JP2006249168A - Aqueous emulsion - Google Patents

Aqueous emulsion Download PDF

Info

Publication number
JP2006249168A
JP2006249168A JP2005065142A JP2005065142A JP2006249168A JP 2006249168 A JP2006249168 A JP 2006249168A JP 2005065142 A JP2005065142 A JP 2005065142A JP 2005065142 A JP2005065142 A JP 2005065142A JP 2006249168 A JP2006249168 A JP 2006249168A
Authority
JP
Japan
Prior art keywords
pva
mol
polymerization
aqueous emulsion
solid content
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005065142A
Other languages
Japanese (ja)
Other versions
JP4781694B2 (en
Inventor
Hideki Maki
秀樹 真木
Seiji Tanimoto
征司 谷本
Masato Nakamae
昌人 仲前
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP2005065142A priority Critical patent/JP4781694B2/en
Publication of JP2006249168A publication Critical patent/JP2006249168A/en
Application granted granted Critical
Publication of JP4781694B2 publication Critical patent/JP4781694B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an aqueous emulsion which has a low viscosity in spite of having a high solid content concentration, and has not only excellent sedimentation stability but also excellent mechanical stability and skinning resistance. <P>SOLUTION: This aqueous emulsion containing an ethylenic unsaturated monomer unit-having polymer (A) as a dispersoid and PVA (B) having 1,2-glycol bonds in an amount of ≥1.9 mol.%, a polymerization degree of ≥300 and a saponification degree of ≥70 mol.% as a dispersant in a (B)/(A) weight ratio of 1/100 to 3/100, and having a solid content concentration of ≥55 wt%, an emulsion viscosity of ≤2,000 mPa s, and an average particle diameter of 1 to 2 μm. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固形分濃度が高濃度であるにも関わらず低粘度であり、沈降安定性に優れ、機械的安定性、耐皮張り性に優れる水性エマルジョンに関する。   The present invention relates to an aqueous emulsion which has a low viscosity despite its high solid content concentration, is excellent in sedimentation stability, and is excellent in mechanical stability and skin resistance.

従来、ビニルアルコール系重合体(PVA)を分散剤とする水性エマルジョンは、接着剤,塗料など多様な用途に使用されている。これらの水性エマルジョンは、PVAを分散剤とすることで、安定性が極めてよく、無機物との混和性に優れ、高粘度となり得るなどの性質を備えていることから、賞用されるに至ったものである。
通常、PVAを分散剤とする水性エマルジョンでは、各種界面活性剤(乳化剤)を用いたエマルジョンに比べて固形分濃度が低いことは良く知られているところである。これは別の観点から言えば低固形分濃度でありながらエマルジョン粘度が高いことを意味しており、PVAを分散剤とした水性エマルジョンの特徴の一つとされてきた点である。
これら水性エマルジョンを接着剤などに用いる場合などにおいては、当然のことながら水性エマルジョン中に含まれる水の蒸発などによる除去が接着剤処理でのセッティングスピードに影響を与え、水性エマルジョン中の水分が少ないこと、すなわち固形分濃度が高いことが、セッティングスピードの向上という点において極めて重要なこととなる。接着剤以外の用途においても水性エマルジョン中の水分を出来るだけ少なくすることは最終製品の製造工程における省エネルギー化の必要性が高まっている昨今にあってますます重要な課題となっており、これに応える意味においてもエマルジョンの高固形分濃度化に関する技術開発が待たれるところである。
しかしながら、通常、PVAを分散剤とした場合においては、水性エマルジョンの固形分濃度を高めようと種々努力してみてもエマルジョンの粘度が高くなり過ぎる為、固形分濃度40〜50%程度のものしか得られない。
また、PVAの重合度を20〜300の低重合度とすることで、高固形分濃度のエマルジョンを得る方法(特許文献1)もあるが、この方法は重合中の安定性および、水性エマルジョンを乾燥して得られる皮膜の強度の点において不十分であった。
また、ビニルエステル系単位を有する重合体(A)を分散質とし、1,2−グリコール結合を1.9モル%以上有するPVA(B)を分散剤とする水性エマルジョン(特許文献2〜3)も知られているが、ここには固形分濃度を55%以上で、粘度が2000mPa・s以下の水性エマルジョンについて開示されていない。
特開昭58−111811号公報(特許請求の範囲) 特開2001−220484号公報(特許請求の範囲) 特開2004−346182号公報(特許請求の範囲)
Conventionally, an aqueous emulsion using a vinyl alcohol polymer (PVA) as a dispersant is used for various applications such as adhesives and paints. These water-based emulsions have been awarded for using PVA as a dispersant because they have extremely good stability, excellent miscibility with inorganic substances, and high viscosity. Is.
In general, it is well known that an aqueous emulsion using PVA as a dispersant has a lower solid content concentration than an emulsion using various surfactants (emulsifiers). From another viewpoint, this means that the emulsion viscosity is high while having a low solid content concentration, which is one of the characteristics of an aqueous emulsion using PVA as a dispersant.
When these aqueous emulsions are used for adhesives, etc., it is natural that removal by evaporation of water contained in the aqueous emulsion affects the setting speed in the adhesive treatment, and the water content in the aqueous emulsion is low. That is, a high solid content concentration is extremely important in terms of improving the setting speed. In applications other than adhesives, reducing the amount of water in aqueous emulsions as much as possible has become an increasingly important issue in recent years as the need for energy saving in the manufacturing process of final products is increasing. In the sense of responding, technical development regarding high solid content concentration of emulsion is awaited.
However, usually when PVA is used as a dispersant, the viscosity of the emulsion becomes too high even if various efforts are made to increase the solid content concentration of the aqueous emulsion, so that the solid content concentration is only about 40 to 50%. I can't get it.
In addition, there is a method (Patent Document 1) for obtaining an emulsion having a high solid content by setting the polymerization degree of PVA to a low polymerization degree of 20 to 300. However, this method can improve the stability during polymerization and the aqueous emulsion. The strength of the film obtained by drying was insufficient.
Further, an aqueous emulsion having a polymer (A) having a vinyl ester unit as a dispersoid and PVA (B) having a 1,2-glycol bond of 1.9 mol% or more as a dispersant (Patent Documents 2 to 3) However, it does not disclose an aqueous emulsion having a solid content concentration of 55% or more and a viscosity of 2000 mPa · s or less.
JP 58-111181 (Claims) JP 2001-220484 A (Claims) JP 2004-346182 A (Claims)

本発明は、これらの従来技術の欠点を解消したものであり、固形分濃度が高濃度であるにも関わらず低粘度であり、沈降安定性に優れ、機械的安定性、耐皮張り性に優れる水性エマルジョンを得ることを目的とする。   The present invention eliminates these disadvantages of the prior art, has a low viscosity despite its high solid content concentration, excellent sedimentation stability, mechanical stability and skin resistance. The object is to obtain an excellent aqueous emulsion.

上記目的は、エチレン性不飽和単量体単位を有する重合体(A)を分散質とし、1,2−グリコール結合を1.9モル%以上有する、重合度300以上、けん化度が70モル%以上であるビニルアルコール系重合体(B)を分散剤とし、重量比(B)/(A)が1/100〜3/100であり、固形分濃度が55重量%以上、エマルジョン粘度が2000mPa・s以下、かつ平均粒子径が1〜2μmである水性エマルジョンによって達成される。   The purpose is to use a polymer (A) having an ethylenically unsaturated monomer unit as a dispersoid and to have a 1,2-glycol bond of 1.9 mol% or more, a polymerization degree of 300 or more, and a saponification degree of 70 mol% The vinyl alcohol polymer (B) as described above was used as a dispersant, the weight ratio (B) / (A) was 1/100 to 3/100, the solid content concentration was 55% by weight or more, and the emulsion viscosity was 2000 mPa · s. This is achieved by an aqueous emulsion having an average particle size of 1 to 2 μm or less.

