JP2006249482A - Aluminum alloy fin material for heat exchanger and heat exchanger - Google Patents

Aluminum alloy fin material for heat exchanger and heat exchanger Download PDF

Info

Publication number
JP2006249482A
JP2006249482A JP2005066186A JP2005066186A JP2006249482A JP 2006249482 A JP2006249482 A JP 2006249482A JP 2005066186 A JP2005066186 A JP 2005066186A JP 2005066186 A JP2005066186 A JP 2005066186A JP 2006249482 A JP2006249482 A JP 2006249482A
Authority
JP
Japan
Prior art keywords
fin material
brazing
heat exchanger
aluminum alloy
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005066186A
Other languages
Japanese (ja)
Inventor
Shohei Iwao
祥平 岩尾
Shu Kuroda
周 黒田
Masazo Asano
雅三 麻野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MA Aluminum Corp
Original Assignee
Mitsubishi Aluminum Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Aluminum Co Ltd filed Critical Mitsubishi Aluminum Co Ltd
Priority to JP2005066186A priority Critical patent/JP2006249482A/en
Publication of JP2006249482A publication Critical patent/JP2006249482A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aluminum alloy fin material for a heat exchanger excellent in strength characteristic, brazability and self-corrosion-resistance, and a heat exchanger. <P>SOLUTION: A composition consisting of, by weight, >0.6 to <1.2% Si, >1.5 to 2.5% Mn, >0.15 to 1% Ni, 0.01 to <0.03% Mg, ≤0.5% Fe, >1 to 5% Zn and the balance Al with inevitable impurities is provided as an aluminum alloy fin material for a heat exchanger, whereby the brazability of the fin material at the time of assembling a heat exchanger by brazing is improved and a high strength fin material excellent in self-corrosion-resistance is obtained; therefore the aluminum alloy fin material for a heat exchanger can be reduced in thickness and weight and the reliability of the fin material and the resulting heat exchanger is improved. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ろう付法によって製造されるアルミニウム合金熱交換器に用いられる熱交換器用アルミニウム合金フィン材及びそれを備えた熱交換器に関する。   The present invention relates to an aluminum alloy fin material for a heat exchanger used in an aluminum alloy heat exchanger manufactured by a brazing method and a heat exchanger provided with the same.

近年、自動車の軽量化により自動車用の熱交換器もまた軽量化が求められており、これに対応すべくフィン材の薄肉化、高強度化が求められている。
熱交換器用のフィン材としては、従来、1000系や3000系のアルミニウム合金が用いられてきた。しかし、上述のアルミニウム合金で製造されたフィン材は、ろう付後の強度が必ずしも十分では無く、フィン材を薄型化するにあたり、強度不足となる虞があった。
In recent years, with the reduction in weight of automobiles, heat exchangers for automobiles are also required to be reduced in weight, and in order to cope with this, thinner fin materials and higher strength are required.
Conventionally, 1000 series or 3000 series aluminum alloys have been used as fin materials for heat exchangers. However, the fin material manufactured from the above-described aluminum alloy does not necessarily have sufficient strength after brazing, and there is a possibility that the strength may be insufficient when the fin material is thinned.

ろう付されたフィン材の強度を向上させるため、Al−Mn−Si−Ni系にZn等を添加したアルミニウム合金からなる熱交換器用アルミニウム合金フィン材が提案されている(例えば、特許文献1)。   In order to improve the strength of the brazed fin material, an aluminum alloy fin material for a heat exchanger made of an aluminum alloy in which Zn or the like is added to an Al—Mn—Si—Ni system has been proposed (for example, Patent Document 1). .

また、板厚が0.1mm以下のアルミニウム合金フィン材において、90%以上の金属間化合物のサイズを最大値で5μm以下として構成した熱交換器用アルミニウムフィン材が提案されている(例えば、特許文献2)。   Further, an aluminum fin material for a heat exchanger has been proposed in which, in an aluminum alloy fin material having a plate thickness of 0.1 mm or less, the size of an intermetallic compound of 90% or more is set to a maximum value of 5 μm or less (for example, Patent Documents). 2).

また、フィン材の材質を、Cu:0.10〜0.25wt%、Zn:2.0〜3.5%、Si:0.6〜1.5%及びMn:0.5〜2.0%を含有し、残部Alと不可避的不純物とからなり、さらにCu含有量(%)を[Cu]、Zn含有量(%)を[Zn]としたときに[Cu]と[Zn]との関係が、0.10≦[Cu]≦0.15の場合([Zn]−2)/[Cu]≦8且つ0.15<[Cu]≦0.25の場合([Zn]−3)/[Cu]≦4/3として構成された熱交換器用アルミニウム合金フィン材が提案されている(例えば、特許文献3)。
特開2004−59939号公報 特開2001−226730号公報 特許第3521105号公報
Further, the material of the fin material is Cu: 0.10 to 0.25 wt%, Zn: 2.0 to 3.5%, Si: 0.6 to 1.5%, and Mn: 0.5 to 2.0. %, The balance Al and unavoidable impurities, and when the Cu content (%) is [Cu] and the Zn content (%) is [Zn], [Cu] and [Zn] When the relationship is 0.10 ≦ [Cu] ≦ 0.15 ([Zn] −2) / [Cu] ≦ 8 and 0.15 <[Cu] ≦ 0.25 ([Zn] −3) / [Cu] ≦ 4/3 has been proposed for an aluminum alloy fin material for a heat exchanger (for example, Patent Document 3).
JP 2004-59939 A JP 2001-226730 A Japanese Patent No. 3521105

特許文献1に記載された熱交換器用アルミニウム合金フィン材は、上述の成分組成で構成したことにより、従来のフィン材に比べてろう付後の強度に優れる。
しかしながら、特許文献1の熱交換器用アルミニウム合金フィン材の構成では、Niの含有量が1%超5%以下となっているため、Mnの含有量を高めに設定した場合、フィン材鋳造時にAl−Mn−Ni系の金属間化合物が粗大化しやすくなり、フィン材の加工性が低下する虞がある。
The aluminum alloy fin material for heat exchangers described in Patent Document 1 is superior in strength after brazing as compared to the conventional fin material because it is composed of the above-described component composition.
However, in the configuration of the aluminum alloy fin material for heat exchanger of Patent Document 1, since the Ni content is more than 1% and not more than 5%, when the Mn content is set high, the Al content is reduced during the casting of the fin material. The -Mn-Ni intermetallic compound is likely to be coarsened, and the workability of the fin material may be reduced.

特許文献2に記載の熱交換器用アルミニウム合金フィン材は、金属間化合物サイズを最大で5μmとすることにより、疲労破壊を防止している。
しかしながら、特許文献2の熱交換器用アルミニウム合金フィン材の構成では、ろう付時の熱処理によって、フィン材の粒界におけるSi系低融点化合物の析出量が増大し、溶融ろうの拡散によって粒界の局部溶融を起こしやすくなり、ろうの侵食が増大してしまう虞がある。
The aluminum alloy fin material for heat exchangers described in Patent Document 2 prevents fatigue failure by setting the intermetallic compound size to 5 μm at the maximum.
However, in the structure of the aluminum alloy fin material for heat exchangers of Patent Document 2, the amount of Si-based low-melting compound precipitated at the grain boundaries of the fin material increases due to the heat treatment during brazing, and the grain boundary Local melting tends to occur, and wax erosion may increase.

