JP2006248857A - METHOD OF MANUFACTURING beta-MnOOH - Google Patents
METHOD OF MANUFACTURING beta-MnOOH Download PDFInfo
- Publication number
- JP2006248857A JP2006248857A JP2005069361A JP2005069361A JP2006248857A JP 2006248857 A JP2006248857 A JP 2006248857A JP 2005069361 A JP2005069361 A JP 2005069361A JP 2005069361 A JP2005069361 A JP 2005069361A JP 2006248857 A JP2006248857 A JP 2006248857A
- Authority
- JP
- Japan
- Prior art keywords
- mnooh
- oxidizing agent
- manganese
- oxidizing
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
Abstract
Description
本発明は、液相法により水酸化マンガンの1種であるβ−MnOOHを純粋な結晶相で、安定的に、しかも工業的に有利に製造できる方法を提案するものである。 The present invention proposes a method by which β-MnOOH, which is a kind of manganese hydroxide, can be stably and industrially advantageously produced by a liquid phase method in a pure crystalline phase.
水酸化マンガン、所謂、オキシ水酸化マンガン(MnOOH)は、主にソフトフェイトの原料として用いられているが、近年では一次及び二次電池の合成原料としても適用されている。 Manganese hydroxide, so-called manganese oxyhydroxide (MnOOH), is mainly used as a raw material for soft fate, but in recent years it has also been applied as a synthetic raw material for primary and secondary batteries.
MnOOHとしては、γ−MnOOH及びβ−MnOOHが代表的である。 As MnOOH, γ-MnOOH and β-MnOOH are typical.
γ−MnOOHを液相法で製造する方法は種々提案されており粒子形状は、通常、針状或いは短冊状となることが知られている。製造方法としては、例えば、硫酸マンガン水溶液に対してアンモニア水と過酸化水素水とを同時に少量ずつ添加して製造する方法が開示されている(特許文献1参照)。また、硫酸マンガン水溶液に過酸化水素を加え、激しく攪拌しながらアンモニア水を加え、沸騰させて製造する方法が報告されている(非特許文献2参照)。更に、結晶系の記述はないが、針状の粒子形状を有するMnOOHの製造法として、40〜80℃に設定したアンモニア水溶液に酸素ガス又は酸素含有ガスを吹き込みながら、硫酸マンガン水溶液を添加して製造する方法が開示されている(特許文献3参照)。 Various methods for producing γ-MnOOH by a liquid phase method have been proposed, and it is known that the particle shape is usually needle-like or strip-like. As a production method, for example, a method is disclosed in which ammonia water and hydrogen peroxide solution are added in small amounts simultaneously to an aqueous manganese sulfate solution (see Patent Document 1). In addition, a method has been reported in which hydrogen peroxide is added to an aqueous manganese sulfate solution, ammonia water is added with vigorous stirring, and the mixture is boiled (see Non-Patent Document 2). Furthermore, although there is no description of the crystal system, as a method for producing MnOOH having a needle-like particle shape, an aqueous manganese sulfate solution is added while blowing an oxygen gas or an oxygen-containing gas into an aqueous ammonia solution set at 40 to 80 ° C. A manufacturing method is disclosed (see Patent Document 3).
一方、β−MnOOHは安定した合成が難しいためか、製造方法の提案は比較的少なく、例えば、液相法では、1規定以下の硫酸マンガン水溶液に、マンガンと同当量のアンモニア水溶液とマンガンに対して20%当量以上の過酸化水素水を同時に添加する方法が開示されている(特許文献4参照)。 On the other hand, because β-MnOOH is difficult to synthesize stably, there are relatively few proposals for production methods. A method of simultaneously adding 20% equivalent or more hydrogen peroxide solution is disclosed (see Patent Document 4).