本発明によれば、固形分濃度が高濃度であるにも関わらず低粘度であるため、接着剤等のセッテイングスピードが早く、作業性に優れ、さらにまた沈降安定性に優れ、機械的安定性、耐皮張り性に優れる水性エマルジョンを得ることができる。   According to the present invention, although the solid content concentration is high, the viscosity is low, so the setting speed of the adhesive and the like is fast, the workability is excellent, the sedimentation stability is also excellent, and the mechanical stability An aqueous emulsion excellent in skin resistance can be obtained.

本発明を構成する水性エマルジョンの分散剤として用いられる1,2−グリコール結合を1.9モル%以上有するPVA(A)の製造方法としては特に制限はなく、公知の方法が使用可能である。一例として、1,2−グリコール結合量が上記の範囲内の値になるようにビニレンカーボネートをビニルエステルと共重合する方法、ビニルエステルの重合温度を通常の条件より高い温度、例えば75〜200℃として加圧下に重合する方法などが挙げられる。後者の方法においては、重合温度は95〜190℃であることが好ましく、100〜180℃であることが特に好ましい。また加圧条件としては、重合系が沸点以下になるように選択することが重要であり、好適には0.2MPa以上、さらに好適には0.3MPa以上である。また上限は5MPa以下が好適であり、さらに3MPa以下がより好適である。上記の重合はラジカル重合開始剤の存在下、塊状重合法、溶液重合法、懸濁重合法、乳化重合法などいずれの方法でも行うことができるが、溶液重合、とくにメタノールを溶媒とする溶液重合法が好適である。このようにして得られたビニルエステル重合体を通常の方法によりけん化することにより高1,2−グリコール結合含有PVAが得られる。PVAの1,2−グリコール結合の含有量は1.9モル%以上であることが好適であり、より好ましくは1.95モル%以上、さらに好ましくは2.0モル%以上、最適には2.1モル%以上である。1,2−グリコール結合の含有量が1.9モル%未満の場合、得られる水性エマルジョンの機械的安定性が低下し、さらには重合安定性も低下する懸念が生じる。また、1,2−グリコール結合の含有量は4モル%以下であることが好ましく、さらに好ましくは3.5モル%以下、最適には3.2モル%以下である。ここで、1,2−グリコール結合の含有量はNMRスペクトルの解析から求められる。   There is no restriction | limiting in particular as a manufacturing method of PVA (A) which has 1.9 mol% or more of 1, 2- glycol bonds used as a dispersing agent of the water-based emulsion which comprises this invention, A well-known method can be used. As an example, a method in which vinylene carbonate is copolymerized with a vinyl ester so that the 1,2-glycol bond amount falls within the above range, and the polymerization temperature of the vinyl ester is higher than normal conditions, for example, 75 to 200 ° C. And a method of polymerizing under pressure. In the latter method, the polymerization temperature is preferably 95 to 190 ° C, particularly preferably 100 to 180 ° C. Moreover, it is important to select the pressurizing condition such that the polymerization system is lower than the boiling point, preferably 0.2 MPa or more, and more preferably 0.3 MPa or more. The upper limit is preferably 5 MPa or less, and more preferably 3 MPa or less. The above polymerization can be performed by any method such as bulk polymerization, solution polymerization, suspension polymerization, emulsion polymerization in the presence of a radical polymerization initiator. Legal is preferred. High vinyl 1,2-glycol bond-containing PVA is obtained by saponifying the vinyl ester polymer thus obtained by a conventional method. The PVA 1,2-glycol bond content is preferably 1.9 mol% or more, more preferably 1.95 mol% or more, further preferably 2.0 mol% or more, optimally 2 .1 mol% or more. When the content of 1,2-glycol bond is less than 1.9 mol%, there is a concern that the mechanical stability of the resulting aqueous emulsion is lowered, and further the polymerization stability is also lowered. The 1,2-glycol bond content is preferably 4 mol% or less, more preferably 3.5 mol% or less, and most preferably 3.2 mol% or less. Here, the content of 1,2-glycol bonds can be determined from analysis of NMR spectra.

ここで、ビニルエステルとしては、蟻酸ビニル、酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニルなどが挙げられるが、一般に酢酸ビニルが好ましく用いられる。   Here, examples of the vinyl ester include vinyl formate, vinyl acetate, vinyl propionate, vinyl pivalate and the like, but generally vinyl acetate is preferably used.

また、該分散剤は本発明の効果を損なわない範囲で共重合可能なエチレン性不飽和単量体を共重合したものでも良い。このようなエチレン性不飽和単量体としては、例えば、エチレン、アクリル酸、メタクリル酸、フマル酸、(無水)マレイン酸、(無水)イタコン酸、アクリロニトリル、メタクリロニトリル、アクリルアミド、メタクリルアミド、トリメチル−(3−アクリルアミド−3−ジメチルプロピル)−アンモニウムクロリド、アクリルアミド−2−メチルプロパンスルホン酸またはそのナトリウム塩、エチルビニルエーテル、ブチルビニルエーテル、N−ビニルピロリドン、塩化ビニル、臭化ビニル、フッ化ビニル、塩化ビニリデン、フッ化ビニリデン、テトラフルオロエチレン、ビニルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、N−ビニルピロリドン、 N−ビニルホルムアミド、 N−ビニルアセトアミド等のN−ビニルアミド類が挙げられる。また、チオール酢酸、メルカプトプロピオン酸などのチオール化合物の存在下で、酢酸ビニルなどのビニルエステル系単量体を、エチレンと共重合し、それをけん化することによって得られる末端変性物を用いることもできる。   The dispersant may be a copolymer of an ethylenically unsaturated monomer that can be copolymerized within a range that does not impair the effects of the present invention. Examples of such ethylenically unsaturated monomers include ethylene, acrylic acid, methacrylic acid, fumaric acid, (anhydrous) maleic acid, (anhydrous) itaconic acid, acrylonitrile, methacrylonitrile, acrylamide, methacrylamide, and trimethyl. -(3-acrylamido-3-dimethylpropyl) -ammonium chloride, acrylamido-2-methylpropanesulfonic acid or its sodium salt, ethyl vinyl ether, butyl vinyl ether, N-vinyl pyrrolidone, vinyl chloride, vinyl bromide, vinyl fluoride, N-vinylamides such as vinylidene chloride, vinylidene fluoride, tetrafluoroethylene, sodium vinylsulfonate, sodium allylsulfonate, N-vinylpyrrolidone, N-vinylformamide, N-vinylacetamide And the like. It is also possible to use a terminal modified product obtained by copolymerizing a vinyl ester monomer such as vinyl acetate with ethylene in the presence of a thiol compound such as thiol acetic acid or mercaptopropionic acid and saponifying it. it can.