特許文献3に記載の熱交換器用アルミニウム合金フィン材は、上述の元素量規定及びCuとZnの添加量規定式を満足した構成とすることにより、耐食性及び強度を向上させている。
しかしながら、特許文献3の熱交換器用アルミニウム合金フィン材の構成では、ろう付時の熱処理によって、フィン材の粒界におけるSi系低融点化合物の析出量が増大し、溶融ろうの拡散によって粒界の局部溶融を起こしやすくなり、ろうの侵食が増大してしまう虞がある。
The aluminum alloy fin material for heat exchangers described in Patent Document 3 has improved corrosion resistance and strength by satisfying the above-described element amount definition and Cu and Zn addition amount defining formula.
However, in the configuration of the aluminum alloy fin material for heat exchanger of Patent Document 3, the amount of Si-based low-melting compound precipitated at the grain boundary of the fin material is increased by the heat treatment during brazing, and the grain boundary is Local melting tends to occur, and wax erosion may increase.

熱交換器用アルミニウム合金フィン材のろう付性に関しては、近年のフィン材の薄肉化に伴い、ろう付時のフィン材へのろう侵食が大きな問題となっている。チューブ材の接合に用いられるAl−Siろうがフィン材に侵食した場合、フィン材の座屈が生じ、熱交換器の耐久強度や熱交換効率の低下につながる虞がある。このため、ろう付性、及び耐ろう侵食性に優れるフィン材が求められていた。   Regarding brazing properties of aluminum alloy fin materials for heat exchangers, with the recent thinning of fin materials, brazing of the fin materials during brazing has become a major problem. When the Al—Si brazing used for joining the tube material erodes the fin material, the fin material is buckled, which may lead to a decrease in durability and heat exchange efficiency of the heat exchanger. For this reason, the fin material which is excellent in brazing property and brazing corrosion resistance has been demanded.

本発明は上記事情に鑑みてなされたもので、強度特性、ろう付性、及び自己耐食性に優れた熱交換器用アルミニウム合金フィン材及び熱交換器を提供することを目的とする。   This invention is made | formed in view of the said situation, and it aims at providing the aluminum alloy fin material for heat exchangers and heat exchangers which were excellent in intensity | strength characteristic, brazing property, and self-corrosion resistance.

本出願人は、強度特性、ろう付性、及び自己耐食性の何れの特性も優れた熱交換器用アルミニウム合金フィン材を得るべく検討を重ね、以下の構成の熱交換器用アルミニウム合金フィン材を得るに至った。
(1)請求項1に記載の発明
重量%でSi:0.6%超1.2%未満、Mn:1.5%超2.5%以下、Ni:0.15%超1%以下、Mg:0.01%以上0.03%未満、Fe:0.5%以下、Zn:1%超5%以下を含有し、残部Alと不可避不純物とからなることを特徴とする熱交換器用アルミニウム合金フィン材。
(2)請求項2記載の発明
前記熱交換器用アルミニウム合金フィン材は、更にZr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下、Ti:0.05%以上0.3%以下、V:0.05%以上0.3%以下の内、少なくとも1種類以上を含有してなることを特徴とする請求項1に記載の熱交換器用アルミニウム合金フィン材。
(3)請求項3に記載の発明
請求項1又は2に記載の熱交換器用アルミニウム合金フィン材を芯材として、該芯材の両面にAl−Si系合金ろう材をクラッドしてなることを特徴とする熱交換器用アルミニウム合金フィン材。
(4)請求項4に記載の発明
請求項1〜3の何れかに記載の熱交換器用アルミニウム合金フィン材を備えたことを特徴とする熱交換器。
The present applicant has repeatedly studied to obtain an aluminum alloy fin material for a heat exchanger having excellent strength characteristics, brazing properties, and self-corrosion properties, and to obtain an aluminum alloy fin material for a heat exchanger having the following configuration. It came.
(1) Invention according to claim 1 By weight%: Si: more than 0.6% and less than 1.2%, Mn: more than 1.5% and not more than 2.5%, Ni: more than 0.15% and not more than 1%, Mg: 0.01% or more and less than 0.03%, Fe: 0.5% or less, Zn: more than 1% and 5% or less, the balance being aluminum and inevitable impurities, aluminum for heat exchangers Alloy fin material.
(2) Invention of Claim 2 The said aluminum alloy fin material for heat exchangers is further Zr: 0.05% or more and 0.3% or less, Cr: 0.05% or more and 0.3% or less, Ti: 0.00. The aluminum alloy fin for heat exchanger according to claim 1, comprising at least one of 05% to 0.3% and V: 0.05% to 0.3%. Wood.
(3) Invention according to claim 3 The aluminum alloy fin material for heat exchanger according to claim 1 or 2 is used as a core material, and an Al-Si alloy brazing material is clad on both surfaces of the core material. A featured aluminum alloy fin material for heat exchangers.
(4) Invention of Claim 4 The heat exchanger provided with the aluminum alloy fin material for heat exchangers in any one of Claims 1-3.

本発明の熱交換器用アルミニウム合金フィン材では、重量%でSi:0.6%超1.2%未満、Mn:1.5%超2.5%以下、Ni:0.15%超1%以下、Mg:0.01%以上0.03%未満、Fe:0.5%以下、Zn:1%超5%以下を含有し、残部Alと不可避不純物とが含有された構成としている。
これにより、フィン材をろう付けして熱交換器を組み立てる際のろう付性が向上し、また、高強度で自己耐食性に優れたフィン材が得られる。
従って、熱交換器用アルミニウム合金フィン材の薄肉化、及び軽量化が可能となり、また、フィン材、及び熱交換器の信頼性が向上する。
また、本発明の熱交換器用アルミニウム合金フィン材では、更にZr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下、Ti:0.05%以上0.3%以下、V:0.05%以上0.3%以下の内、少なくとも1種類以上を含有する構成としてやることにより、フィン材の強度が一層向上する。
本発明の熱交換器用アルミニウム合金フィン材を備えた熱交換器では、強度特性、ろう付性に優れたフィン材の採用によって一層の薄型化、及び軽量化が可能となり、また、信頼性が向上する。
In the aluminum alloy fin material for heat exchanger of the present invention, by weight, Si: more than 0.6% and less than 1.2%, Mn: more than 1.5% and less than 2.5%, Ni: more than 0.15% and 1% Hereinafter, Mg: 0.01% or more and less than 0.03%, Fe: 0.5% or less, Zn: more than 1% and 5% or less, and the balance Al and inevitable impurities are contained.
Thereby, the brazing property at the time of assembling the heat exchanger by brazing the fin material is improved, and the fin material having high strength and excellent self-corrosion resistance is obtained.
Therefore, the aluminum alloy fin material for heat exchanger can be made thinner and lighter, and the reliability of the fin material and the heat exchanger is improved.
In the aluminum alloy fin material for a heat exchanger of the present invention, Zr: 0.05% to 0.3%, Cr: 0.05% to 0.3%, Ti: 0.05% to 0.3%. The strength of the fin material is further improved by adopting a constitution containing at least one of 3% or less and V: 0.05% or more and 0.3% or less.
In the heat exchanger equipped with the aluminum alloy fin material for heat exchanger of the present invention, it is possible to further reduce the thickness and weight by adopting the fin material having excellent strength characteristics and brazing properties, and the reliability is improved. To do.