上述のように、液相法でMnOOHを製造する方法としては、可溶性マンガン塩水溶液をアルカリ水溶液で中和すると同時に酸化、或いは、中和した後、酸化する方法により製造され、酸化剤としては、過酸化水素水、又は酸素ガス等が主に用いられていた。しかし、これらの方法では四三酸化マンガン(Mn3O4)及びγ−MnOOHが優先或いは副生的に生成し易いという問題があった。特に、マンガン濃度が高い場合に、純粋な結晶相のβ−MnOOHを安定的に製造することは困難であった。 As described above, as a method for producing MnOOH by the liquid phase method, a soluble manganese salt aqueous solution is neutralized with an alkaline aqueous solution at the same time as oxidation, or is neutralized and then produced by a method of oxidation. Hydrogen peroxide water or oxygen gas has been mainly used. However, these methods have a problem that trimanganese tetroxide (Mn 3 O 4 ) and γ-MnOOH are easily generated as a priority or by-product. In particular, when the manganese concentration is high, it has been difficult to stably produce β-MnOOH having a pure crystal phase.
本発明は、液相法により、純粋な結晶相のβ−MnOOHを安定的に、しかも工業的に有利に製造できる方法を提案するものである。 The present invention proposes a method by which β-MnOOH having a pure crystal phase can be stably and industrially advantageously produced by a liquid phase method.
本発明者は、上記課題を達成するために鋭意検討を行なった結果、まず金属マンガンを用いて加水分解を行い、当該加水分解生成物を特定の酸化剤を用いて常温で酸化することにより純粋な結晶相のβ−MnOOHが製造できること、更には、当該加水分解に酸化剤を加える前にアルカリを添加することにより、特に結晶性の高いβ−MnOOHが製造できることを見出し、本発明を完成するに至ったものである。 As a result of diligent studies to achieve the above-mentioned problems, the present inventor first performed hydrolysis using metal manganese, and purified the hydrolysis product at room temperature using a specific oxidizing agent. It is found that β-MnOOH having a simple crystalline phase can be produced, and that β-MnOOH having particularly high crystallinity can be produced by adding an alkali before adding an oxidant to the hydrolysis, thereby completing the present invention. Has been reached.
以下に本発明を更に詳細に説明する。 The present invention is described in further detail below.
本発明では、金属マンガンを加水分解した後に、加水分解反応物を酸化剤により常温で酸化することによりβ−MnOOHを製造する。 In the present invention, after hydrolyzing metal manganese, β-MnOOH is produced by oxidizing the hydrolysis reaction product with an oxidizing agent at room temperature.
本発明で用いる金属マンガンの形状は特に限定されず、例えば板状、塊状及び粉末状の如何なるものも適用できる。なかでも加水分解の反応速度の面より微細粒子であることが好ましく、特に、100メッシュ(0.15mm)以下であることが好ましい。 The shape of the metal manganese used in the present invention is not particularly limited, and any of a plate shape, a block shape, and a powder shape can be applied. Of these, fine particles are preferable from the viewpoint of the reaction rate of hydrolysis, and particularly preferably 100 mesh (0.15 mm) or less.
金属マンガンの加水分解反応は、金属マンガンと水を接触させることによって反応させることができる。使用する水としては、不純物含有量の低い純水、超純水、イオン交換水或いは蒸留水を用いることが好ましい。また、これらの水にアルカリを添加した後、加水分解反応を行うこともできる。 The hydrolysis reaction of metal manganese can be performed by bringing metal manganese into contact with water. As water to be used, it is preferable to use pure water, ultrapure water, ion-exchanged water or distilled water having a low impurity content. Moreover, after adding an alkali to these water, a hydrolysis reaction can also be performed.
金属マンガンの加水分解反応は、常温でも行うことができるが、加水分解反応を促進するためには80℃以上、好ましくは95℃以上に加熱することが好ましい。また、金属マンガンの加水分解反応の進行により水素ガスが発生し還元雰囲気となるため加水分解生成物であるMn(OH)2は安定に存在するが、より安定化させるため窒素ガスを導入してもよい。 Although the hydrolysis reaction of metal manganese can be performed at room temperature, it is preferably heated to 80 ° C. or higher, preferably 95 ° C. or higher in order to accelerate the hydrolysis reaction. In addition, hydrogen gas is generated due to the progress of the hydrolysis reaction of manganese metal and a reducing atmosphere is formed, so that the hydrolysis product Mn (OH) 2 exists stably, but nitrogen gas is introduced for further stabilization. Also good.
