JP2006246827A - Separation and purification of enzymatic product and hydrolyzed composition obtained by using the enzyme obtained by separation and purification - Google Patents

Separation and purification of enzymatic product and hydrolyzed composition obtained by using the enzyme obtained by separation and purification Download PDF

Info

Publication number
JP2006246827A
JP2006246827A JP2005070389A JP2005070389A JP2006246827A JP 2006246827 A JP2006246827 A JP 2006246827A JP 2005070389 A JP2005070389 A JP 2005070389A JP 2005070389 A JP2005070389 A JP 2005070389A JP 2006246827 A JP2006246827 A JP 2006246827A
Authority
JP
Japan
Prior art keywords
enzyme
activity
glucuronidase activity
glucuronidase
purification
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005070389A
Other languages
Japanese (ja)
Other versions
JP4791058B2 (en
Inventor
Kumiko Takahara
久美子 高原
Kiyoshi Shibanuma
清 柴沼
Mariko Tsunoda
万里子 角田
Akira Misaki
旭 三崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SANWA DENBUN KOGYO KK
Sanwa Starch Co Ltd
Original Assignee
SANWA DENBUN KOGYO KK
Sanwa Starch Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SANWA DENBUN KOGYO KK, Sanwa Starch Co Ltd filed Critical SANWA DENBUN KOGYO KK
Priority to JP2005070389A priority Critical patent/JP4791058B2/en
Publication of JP2006246827A publication Critical patent/JP2006246827A/en
Application granted granted Critical
Publication of JP4791058B2 publication Critical patent/JP4791058B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for separating enzymatic product based on the α-glucuronidase activity, the enzyme obtained thereby and the hydrolytic composition of polysaccharide originating from enzymatically hydrolyzed plant cell wall and/or tree sap by using the resultant enzyme. <P>SOLUTION: An enzymatic product having hemicellulase activity and α-glucuronidase activity is subjected to the ultra-filtration treatment to separate the treated produce into the enzyme having the α-glucuronidase activity and the enzyme having no α-glucuronidase activity. Plant cell wall and/or tree sap polysaccharide are hydrolyzed with the enzyme having the α-glucuronidase activity or with the enzyme having no α-glucuronidase to obtain hydrolytic compositions. One example of the composition hydrolyzed with the enzyme having no α-glucuronidase activity comprises as a minimum unit, a tetramer in which one of glucuronic acid or 4-O-methyl glucuronate bonds to xylotriose with an average polymerization degree is 4 to 10. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、α−グルクロニダーゼ活性に基づいた酵素製品の分離方法、それによって得られる酵素、及びその酵素による植物細胞壁及び/又は樹液由来多糖の分解組成物に関する。   The present invention relates to a method for separating an enzyme product based on α-glucuronidase activity, an enzyme obtained thereby, and a composition for decomposing a plant cell wall and / or sap-derived polysaccharide by the enzyme.

生活習慣病の予防や美容のための健康機能食品の需要が年々高まっている。その素材の多くは、自然界に存在しているものを抽出、精製したもの、あるいは分解や酵素合成などのごく簡単な加工をしたものである。   The demand for functional health foods for preventing lifestyle-related diseases and beauty is increasing year by year. Many of the materials are extracted and purified from the natural world, or have been processed by simple processes such as degradation and enzymatic synthesis.

例えば、体内の消化液の分解を免れて大腸に到達し、大腸中の腸内細菌叢に資化されて、お腹の調子を整える働きを持つ、難消化性オリゴ糖は、元々、消化液で分解されにくい成分の抽出物か(特許文献1参照)、消化液で分解されにくい細胞壁多糖や樹液由来多糖(特許文献2、特許文献3参照)、あるいは澱粉や乳糖、砂糖等消化吸収されるものを、酵素合成を用いて消化されにくい構造に変えたもの(特許文献4、特許文献5、特許文献6参照)である。   For example, indigestible oligosaccharides that have the function of escaping the digestive fluid in the body, reaching the large intestine, and being utilized by the intestinal bacterial flora in the large intestine to condition the stomach, Extracts of components that are difficult to be decomposed (see Patent Document 1), cell wall polysaccharides and sap-derived polysaccharides that are difficult to be digested by digestive juice (see Patent Documents 2 and 3), or those that are digested and absorbed, such as starch, lactose, and sugar Is changed to a structure that is difficult to digest using enzymatic synthesis (see Patent Document 4, Patent Document 5, and Patent Document 6).

抽出物には大豆オリゴ糖やラクチュロース、分解物にはセロオリゴ糖、キシロオリゴ糖、アラビノキシロオリゴ糖、アラビノガラクトオリゴ糖、アラビノオリゴ糖、ガラクトマンノオリゴ糖、グルコマンノオリゴ糖、マンノオリゴ糖、キチン・キトサンオリゴ糖などであり、酵素合成物にはイソマルトオリゴ糖、フラクトオリゴ糖、ガラクトオリゴ糖、乳果オリゴ糖等がある。   Soybean oligosaccharides and lactulose for extracts, cellooligosaccharides, xylooligosaccharides, arabinoxylooligosaccharides, arabinogalactooligosaccharides, arabinooligosaccharides, galactomannooligosaccharides, glucomannooligosaccharides, mannooligosaccharides, chitin / chitosan oligosaccharide, etc. Enzymatic products include isomalt-oligosaccharides, fructooligosaccharides, galactooligosaccharides, and dairy oligosaccharides.