以下、本発明に係る熱交換器用アルミニウム合金フィン材の実施の形態について説明する。
本実施形態の熱交換器用アルミニウム合金フィン材(以下、フィン材と略称することがある)は、重量%でSi:0.6%超1.2%未満、Mn:1.5%超2.5%以下、Ni:0.15%超1%以下、Mg:0.01%以上0.03%未満、Fe:0.5%以下、Zn:1%超5%以下を含有し、残部Alと不可避不純物とが含有されて構成されている。
また、必要に応じて、Zr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下、Ti:0.05%以上0.3%以下、V:0.05%以上0.3%以下の内、少なくとも1種類以上を含有した構成としても良い。
以下、本実施形態のフィン材の合金組成の数値限定理由について説明する。
Embodiments of an aluminum alloy fin material for a heat exchanger according to the present invention will be described below.
The aluminum alloy fin material for heat exchanger of the present embodiment (hereinafter sometimes abbreviated as fin material) is Si: more than 0.6% and less than 1.2%, and Mn: more than 1.5%. 5% or less, Ni: more than 0.15% and 1% or less, Mg: 0.01% or more and less than 0.03%, Fe: 0.5% or less, Zn: more than 1% and 5% or less, and the balance Al And inevitable impurities are contained.
Further, if necessary, Zr: 0.05% to 0.3%, Cr: 0.05% to 0.3%, Ti: 0.05% to 0.3%, V: 0.00. It is good also as a structure containing at least 1 or more types within 05% or more and 0.3% or less.
Hereinafter, the reason for limiting the numerical value of the alloy composition of the fin material of the present embodiment will be described.

[Mg]
マグネシウム(Mg)は、ろう付時にAl合金の酸化皮膜除去等の目的で使用されるフッ化物系のノコロックフラックスと反応しやすく、MgF等の化合物を生成し、ろう付性を低下させる。また、Mgは、ろう付時に、結晶粒界にMgSi等の低融点化合物を連続的に析出しやすい。この際、クラッド材等とろう付する際に、溶融ろうがフィン材へ拡散することにより、粒界及び粒界近傍に局部溶融が生じ、フィン材の粒界への、ろうの侵食が生じやすくなる。
Mgの含有量は、重量%で0.01%以上0.03%未満の範囲であることが好ましい。
Mgの含有量を0.01%以上0.03%未満の範囲とすることにより、ろう付時の、粒界への低融点化合物の析出量を大幅に低減することができ、フィン材のろう付性、及び耐ろう侵食性を向上させることができる。
本出願人が、ろう付性(耐ろう侵食性)向上を目的として、Mgのフィン材における最適含有量について鋭意検討した結果、Mgの含有量を0.01%以上0.03%未満の範囲とした際に、ろう付性(耐ろう侵食性)が最も向上することが明らかとなっている(後述の実施例参照)。
フィン材に含有されるMgが0.03%以上だと、結晶粒界に析出するMg−Si系低融点化合物の量や大きさが大幅に増大し、ろう付時に、溶融ろうが拡散することによって局部溶融を生じやすくなり、フィン材の粒界への、ろうの侵食が増大する虞がある。
フィン材に含有されるMgが0.01%未満だと、Siとの間で化合物を生成するMgの量が少ないため、粒界において、フリーな状態のSiの量が増加する。このため、ろう付時の熱処理によって、粒界におけるSi系低融点化合物の析出量が増大し、溶融ろうの拡散によって粒界の局部溶融を起こしやすくなり、フィン材の粒界への、ろうの侵食が増大してしまう虞がある。
[Mg]
Magnesium (Mg) easily reacts with a fluoride-based nocollock flux used for the purpose of removing an oxide film of an Al alloy during brazing, and produces a compound such as MgF 2 to reduce brazing. Further, Mg tends to continuously precipitate a low melting point compound such as Mg 2 Si continuously at the grain boundary during brazing. At this time, when brazing with a clad material or the like, the molten brazing diffuses into the fin material, so that local melting occurs near the grain boundary and near the grain boundary, and erosion of the solder to the grain boundary of the fin material is likely to occur. Become.
The Mg content is preferably in the range of 0.01% or more and less than 0.03% by weight.
By setting the Mg content in the range of 0.01% or more and less than 0.03%, the amount of low melting point compound precipitated at the grain boundaries during brazing can be greatly reduced, and the fin material brazing Adhesiveness and resistance to wax erosion can be improved.
As a result of intensive studies on the optimum content of Mg fin material by the present applicant for the purpose of improving brazing (brazing erosion resistance), the Mg content is in the range of 0.01% or more and less than 0.03%. In this case, it has been clarified that the brazing property (brazing erosion resistance) is most improved (see Examples described later).
If the Mg content in the fin material is 0.03% or more, the amount and size of the Mg-Si low melting point compound that precipitates at the grain boundaries will greatly increase, and the molten brazing will diffuse during brazing. As a result, local melting is likely to occur, and the erosion of the wax into the grain boundaries of the fin material may increase.
If Mg contained in the fin material is less than 0.01%, the amount of Mg that forms a compound with Si is small, so the amount of Si in a free state increases at the grain boundary. For this reason, the amount of Si-based low-melting compound precipitated at the grain boundaries increases due to the heat treatment during brazing, and local melting of the grain boundaries tends to occur due to diffusion of the molten braze, and the brazing of the fin material to the grain boundaries There is a risk of increased erosion.

[Si]
ケイ素(Si)は、Mnと共存してAl−Mn−Si系の微細な析出物を生じ、フィン材のろう付後の強度、及びろう付加熱時の耐高温座屈性を向上させる。
Siの含有量は、重量%で0.6%超1.2%未満の範囲であることが好ましい。
Siの含有量を0.6%超1.2%未満の範囲とすることにより、フィン材のろう付後の強度、及びろう付加熱時の耐高温座屈性が向上する。
Siの含有量が0.6%以下だと、低融点化合物の析出量を低減することができるものの、Si添加による強度向上効果が小さくなる。
Siの含有量が1.2%以上だと、フィン材の融点が低下して、ろう付時にフィン材が溶融する虞がある。また、Siの含有量が多くなると、Mgの含有量が0.01%以上0.03%未満の範囲の場合、ろう付時に、粒界に低融点のSi系化合物の析出量が増大し、フィン材の粒界への、ろうの侵食が増大してしまう虞がある。
[Si]
Silicon (Si) coexists with Mn to produce Al-Mn-Si fine precipitates, and improves the strength after brazing of the fin material and the high temperature buckling resistance during brazing heat.
The Si content is preferably in the range of more than 0.6% and less than 1.2% by weight.
By setting the Si content in the range of more than 0.6% and less than 1.2%, the strength after brazing of the fin material and the high-temperature buckling resistance during brazing addition heat are improved.
If the Si content is 0.6% or less, the amount of precipitation of the low melting point compound can be reduced, but the effect of improving the strength by adding Si is reduced.
If the Si content is 1.2% or more, the melting point of the fin material is lowered, and the fin material may melt during brazing. Further, when the Si content is increased, when the Mg content is in the range of 0.01% or more and less than 0.03%, the amount of precipitation of the low melting point Si-based compound at the grain boundary increases during brazing, There is a possibility that the erosion of the wax into the grain boundary of the fin material may increase.