本発明の水性エマルジョンの分散剤として用いられる1,2−グリコール結合を1.9モル%以上有するPVAのけん化度は、70モル%以上、好ましくは75モル%以上、さらに好ましくは80モル%以上である。けん化度が70モル%未満の場合には、PVA本来の性質である水溶性が低下する懸念が生じる。該PVAの重合度は、300以上であり、通常300〜8000の範囲のものが用いられ、300〜3000がより好ましく用いられる。重合度が300以下の場合には、PVAの保護コロイドとしての特徴が発揮されず、8000を越える場合には、該PVAの工業的な製造に問題がある。   The saponification degree of PVA having 1,2-glycol bond of 1.9 mol% or more used as a dispersant for the aqueous emulsion of the present invention is 70 mol% or more, preferably 75 mol% or more, more preferably 80 mol% or more. It is. When the degree of saponification is less than 70 mol%, there is a concern that water solubility, which is the original property of PVA, is lowered. The degree of polymerization of the PVA is 300 or more, usually in the range of 300 to 8000, more preferably 300 to 3000. When the degree of polymerization is 300 or less, the characteristics of PVA as a protective colloid are not exhibited, and when it exceeds 8000, there is a problem in industrial production of the PVA.

本発明の水性エマルジョンには、本発明の目的を損なわない範囲で、従来公知のアニオン性、ノニオン性またはカチオン性の界面活性剤およびヒドロキシエチルセルロース、さらには1,2−グリコール結合量が1.7モル%より少ないPVAを併用することもできる。   The aqueous emulsion of the present invention has a conventionally known anionic, nonionic or cationic surfactant, hydroxyethyl cellulose, and 1,2-glycol bond amount of 1.7 as long as the object of the present invention is not impaired. PVA less than mol% can be used in combination.

本発明の水性エマルジョンにおける分散質であるエチレン性不飽和単量体の重合体は、各種のものがあるが、この重合体の原料であるエチレン性不飽和単量体の好ましい例としては、エチレン、プロピレン、イソブチレンなどのオレフィン、塩化ビニル、フッ化ビニル、ビニリデンクロリド、ビニリデンフルオリドなどのハロゲン化オレフィン、ギ酸ビニル、酢酸ビニル、プロピオン酸ビニル、バーサチック酸ビニルなどのビニルエステル、アクリル酸、メタクリル酸、アクリル酸メチル、アクリル酸エチル、アクリル酸ブチル、アクリル酸2−エチルヘキシル、アクリル酸ドデシル、アクリル酸2−ヒドロキシエチルなどのアクリル酸エステル、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ドデシル、メタクリル酸2−ヒドロキシエチルなどのメタクリル酸エステル、アクリル酸ジメチルアミノエチル、メタクリル酸ジメチルアミノエチルまたはこれらの四級化物、さらにはアクリルアミド、メタクリルアミド、N−メチロールアクリルアミド、N,N−ジメチルアクリルアミド、アクリルアミド−2−メチルプロパンスルホン酸またはこれらのナトリウム塩などのアクリルアミド系単量体、スチレン、α−メチルスチレン、p−スチレンスルホン酸またはこれらのナトリウム塩、カリウム塩などのスチレン系単量体、その他N−ビニルピロリドンなど、さらにはブタジエン、イソプレン、クロロプレンなどのジエン系単量体が挙げられ、これらは単独または二種以上混合して用いられる。
上記エチレン性不飽和単量体の重合体としては、ビニルエステル、(メタ)アクリル酸エステル、スチレンおよびジエン系単量体から選ばれる単量体の(共)重合体が好ましく、特にビニルエステル系(共)重合体、たとえばビニルエステル系重合体、エチレンとビニルエステルとの共重合体、ビニルエステルと(メタ)アクリル酸エステルとの共重合体が好適である。
There are various types of polymers of ethylenically unsaturated monomers that are dispersoids in the aqueous emulsion of the present invention. Preferred examples of ethylenically unsaturated monomers that are raw materials for these polymers include ethylene. , Olefins such as propylene, isobutylene, halogenated olefins such as vinyl chloride, vinyl fluoride, vinylidene chloride, vinylidene fluoride, vinyl esters such as vinyl formate, vinyl acetate, vinyl propionate, vinyl versatic acid, acrylic acid, methacrylic acid Acrylates such as methyl acrylate, ethyl acrylate, butyl acrylate, 2-ethylhexyl acrylate, dodecyl acrylate, 2-hydroxyethyl acrylate, methyl methacrylate, ethyl methacrylate, butyl methacrylate, methacrylic acid 2 -Ethylhe Methacrylic acid esters such as syl, dodecyl methacrylate, 2-hydroxyethyl methacrylate, dimethylaminoethyl acrylate, dimethylaminoethyl methacrylate or quaternized products thereof, acrylamide, methacrylamide, N-methylolacrylamide, N, Acrylamide monomers such as N-dimethylacrylamide, acrylamide-2-methylpropanesulfonic acid or sodium salts thereof, styrene such as styrene, α-methylstyrene, p-styrenesulfonic acid or sodium salts or potassium salts thereof Monomers, other N-vinyl pyrrolidone and the like, and diene monomers such as butadiene, isoprene, chloroprene and the like may be used alone or in combination of two or more.
As the polymer of the ethylenically unsaturated monomer, a (co) polymer of a monomer selected from vinyl esters, (meth) acrylic acid esters, styrene and diene monomers is preferable. (Co) polymers such as vinyl ester polymers, copolymers of ethylene and vinyl esters, and copolymers of vinyl esters and (meth) acrylic esters are preferred.

本発明の水性エマルジョンの分散剤として用いる1,2−グリコール結合を1.9モル%以上有する、けん化度が70モル%以上であるPVAの使用量については、上記エチレン性不飽和単量体単位を有する重合体を分散質(A)とPVA(B)の重量比(B)/(A)が1/100〜3/100の範囲であることが重要である。該使用量が3/100を越える場合には、後述する比較例6〜8から明らかなように得られるエマルジョンの平均粒子径が1μ以下となり高粘度となり、高固形分濃度とすることができない。1/100未満の場合には重合安定性が低下する恐れがあり、エマルジョンの平均粒子が大きく機械的安定性が低下する。また、本発明の水性エマルジョンの平均粒子径は1〜2μmであることも重要であり、この条件を満足することによって本発明の目的とする水性エマルジョンを得ることができる。   Regarding the use amount of PVA having a 1,2-glycol bond of 1.9 mol% or more and a saponification degree of 70 mol% or more used as a dispersant for the aqueous emulsion of the present invention, the above ethylenically unsaturated monomer unit is used. It is important that the weight ratio (B) / (A) of the dispersoid (A) and PVA (B) is in the range of 1/100 to 3/100. When the amount used exceeds 3/100, as will be apparent from Comparative Examples 6 to 8 to be described later, the average particle size of the emulsion obtained is 1 μm or less, resulting in a high viscosity and a high solid content concentration. When the ratio is less than 1/100, the polymerization stability may be lowered, and the average particle size of the emulsion is large and the mechanical stability is lowered. In addition, it is important that the average particle size of the aqueous emulsion of the present invention is 1 to 2 μm. By satisfying this condition, the aqueous emulsion targeted by the present invention can be obtained.