難消化物の分解処理には、酸処理や酵素処理が用いられる。分解する酵素としては、分解する原料によって、セルラーゼ、ヘミセルラーゼ、ペクチナーゼ、マンナナーゼ、キチナーゼ等が用いられる。市販酵素の多くは複合酵素であり、例えばセルラーゼとして販売されているものでも、多少のヘミセルラーゼ活性を有するのが普通である。また、果汁など濁り防止目的で用いられるペクチナーゼ中にもアラビノシダーゼが含まれることも多い。   Acid treatment and enzyme treatment are used for the decomposition treatment of the indigestible product. Cellulase, hemicellulase, pectinase, mannanase, chitinase, etc. are used as the enzyme to be decomposed depending on the raw material to be decomposed. Many of the commercially available enzymes are complex enzymes. For example, even those sold as cellulases usually have some hemicellulase activity. Further, arabinosidase is often included in pectinase used for the purpose of preventing turbidity such as fruit juice.

植物細胞壁多糖や樹液由来多糖、例えばコーンファイバーやビートファイバー、アラビアガム等はその構成成分中にグルクロン酸やフェノール酸等のような弱酸性の成分を有する。従って、酸や酵素でこうした多糖を分解しオリゴ糖を製造した場合、その中には、弱酸性成分を構成成分中に含む画分(酸性オリゴ糖)と含まない画分(中性オリゴ糖)が混合して存在することになる。中性オリゴ糖にはセロオリゴ糖、キシロオリゴ糖、アラビノキシロオリゴ糖、アラビノガラクトオリゴ糖、アラビノオリゴ糖、ガラクトマンノオリゴ糖、グルコマンノオリゴ糖、マンノオリゴ糖等があり、酸性オリゴ糖にはα−グルクロノキシロオリゴ糖、α−グルクロノガラクトオリゴ糖、α−グルクロノアラビノオリゴ糖、フェラリックアラビノオリゴ糖等がある。植物細胞壁多糖や樹液由来多糖に酸性成分を遊離する活性を持っている酵素例えばグルクロニダーゼやエステラーゼなどを作用させると、酸性成分であるグルクロン酸やフェルラ酸のみが単体で遊離し、オリゴ糖は中性化することになる。従って、中性オリゴ糖を多く生産したい場合には、酸性成分を遊離する活性を多く有する酵素を作用させることが望ましく、また、酸性オリゴ糖を多く生産したいときには酸性成分を遊離する活性をできるだけ含まない酵素を作用させるのが望ましい。   Plant cell wall polysaccharides and sap-derived polysaccharides such as corn fiber, beet fiber and gum arabic have weakly acidic components such as glucuronic acid and phenolic acid in their constituent components. Therefore, when oligosaccharides are produced by degrading such polysaccharides with acids or enzymes, the fractions that contain weakly acidic components (acidic oligosaccharides) and the fractions that do not contain (neutral oligosaccharides). Will exist in a mixture. Neutral oligosaccharides include cellooligosaccharides, xylo-oligosaccharides, arabinoxylo-oligosaccharides, arabinogalacto-oligosaccharides, arabino-oligosaccharides, galactomanno-oligosaccharides, glucomanno-oligosaccharides, manno-oligosaccharides, etc. , Α-glucuronogalactooligosaccharide, α-glucuronoarabinooligosaccharide, ferric arabinooligosaccharide and the like. When an enzyme that releases an acidic component such as glucuronidase or esterase is allowed to act on plant cell wall polysaccharides or sap-derived polysaccharides, only the acidic components glucuronic acid and ferulic acid are released alone, and the oligosaccharide is neutral. It will become. Therefore, when it is desired to produce a large amount of neutral oligosaccharides, it is desirable to allow an enzyme having a large activity to liberate acidic components to act, and when it is desired to produce a large amount of acidic oligosaccharides, it contains as much activity as possible to liberate acidic components. It is desirable to have no enzyme working.