本発明では、不純物含有率の低い金属マンガンを使用することが特に好ましい。金属マンガンには、如何なる製法によるものも適用できるが、マンガン化合物の対イオン及びその他の不純物元素を含有しない電解金属マンガンを用いることが好ましい。特に、マンガン含有率99.9%以上のものでは、加水分解で生成するMn(OH)2中の対イオン濃度が極めて低く制御でき、また、その他の不純物やβ−MnOOH以外の結晶相の生成を著しく低減できるため特に好ましい。 In the present invention, it is particularly preferable to use metal manganese having a low impurity content. Although any manufacturing method can be applied to the metal manganese, it is preferable to use electrolytic metal manganese that does not contain a counter ion of the manganese compound and other impurity elements. In particular, when the manganese content is 99.9% or more, the counter ion concentration in Mn (OH) 2 produced by hydrolysis can be controlled to be extremely low, and other impurities and crystal phases other than β-MnOOH can be produced. Is particularly preferred because it can be significantly reduced.
本発明では当該加水分解生成物を特定の酸化剤を用い、常温で酸化することで純度の高いβ−MnOOHが合成できる。 In the present invention, β-MnOOH having a high purity can be synthesized by oxidizing the hydrolysis product at room temperature using a specific oxidizing agent.
本発明でいう常温とは、40℃以下の温度をさすものであり、この温度領域では、特に限定されるものではないが、加水分解反応時からの温度降下に対する作業性から0〜35℃の範囲が好ましく、15〜30℃が特に好ましい。温度が40℃を超えるとγ−MnOOH等の他の結晶相が副生する場合がある。 The normal temperature in the present invention refers to a temperature of 40 ° C. or lower, and is not particularly limited in this temperature range, but is 0 to 35 ° C. from the viewpoint of workability with respect to a temperature drop from the hydrolysis reaction. A range is preferable and 15-30 degreeC is especially preferable. When the temperature exceeds 40 ° C., other crystal phases such as γ-MnOOH may be by-produced.
本発明では、加水分解した後に酸化することでβ−MnOOHの合成が可能となるが、当該加水分解物を酸化剤で酸化する前にアルカリを添加することにより、特に結晶性の高いβ−MnOOHが得られる。 In the present invention, β-MnOOH can be synthesized by oxidation after hydrolysis, but β-MnOOH having particularly high crystallinity can be obtained by adding an alkali before oxidizing the hydrolyzate with an oxidizing agent. Is obtained.
加水分解時に添加するアルカリ源は、水溶性であれば特に限定されるものではなく、例えば、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸アンモニウム、アンモニア水等を挙げることができる。なかでも、取り扱いの面で液体のまま使用できるアンモニア水を用いることが好ましい。 The alkali source added at the time of hydrolysis is not particularly limited as long as it is water-soluble, and examples thereof include sodium hydroxide, potassium hydroxide, sodium carbonate, ammonium carbonate, and aqueous ammonia. Among these, it is preferable to use ammonia water that can be used as a liquid in terms of handling.
本発明に用いられる酸化剤は、次亜塩素酸、塩素酸、過塩素酸及びそれらの塩、ペルオキソ二硫酸塩及び過マンガン酸塩の群より選ばれる少なくとも1種を用いることが好ましい。ここで、塩とは水溶性の塩であることが好ましく、ナトリウム塩、カリウム塩及びアンモニウム塩等を挙げることができる。 The oxidizing agent used in the present invention is preferably at least one selected from the group consisting of hypochlorous acid, chloric acid, perchloric acid and their salts, peroxodisulfate and permanganate. Here, the salt is preferably a water-soluble salt, and examples thereof include a sodium salt, a potassium salt, and an ammonium salt.
金属マンガンの加水分解生成物を常温で特定の酸化剤を用いて酸化することで、純粋なβ−MnOOHが安定して製造できる。また、加水分解生成物にアルカリを添加した後、酸化剤で酸化することにより、特に結晶性の高いβ−MnOOHの製造ができる。 Pure β-MnOOH can be produced stably by oxidizing the hydrolysis product of manganese metal at room temperature using a specific oxidizing agent. Further, β-MnOOH having particularly high crystallinity can be produced by adding an alkali to the hydrolysis product and then oxidizing with an oxidizing agent.
以下、本発明を実施例により説明するが、本発明はこれらの実施例に何ら制限されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention, this invention is not restrict | limited to these Examples at all.
実施例1
容量が1、000mlのセパラブルフラスコにイオン交換した蒸留水を200ml入れ、恒温槽で95℃に保持させた。この中にマンガン純度99.9%で平均粒径が100μmの電解金属マンガン粉体を0.2mol添加し、攪拌を行った後、攪拌を停止して24時間の加水分解反応を行った。その後、反応器を恒温槽から取出し、氷水で冷却した。この時のスラリー温度は約15℃であった。
Example 1
200 ml of ion-exchanged distilled water was placed in a 1,000 ml separable flask and kept at 95 ° C. in a thermostatic bath. 0.2 mol of electrolytic metal manganese powder having a manganese purity of 99.9% and an average particle size of 100 μm was added thereto, and stirring was performed. Then, stirring was stopped and a hydrolysis reaction was performed for 24 hours. Then, the reactor was taken out from the thermostat and cooled with ice water. The slurry temperature at this time was about 15 ° C.
このスラリーに1mol/l濃度の次亜塩素酸ナトリウム水溶液、200mlを攪拌下で1分間に20mlの速度で滴下し酸化反応を進行させ、ろ過、水洗、乾燥を行った。 To this slurry, 200 ml of a 1 mol / l sodium hypochlorite aqueous solution was added dropwise with stirring at a rate of 20 ml per minute to advance the oxidation reaction, followed by filtration, washing with water and drying.
得られた茶褐色を呈する粉体のX線回折結果を図1に示した。JCPDSカード18−0804のβ−MnOOHに帰属する回折パターンを示した。また、この紛体のマンガンの酸化度(MnOx)を測定した結果、X=1.56であった。 The X-ray diffraction result of the obtained brownish brown powder is shown in FIG. The diffraction pattern attributed to β-MnOOH of JCPDS card 18-0804 was shown. Moreover, as a result of measuring the oxidation degree (MnOx) of manganese of this powder, it was X = 1.56.
実施例2
酸化剤をペルオキソ二硫酸ナトリウムとし、1mol/l濃度の水溶液100mlを適用した以外は実施例1と同一の条件で処理を行った。
Example 2
The treatment was performed under the same conditions as in Example 1 except that sodium oxodisulfate was used as the oxidizing agent and 100 ml of a 1 mol / l aqueous solution was applied.
紛体は、茶褐色を呈し、X線回折パターンは実施例1と同様の特性を示した。 The powder had a brownish brown color, and the X-ray diffraction pattern showed the same characteristics as in Example 1.
実施例3
実施例1の酸化剤を過マンガン酸カリウムとし、1mol/l濃度の水溶液100mlとした以外は実施例1と同一の条件で処理を行った。その結果、紛体のX線回折は実施例1と同等特性を示した。
Example 3
The treatment was performed under the same conditions as in Example 1 except that potassium manganate was used as the oxidizing agent of Example 1 and 100 ml of a 1 mol / l aqueous solution was used. As a result, the X-ray diffraction of the powder showed the same characteristics as in Example 1.
実施例4
実施例1のセパラブルフラスコに400mlのイオン交換した蒸留水を入れ、恒温槽で95℃に保持させた。この中にマンガン純度99.9%で平均粒径が100μmの電解金属マンガン粉体を1.5mol添加し、攪拌を行った後、攪拌を停止して24時間の加水分解反応を行った。反応器を恒温槽から取出し、水で冷却を行い、温度を約30℃まで低下させた後、2mol/l濃度のペルオキソ二硫酸ナトリウム、350mlを攪拌下で20ml/分の速度で滴下し、酸化反応を進行させ、その後、ろ過、水洗、そして乾燥した。
Example 4
400 ml of ion-exchanged distilled water was put into the separable flask of Example 1, and kept at 95 ° C. in a thermostatic bath. 1.5 mol of electrolytic metal manganese powder having a manganese purity of 99.9% and an average particle size of 100 μm was added thereto and stirred. Then, the stirring was stopped and a hydrolysis reaction was performed for 24 hours. The reactor was taken out of the thermostatic bath, cooled with water, and the temperature was lowered to about 30 ° C., and then 2 mol / l sodium peroxodisulfate and 350 ml were added dropwise with stirring at a rate of 20 ml / min to oxidize. The reaction was allowed to proceed, after which it was filtered, washed with water and dried.
乾燥後の紛体のX線回折評価を行ったところ、実施例1よりピーク強度が幾分高い同一のパターン特性を示した。 When the X-ray diffraction evaluation of the powder after drying was performed, the same pattern characteristics with a somewhat higher peak intensity than Example 1 were shown.
実施例5
蒸留水中にNH3濃度換算で0.1molのアンモニア水を加えた後、加水分解を行った以外は実施例1と同一条件で合成した。
Example 5
Synthesis was performed under the same conditions as in Example 1 except that 0.1 mol of ammonia water in terms of NH 3 concentration was added to distilled water, followed by hydrolysis.
得られた紛体のX線回折結果を図1に示したが、実施例1を同等のピーク強度を示した。 The X-ray diffraction result of the obtained powder is shown in FIG. 1, and Example 1 showed an equivalent peak intensity.
実施例6
実施例1の加水分解終了後、NH3濃度換算で1mol/lのアンモニア水、200mlを攪拌しながら添加し、その後、1時間放置し、1mol/lの次亜塩素酸ナトリウム水溶液、200mlを20ml/分の速度で滴下し酸化した。
Example 6
After completion of the hydrolysis in Example 1, 200 ml of 1 mol / l ammonia water in terms of NH 3 concentration was added with stirring, and then allowed to stand for 1 hour, 20 ml of 1 mol / l sodium hypochlorite aqueous solution, 200 ml. Oxidized by dropping at a rate of / min.
得られた紛体のX線回折結果を図1に示した。実施例1及び実施例4よりピーク強度が高く、結晶性は向上した。 The X-ray diffraction result of the obtained powder is shown in FIG. The peak intensity was higher than in Examples 1 and 4, and the crystallinity was improved.
比較例1
実施例1のセパラブルフラスコを用い、0.2mol/l濃度の硫酸マンガン水溶液、200ml中にNH3濃度換算で0.3mol/l濃度のアンモニア水溶液、200mlを20ml/分の速度で添加し室温で中和した。次に、このスラリーに1mol/lの次亜塩素酸ナトリウム水溶液、200mlを20ml/分の速度で添加して酸化を室温で行い、引き続き、ろ過、水洗及び乾燥を行った。
茶褐色の紛体が得られたが、X線回折の結果、四三酸化マンガンを主とするパターンを示した。
Comparative Example 1
Using the separable flask of Example 1, 0.2 mol / l concentration manganese sulfate aqueous solution, 200 ml of NH 3 concentration conversion 0.3 mol / l concentration aqueous ammonia solution, 200 ml was added at a rate of 20 ml / min. Neutralized. Next, 200 ml of a 1 mol / l sodium hypochlorite aqueous solution was added to this slurry at a rate of 20 ml / min, and oxidation was performed at room temperature, followed by filtration, washing with water and drying.
A brownish brown powder was obtained, but as a result of X-ray diffraction, it showed a pattern mainly composed of trimanganese tetroxide.
比較例2
比較例1の酸化剤を過酸化水素水として合成を行った。生成物は、四三酸化マンガンであった。
Comparative Example 2
The synthesis was performed using the oxidizing agent of Comparative Example 1 as a hydrogen peroxide solution. The product was trimanganese tetroxide.
比較例3
酸化剤を過酸化水素水とした以外は、実施例1と同一の条件で合成を行った。生成物はX線回折の結果、四三酸化マンガンであった。
Comparative Example 3
The synthesis was performed under the same conditions as in Example 1 except that the oxidizing agent was hydrogen peroxide. As a result of X-ray diffraction, the product was trimanganese tetraoxide.
比較例4
実施例1の酸化を温度50℃で実施した。得られた紛体は濃い褐色を示したが、X線回折よりγ−MnOOHに帰属するピークが出現した。
Comparative Example 4
The oxidation of Example 1 was performed at a temperature of 50 ° C. Although the obtained powder showed a dark brown color, a peak attributed to γ-MnOOH appeared from X-ray diffraction.
Claims (3)
The production of β-MnOOH according to claim 1 or 2, wherein the oxidizing agent is at least one selected from the group consisting of hypochlorous acid, chloric acid, perchloric acid and salts thereof, peroxodisulfate and permanganate. Method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005069361A JP2006248857A (en) | 2005-03-11 | 2005-03-11 | METHOD OF MANUFACTURING beta-MnOOH |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005069361A JP2006248857A (en) | 2005-03-11 | 2005-03-11 | METHOD OF MANUFACTURING beta-MnOOH |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006248857A true JP2006248857A (en) | 2006-09-21 |
Family
ID=37089734
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005069361A Pending JP2006248857A (en) | 2005-03-11 | 2005-03-11 | METHOD OF MANUFACTURING beta-MnOOH |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006248857A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102001709A (en) * | 2010-12-24 | 2011-04-06 | 江苏技术师范学院 | Preparation method of basic manganese oxide nanorods |
CN102275994A (en) * | 2011-05-24 | 2011-12-14 | 南昌航空大学 | Oxidation-activation method for regeneration and reuse of manganese oxide waste residue in organic synthesis |
CN115028201A (en) * | 2022-05-23 | 2022-09-09 | 荆门市格林美新材料有限公司 | Preparation method and application of spherical MnOOH |
-
2005
- 2005-03-11 JP JP2005069361A patent/JP2006248857A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102001709A (en) * | 2010-12-24 | 2011-04-06 | 江苏技术师范学院 | Preparation method of basic manganese oxide nanorods |
CN102275994A (en) * | 2011-05-24 | 2011-12-14 | 南昌航空大学 | Oxidation-activation method for regeneration and reuse of manganese oxide waste residue in organic synthesis |
CN115028201A (en) * | 2022-05-23 | 2022-09-09 | 荆门市格林美新材料有限公司 | Preparation method and application of spherical MnOOH |
CN115028201B (en) * | 2022-05-23 | 2023-11-21 | 荆门市格林美新材料有限公司 | Spherical MnOOH preparation method and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5383623B2 (en) | High purity iron oxide and its uses | |
JP6583637B2 (en) | Strontium titanate fine particle powder and method for producing the same | |
WO2010131664A1 (en) | High purity lithium carbonate and method for producing same | |
US20190031516A1 (en) | Method for producing silicon | |
JP2015105226A (en) | Method for producing germanium oxide | |
JP2006248857A (en) | METHOD OF MANUFACTURING beta-MnOOH | |
JP4657098B2 (en) | Method for producing antimony oxide sol | |
JPH07144915A (en) | Production of cerium carbonate and cerium oxide | |
CN100500577C (en) | Method for preparing hybrid oxide of manganese by manganese sulfate solution | |
JPH11322722A (en) | Production of potassium oxonate | |
CN1919741A (en) | Method for preparing high apparent density manganese dioxide using manganese sulfate solution | |
CN101362686A (en) | Ethanol acid production technology | |
CN1112322C (en) | Method for producing manganomanganic oxide | |
JP2006298709A (en) | alpha-Mn2O3 AND METHOD FOR MANUFACTURING THE SAME | |
JP4552324B2 (en) | Method for producing cobalt oxide particles by neutralization method | |
JP4646055B2 (en) | Tantalum oxide sol and method for producing the same | |
JP3545658B2 (en) | Method for producing iridium nitrate solution | |
KR100270168B1 (en) | Purified manganese salt manufacturing method | |
CN108689842A (en) | A kind of preparation method of the fluffy ester of lattice | |
JP4829771B2 (en) | Spherical peroxotitanium hydrate and method for producing spherical titanium oxide | |
CN116161633B (en) | Method for preparing ferric phosphate by utilizing aluminum product sewage and application of ferric phosphate | |
JP2007331961A (en) | Method for producing chromium chloride solution and chromium chloride solution for surface treatment | |
JP5966719B2 (en) | Method for producing trimanganese tetraoxide | |
JP3308636B2 (en) | Method for producing fibrous lead oxide | |
KR101877778B1 (en) | Preparation method of saccharin by using enhanced oxidation process of o-toluene sulfonamide |