本発明においては、固形分濃度が55重量%以上で、かつ粘度が2000mPa・s以下であることが極めて重要である。濃度が55重量%を下回る場合は接着剤等のセッテイングスピードを向上させることができないし、また高濃度であっても粘度が2000mPa・sを越える場合は、水性エマルジョンの作業性が悪くなる。このように、高濃度で、かつ低粘度の水性エマルジョンが得られ、それによって接着剤等のセッテイングスピードが向上し、さらに作業性に優れた水性エマルジョンが得られ、さらに沈降安定性、機械的安定性、耐皮張り性に優れた水性エマルジョンが得られたことの工業的価値は極めて大きい。
固形分濃度の上限値については65重量%以下であることが好適であり、また、粘度の下限値については500mPa・s以上であることが好適である。なお、固形分濃度とは水と分散質と分散剤の合計量に対する分散質と分散剤との合計量の重量%を表す。
In the present invention, it is extremely important that the solid content concentration is 55% by weight or more and the viscosity is 2000 mPa · s or less. If the concentration is less than 55% by weight, the setting speed of the adhesive or the like cannot be improved. If the viscosity exceeds 2000 mPa · s even at a high concentration, the workability of the aqueous emulsion is deteriorated. In this way, a high-concentration and low-viscosity aqueous emulsion can be obtained, thereby improving the setting speed of adhesives and the like, and further providing an aqueous emulsion with excellent workability, as well as sedimentation stability and mechanical stability. The industrial value of having obtained an aqueous emulsion excellent in heat resistance and skin resistance is extremely large.
The upper limit value of the solid concentration is preferably 65% by weight or less, and the lower limit value of the viscosity is preferably 500 mPa · s or more. In addition, solid content concentration represents weight% of the total amount of a dispersoid and a dispersing agent with respect to the total amount of water, a dispersoid, and a dispersing agent.

本発明の水性エマルジョンの製法としては、例えば1,2−グリコール結合を1.9モル%以上有する、重合度300以上、けん化度が70モル%以上であるPVAを分散剤として特定量用い、エチレン性不飽和単量体を一時又は連続的に添加し、アゾ系重合開始剤、過酸化水素、過硫酸アンモニウムおよび過硫酸カリウム等の過酸化物系重合開始剤等の重合開始剤を添加し、乳化重合する方法が挙げられる。前記重合開始剤は還元剤と併用し、レドックス系で用いられる場合もある。その場合、通常、過酸化水素は酒石酸、酒石酸ナトリウム、L−アスコルビン酸、ロンガリットなどと共に用いられる。また、過硫酸アンモニウム、過硫酸カリウムは亜硫酸水素ナトリウム、炭酸水素ナトリウムなどとに用いられる。   As a method for producing the aqueous emulsion of the present invention, for example, a specific amount of PVA having a 1,2-glycol bond of 1.9 mol% or more, a polymerization degree of 300 or more, and a saponification degree of 70 mol% or more is used as a dispersant. Add the unsaturated unsaturated monomer temporarily or continuously, add polymerization initiators such as azo polymerization initiators, peroxide polymerization initiators such as hydrogen peroxide, ammonium persulfate and potassium persulfate, and emulsify The method of superposing | polymerizing is mentioned. The polymerization initiator may be used in combination with a reducing agent and used in a redox system. In that case, hydrogen peroxide is usually used together with tartaric acid, sodium tartrate, L-ascorbic acid, Rongalite and the like. Ammonium persulfate and potassium persulfate are used for sodium bisulfite, sodium hydrogencarbonate, and the like.

以下に実施例を挙げて本発明をさらに詳しく説明するが、本発明はこれらの実施例によってなんら限定されるものではない。なお、以下の実施例において「%」および「部」は特に断りのない限り、「重量%」および「重量部」を意味する。また、得られた水性エマルジョンの平均粒子径、固形分濃度、粘度の測定、沈降安定性、機械的安定性、耐皮張り性の評価は以下のようにして行った。   The present invention will be described in more detail with reference to the following examples. However, the present invention is not limited to these examples. In the following examples, “%” and “part” mean “% by weight” and “part by weight” unless otherwise specified. Moreover, the average particle diameter, solid content concentration, viscosity measurement, sedimentation stability, mechanical stability, and skin resistance of the obtained aqueous emulsion were evaluated as follows.

(平均粒子径)
水性エマルジョンを0.2%の濃度に希釈し、動的光散乱法により平均粒子径の測定を行った(大塚電子(株)製;レーザーデータ電位系ELS−8000)
(Average particle size)
The aqueous emulsion was diluted to a concentration of 0.2%, and the average particle size was measured by a dynamic light scattering method (manufactured by Otsuka Electronics Co., Ltd .; laser data potential system ELS-8000).

(固形分濃度)
水性エマルジョン約3gをアルミ皿にとり、精秤後、105℃の乾燥機で24時間乾燥し、水分を揮発させた。その後の乾燥物の重量を測定し、重量比から固形分濃度を算出した。
(粘度)
B型粘度計により、30℃,20rpmの粘度を測定した。
(沈降安定性)
水性エマルジョンを、直径22mmの試験管へ150mmの高さまで充填し密栓し、これを20℃の雰囲気下で4週間静置後、液面上部10mm,下部10mmの位置よりエマルジョンをスポイドにて採取し、固形分濃度を測定し、上部固形分濃度/下部固形分濃度の比にて、沈降安定性を評価した。
(機械的安定性)
水性エマルジョンを、マロン式機械的安定性測定機を用い、20℃、荷重0.5kg/cm、1000rpmの条件で10分間試験を行った後、60メッシュ(ASTM式標準フルイ)ステンレス製金網を用いてろ過し、エマルジョンの固形分重量に対するろ過残渣重量の割合(%)を測定した。ろ過残渣重量の割合が少ないほど機械的安定性が優れていることを示す。
なお、固形分濃度およびろ過残渣重量の測定は次のとおりである。
*ろ過残渣重量の測定法
ろ過残渣を105℃の乾燥機で24時間乾燥し、水分を揮発させ、乾燥物の重量をろ過残渣重量とした。
(耐皮張り性)
20℃、65%RH雰囲気下で、ガラス板上に水性エマルジョンを幅約50mm、長さ約150mm程度で1mm厚に塗布し、一定時間毎に千枚通しの針先でガラス板の表面が露出する深度で幅50mmを約1秒かけて完全に横断させて軌跡をつけ、部分的に微小な皮張りが完全に軌跡周辺に認められるまでの時間を測定した。
(Solid content concentration)
About 3 g of the aqueous emulsion was placed in an aluminum dish, precisely weighed, and then dried for 24 hours with a dryer at 105 ° C. to volatilize water. Thereafter, the weight of the dried product was measured, and the solid content concentration was calculated from the weight ratio.
(viscosity)
The viscosity at 30 ° C. and 20 rpm was measured with a B-type viscometer.
(Sedimentation stability)
Aqueous emulsion was filled into a test tube with a diameter of 22 mm to a height of 150 mm, sealed, and allowed to stand in an atmosphere of 20 ° C. for 4 weeks, and then the emulsion was collected from a position of 10 mm at the top and 10 mm at the bottom with a spoid. The solid content concentration was measured, and the sedimentation stability was evaluated by the ratio of the upper solid content concentration / the lower solid content concentration.
(Mechanical stability)
The aqueous emulsion was tested for 10 minutes under the conditions of 20 ° C., load 0.5 kg / cm 2 , 1000 rpm using a Maron mechanical stability measuring machine, and then a 60 mesh (ASTM standard fluid) stainless steel wire mesh was attached. And the ratio (%) of the weight of the filtration residue to the solid content weight of the emulsion was measured. It shows that mechanical stability is excellent, so that the ratio of the filtration residue weight is small.
The measurement of the solid content concentration and the filtration residue weight is as follows.
* Measurement method of filtration residue weight The filtration residue was dried with a dryer at 105 ° C. for 24 hours to evaporate water, and the weight of the dried product was defined as the filtration residue weight.
(Skin resistance)
Depth at which the surface of the glass plate is exposed with a 1000-point needle tip every 20 minutes at a temperature of 20 ° C. and 65% RH in which an aqueous emulsion is applied to a glass plate with a width of about 50 mm and a length of about 150 mm. Then, a trajectory was created by completely traversing a width of 50 mm over about 1 second, and the time until a partially minute skin was completely recognized around the trajectory was measured.