しかし、市販されている酵素には、中性成分をオリゴ糖化する活性と酸性成分を遊離する活性の両方を持つことが多く、その使い分けが極めて困難であった。特にα−グルクロニダーゼについては、報告も少なく(特許文献7参照)、α−グルクロニダーゼとして市販されているものもなかった。
特開平3−287594号公報 特開平2−100694号公報 特開平4−309501号公報 特開昭61−219345公報 特開平3−290197号公報 特開昭62−14792号公報 特表2002−510485公報
However, commercially available enzymes often have both an activity for oligosaccharide-forming a neutral component and an activity for releasing an acidic component, and it has been extremely difficult to properly use them. Especially regarding α-glucuronidase, there are few reports (see Patent Document 7), and there is no commercially available α-glucuronidase.
JP-A-3-287594 Japanese Patent Laid-Open No. 2-100694 JP-A-4-309501 Japanese Patent Laid-Open No. 61-219345 JP-A-3-290197 JP 62-14792 A Special table 2002-510485 gazette

本発明は、かかる従来技術の現状に鑑み創案されたものであり、その目的は市販の酵素製品を簡易な方法で精製分離してα−グルクロニダーゼを有する酵素と有さない酵素を提供すること、及びかかる各酵素によって得られる植物細胞壁及び樹液由来多糖の分解組成物を提供することである。   The present invention was devised in view of the current state of the prior art, and its purpose is to provide an enzyme having α-glucuronidase and an enzyme having no α-glucuronidase by purifying and separating a commercially available enzyme product by a simple method. And the degradation composition of the plant cell wall and sap origin polysaccharide obtained by each such enzyme is provided.

本発明者は、上記目的を達成するために鋭意検討を重ねた結果、市販のヘミセルラーゼ分解酵素中に酸性成分を遊離する活性(α−グルクロニダーゼ活性)があり、それら酵素の分子量が大きく異なることを見出した。更にこの酵素を限外濾過処理することにより、酸性成分を遊離する活性(α−グルクロニダーゼ活性)を多く持つ酵素と、酸性成分を遊離する活性(α−グルクロニダーゼ活性)を全く持たない酵素に分離することが容易にできることを見出し、本発明を完成させるに到った。   As a result of intensive studies to achieve the above object, the present inventor has an activity (α-glucuronidase activity) for releasing acidic components in commercially available hemicellulase degrading enzymes, and the molecular weights of these enzymes are greatly different. I found. Furthermore, the enzyme is subjected to an ultrafiltration treatment to separate an enzyme having an activity that releases an acidic component (α-glucuronidase activity) and an enzyme that does not have an activity that releases an acidic component (α-glucuronidase activity) at all. The present inventors have found that this can be easily performed, and have completed the present invention.

即ち、本発明は、ヘミセルラーゼ活性とα−グルクロニダーゼ活性を有する酵素製品を、限外濾過処理によってα−グルクロニダーゼ活性を有する酵素とα−グルクロニダーゼ活性を有さない酵素に分離することを特徴とする方法である。   That is, the present invention is characterized in that an enzyme product having hemicellulase activity and α-glucuronidase activity is separated into an enzyme having α-glucuronidase activity and an enzyme not having α-glucuronidase activity by ultrafiltration treatment. Is the method.

また、本発明は、前記方法によって得られることを特徴とするα−グルクロニダーゼ活性を有する酵素及びα−グルクロニダーゼ活性を有さない酵素である。   In addition, the present invention is an enzyme having α-glucuronidase activity and an enzyme not having α-glucuronidase activity, which are obtained by the above method.

さらに、本発明は、植物細胞壁及び/又はは樹液多糖を、前記α−グルクロニダーゼ活性を有する酵素又は前記α−グルクロニダーゼ活性を有さない酵素によって分解することによって得られる分解組成物である。本発明の前記α−グルクロニダーゼ活性を有さない酵素による分解組成物の一例はキシロトリオースにグルクロン酸又は4−O−メチルグルクロン酸が1個結合した4量体を最小単位とし、平均重合度が4〜10である。   Furthermore, the present invention is a degradation composition obtained by degrading a plant cell wall and / or sap polysaccharide with the enzyme having the α-glucuronidase activity or the enzyme not having the α-glucuronidase activity. One example of the enzyme-degrading composition of the present invention having no α-glucuronidase activity is a tetramer in which one glucuronic acid or 4-O-methylglucuronic acid is bound to xylotriose, and the average degree of polymerization. Is 4-10.

本発明によれば、極めて簡易な方法で市販の複合活性を有する酵素製品を原料として、α−グルクロニダーゼ活性の高い酵素とα−グルクロニダーゼ活性を全く持たない二つの酵素を生産し、更に、それぞれの酵素を有効に用いることで酸性オリゴ糖、中性オリゴ糖のいずれでも効率的に生産することができる。   According to the present invention, by using a commercially available enzyme product having a complex activity as a raw material, an enzyme having a high α-glucuronidase activity and two enzymes having no α-glucuronidase activity are produced. Effective use of the enzyme enables efficient production of either acidic oligosaccharides or neutral oligosaccharides.