[Mn]
マンガン(Mn)は、アルミニウム合金の強度を向上させるとともに、Al−Mn系析出物(AlMn)或いはAl−Mn−Si系の微細な金属間化合物を生成することにより、フィン材の、ろう付後の強度、及びろう付加熱時の耐高温座屈性を向上させる。
Mnの含有量は、重量%で1.5%超2.5%以下の範囲であることが好ましい。
上述したように、Mgの含有量を0.01%以上0.03%未満の範囲とし、且つ、Mnの含有量を1.5%超2.5%以下の範囲とすることにより、フィン材の強度向上に寄与するMn−Si系化合物の生成を促進し、また、ろう付性及び耐ろう侵食性を低下させる要因となるMg−Si系及びSi系低融点化合物の、粒界への析出量を低減することが可能となる。
Mnの含有量が1.5%以下だと、Mnの添加による強度向上の効果が小さくなる。また、Siとの間で化合物を生成するMn量が低下し、フリーな状態のSiが増加するため、ろう付時に、粒界において低融点のSi系化合物の析出量が増大し、フィン材の粒界への、ろうの侵食が大きくなる虞がある。
Mnの含有量が2.5%を超えると、フィン材鋳造時に金属間化合物が粗大化し、加工性、及びフィン材の諸特性が低下する虞がある。
[Mn]
Manganese (Mn) improves the strength of the aluminum alloy and also produces Al—Mn-based precipitates (Al 6 Mn) or Al—Mn—Si-based fine intermetallic compounds. Improves strength after brazing and high temperature buckling resistance during brazing heat.
The Mn content is preferably in the range of more than 1.5% to 2.5% by weight.
As described above, by setting the Mg content in the range of 0.01% or more and less than 0.03%, and the Mn content in the range of more than 1.5% to 2.5% or less, the fin material Of Mg-Si and Si low-melting compounds that promote the formation of Mn-Si compounds that contribute to improving the strength of steel and reduce brazing and brazing corrosion resistance at grain boundaries The amount can be reduced.
When the content of Mn is 1.5% or less, the effect of improving the strength by adding Mn becomes small. In addition, since the amount of Mn that forms a compound with Si decreases and Si in a free state increases, the amount of precipitation of a low melting point Si-based compound increases at the grain boundary during brazing, and the fin material There is a possibility that the erosion of the wax into the grain boundary becomes large.
If the Mn content exceeds 2.5%, the intermetallic compound becomes coarse during casting of the fin material, and the workability and various properties of the fin material may be deteriorated.

[Ni]
ニッケル(Ni)は、ろう付後の強度、及びろう付加熱時の耐高温座屈性を向上させる。
Niの含有量は、重量%で0.15%超1%以下の範囲であることが好ましい。
上述したように、Mgの含有量を0.01%以上0.03%未満、Mnの含有量を1.5%超2.5%以下の範囲とし、且つ、Niの含有量を0.15%超1%以下の範囲とすることにより、粒界への、低融点化合物の析出量が低減され、ろう付性及び耐ろう侵食性が向上し、また、Al−Mn−Ni系の金属間化合物が生成されることにより、強度が向上する。
Niの含有量が0.15%以下だと、Niを添加することによる強度向上の効果が小さくなる。
Niの含有量が1%を超えると、Mnの含有量を1.5%超2.5%以下と高めに設定した場合、フィン材鋳造時にAl−Mn−Ni系の金属間化合物が粗大化しやすく、加工性が低下する虞がある。また、Al−Mn−Ni系の金属間化合物が増大することにより、Siとの間で化合物を生成するMnの量が低下するため、フリーな状態のSiが増大し、ろう付時に、粒界に低融点のSi化合物の析出量が増大するため、フィン材の粒界への、ろうの侵食が増大する虞がある。
[Ni]
Nickel (Ni) improves the strength after brazing and the high-temperature buckling resistance during brazing additional heat.
The Ni content is preferably in the range of more than 0.15% and 1% or less by weight.
As described above, the Mg content is 0.01% or more and less than 0.03%, the Mn content is in the range of more than 1.5% and 2.5% or less, and the Ni content is 0.15. By setting the content in the range of more than 1% and 1% or less, the precipitation amount of the low melting point compound on the grain boundary is reduced, the brazing property and the brazing corrosion resistance are improved, and the Al-Mn-Ni-based metal By producing the compound, the strength is improved.
When the Ni content is 0.15% or less, the effect of improving the strength by adding Ni becomes small.
When the Ni content exceeds 1%, when the Mn content is set higher than 1.5% and less than 2.5%, the Al-Mn-Ni intermetallic compound becomes coarse during the casting of the fin material. It is easy and workability may be reduced. Moreover, since the amount of Mn that forms a compound with Si decreases due to an increase in Al-Mn-Ni intermetallic compounds, Si in a free state increases, and at the time of brazing, grain boundaries In addition, since the precipitation amount of the low melting point Si compound increases, the erosion of the wax into the grain boundaries of the fin material may increase.

[Fe]
鉄(Fe)は、分散強化によってフィン材の強度を向上させる一方、粗大な金属間生成物を生成しやすく、該金属間生成物が再結晶の核となるために、ろう付時の再結晶粒が微細となり、ろう侵食の影響を受けやすく、ろう付性が低下する虞がある。
このため、Feの含有量は、重量%で0.5%以下であることが好ましい。
Feの含有量を0.5%以下とすることにより、強度、ろう付性、耐ろう侵食性を同時に向上させることができる。
Feの含有量が0.5%を超えると、上述したように、ろう付性が低下する虞がある。
[Fe]
While iron (Fe) improves the strength of the fin material by dispersion strengthening, it tends to produce coarse intermetallic products, and the intermetallic products become the core of recrystallization. The grains become fine, are susceptible to wax erosion, and the brazeability may be reduced.
For this reason, it is preferable that content of Fe is 0.5% or less by weight%.
By setting the Fe content to 0.5% or less, it is possible to simultaneously improve the strength, brazing property, and brazing corrosion resistance.
When the content of Fe exceeds 0.5%, as described above, the brazing property may be deteriorated.

[Zn]
亜鉛(Zn)は、フィン材の電位を卑(マイナス)にして、犠牲陽極効果を与える。
Znの含有量は、重量%で1%超5%以下の範囲であることが好ましい。
Znの含有量を、1%超5%以下の範囲とすることにより、フィン材とチューブ材との間で十分な犠牲陽極効果を得ることができる。
Znの含有量が1%以下だと、Znの添加による十分な犠牲陽極効果が得られない虞がある。
Znの含有量が5%を超えると、フィン材の自己耐食性が低下する虞がある。
なお、In又はSnを添加して犠牲陽極効果を得ることも可能だが、In又はSnを0.1%以上添加した場合、フィン材の自己耐食性が低下する虞がある。
[Zn]
Zinc (Zn) makes the potential of the fin material base (minus) and gives a sacrificial anode effect.
The Zn content is preferably in the range of more than 1% and 5% or less by weight.
By making the Zn content in the range of more than 1% and not more than 5%, a sufficient sacrificial anode effect can be obtained between the fin material and the tube material.
If the Zn content is 1% or less, a sufficient sacrificial anode effect due to the addition of Zn may not be obtained.
If the Zn content exceeds 5%, the self-corrosion resistance of the fin material may be reduced.
Although it is possible to obtain a sacrificial anode effect by adding In or Sn, when 0.1% or more of In or Sn is added, the self-corrosion resistance of the fin material may be lowered.

[Zr,Cr,Ti,V]
ジルコニウム(Zr),クロム(Cr),チタン(Ti),バナジウム(V)は何れも、フィン材の、ろう付後の強度及びろう付加熱時の耐高温座屈性を向上させる。
Zr,Cr,Ti,Vの含有量は、重量%で、それぞれ0.05%以上0.3%以下の範囲であることが好ましい。
Zr,Cr,Ti,Vの内、何れかの元素の含有量を0.05%以上0.3%以下とすることにより、上述のように、ろう付後の強度及びろう付加熱時の耐高温座屈性を向上させることができる。
Zr,Cr,Ti,Vの含有量が0.05%未満だと、ろう付後の強度及びろう付加熱時の耐高温座屈性の向上効果が小さくなる。
Zr,Cr,Ti,Vの含有量が0.3%を超えると、加工性が低下する虞がある。
[Zr, Cr, Ti, V]
Zirconium (Zr), chromium (Cr), titanium (Ti), and vanadium (V) all improve the strength of the fin material after brazing and the high temperature buckling resistance during brazing additional heat.
The content of Zr, Cr, Ti, V is preferably in the range of 0.05% to 0.3% by weight.
By setting the content of any element of Zr, Cr, Ti, and V to 0.05% or more and 0.3% or less, as described above, the strength after brazing and the resistance to brazing heat High temperature buckling can be improved.
When the content of Zr, Cr, Ti, V is less than 0.05%, the effect of improving the strength after brazing and the high temperature buckling resistance during brazing additional heat is reduced.
If the content of Zr, Cr, Ti, V exceeds 0.3%, workability may be reduced.

以上のように、Zr,Cr,Ti,Vは、何れもフィン材の強度を向上させる元素なので、これらの内の1種又は2種以上の元素を添加すれば良い。   As described above, Zr, Cr, Ti, and V are all elements that improve the strength of the fin material. Therefore, one or more of these elements may be added.

本実施形態のフィン材を製造する際は、例えば、上記適正範囲の組成を有するアルミニウム合金を溶解、鋳造して均質化を施す。続いて、熱間圧延、冷間圧延、中間焼鈍および冷間圧延を行なってフィン材とする。   When manufacturing the fin material of the present embodiment, for example, an aluminum alloy having a composition in the above appropriate range is melted and cast and homogenized. Subsequently, hot rolling, cold rolling, intermediate annealing, and cold rolling are performed to obtain a fin material.

なお、本実施形態の熱交換器用アルミニウム合金フィン材は、該フィン材を芯材として、該芯材の両面にAl−Si系合金ろう材をクラッドした構成として用いても良い。   In addition, you may use the aluminum alloy fin material for heat exchangers of this embodiment as a structure which clad the Al-Si type alloy brazing material on both surfaces of this core material as this core material.

図1に、本発明の熱交換器用アルミニウム合金フィン材が用いられる一例として、自動車用のラジエータ(熱交換器)10の分解斜視図を示す。
図1において、符号1はフィン(フィン材)、符号2はチューブ、符号3はヘッダー、符号4はサイドサポートである。図1に示すラジエータは、フッ化物系フラックスを用いたろう付接合によってチューブ2、フィン1およびヘッダー3が各々一体化され、更に樹脂タンクが機械的接合(かしめ加工)により取り付けられて製造される。
ろう付熱処理は、窒素ガス雰囲気中において600℃程度で行うことが好ましく、保持時間は3分程度が好ましい。この時の熱処理によって、フィン材の合金組織中に各種の金属間化合物が生成され、フィン材の強度を向上させることができる。
FIG. 1 shows an exploded perspective view of a radiator (heat exchanger) 10 for an automobile as an example in which the aluminum alloy fin material for a heat exchanger of the present invention is used.
In FIG. 1, reference numeral 1 is a fin (fin material), reference numeral 2 is a tube, reference numeral 3 is a header, and reference numeral 4 is a side support. The radiator shown in FIG. 1 is manufactured by integrating the tube 2, the fin 1 and the header 3 by brazing using a fluoride-based flux, and further attaching a resin tank by mechanical joining (caulking).
The brazing heat treatment is preferably performed at about 600 ° C. in a nitrogen gas atmosphere, and the holding time is preferably about 3 minutes. By the heat treatment at this time, various intermetallic compounds are generated in the alloy structure of the fin material, and the strength of the fin material can be improved.

以上説明したように、本発明の熱交換器用アルミニウム合金フィン材によれば、 上述した組成の元素が含有されていることにより、フィン材をろう付けして熱交換器を組み立てる際のろう付性が向上し、また、高強度で自己耐食性に優れたフィン材が得られる。
従って、フィン材の薄肉化、及び軽量化が可能となり、また、フィン材、及び熱交換器の信頼性が向上する。
As described above, according to the aluminum alloy fin material for a heat exchanger of the present invention, brazing properties when the heat exchanger is assembled by brazing the fin material due to the inclusion of the element having the above-described composition. In addition, a fin material having high strength and excellent self-corrosion resistance can be obtained.
Therefore, it is possible to reduce the thickness and weight of the fin material, and improve the reliability of the fin material and the heat exchanger.

以下に、本発明にかかる熱交換器用アルミニウム合金フィン材の実施例について説明する。
後述する各実施例及び比較例の欄に示す各成分組成条件で、本発明に係る熱交換器用アルミニウム合金フィン材、及び従来のフィン材(比較例)を作製し、各種評価試験を行った。
以下に、フィン材の作製工程、及び各評価試験項目について説明する。
Below, the Example of the aluminum alloy fin material for heat exchangers concerning this invention is described.
An aluminum alloy fin material for heat exchanger according to the present invention and a conventional fin material (comparative example) according to the present invention were prepared under various component composition conditions shown in the respective examples and comparative examples described later, and various evaluation tests were performed.
Below, the preparation process of a fin material and each evaluation test item are demonstrated.

[作製工程]
後述する各実施例及び比較例に示す成分組成を有する、厚さ20mm×縦52mm×横125mmのアルミニウム合金鋳塊を用い、片面当り1/4インチずつ面削した後、所定の温度で均質化を行い、熱間圧延を行った。更に、所定の板厚まで冷間圧延した後、中間焼鈍、及び冷間圧延を行い、板厚0.05mmの、本発明に係る熱交換器用アルミニウム合金フィン材、及び従来のフィン材(比較例)を、成分組成毎に得た。
なお、ろう付熱処理については、窒素ガス雰囲気中において600℃の温度で3分間保持した後、−100℃/分の冷却速度で室温(25℃)まで冷却した。
[Production process]
Using an aluminum alloy ingot having a thickness of 20 mm × length 52 mm × width 125 mm having the composition shown in each of the examples and comparative examples to be described later, after chamfering 1/4 inch per side, homogenized at a predetermined temperature. And hot rolling. Further, after cold rolling to a predetermined plate thickness, intermediate annealing and cold rolling are performed, and the aluminum alloy fin material for heat exchanger according to the present invention having a thickness of 0.05 mm and the conventional fin material (comparative example) ) Was obtained for each component composition.
In addition, about brazing heat processing, after hold | maintaining for 3 minutes at the temperature of 600 degreeC in nitrogen gas atmosphere, it cooled to room temperature (25 degreeC) with the cooling rate of -100 degreeC / min.

[強度試験]
上記作製工程で得られた本発明に係るフィン材、及び従来のフィン材を用いて、幅12.5mm×長さ180mmの引張試験片を作製した。これらの試験片をサンプルとして、引張試験機として島津社製:AG−GI 10knを使用して、引張速度2mm/分で引張試験を行うことにより、ろう付後の引張強度(耐力:MPa)を測定した。
引張試験結果を基に、強度評価について、以下の基準で判定した(◎○△×で表記)。
(1)◎:引張強度が55MPaを超えた。
(2)○:引張強度が50MPa超55MPa以下の範囲だった。
(3)△:引張強度が45MPa超50MPa以下の範囲だった。
(4)×:引張強度が45MPa未満だった。
[Strength test]
A tensile test piece having a width of 12.5 mm and a length of 180 mm was produced using the fin material according to the present invention obtained in the above production process and the conventional fin material. Using these test pieces as samples, using a Shimadzu AG-GI 10 kn as a tensile tester, and performing a tensile test at a tensile speed of 2 mm / min, the tensile strength after brazing (proof stress: MPa) It was measured.
Based on the tensile test results, the strength evaluation was determined according to the following criteria (represented by ◎ ΔΔ ×).
(1) A: Tensile strength exceeded 55 MPa.
(2) ○: The tensile strength was in the range of more than 50 MPa and less than 55 MPa.
(3) Δ: Tensile strength was in the range of more than 45 MPa and less than 50 MPa.
(4) x: The tensile strength was less than 45 MPa.

[自己耐食性試験]
上記作製工程で得られた本発明に係るフィン材、及び従来のフィン材を用いて、大きさが25mm×120mmの短冊状のサンプルを作製して、SST(塩水噴霧試験)を行った。塩水噴霧機としてスガ試験機社製:ISO−3−CY・Rを使用し、JIS Z 2371に基く試験条件下で48時間の試験を行った。
上記試験後に腐食減量を測定し、自己耐食性評価について、以下の基準で判定した(◎○△×で表記)。
(1)◎:腐食減量が25mg/dm未満だった。
(2)○:腐食減量が25mg/dm以上50mg/dm未満の範囲だった。
(3)△:腐食減量が50mg/dm以上100mg/dm未満の範囲だった。
(4)×:腐食減量が100mg/dm以上だった。
[Self-corrosion resistance test]
Using the fin material according to the present invention obtained in the above production process and the conventional fin material, a strip-shaped sample having a size of 25 mm × 120 mm was produced, and an SST (salt spray test) was performed. Suga Test Instruments Co., Ltd .: ISO-3-CY * R was used as a salt sprayer, and the test was performed for 48 hours under the test conditions based on JIS Z 2371.
Corrosion weight loss was measured after the above test, and the self-corrosion resistance evaluation was judged according to the following criteria (represented by ◎ ○ △ ×).
(1) A: Corrosion weight loss was less than 25 mg / dm 2 .
(2) ○: Corrosion weight loss was in the range of 25 mg / dm 2 or more and less than 50 mg / dm 2 .
(3) Δ: Corrosion weight loss was in a range of 50 mg / dm 2 or more and less than 100 mg / dm 2 .
(4) x: Corrosion weight loss was 100 mg / dm 2 or more.

[ろう付性(耐ろう侵食性)試験]
上記作製工程で得られた本発明に係るフィン材、及び従来のフィン材をコルゲート加工したサンプルを各々作製し、厚さ0.3mmのチューブ材(ブレージングシート:芯材3003/ろう材4045(10%クラッド))のろう材面に組み付け、フラックスを塗布した後、高純度窒素ガス雰囲気中においてろう付を行った。ろう付処理は、温度600℃で3分間保持して行った。
上記ろう付処理後に、コア(フィン材/チューブ)断面を、光学顕微鏡を用いて観察し、ろう付性の評価を行った。評価は、フィン材の粒界へのろう侵食の確認結果を基に、以下の基準で判定した。
(1)◎:フィン材粒界へのろう侵食深さが10μm未満だった。
(2)○:フィン材粒界へのろう侵食深さが10μm以上20μm未満だった。
(3)△:フィン材粒界へのろう侵食深さが20μm以上30マイクロm未満だった。
(4)×:フィン材粒界へのろう侵食深さが30μm以上だった。
[Brassability (brazing erosion resistance) test]
Samples obtained by corrugating the fin material according to the present invention obtained in the above production process and the conventional fin material were each produced, and a tube material having a thickness of 0.3 mm (brazing sheet: core material 3003 / brazing material 4045 (10 % Brazing)) was applied to the brazing material surface, and flux was applied, followed by brazing in a high purity nitrogen gas atmosphere. The brazing treatment was performed by holding at a temperature of 600 ° C. for 3 minutes.
After the brazing treatment, a cross section of the core (fin material / tube) was observed using an optical microscope to evaluate brazing properties. The evaluation was made according to the following criteria based on the confirmation result of the wax erosion to the grain boundary of the fin material.
(1) A: The wax erosion depth to the fin material grain boundary was less than 10 μm.
(2) O: Depth of wax erosion to fin material grain boundaries was 10 μm or more and less than 20 μm.
(3) Δ: The depth of wax erosion to the fin material grain boundary was 20 μm or more and less than 30 μm.
(4) x: The depth of wax erosion to the fin material grain boundary was 30 μm or more.

[低融点金属間化合物の分散状態の測定]
上記作製工程で得られた各々の成分組成のフィン材、及び従来のフィン材をサンプルとして、日本電子社製走査型電子顕微鏡:JSM−6360LAを用いて、結晶粒界のSEM観察を行った。サンプル1台中の複数の結晶粒を対象として、計10mm長の結晶粒界上の低融点化合物の個数を、粒子解析によって測定した。
なお、測定対象とした化合物は、粒子径(円相当直径)で0.1〜3μmの低融点化合物(Mg−Si系、又はSi系化合物)とした。
[Measurement of dispersion state of low melting point intermetallic compound]
The SEM observation of the crystal grain boundary was performed using a scanning electron microscope: JSM-6360LA manufactured by JEOL Ltd., using the fin material of each component composition obtained in the above production process and the conventional fin material as samples. For a plurality of crystal grains in one sample, the number of low-melting-point compounds on a crystal grain boundary having a total length of 10 mm was measured by particle analysis.
The compound to be measured was a low melting point compound (Mg—Si or Si compound) having a particle size (equivalent circle diameter) of 0.1 to 3 μm.

各々の評価試験における結果の一覧を表1に示す。   Table 1 shows a list of results in each evaluation test.