次に、以下の実施例、比較例において用いたビニルアルコール系重合体(PVA−1〜PVA−6)の内容は次のとおりである。   Next, the contents of the vinyl alcohol polymers (PVA-1 to PVA-6) used in the following Examples and Comparative Examples are as follows.

PVA−1
攪拌機、窒素導入口、開始剤導入口を備えた5L加圧反応槽に酢酸ビニル2940g、メタノール60g および酒石酸0.088gを仕込み、室温下に窒素ガスによるバブリングをしながら反応槽圧力を2.0MPaまで昇圧して10分間放置した後、放圧するという操作を3回繰り返して系中を窒素置換した。開始剤として2, 2' −アゾビス(シクロヘキサン−1−カルボニトリル)(V−40)をメタノールに溶解した濃度0.2g/L溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。次いで上記の重合槽内温を120℃に昇温した。このときの反応槽圧力は0.5MPaであった。次いで、上記の開始剤溶液2.5mlを注入し重合を開始した。重合中は重合温度を120℃に維持し、上記の開始剤溶液を用いて10.0ml/hrでV−40を連続添加して重合を実施した。重合中の反応槽圧力は0.5MPaであった。3時間後に冷却して重合を停止した。このときの固形分濃度は24%であった。次いで、30℃減圧下にメタノールを時々添加しながら未反応酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度33%)を得た。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が25%となるように調整したポリ酢酸ビニルのメタノール溶液400g(溶液中のポリ酢酸ビニル100g)に、40℃で3.72g(ポリ酢酸ビニル中の酢酸ビニル単位に対してモル比(MR)0.008)のアルカリ溶液(NaOHの10%メタノール溶液)を添加してけん化を行った。アルカリ添加後約2分でゲル化したものを粉砕器にて粉砕し、1時間放置してけん化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のPVAにメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVA(PVA−1)を得た。得られたPVA(PVA−1)のけん化度は88モル%であった。また、重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液をアルカリモル比0.5でけん化して、粉砕したものを60℃で5時間放置してけん化を進行させた後、メタノールによるソックスレー洗浄を3日間実施し、次いで80℃で3日間減圧乾燥を行って精製PVAを得た。該PVAの平均重合度を常法のJISK6726に準じて測定したところ1700であった。該精製PVAの1, 2−グリコール結合量を500MHzプロトンNMR(JEOL GX−500)装置による測定から求めたところ、2.2モル%であった。
PVA-1
A 5 L pressure reactor equipped with a stirrer, nitrogen inlet, and initiator inlet was charged with 2940 g of vinyl acetate, 60 g of methanol and 0.088 g of tartaric acid, and the reactor pressure was 2.0 MPa while bubbling with nitrogen gas at room temperature. The system was increased to 1, left for 10 minutes, and then the operation of releasing the pressure was repeated three times to purge the system with nitrogen. A concentration of 0.2 g / L solution in which 2,2′-azobis (cyclohexane-1-carbonitrile) (V-40) was dissolved in methanol as an initiator was prepared, and nitrogen substitution was performed to perform bubbling with nitrogen gas. Next, the temperature inside the polymerization tank was raised to 120 ° C. The reaction vessel pressure at this time was 0.5 MPa. Then, 2.5 ml of the above initiator solution was injected to initiate polymerization. During the polymerization, the polymerization temperature was maintained at 120 ° C., and the polymerization was carried out by continuously adding V-40 at 10.0 ml / hr using the above initiator solution. The reactor pressure during the polymerization was 0.5 MPa. After 3 hours, the polymerization was stopped by cooling. The solid concentration at this time was 24%. Subsequently, unreacted vinyl acetate monomer was removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration 33%). Methanol was added to the obtained polyvinyl acetate solution to adjust the concentration to 25% to 400 g of a polyvinyl acetate methanol solution (100 g of polyvinyl acetate in the solution), and 3.72 g (polyacetic acid at 40 ° C.). Saponification was performed by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.008) to vinyl acetate units in vinyl. After about 2 minutes after the addition of the alkali, the gelled product was pulverized with a pulverizer and allowed to stand for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to the white solid PVA obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After the above washing operation was repeated three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA (PVA-1). The degree of saponification of the obtained PVA (PVA-1) was 88 mol%. In addition, a methanol solution of polyvinyl acetate obtained by removing unreacted vinyl acetate monomer after polymerization was saponified at an alkali molar ratio of 0.5, and the pulverized product was allowed to stand at 60 ° C. for 5 hours to promote saponification. After that, Soxhlet washing with methanol was carried out for 3 days, followed by drying under reduced pressure at 80 ° C. for 3 days to obtain purified PVA. It was 1700 when the average degree of polymerization of this PVA was measured according to JISK6726 of the usual method. When the amount of 1,2-glycol bonds in the purified PVA was determined from measurement with a 500 MHz proton NMR (JEOL GX-500) apparatus, it was 2.2 mol%.

PVA−2
PVA−1の製法において、アルカリ溶液の添加量を11.6gに変えた以外は同様にしてPVA−2を得た。これをPVA−1と同様に測定した結果、平均重合度は1700、けん化度98モル%、1, 2−グリコール結合量は2.2モル%であった。
PVA-2
PVA-2 was obtained in the same manner except that the amount of the alkali solution added was changed to 11.6 g in the production method of PVA-1. As a result of measuring this in the same manner as PVA-1, the average polymerization degree was 1700, the saponification degree was 98 mol%, and the 1,2-glycol bond amount was 2.2 mol%.