本発明において使用する酵素製品は、基本となる酵素の種類や品名は特に限定されるものではないが、ヘミセルラーゼ活性とα−グルクロニダーゼ活性の二つの活性を少なくとも有するものである。こうした市販酵素としては、セルラーゼA−アマノ、セルラーゼT−アマノ(以上、天野エンザイム)、セルラーゼXP−415、セルラーゼXP−425(以上、ナガセ生化学工業)、ビスコザイムL、ペクチネックス ウルトラSP−L、ウルトラフロL、セルクラスト(以上、ノボノルディスクインダストリー)、セルロシンHC−100、セルロシンPE60、セルロシンPEL(以上、阪急バイオインダストリー)、スミチームX、スミチームC、スミチームAC40、スミチームARS、スミチームX、スミチームPX(以上、新日本化学)、ドリセラーゼKSM(協和エンザイム)、GODO−TCL、GODO TCD−H(以上、合同酒精)、セルラーゼY−NC、セルラーゼ オノズカ(ヤクルト)等がある。これらの中では、Tricoderma sp由来のヘミセルラーゼであるスミチームX(新日本化学)が好ましく使用できる。   The enzyme product used in the present invention is not particularly limited in the type and product name of the basic enzyme, but has at least two activities of hemicellulase activity and α-glucuronidase activity. Examples of such commercially available enzymes include cellulase A-Amano, cellulase T-Amano (above, Amano Enzyme), cellulase XP-415, cellulase XP-425 (above, Nagase Seikagaku), Viscozyme L, Pectinex Ultra SP-L, Ultra Furo L, Cell Crust (above, Novo Nordisk Industry), Cellulosin HC-100, Cellulosin PE60, Cellulosin PEL (above, Hankyu Bioindustry), Sumiteam X, Sumiteam C, Sumiteam AC40, Sumiteam ARS, Sumiteam X, Sumiteam PX ( As described above, there are New Nippon Chemical Co., Ltd.), Doricerase KSM (Kyowa Enzyme), GODO-TCL, GODO TCD-H (above, joint sake), Cellulase Y-NC, Cellulase Onozuka (Yakult) and the like. Among these, Sumiteam X (Nippon Nippon Kagaku), which is a hemicellulase derived from Tricoderderma sp, can be preferably used.

本発明の方法では、酵素製品を分画分子量1〜10万、望ましくは5万の膜で限外濾過することにより、α−グルクロニダーゼ活性を有する画分(酵素)を濃縮液として、α‐グルクロニダーゼ活性を有しない画分(酵素)を透過液として回収することができる。使用する限外濾過膜の素材や種類は特に限定されるものではないが、例えば素材としてはメンブランやセラミック等が挙げられ、種類としては平膜タイプ、中空紙タイプ等が挙げられる。   In the method of the present invention, an enzyme product is subjected to ultrafiltration with a membrane having a molecular weight cut off of 1 to 100,000, preferably 50,000, so that a fraction (enzyme) having α-glucuronidase activity is used as a concentrate, and α-glucuronidase is used. A fraction (enzyme) having no activity can be collected as a permeate. The material and type of the ultrafiltration membrane to be used are not particularly limited. Examples of the material include membrane and ceramic, and examples of the material include a flat membrane type and a hollow paper type.

α−グルクロニダーゼ活性を有する画分(濃縮液)を作用させる基質は、その由来や状態に限定されるものではないが、側鎖にα−グルクロン酸を保持しているものである。望ましくは、植物細胞壁由来多糖や樹液由来多糖である。その由来として、例えば木質ヘミセルロース、小麦ふすま、コメ糠、コーンファイバー、ビートファイバー、アラビアガム等が挙げられ、また多糖として、例えばキシラン、アラビノキシラン、アラビノグルカン、アラビナン、アラビノガラクタン等が挙げられる。基質は酵素分解前に、先に挙げたものそのままでも良いが、酸、アルカリ、爆砕、蒸煮、超臨界処理等で前処理したものでも良い。また、基質原料中にセルロースを有する場合は、事前にセルロースを除去してもしなくても良い。除去方法としては、例えばアルカリ抽出処理、限定酸分解処理等がある。   The substrate on which the fraction (concentrated solution) having α-glucuronidase activity acts is not limited to its origin or state, but it retains α-glucuronic acid in the side chain. Desirably, it is a polysaccharide derived from a plant cell wall or a polysaccharide derived from sap. Examples of its origin include woody hemicellulose, wheat bran, rice bran, corn fiber, beet fiber, gum arabic and the like, and examples of polysaccharides include xylan, arabinoxylan, arabinoglucan, arabinan, arabinogalactan and the like. The substrate may be used as it is before the enzymatic decomposition, or it may be pretreated by acid, alkali, explosion, steaming, supercritical treatment or the like. Moreover, when it has a cellulose in a substrate raw material, it is not necessary to remove a cellulose beforehand. Examples of the removal method include alkali extraction treatment and limited acid decomposition treatment.

α−グルクロニダーゼ活性を有する画分(濃縮液)を前述の基質に作用させた場合、グルクロン酸が遊離し、グルクロンを含まない中性オリゴ糖が効率的に製造される。   When a fraction (concentrate) having α-glucuronidase activity is allowed to act on the aforementioned substrate, glucuronic acid is liberated and neutral oligosaccharides free from glucuron are efficiently produced.