Figure 2006249482
Figure 2006249482

[実施例1]
重量%でSi:0.7、Mn:1.7%、Ni:0.5%、Mg:0.015%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が62MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が28mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは4μmであり、評価は◎であった。
また、粒界上の低融点化合物の個数は2×10個であった。
[Example 1]
By weight%: Si: 0.7, Mn: 1.7%, Ni: 0.5%, Mg: 0.015%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 62 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 28 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 4 μm and the evaluation was ◎.
The number of low melting point compounds on the grain boundaries was 2 × 10 2 .

[実施例2]
重量%でSi:0.7、Mn:1.7%、Ni:0.5%、Mg:0.025%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が62MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が29mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは5μmであり、評価は◎であった。
また、粒界上の低融点化合物の個数は2×10個であった。
[Example 2]
In weight%: Si: 0.7, Mn: 1.7%, Ni: 0.5%, Mg: 0.025%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 62 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 29 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 5 μm and the evaluation was ◎.
The number of low melting point compounds on the grain boundaries was 2 × 10 2 .

[実施例3]
重量%でSi:0.7、Mn:1.7%、Ni:0.3%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が59MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が20mg/dmであり、評価は◎であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは3μmであり、評価は◎であった。
また、粒界上の低融点化合物の個数は2×10個であった。
[Example 3]
By weight%: Si: 0.7, Mn: 1.7%, Ni: 0.3%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 59 MPa and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 20 mg / dm 2 and the evaluation was ◎.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 3 μm and the evaluation was ◎.
The number of low melting point compounds on the grain boundaries was 2 × 10 2 .

[実施例4]
重量%でSi:0.7、Mn:1.7%、Ni:0.8%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が65MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が40mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは13μmであり、評価は○であった。
また、粒界上の低融点化合物の個数は3×10個であった。
[Example 4]
Si: 0.7, Mn: 1.7%, Ni: 0.8%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% by weight% A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 65 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 40 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 13 μm, and the evaluation was good.
The number of low melting point compounds on the grain boundaries was 3 × 10 2 .

[実施例5]
重量%でSi:0.7、Mn:1.6%、Ni:0.5%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が59MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が25mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは12μmであり、評価は○であった。
また、粒界上の低融点化合物の個数は3×10個であった。
[Example 5]
Si: 0.7, Mn: 1.6%, Ni: 0.5%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% by weight A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 59 MPa and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 25 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 12 μm and the evaluation was good.
The number of low melting point compounds on the grain boundaries was 3 × 10 2 .

[実施例6]
重量%でSi:0.7、Mn:2.4%、Ni:0.5%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、本発明に係るフィン材を作製した。
強度試験の結果、耐力が63MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が38mg/dmであり、評価は◎であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは3μmであり、評価は◎であった。
また、粒界上の低融点化合物の個数は1×10個であった。
[Example 6]
Si: 0.7, Mn: 2.4%, Ni: 0.5%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% by weight% A fin material according to the present invention was produced, which contains the balance Al and inevitable impurities.
As a result of the strength test, the yield strength was 63 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 38 mg / dm 2 and the evaluation was ◎.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 3 μm and the evaluation was ◎.
The number of low melting point compounds on the grain boundaries was 1 × 10 2 .

[比較例1]
重量%でSi:0.7、Mn:1.7%、Ni:0.5%、Mg:0.007%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。
強度試験の結果、耐力が62MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が27mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは28μmであり、評価は△であった。
また、粒界上の低融点化合物の個数は4×10個であった。
[Comparative Example 1]
In weight%: Si: 0.7, Mn: 1.7%, Ni: 0.5%, Mg: 0.007%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A conventional fin material containing the balance Al and inevitable impurities was prepared.
As a result of the strength test, the yield strength was 62 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 27 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the brazing depth of the brazing was 28 μm and the evaluation was Δ.
The number of low melting point compounds on the grain boundaries was 4 × 10 5 .

[比較例2]
重量%でSi:0.7、Mn:1.7%、Ni:0.5%、Mg:0.032%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。
強度試験の結果、耐力が62MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が29mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは22μmであり、評価は△であった。
また、粒界上の低融点化合物の個数は6×10個であった。
[Comparative Example 2]
By weight%: Si: 0.7, Mn: 1.7%, Ni: 0.5%, Mg: 0.032%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A conventional fin material containing the balance Al and inevitable impurities was prepared.
As a result of the strength test, the yield strength was 62 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 29 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the brazing depth of the brazing was 22 μm and the evaluation was Δ.
The number of low melting point compounds on the grain boundaries was 6 × 10 4 .

[比較例3]
重量%でSi:0.7、Mn:1.7%、Ni:0.05%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。
強度試験の結果、耐力が47MPaであり、評価は△であった。
自己耐食性試験の結果、腐食減量が15mg/dmであり、評価は◎であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは5μmであり、評価は◎であった。
また、粒界上の低融点化合物の個数は1×10個であった。
[Comparative Example 3]
By weight%: Si: 0.7, Mn: 1.7%, Ni: 0.05%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A conventional fin material containing the balance Al and inevitable impurities was prepared.
As a result of the strength test, the yield strength was 47 MPa, and the evaluation was Δ.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 15 mg / dm 2 and the evaluation was ◎.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 5 μm and the evaluation was ◎.
The number of low melting point compounds on the grain boundaries was 1 × 10 2 .

[比較例4]
重量%でSi:0.7、Mn:1.7%、Ni:1.2%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。
強度試験の結果、耐力が68MPaであり、評価は◎であった。
自己耐食性試験の結果、腐食減量が85mg/dmであり、評価は△であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは24μmであり、評価は△であった。
また、粒界上の低融点化合物の個数は5×10個であった。
[Comparative Example 4]
By weight%: Si: 0.7, Mn: 1.7%, Ni: 1.2%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% A conventional fin material containing the balance Al and inevitable impurities was prepared.
As a result of the strength test, the yield strength was 68 MPa, and the evaluation was ◎.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 85 mg / dm 2 and the evaluation was Δ.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 24 μm and the evaluation was Δ.
The number of low melting point compounds on the grain boundaries was 5 × 10 5 .

[比較例5]
重量%でSi:0.7、Mn:1.2%、Ni:0.5%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。
強度試験の結果、耐力が49MPaであり、評価は△であった。
自己耐食性試験の結果、腐食減量が22mg/dmであり、評価は○であった。
ろう付性(耐ろう侵食性)試験の結果、ろうの侵食深さは22μmであり、評価は○であった。
また、粒界上の低融点化合物の個数は2×10個であった。
[Comparative Example 5]
Si: 0.7, Mn: 1.2%, Ni: 0.5%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% by weight% A conventional fin material containing the balance Al and inevitable impurities was prepared.
As a result of the strength test, the yield strength was 49 MPa, and the evaluation was Δ.
As a result of the self-corrosion resistance test, the weight loss by corrosion was 22 mg / dm 2 and the evaluation was good.
As a result of the brazing (brazing erosion resistance) test, the erosion depth of the brazing was 22 μm, and the evaluation was good.
The number of low melting point compounds on the grain boundaries was 2 × 10 5 .

[比較例6]
重量%でSi:0.7、Mn:2.7%、Ni:0.5%、Mg:0.02%、Fe:0.01%、Zn:1.5%、Zr:0.1%を含有し、残部Alと不可避不純物とからなる、従来のフィン材を作製した。しかしながら、試験サンプル製作時、加工難のために表面にクラックが発生し、試験サンプルを用いた評価試験を行うことが出来なかった。
[Comparative Example 6]
Si: 0.7, Mn: 2.7%, Ni: 0.5%, Mg: 0.02%, Fe: 0.01%, Zn: 1.5%, Zr: 0.1% by weight% A conventional fin material containing the balance Al and inevitable impurities was prepared. However, when the test sample was manufactured, cracks occurred on the surface due to processing difficulties, and an evaluation test using the test sample could not be performed.

上記結果により、熱交換器用アルミニウム合金フィン材を、重量%でSi:0.6%超1.2%未満、Mn:1.5%超2.5%以下、Ni:0.15%超1%以下、Mg:0.01%以上0.03%未満、Fe:0.5%以下、Zn:1%超5%以下を含有し、残部Alと不可避不純物とからなる成分組成とすることにより、強度特性、ろう付性、及び自己耐食性が共に優れたフィン材が得られることが明らかとなった。   Based on the above results, the aluminum alloy fin material for heat exchangers was, by weight, Si: more than 0.6% and less than 1.2%, Mn: more than 1.5% and less than 2.5%, Ni: more than 0.15% 1 %: Mg: 0.01% or more and less than 0.03%, Fe: 0.5% or less, Zn: more than 1% and 5% or less, and by making the component composition consisting of the balance Al and inevitable impurities It was revealed that a fin material having excellent strength characteristics, brazing properties, and self-corrosion resistance can be obtained.

本発明の熱交換器用アルミニウム合金フィン材の一例を示す図であり、自動車用の熱交換器に熱交換器用アルミニウム合金フィン材を組み付けた例を説明する斜視図である。It is a figure which shows an example of the aluminum alloy fin material for heat exchangers of this invention, and is a perspective view explaining the example which assembled | attached the aluminum alloy fin material for heat exchangers to the heat exchanger for motor vehicles.

符号の説明Explanation of symbols

1…熱交換器用アルミニウム合金フィン材(フィン材)、2…チューブ、3…ヘッダ、4…サイドサポート、10…ラジエータ(熱交換器)
DESCRIPTION OF SYMBOLS 1 ... Aluminum alloy fin material (fin material) for heat exchangers, 2 ... Tube, 3 ... Header, 4 ... Side support, 10 ... Radiator (heat exchanger)

Claims (4)

重量%でSi:0.6%超1.2%未満、Mn:1.5%超2.5%以下、Ni:0.15%超1%以下、Mg:0.01%以上0.03%未満、Fe:0.5%以下、Zn:1%超5%以下を含有し、
残部Alと不可避不純物とからなることを特徴とする熱交換器用アルミニウム合金フィン材。
By weight, Si: more than 0.6% and less than 1.2%, Mn: more than 1.5% and 2.5% or less, Ni: more than 0.15% and 1% or less, Mg: 0.01% or more and 0.03 %: Fe: 0.5% or less, Zn: more than 1% and 5% or less,
An aluminum alloy fin material for heat exchangers, characterized by comprising balance Al and inevitable impurities.
前記熱交換器用アルミニウム合金フィン材は、更にZr:0.05%以上0.3%以下、Cr:0.05%以上0.3%以下、Ti:0.05%以上0.3%以下、V:0.05%以上0.3%以下の内、少なくとも1種類以上を含有してなることを特徴とする請求項1に記載の熱交換器用アルミニウム合金フィン材。   The aluminum alloy fin material for heat exchanger is further Zr: 0.05% to 0.3%, Cr: 0.05% to 0.3%, Ti: 0.05% to 0.3%, The aluminum alloy fin material for a heat exchanger according to claim 1, wherein at least one of V: 0.05% to 0.3% is contained. 請求項1又は2に記載の熱交換器用アルミニウム合金フィン材を芯材として、該芯材の両面にAl−Si系合金ろう材をクラッドしてなることを特徴とする熱交換器用アルミニウム合金フィン材。   An aluminum alloy fin material for heat exchangers, characterized in that the aluminum alloy fin material for heat exchanger according to claim 1 or 2 is used as a core material, and an Al-Si alloy brazing material is clad on both surfaces of the core material. . 請求項1〜3の何れかに記載の熱交換器用アルミニウム合金フィン材を備えたことを特徴とする熱交換器。

The heat exchanger provided with the aluminum alloy fin material for heat exchangers in any one of Claims 1-3.

JP2005066186A 2005-03-09 2005-03-09 Aluminum alloy fin material for heat exchanger and heat exchanger Withdrawn JP2006249482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005066186A JP2006249482A (en) 2005-03-09 2005-03-09 Aluminum alloy fin material for heat exchanger and heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005066186A JP2006249482A (en) 2005-03-09 2005-03-09 Aluminum alloy fin material for heat exchanger and heat exchanger

Publications (1)

Publication Number Publication Date
JP2006249482A true JP2006249482A (en) 2006-09-21

Family

ID=37090278

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005066186A Withdrawn JP2006249482A (en) 2005-03-09 2005-03-09 Aluminum alloy fin material for heat exchanger and heat exchanger

Country Status (1)

Country Link
JP (1) JP2006249482A (en)

Similar Documents

Publication Publication Date Title
JP2006250413A (en) Aluminum alloy fin material for heat exchanger and heat exchanger
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP6452626B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP2002059291A (en) Brazing sheet made of aluminum alloy for heat exchanger
JP6418714B2 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JPWO2015104761A1 (en) Aluminum alloy clad material and method for producing the same, heat exchanger using the aluminum alloy clad material, and method for producing the same
JP5441209B2 (en) Aluminum alloy heat exchanger with excellent corrosion resistance and durability
EP2489750A1 (en) Highly corrosion-resistant aluminum alloy brazing sheet, process for production of the brazing sheet, and highly corrosion-resistant heat exchanger equipped with the brazing sheet
JP4220410B2 (en) Aluminum alloy clad material for heat exchanger
JP5836695B2 (en) Aluminum alloy fin material for heat exchangers with excellent strength and corrosion resistance after brazing
JP5214899B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and method for producing the same
JP2012067385A (en) Brazing sheet and method for producing the same
WO2019044545A1 (en) Brazing sheet for heat exchanger fin and manufacturing method thereof
JP2019026919A (en) Aluminum alloy brazing sheet for heat exchanger
JP2004017116A (en) Aluminum alloy brazing sheet for brazed pipe making tubes, and its producing method
JP2006176852A (en) High-strength aluminum alloy cladding material for heat exchanger having excellent erosion resistance, heat exchanger and method for producing high-strength aluminum alloy cladding material
JP6178483B1 (en) Aluminum alloy brazing sheet
JP6738667B2 (en) Aluminum alloy heat exchanger excellent in corrosion resistance in atmospheric environment and method of manufacturing aluminum alloy heat exchanger
JP4566729B2 (en) High strength aluminum alloy fin material and heat exchanger for heat exchanger with excellent erosion resistance
JPH1088265A (en) Aluminum alloy fin material for heat exchanger, excellent in sacrificial anode effect as well as in strength after brazing
JP4263160B2 (en) Aluminum alloy clad material and heat exchanger tube and heat exchanger using the same
JP5184112B2 (en) Aluminum alloy clad material
JP4596618B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and anticorrosion aluminum alloy for heat exchanger
JP2010095769A (en) Brazing sheet for heat exchanger

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513