PVA−3
攪拌機、窒素導入口、開始剤導入口を備えた入口を備えた5L加圧反応槽に酢酸ビニル2850g、メタノール150gおよび酒石酸0.086gを仕込み、室温下に窒素ガスによるバブリングをしながら反応槽圧力を2.0MPaまで昇圧して10分間放置した後、放圧するという操作を3回繰り返して系中を窒素置換した。開始剤として2, 2' −アゾビス(N- ブチル−2−メチルプロピオンアミド)をメタノールに溶解した濃度0.1g/L溶液を調製し、窒素ガスによるバブリングを行って窒素置換した。次いで上記の重合槽内温を150℃に昇温し、エチレンを導入し、反応槽圧力を20MPaとした。次いで、上記の開始剤溶液15.0mlを注入し重合を開始した。重合中は重合温度を150℃に維持し、上記の開始剤溶液を用いて15.8ml/hrで2, 2' −アゾビス(N- ブチル−2−メチルプロピオンアミド)を連続添加して重合を実施した。重合中の反応槽圧力は20MPaであった。4時間後に冷却して重合を停止した。このときの固形分濃度は35%であった。次いで、30℃減圧下にメタノールを時々添加しながら未反応酢酸ビニルモノマーの除去を行い、ポリ酢酸ビニルのメタノール溶液(濃度33%)を得た。得られた該ポリ酢酸ビニル溶液にメタノールを加えて濃度が25%となるように調整したポリ酢酸ビニルのメタノール溶液400g(溶液中のポリ酢酸ビニル100g)に、40℃で4.65g(ポリ酢酸ビニル中の酢酸ビニル単位に対してモル比(MR)0.01)のアルカリ溶液(NaOHの10%メタノール溶液)を添加してけん化を行った。アルカリ添加後約3分でゲル化したものを粉砕器にて粉砕し、1時間放置してけん化を進行させた後、酢酸メチル1000gを加えて残存するアルカリを中和した。フェノールフタレイン指示薬を用いて中和の終了を確認後、濾別して得られた白色固体のPVAにメタノール1000gを加えて室温で3時間放置洗浄した。上記洗浄操作を3回繰り返した後、遠心脱液して得られたPVAを乾燥機中70℃で2日間放置して乾燥PVA(PVA−3)を得た。得られたPVA(PVA−3)のけん化度は88モル%であった。また、重合後未反応酢酸ビニルモノマーを除去して得られたポリ酢酸ビニルのメタノール溶液をアルカリモル比0.5でけん化した後、粉砕したものを60℃で5時間放置してけん化を進行させた後、メタノールによるソックスレー洗浄を3日間実施し、次いで80℃で3日間減圧乾燥を行って精製PVAを得た。該PVAの平均重合度を常法のJISK6726に準じて測定したところ1000であった。該精製PVAの1, 2−グリコール結合量を500MHzプロトンNMR(JEOLGX−500)装置による測定から前述のとおり求めたところ、2.5モル%であった。また、エチレン単位の含有量は4.0モル%であった。
PVA-3
A 5 L pressure reactor equipped with a stirrer, nitrogen inlet, and initiator inlet was charged with 2850 g of vinyl acetate, 150 g of methanol and 0.086 g of tartaric acid, and the reactor pressure while bubbling with nitrogen gas at room temperature. The pressure was raised to 2.0 MPa, left for 10 minutes, and then the pressure was released three times to replace the system with nitrogen. A solution of 2,2′-azobis (N-butyl-2-methylpropionamide) dissolved in methanol as an initiator was prepared at a concentration of 0.1 g / L, and was purged with nitrogen by bubbling with nitrogen gas. Next, the polymerization tank internal temperature was raised to 150 ° C., ethylene was introduced, and the reaction tank pressure was set to 20 MPa. Next, 15.0 ml of the above initiator solution was injected to initiate polymerization. During the polymerization, the polymerization temperature was maintained at 150 ° C., and 2,2′-azobis (N-butyl-2-methylpropionamide) was continuously added at 15.8 ml / hr using the above initiator solution. Carried out. The reactor pressure during the polymerization was 20 MPa. After 4 hours, the polymerization was stopped by cooling. The solid concentration at this time was 35%. Subsequently, unreacted vinyl acetate monomer was removed while adding methanol occasionally under reduced pressure at 30 ° C. to obtain a methanol solution of polyvinyl acetate (concentration 33%). 4.40 g (polyacetic acid) at 40 ° C. was added to 400 g of a polyvinyl acetate methanol solution (100 g of polyvinyl acetate in the solution) adjusted to a concentration of 25% by adding methanol to the obtained polyvinyl acetate solution. Saponification was performed by adding an alkaline solution (NaOH in 10% methanol) having a molar ratio (MR) of 0.01) to vinyl acetate units in vinyl. After about 3 minutes after the addition of the alkali, the gelled material was pulverized with a pulverizer and allowed to stand for 1 hour to allow saponification to proceed, and then 1000 g of methyl acetate was added to neutralize the remaining alkali. After confirming the end of neutralization using a phenolphthalein indicator, 1000 g of methanol was added to the white solid PVA obtained by filtration, and the mixture was left to wash at room temperature for 3 hours. After the above washing operation was repeated three times, the PVA obtained by centrifugal drainage was left in a dryer at 70 ° C. for 2 days to obtain dry PVA (PVA-3). The degree of saponification of the obtained PVA (PVA-3) was 88 mol%. Further, after saponification of a methanol solution of polyvinyl acetate obtained by removing unreacted vinyl acetate monomer after polymerization at an alkali molar ratio of 0.5, the pulverized product was allowed to stand at 60 ° C. for 5 hours to promote saponification. After that, Soxhlet washing with methanol was carried out for 3 days, followed by drying under reduced pressure at 80 ° C. for 3 days to obtain purified PVA. It was 1000 when the average degree of polymerization of this PVA was measured according to JISK6726 of the conventional method. The amount of 1,2-glycol bonds in the purified PVA was determined as described above from measurement with a 500 MHz proton NMR (JEOLGX-500) apparatus, and was 2.5 mol%. The ethylene unit content was 4.0 mol%.

PVA−4
PVA−3の製法において、重合温度を制御してPVA−4を得た。これをPVA−3と同様に測定した結果、平均重合度は1000、けん化度88モル%、1, 2−グリコール結合量は1.6モル%であった。また、エチレン単位の含有量は4.0モル%であった。
PVA-4
In the production method of PVA-3, the polymerization temperature was controlled to obtain PVA-4. As a result of measuring this in the same manner as PVA-3, the average degree of polymerization was 1000, the degree of saponification was 88 mol%, and the amount of 1,2-glycol bonds was 1.6 mol%. The ethylene unit content was 4.0 mol%.

PVA−5
(株)クラレ製 商品名:PVA−217(ケン化度88モル%、平均重合度1700、1,2−グリコール結合1.6モル%)
PVA-5
Product name: PVA-217 (saponification degree 88 mol%, average polymerization degree 1700, 1,2-glycol bond 1.6 mol%)

PVA−6
(株)クラレ製 商品名:PVA−117(ケン化度98モル%、平均重合度1700、1,2−グリコール結合1.6モル%)
PVA-6
Product name: PVA-117 (saponification degree 98 mol%, average polymerization degree 1700, 1,2-glycol bond 1.6 mol%)

還流冷却器、滴下ロート、温度計、窒素吹込口、イカリ型攪拌翼を備えた1リットルガラス製重合容器に、イオン交換水320g、PVA−1(重合度1700、鹸化度88mol%、1, 2−グリコール結合量2.2モル%)10gを仕込み95℃で完全に溶解した。次に、このPVA水溶液を冷却、窒素置換後、140rpmで撹拌しながら酢酸ビニル48gを仕込み、60℃に昇温した後、過酸化水素/酒石酸のレドックス開始剤系の存在下で重合を開始した。重合開始15分後から酢酸ビニル432gを3時間にわたって連続的に添加し、重合を完結させた。固形分濃度59.1%、粘度1400mPa・s、平均粒子径1.7μmのポリ酢酸ビニルエマルジョンが得られた。   In a 1 liter glass polymerization vessel equipped with a reflux condenser, a dropping funnel, a thermometer, a nitrogen inlet, and a squid type stirring blade, 320 g of ion-exchanged water, PVA-1 (polymerization degree 1700, saponification degree 88 mol%, 1, 2 -Glycol bond amount 2.2 mol%) 10 g was charged and completely dissolved at 95 ° C. Next, this PVA aqueous solution was cooled, purged with nitrogen, charged with 48 g of vinyl acetate while stirring at 140 rpm, heated to 60 ° C., and then polymerization was initiated in the presence of a redox initiator system of hydrogen peroxide / tartaric acid. . From 15 minutes after the start of the polymerization, 432 g of vinyl acetate was continuously added over 3 hours to complete the polymerization. A polyvinyl acetate emulsion having a solid content concentration of 59.1%, a viscosity of 1400 mPa · s, and an average particle size of 1.7 μm was obtained.