α−グルクロニダーゼ活性を有しない画分(透過液)を作用させる基質は、その由来や状態に限定されるものではないが、例えば主鎖にキシロースがβ(1,4)結合した構造を有するものである。この場合、側鎖にα−グルクロン酸を保持していてもしていなくても良い。望ましくは、植物細胞壁由来多糖であり、その由来として木質ヘミセルロース、小麦ふすま、コメ糠、コーンファイバー、また、多糖としてキシランやアラビノキシラン等が挙げられる。基質は酵素分解前に、先に挙げたものそのままでも良いが、酸、アルカリ、爆砕、蒸煮、超臨界処理等で前処理したものでも良い。また、基質原料中にセルロースを有する場合は、事前にセルロースを除去してもしなくても良い。除去方法としては、例えばアルカリ抽出処理、限定酸分解処理等がある。   The substrate on which the fraction (permeate) that does not have α-glucuronidase activity is not limited to its origin or state, but has, for example, a structure in which the main chain has a β (1,4) bond to xylose. It is. In this case, α-glucuronic acid may or may not be held in the side chain. Desirably, it is a polysaccharide derived from a plant cell wall, and examples thereof include woody hemicellulose, wheat bran, rice bran, corn fiber, and polysaccharides such as xylan and arabinoxylan. The substrate may be used as it is before the enzymatic decomposition, or it may be pretreated by acid, alkali, explosion, steaming, supercritical treatment or the like. Moreover, when it has a cellulose in a substrate raw material, it is not necessary to remove a cellulose beforehand. Examples of the removal method include alkali extraction treatment and limited acid decomposition treatment.

α−グルクロニダーゼ活性を有しない画分(透過液)を、側鎖にα−グルクロン酸を保持していない基質に作用させた場合は、精製前よりも少量の酵素で、同様の収率の製品を得ることができる。   When a fraction that does not have α-glucuronidase activity (permeate) is allowed to act on a substrate that does not have α-glucuronic acid in the side chain, a product with the same yield with a smaller amount of enzyme than before purification. Can be obtained.

α−グルクロニダーゼ活性を有しない画分(透過液)を、側鎖にα−グルクロン酸を保持している基質に作用させた場合は、酸性オリゴ糖がグルクロン酸を1個以上有し、キシロースを3個以上有している。最小単位はキシロトリオースにグルクロン酸がα(1,2)結合した構造を持つ4量体である(図1参照)。なお、同酵素は、分離精製前(α−グルクロニダーゼ活性を有した状態)のものを用いても同じ組成のものを産生するが、側鎖のグルクロン酸を遊離するため、その製品収率は低くなる。   When a fraction having no α-glucuronidase activity (permeate) is allowed to act on a substrate having α-glucuronic acid in the side chain, the acidic oligosaccharide has at least one glucuronic acid and xylose Have 3 or more. The smallest unit is a tetramer having a structure in which glucuronic acid is α (1,2) bonded to xylotriose (see FIG. 1). This enzyme produces the same composition even when used before separation and purification (having α-glucuronidase activity), but the product yield is low because side chain glucuronic acid is liberated. Become.

以下、実施例により本発明を更に詳しく説明するが、本発明はこれに限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention in more detail, this invention is not limited to this.

(酵素の分離精製例)
市販ヘミセルラーゼであるスミチームX(新日本化学工業株式会社)を限外濾過装置UF−PSのUF−30UF膜(分画分子量30,000)(東ソー株式会社)を用いて限外濾過処理を行った。原液の酵素と限外濾過処理後の各画分(濃縮液および透過液)を電気泳動分析したところ、原液で複数本見られていたバンドが限外濾過処理により、濃縮液は5万〜10万にかけての幅広いバンドに変わった。また、透過液は3万弱のほぼ単一バンドを示す成分に精製されていた(図2参照)。
(Example of enzyme separation and purification)
A commercially available hemicellulase, Sumiteam X (Shin Nippon Chemical Co., Ltd.) is subjected to ultrafiltration using a UF-30UF membrane (fractionated molecular weight 30,000) (Tosoh Corporation) of an ultrafiltration device UF-PS. It was. Electrophoretic analysis of the enzyme in the stock solution and each fraction (concentrated solution and permeate) after ultrafiltration treatment revealed that a plurality of bands that were seen in the stock solution were subjected to ultrafiltration treatment. It changed into a wide band over the whole. Further, the permeate was purified to a component showing an almost single band of less than 30,000 (see FIG. 2).

限外濾過処理後の各画分(濃縮後透過液)のタンパク回収率と酵素活性(ヘミセルラーゼ活性及びα−グルクロニダーゼ活性)の変化を表1に示す。表1から明らかなように、限外濾過による濃縮液のタンパク回収率は63%であり、α−グルクロニダーゼ活性は原液の1.5倍であった。また、限外濾過による透過液のタンパク回収率は37%であり、ヘミセルラーゼ活性は原液の2.0倍であり、かつα−グルクロニダーゼ活性は認められなかった。   Table 1 shows changes in protein recovery rate and enzyme activity (hemicellulase activity and α-glucuronidase activity) of each fraction after ultrafiltration treatment (permeate after concentration). As is clear from Table 1, the protein recovery rate of the concentrated solution by ultrafiltration was 63%, and the α-glucuronidase activity was 1.5 times that of the stock solution. The protein recovery rate of the permeate by ultrafiltration was 37%, the hemicellulase activity was 2.0 times that of the stock solution, and no α-glucuronidase activity was observed.

(酵素の作用例1)
トウモロコシの種皮を、特開平11−313700号公報に例示されている方法に従って酸分解した。具体的には、トウモロコシの種皮にシュウ酸を添加してpHを2付近に調整し、130℃で30分〜3時間加圧分解して分解糖液を得た。得られた分解糖液を、活性炭処理し、イオン交換樹脂に通液し、さらに強酸型イオン交換樹脂による連続的クロマト分離により単糖成分を除去し、オリゴ糖組成物を得た(図3参照)。このオリゴ糖組成物の糖組成分析をEnglyst,H.et al,Analyst,107;307(1982)に記載の方法に準じて調べ、また、ウロン酸種をカルボジイミドによる還元反応で調べてグルクロン酸であることを確認した。グルクロン酸の定量はm−hydroxy−diphenyl法で行った(表2参照)。グルクロン酸の結合様式の検査のため、市販のβ−グルクロニダーゼを作用させたが、グルクロン酸の遊離は認められなかった(図4参照)。
(Example 1 of enzyme action)
Corn seed coat was acid-decomposed according to the method exemplified in JP-A-11-313700. Specifically, oxalic acid was added to the seed coat of corn to adjust the pH to around 2 and subjected to pressure decomposition at 130 ° C. for 30 minutes to 3 hours to obtain a decomposed sugar solution. The obtained decomposed sugar solution was treated with activated carbon, passed through an ion exchange resin, and further monosaccharide components were removed by continuous chromatographic separation using a strong acid ion exchange resin to obtain an oligosaccharide composition (see FIG. 3). ). The sugar composition analysis of this oligosaccharide composition was performed by Englyst, H. et al. et al, Analyst, 107; 307 (1982), and uronic acid species were examined by a reduction reaction with carbodiimide and confirmed to be glucuronic acid. Glucuronic acid was quantified by the m-hydroxy-diphenyl method (see Table 2). In order to examine the binding mode of glucuronic acid, commercially available β-glucuronidase was allowed to act, but glucuronic acid was not released (see FIG. 4).

このオリゴ糖組成物に、スミチームX(新日本化学工業株式会社)を作用させると、グルクロン酸の遊離が認められた。次いで、前述の酵素の分離精製例で得られた各酵素画分(濃縮液および透過液)を作用させると、濃縮液を作用させたときのみグルクロン酸が遊離し、透過液を作用させたときにはグルクロン酸は遊離しなかった。   Release of glucuronic acid was observed when Sumiteam X (Shin Nippon Chemical Co., Ltd.) was allowed to act on this oligosaccharide composition. Next, when each enzyme fraction (concentrate and permeate) obtained in the above-mentioned enzyme separation and purification example is allowed to act, glucuronic acid is released only when the concentrate is allowed to act, and when the permeate is allowed to act. Glucuronic acid was not released.

(酵素の作用例2)
トウモロコシの種皮を特開平11−313700号公報に例示されている方法に従って酸分解した。具体的には、トウモロコシの種皮にシュウ酸を添加してpHを2付近に調整し、130℃で30分〜3時間加圧分解して分解糖液を得た。得られた分解糖液を、活性炭処理し、イオン交換樹脂に通液し、さらにCa型カチオン交換樹脂によるクロマト分離で単糖成分を分離除去し粗精製液を得た。この粗精製液を弱塩基型イオン交換樹脂に吸着させ、4%NaClで脱離させて、高純度グルクロノキシロオリゴ糖(純度99%以上)を得た。得られたグルクロノキシロオリゴ糖には若干(0.3%程度)のフェノール酸も認められた。
(Enzyme action example 2)
Corn seed coat was acid-decomposed according to the method exemplified in JP-A-11-313700. Specifically, oxalic acid was added to the seed coat of corn to adjust the pH to around 2 and subjected to pressure decomposition at 130 ° C. for 30 minutes to 3 hours to obtain a decomposed sugar solution. The obtained decomposed sugar solution was treated with activated carbon, passed through an ion exchange resin, and monosaccharide components were separated and removed by chromatographic separation using a Ca-type cation exchange resin to obtain a crude purified solution. This crudely purified solution was adsorbed on a weak base type ion exchange resin and desorbed with 4% NaCl to obtain a high-purity glucuronoxylo-oligosaccharide (purity 99% or more). Some (about 0.3%) phenolic acid was also observed in the obtained glucuronoxylo-oligosaccharide.

主鎖となるキシロオリゴ糖の平均重合度は4.1であり、これにグルクロン酸が平均で1.4個結合した構造を持っていた。これを基質とし、前述の酵素の分離精製例で分離した透過液(α−グルクロニダーゼが認められなかった画分)を過剰添加し、完全分解を行った(図5参照)。反応後に、透過液を再度添加しても分解がこれ以上進まないことを確認した。   The average degree of polymerization of the xylooligosaccharide serving as the main chain was 4.1, and it had a structure in which 1.4 glucuronic acids were bonded on average. Using this as a substrate, the permeate (the fraction in which α-glucuronidase was not found) separated in the above-described example of separation and purification of the enzyme was excessively added to perform complete decomposition (see FIG. 5). After the reaction, it was confirmed that the decomposition did not proceed any more even when the permeate was added again.

こうして得られた分解糖液中には、グルクロン酸が結合した酸性成分と、酵素分解によりグルクロン酸が結合したフラグメントから遊離した中性成分が混在している。中性成分はNa型カチオン交換樹脂に通液して分離し、高純度の酸性成分を得た。ここで得られた酸性成分は、市販ヘミセルラーゼ(スミチームX(新日本化学))によるヘミセルラーゼ限界デキストリンであり、その限界はグルクロン酸の結合に起因する。   In the decomposition sugar solution thus obtained, an acidic component to which glucuronic acid is bound and a neutral component released from a fragment to which glucuronic acid is bound by enzymatic degradation are mixed. The neutral component was separated by passing through a Na-type cation exchange resin to obtain a highly pure acidic component. The acidic component obtained here is a hemicellulase limit dextrin by commercially available hemicellulase (Sumiteam X (Shin Nihon Kagaku)), and the limit is due to the binding of glucuronic acid.

この限界デキストリンを、陰イオン交換HPLC(糖分析DX500システム、分離カラムCarbopak PA−1、Dionex社)で分析すると、数種類の成分が混在することが認められた(図6参照)。このうち、酸性成分(グルクロン酸が結合した成分)は、単糖であるグルクロン酸より遅い溶出を示す。従って、グルクロン酸より遅く溶出した成分が酸性オリゴ糖である。図6中の成分のうちF1とF3は酵素分解で増加したが、F2は増加しなかった。そこでF1とF3を集めて詳細分析をしたところ、いずれもキシロースとグルクロン酸の比率が3:1であることが分かった。また、成分F1のキシロースの平均重合度は3であった。つまり、スミチームXで分解して得られる酸性オリゴ糖の最小単位はキシロース3個にグルクロン酸が1個結合した3量体であった。分析手法の性質から、成分F1は図1の構造を持つものと判断された。   When this limiting dextrin was analyzed by anion exchange HPLC (sugar analysis DX500 system, separation column Carbopak PA-1, Dionex), it was recognized that several kinds of components were mixed (see FIG. 6). Among these, acidic components (components to which glucuronic acid is bound) show elution that is slower than glucuronic acid, which is a monosaccharide. Therefore, acidic oligosaccharides are eluted later than glucuronic acid. Among the components in FIG. 6, F1 and F3 increased by enzymatic degradation, but F2 did not increase. Therefore, when F1 and F3 were collected and analyzed in detail, it was found that the ratio of xylose to glucuronic acid was 3: 1. Moreover, the average degree of polymerization of the xylose of component F1 was 3. That is, the minimum unit of acidic oligosaccharide obtained by degradation with Sumiteam X was a trimer in which one glucuronic acid was bound to three xyloses. The component F1 was determined to have the structure of FIG. 1 from the nature of the analysis technique.

市販ヘミセルラーゼによって得られる酸性オリゴ糖の基本構造を示す。The basic structure of the acidic oligosaccharide obtained by commercial hemicellulase is shown. 精製酵素の電気泳動の結果を示す。The result of electrophoresis of a purified enzyme is shown. 酸性オリゴ糖の精製結果を示す。The purification result of acidic oligosaccharide is shown. 酸性オリゴ糖のβ−グルクロニダーゼ分解によるグルクロン酸の遊離を示す。It shows the release of glucuronic acid by β-glucuronidase degradation of acidic oligosaccharides. 酸性オリゴ糖の精製ヘミセルラーゼ(透過液)による限界分解の結果を示す。The result of the limit decomposition | disassembly by the refinement | purification hemicellulase (permeate) of acidic oligosaccharide is shown. 酸性オリゴ糖の精製ヘミセルラーゼ(透過液)による限界分解物を示す。The limit degradation product by the refinement | purification hemicellulase (permeate) of acidic oligosaccharide is shown.

Claims (7)

ヘミセルラーゼ活性とα−グルクロニダーゼ活性を有する酵素製品を、限外濾過処理によってα−グルクロニダーゼ活性を有する酵素とα−グルクロニダーゼ活性を有さない酵素に分離することを特徴とする方法。   A method comprising separating an enzyme product having hemicellulase activity and α-glucuronidase activity into an enzyme having α-glucuronidase activity and an enzyme not having α-glucuronidase activity by ultrafiltration treatment. 請求項1に記載の方法によって得られることを特徴とするα−グルクロニダーゼ活性を有する酵素。   An enzyme having α-glucuronidase activity, which is obtained by the method according to claim 1. 請求項1に記載の方法によって得られることを特徴とするα−グルクロニダーゼ活性を有さない酵素。   An enzyme having no α-glucuronidase activity, which is obtained by the method according to claim 1. 植物細胞壁及び/又は樹液由来多糖を、請求項2に記載のα−グルクロニダーゼ活性を有する酵素によって分解することによって得られることを特徴とする分解組成物。   A degradation composition obtained by degrading a plant cell wall and / or sap-derived polysaccharide with the enzyme having α-glucuronidase activity according to claim 2. 植物細胞壁及び/又は樹液由来多糖を、請求項3に記載のα−グルクロニダーゼ活性を有さない酵素によって分解することによって得られることを特徴とする分解組成物。   A degradation composition obtained by degrading a plant cell wall and / or sap-derived polysaccharide with the enzyme having no α-glucuronidase activity according to claim 3. キシロトリオースにグルクロン酸又は4−O−メチルグルクロン酸が1個結合した4量体を最小単位とすることを特徴とする請求項5に記載の分解組成物。   6. The decomposition composition according to claim 5, wherein a tetramer in which one glucuronic acid or 4-O-methylglucuronic acid is bound to xylotriose is used as a minimum unit. 平均重合度が4〜10であることを特徴とする請求項6に記載の分解組成物。
The decomposition composition according to claim 6, wherein the average degree of polymerization is 4 to 10.
JP2005070389A 2005-03-14 2005-03-14 Separation and purification of enzyme products and enzyme-decomposed composition obtained thereby Expired - Fee Related JP4791058B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005070389A JP4791058B2 (en) 2005-03-14 2005-03-14 Separation and purification of enzyme products and enzyme-decomposed composition obtained thereby

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005070389A JP4791058B2 (en) 2005-03-14 2005-03-14 Separation and purification of enzyme products and enzyme-decomposed composition obtained thereby

Publications (2)

Publication Number Publication Date
JP2006246827A true JP2006246827A (en) 2006-09-21
JP4791058B2 JP4791058B2 (en) 2011-10-12

Family

ID=37087937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005070389A Expired - Fee Related JP4791058B2 (en) 2005-03-14 2005-03-14 Separation and purification of enzyme products and enzyme-decomposed composition obtained thereby

Country Status (1)

Country Link
JP (1) JP4791058B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100694A (en) * 1988-10-07 1990-04-12 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Production of xylooligosaccharide by substrate-filling type reactor
JPH04309501A (en) * 1991-04-05 1992-11-02 Natl Food Res Inst Arabinoxylooligosaccharide

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02100694A (en) * 1988-10-07 1990-04-12 Japanese Res & Dev Assoc Bio Reactor Syst Food Ind Production of xylooligosaccharide by substrate-filling type reactor
JPH04309501A (en) * 1991-04-05 1992-11-02 Natl Food Res Inst Arabinoxylooligosaccharide

Also Published As

Publication number Publication date
JP4791058B2 (en) 2011-10-12

Similar Documents

Publication Publication Date Title
Jain et al. Xylooligosaccharides: an economical prebiotic from agroresidues and their health benefits
JP6544475B2 (en) Process for producing acidic xylooligosaccharide and acidic xylooligosaccharide
Marim et al. Xylooligosaccharides: prebiotic potential from agro-industrial residue, production strategies and prospects
CA2937077C (en) Process for fractionation of oligosaccharides from agri-waste
JP2008501321A5 (en)
JP2006296224A (en) High-purity xylooligosaccharide composition
JP4078778B2 (en) Xylooligosaccharide composition
US11406120B2 (en) Low molecular weight arabinoxylans with branched oligosaccharides
JP4073661B2 (en) Method for producing acidic xylooligosaccharide composition
WO2011141175A1 (en) Process for the recovery of betaine from molasses
JP4791058B2 (en) Separation and purification of enzyme products and enzyme-decomposed composition obtained thereby
Rahman et al. Substrate specificity of the α-l-arabinofuranosidase from Rhizomucor pusillus HHT-1
JP5807273B2 (en) Monosaccharide production method
JP2009207462A (en) Method for producing sugar for synthetic raw material
JP6900902B2 (en) Method for producing xylooligosaccharide composition
JP6901715B2 (en) How to treat pineapple residue
JP2009057354A (en) Method for producing oligosaccharide
JP4191286B2 (en) Method for producing sugar
Rahi et al. Production of Xylooligosaccharide from Corn Cob Xylan by Xylanase Obtained from Aureobasidium Pullulans
JP2006000031A (en) Ph adjuster
JP2008189614A (en) Preparation for oral administration
Al-Tamimi et al. Production of short chain arabinooligosaccharides by hydrolysis of arabinan using a commercial mixed glycanase preparations
JP2004182615A (en) Antihyperlipemic agent
Samala Xylo-oligosaccharides production from corn fiber and in-vitro evaluation for prebiotic effect
JP2006238773A (en) Method for producing oligosaccharide

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110223

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110701

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110721

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140729

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4791058

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees