen-containing gas, characterized by blowing at a determined speed. 平面取り付け位置をアーク炉の黒鉛電極において最も出鋼口側に配置された電極の最外端面から出鋼口側で、かつ炉体鉄皮の内側に配置し、酸素または酸素含有ガスの平面的な吹き出し方向をアーク炉の炉芯と出鋼口芯とを結ぶ軸線に対し90度±20度とすることを含む請求項1記載の方法。   The plane mounting position is arranged from the outermost end surface of the electrode arranged on the side of the steel outlet in the graphite electrode of the arc furnace to the side of the steel outlet and inside the furnace shell. The method according to claim 1, further comprising: setting an appropriate blowing direction to 90 ° ± 20 ° with respect to an axis connecting the core of the arc furnace and the steel outlet core.
JP2005071834A 2005-03-14 2005-03-14 Method for blowing oxygen or oxygen-containing gas in arc furnace Pending JP2006249563A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005071834A JP2006249563A (en) 2005-03-14 2005-03-14 Method for blowing oxygen or oxygen-containing gas in arc furnace

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005071834A JP2006249563A (en) 2005-03-14 2005-03-14 Method for blowing oxygen or oxygen-containing gas in arc furnace

Publications (1)

Publication Number Publication Date
JP2006249563A true JP2006249563A (en) 2006-09-21

Family

ID=37090356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005071834A Pending JP2006249563A (en) 2005-03-14 2005-03-14 Method for blowing oxygen or oxygen-containing gas in arc furnace

Country Status (1)

Country Link
JP (1) JP2006249563A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052781A (en) * 2007-08-24 2009-03-12 Sanyo Special Steel Co Ltd Auxiliary combustion device of electric furnace for steel making
CN101776396A (en) * 2010-03-05 2010-07-14 苏州宝联重工股份有限公司 Water-cooling copper seat for multifunctional oxygen lance
CN106123589A (en) * 2016-08-26 2016-11-16 新疆星塔矿业有限公司 Improve the device of fluidized bed furnace milling capacity
CN107883760A (en) * 2017-12-18 2018-04-06 郑州远东耐火材料有限公司 The automatic flat material device of electric arc furnaces fusing
CN110923393A (en) * 2019-12-24 2020-03-27 上海和惠生态环境科技有限公司 Oxygen-enriched side-blown converter applied to fly ash fusion
JP2020094775A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Gas ejection device in electric furnace, and gas ejection method
CN114807504A (en) * 2022-05-13 2022-07-29 江苏省沙钢钢铁研究院有限公司 Arrangement structure of oxygen lance of eccentric bottom electric furnace

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192718A (en) * 1992-12-24 1994-07-12 Nippon Steel Corp Method for blowing in oxygen or oxygen-containing gas without wearing lance
JP2002105528A (en) * 2000-08-07 2002-04-10 L'air Liquide Method for injection of gas with injection nozzle

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06192718A (en) * 1992-12-24 1994-07-12 Nippon Steel Corp Method for blowing in oxygen or oxygen-containing gas without wearing lance
JP2002105528A (en) * 2000-08-07 2002-04-10 L'air Liquide Method for injection of gas with injection nozzle

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052781A (en) * 2007-08-24 2009-03-12 Sanyo Special Steel Co Ltd Auxiliary combustion device of electric furnace for steel making
CN101776396A (en) * 2010-03-05 2010-07-14 苏州宝联重工股份有限公司 Water-cooling copper seat for multifunctional oxygen lance
CN106123589A (en) * 2016-08-26 2016-11-16 新疆星塔矿业有限公司 Improve the device of fluidized bed furnace milling capacity
CN106123589B (en) * 2016-08-26 2019-01-22 新疆星塔矿业有限公司 Improve the device of fluidized bed furnace milling capacity
CN107883760A (en) * 2017-12-18 2018-04-06 郑州远东耐火材料有限公司 The automatic flat material device of electric arc furnaces fusing
JP2020094775A (en) * 2018-12-14 2020-06-18 日本製鉄株式会社 Gas ejection device in electric furnace, and gas ejection method
JP7307305B2 (en) 2018-12-14 2023-07-12 日本製鉄株式会社 Gas injection device and gas injection method for electric furnace
CN110923393A (en) * 2019-12-24 2020-03-27 上海和惠生态环境科技有限公司 Oxygen-enriched side-blown converter applied to fly ash fusion
CN114807504A (en) * 2022-05-13 2022-07-29 江苏省沙钢钢铁研究院有限公司 Arrangement structure of oxygen lance of eccentric bottom electric furnace

Similar Documents

Publication Publication Date Title
CA1300898C (en) Melting furnace and method for melting metal
JP5894937B2 (en) Copper anode refining system and method
JP2006249563A (en) Method for blowing oxygen or oxygen-containing gas in arc furnace
EP1884731B1 (en) Methods of implementing a water-cooling system into a burner panel and related apparatuses
BR112012009231B1 (en) HOT METAL REFINING METHOD USING TOP BOOM
US6999495B2 (en) Method and apparatus for spatial energy coverage
CN1043055C (en) Method for producing steel in an electric arc furnace, and electric arc furnace therefor
JP7013111B2 (en) Method for manufacturing low carbon ferrochrome
CN210065872U (en) Atmosphere protective cover of electroslag furnace
CN208562446U (en) A kind of efficient line feeding rifle of steel-making with deslagging function
KR20010005571A (en) Pressure Converter Steel Making Method
WO2019064433A1 (en) Method for adjusting melting-refining furnace and melting-refining furnace
JP2013533950A (en) Method and system for removing deposits formed in a furnace
KR100833054B1 (en) An apparatus for preventing the confusion of slag in melting iron casting
CN213628857U (en) Refining furnace opening sealing structure
CN211939024U (en) Pouring device for refining high manganese steel
KR102522360B1 (en) Method for producing chromium-containing molten iron
JP7280480B2 (en) Arc electric furnace, slag discharge method in arc electric furnace, and method for producing molten metal
EP4303327A1 (en) Electric furnace and steelmaking method
KR100419048B1 (en) Device for preventing partial wear of brass wire rod in blowing tube of tuyere
JP3148966B2 (en) Lance nozzle structure that blows oxygen gas into electric furnace
JPH11302717A (en) Water cooled lance structure of electric furnace
JPH0892630A (en) Gaseous oxygen blowing device for electric furnace
EP0871785B1 (en) Method and apparatus for after-burning the combustible components of the atmosphere in metallurgical smelting vessels
JP2000345230A (en) Operation of electric furnace

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20060804

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20060818

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060818

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100917

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100924

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110204