実施例1においてPVA−1に変えてPVA−2(重合度1700、けん化度98モル%、1, 2−グリコール結合量2.2モル%)を用いた他は実施例1と同様にして、固形分60.0%、粘度1100mPa・s、平均粒子径1.8μmのポリ酢酸ビニルエマルジョンを得た。   In the same manner as in Example 1 except that PVA-2 (polymerization degree 1700, saponification degree 98 mol%, 1,2-glycol bond amount 2.2 mol%) was used instead of PVA-1 in Example 1, A polyvinyl acetate emulsion having a solid content of 60.0%, a viscosity of 1100 mPa · s, and an average particle size of 1.8 μm was obtained.

実施例1においてPVA−1に変えてPVA−3(重合度1000、けん化度88モル%、1, 2−グリコール結合量2.5モル%、エチレン含有量4.0モル%)を用いた他は実施例1と同様にして重合を行い、固形分59.8%、粘度1300mPa・s、平均粒子径1.6μmのポリ酢酸ビニルエマルジョンを得た。   Other than using PVA-3 (polymerization degree 1000, saponification degree 88 mol%, 1,2-glycol bond amount 2.5 mol%, ethylene content 4.0 mol%) instead of PVA-1 in Example 1 Was polymerized in the same manner as in Example 1 to obtain a polyvinyl acetate emulsion having a solid content of 59.8%, a viscosity of 1300 mPa · s, and an average particle size of 1.6 μm.

実施例1においてPVA−1の使用量を13gに変えた以外は実施例1と同様にして重合を行い、固形分59.8%、粘度1850mPa・s、平均粒子径1.3μmのポリ酢酸ビニルエマルジョンを得た。   Polymerization was conducted in the same manner as in Example 1 except that the amount of PVA-1 used in Example 1 was changed to 13 g. Polyvinyl acetate having a solid content of 59.8%, a viscosity of 1850 mPa · s, and an average particle size of 1.3 μm. An emulsion was obtained.

実施例1においてPVA−1の使用量を6gに変えた以外は実施例1と同様にして重合を行い、固形分59.2%、粘度1000mPa・s、平均粒子径1.9μmのポリ酢酸ビニルエマルジョンを得た。   Polymerization was conducted in the same manner as in Example 1 except that the amount of PVA-1 used in Example 1 was changed to 6 g. Polyvinyl acetate having a solid content of 59.2%, a viscosity of 1000 mPa · s, and an average particle size of 1.9 μm. An emulsion was obtained.

8.5gのPVA−1をイオン交換水255gに加熱溶解し、それを窒素吹込口および温度計を備えた耐圧オートクレーブ中に仕込んだ後、酢酸ビニル368gを仕込み、次いでエチレンを45kg/cmまで昇圧した(エチレンの共重合量は74gに相当)。温度を60℃まで昇温後、過酸化水素/ロンガリット系レドックス開始剤で重合を開始した。2時間後、残存酢酸ビニル濃度が0.6%となったところで重合を終了し、固形分63.4%、粘度1900mPa・s、平均粒子径1.9μmのポリ(エチレンー酢酸ビニル)共重合体エマルジョンを得た。 8.5 g of PVA-1 was dissolved in 255 g of ion-exchanged water by heating and charged into a pressure-resistant autoclave equipped with a nitrogen inlet and a thermometer, and then charged with 368 g of vinyl acetate, and then ethylene up to 45 kg / cm 2 The pressure was increased (the copolymerization amount of ethylene was equivalent to 74 g). After raising the temperature to 60 ° C., polymerization was initiated with a hydrogen peroxide / Longalite redox initiator. After 2 hours, the polymerization was terminated when the residual vinyl acetate concentration reached 0.6%, and a poly (ethylene-vinyl acetate) copolymer having a solid content of 63.4%, a viscosity of 1900 mPa · s, and an average particle size of 1.9 μm. An emulsion was obtained.

比較例1
実施例1においてPVA−1の使用量をPVA−5(重合度1700、けん化度88モル%、1, 2−グリコール結合量1.6モル%)に変えた以外は実施例1と同様に重合を行ったが、安定性不足の為、ブロック化した。
Comparative Example 1
Polymerization was conducted in the same manner as in Example 1 except that the amount of PVA-1 used in Example 1 was changed to PVA-5 (polymerization degree 1700, saponification degree 88 mol%, 1,2-glycol bond amount 1.6 mol%). However, it was blocked due to lack of stability.

比較例2
実施例1においてPVA−1をPVA−6(重合度1700、けん化度98モル%、1, 2−グリコール結合量1.6モル%)に変えた以外は実施例1と同様に重合を行ったが、安定性不足の為、ブロック化した。
Comparative Example 2
Polymerization was performed in the same manner as in Example 1 except that PVA-1 was changed to PVA-6 (polymerization degree 1700, saponification degree 98 mol%, 1,2-glycol bond amount 1.6 mol%) in Example 1. However, it was blocked due to lack of stability.

比較例3
実施例1においてPVA−1をPVA−4(重合度1700、けん化度88モル%、1, 2−グリコール結合量1.6モル%、エチレン含有量4.0モル%)に変えた以外は実施例1と同様に重合を行ったが、安定性不足の為、ブロック化した。
Comparative Example 3
Except that PVA-1 was changed to PVA-4 (polymerization degree 1700, saponification degree 88 mol%, 1,2-glycol bond content 1.6 mol%, ethylene content 4.0 mol%) in Example 1. Polymerization was carried out in the same manner as in Example 1, but blocked due to lack of stability.

比較例4
実施例1においてPVA−1の使用量を4.3gに変えた以外は実施例1と同様に重合を行ったが、安定性不足の為、ブロック化した。
Comparative Example 4
Polymerization was carried out in the same manner as in Example 1 except that the amount of PVA-1 used in Example 1 was changed to 4.3 g, but it was blocked due to lack of stability.

比較例5
実施例6においてPVA−1をPVA−5(重合度1700、けん化度88モル%、1, 2−グリコール結合量1.6モル%)に変えた以外は実施例6と同様にして重合を行い、固形分62.3%、粘度2500mPa・s、平均粒子径3.0μmのポリ(エチレンー酢酸ビニル)共重合体エマルジョンを得た。
Comparative Example 5
Polymerization was carried out in the same manner as in Example 6 except that PVA-1 was changed to PVA-5 (polymerization degree 1700, saponification degree 88 mol%, 1,2-glycol bond amount 1.6 mol%) in Example 6. A poly (ethylene-vinyl acetate) copolymer emulsion having a solid content of 62.3%, a viscosity of 2500 mPa · s, and an average particle size of 3.0 μm was obtained.

比較例6
実施例6においてPVA−1に変えてPVA−2(重合度1700、けん化度98モル%、1, 2−グリコール結合量2.2モル%)を27g用いたこと、並びにイオン交換水および酢酸ビニルをそれぞれ345gおよび280g用いたこと以外は実施例6と同様にして重合を行い、固形分50.1%、粘度20000mPa・s、平均粒子径径0.5μmのポリ(エチレンー酢酸ビニル)共重合体エマルジョンを得た。
Comparative Example 6
In Example 6, 27 g of PVA-2 (polymerization degree 1700, saponification degree 98 mol%, 1,2-glycol bond amount 2.2 mol%) was used instead of PVA-1, and ion-exchanged water and vinyl acetate. Polymerization was conducted in the same manner as in Example 6 except that 345 g and 280 g were used, respectively, and a poly (ethylene-vinyl acetate) copolymer having a solid content of 50.1%, a viscosity of 20000 mPa · s, and an average particle diameter of 0.5 μm. An emulsion was obtained.

比較例7
実施例6において、PVA−1を15g、イオン交換水を315.5g、酢酸ビニルを315g用いた以外は実施例6と同様にして重合を行い、固形分54.4%、粘度3400mPa・s、平均粒子径径0.8μmのポリ(エチレンー酢酸ビニル)共重合体エマルジョンを得た。
Comparative Example 7
In Example 6, polymerization was performed in the same manner as in Example 6 except that 15 g of PVA-1, 315.5 g of ion-exchanged water, and 315 g of vinyl acetate were used, and the solid content was 54.4%, the viscosity was 3400 mPa · s, A poly (ethylene-vinyl acetate) copolymer emulsion having an average particle size of 0.8 μm was obtained.

比較例8
実施例1において用いたPVA−1の使用量を16gに変えた以外は実施例1と同様にして重合を行い、固形分58.5%、粘度10000mPs・s、平均粒子径0.9μmのポリ酢酸ビニルエマルジョンを得た。
Comparative Example 8
Polymerization was conducted in the same manner as in Example 1 except that the amount of PVA-1 used in Example 1 was changed to 16 g, and a polymer having a solid content of 58.5%, a viscosity of 10,000 mPs · s, and an average particle size of 0.9 μm was obtained. A vinyl acetate emulsion was obtained.

比較例9
比較例5においてPVA−1をPVA−5(重合度1700、けん化度88モル%、1, 2−グリコール結合量1.6モル%)に変えた以外は比較例5と同様にして重合反応を行ったが、安定性不足の為、ブロック化した。
Comparative Example 9
The polymerization reaction was carried out in the same manner as in Comparative Example 5 except that PVA-1 was changed to PVA-5 (polymerization degree 1700, saponification degree 88 mol%, 1,2-glycol bond amount 1.6 mol%) in Comparative Example 5. I went there, but it was blocked because of lack of stability.

実験結果を表1にまとめて示す。   The experimental results are summarized in Table 1.

Figure 2006249168
Figure 2006249168

本発明の水性エマルジョンは、固形分濃度が高濃度であるにも関わらず低粘度であり、沈降安定性のみならず機械的安定性、耐皮張り性に優れるため、接着剤、塗料、各種バインダー、混和剤として好適である。   The aqueous emulsion of the present invention has low viscosity despite its high solid content, and has excellent mechanical stability and skin resistance as well as sedimentation stability. Suitable as an admixture.

Claims (2)

エチレン性不飽和単量体単位を有する重合体(A)を分散質とし、1,2−グリコール結合を1.9モル%以上有する、重合度300以上、けん化度が70モル%以上であるビニルアルコール系重合体(B)を分散剤とし、重量比(B)/(A)が1/100〜3/100であり、固形分濃度が55重量%以上、エマルジョン粘度が2000mPa・s以下、かつ平均粒子径が1〜2μmである水性エマルジョン。   Vinyl having a polymer (A) having an ethylenically unsaturated monomer unit as a dispersoid, having a 1,2-glycol bond of 1.9 mol% or more, a polymerization degree of 300 or more, and a saponification degree of 70 mol% or more. The alcohol polymer (B) is used as a dispersant, the weight ratio (B) / (A) is 1/100 to 3/100, the solid content concentration is 55% by weight or more, the emulsion viscosity is 2000 mPa · s or less, and An aqueous emulsion having an average particle size of 1 to 2 μm. エチレン性不飽和単量体単位を有する重合体(A)が、ビニルエステル系(共)重合体である請求項1記載の水性エマルジョン。
The aqueous emulsion according to claim 1, wherein the polymer (A) having an ethylenically unsaturated monomer unit is a vinyl ester (co) polymer.
JP2005065142A 2005-03-09 2005-03-09 Aqueous emulsion Expired - Fee Related JP4781694B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005065142A JP4781694B2 (en) 2005-03-09 2005-03-09 Aqueous emulsion

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005065142A JP4781694B2 (en) 2005-03-09 2005-03-09 Aqueous emulsion

Publications (2)

Publication Number Publication Date
JP2006249168A true JP2006249168A (en) 2006-09-21
JP4781694B2 JP4781694B2 (en) 2011-09-28

Family

ID=37089995

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005065142A Expired - Fee Related JP4781694B2 (en) 2005-03-09 2005-03-09 Aqueous emulsion

Country Status (1)

Country Link
JP (1) JP4781694B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173895A (en) * 2007-12-27 2009-08-06 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion, and production method therefor

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111811A (en) * 1981-12-25 1983-07-04 Kuraray Co Ltd Production of vinyl ester polymer emulsion
JP2001220484A (en) * 1999-12-03 2001-08-14 Kuraray Co Ltd Aqueous emulsion and method for preparing the same
JP2002088333A (en) * 2000-09-19 2002-03-27 Konishi Co Ltd Aqueous emulsion-type adhesive

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58111811A (en) * 1981-12-25 1983-07-04 Kuraray Co Ltd Production of vinyl ester polymer emulsion
JP2001220484A (en) * 1999-12-03 2001-08-14 Kuraray Co Ltd Aqueous emulsion and method for preparing the same
JP2002088333A (en) * 2000-09-19 2002-03-27 Konishi Co Ltd Aqueous emulsion-type adhesive

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009173895A (en) * 2007-12-27 2009-08-06 Nippon Synthetic Chem Ind Co Ltd:The Aqueous emulsion, and production method therefor

Also Published As

Publication number Publication date
JP4781694B2 (en) 2011-09-28

Similar Documents

Publication Publication Date Title
KR102168748B1 (en) Dispersion stabilizer for suspension polymerization, and manufacturing method for vinyl resin
TWI582115B (en) Dispersion stabilizer for suspension polymerization and method for producing vinyl resin
ES2797701T3 (en) Dispersion Stabilizer for Suspension Polymerization and Vinyl Resin Manufacturing Method
KR100414408B1 (en) Aqueous emulsion and dispersant for suspension polymerization of vinyl compound
WO2018096937A1 (en) Modified vinyl alcohol polymer and production method therefor
JPH11335490A (en) Aqueous emulsion and its production
JP4611157B2 (en) Modified polyvinyl alcohol and method for producing the same
JP3995584B2 (en) Method for producing dispersion stabilizer for suspension polymerization of vinyl compounds
JP4781694B2 (en) Aqueous emulsion
JP6163122B2 (en) Emulsion polymerization stabilizer and process for producing the same
JP2001233905A (en) Dispersion stabilizer for suspension polymerization of vinyl-based compound
JP3441258B2 (en) Dispersion aid and dispersion stabilizer for suspension polymerization of vinyl compounds
JP4607285B2 (en) Method for producing vinyl alcohol polymer
TWI715947B (en) Dispersing stabilizer for suspension polymerization, and manufacturing method of ethylene polymer
JP2001234018A (en) Dispersant for emulsion polymerization and aqueous emulsion
JP4731676B2 (en) Aqueous emulsion and process for producing the same
JPWO2010113566A1 (en) Dispersion stabilizer for aqueous emulsion and aqueous emulsion
JP3758705B2 (en) Emulsion dispersion stabilizer
JP6955435B2 (en) Dispersion stabilizer for aqueous emulsion compositions
JP2004300193A (en) Aqueous emulsion
JP4416888B2 (en) Adhesive for paper industry
JP2000297107A (en) Emulsion and dispersion stabilizer, emulsion therefrom, and redispersible emulsion powder
JP4416898B2 (en) Woodworking adhesive
JP2002003806A (en) Adhesive
JP4381569B2 (en) Vinyl ester resin emulsion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100506

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100702

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110104

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110228

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110705

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110706

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140715

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4781694

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees