JP2006245284A - Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same - Google Patents

Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same Download PDF

Info

Publication number
JP2006245284A
JP2006245284A JP2005058869A JP2005058869A JP2006245284A JP 2006245284 A JP2006245284 A JP 2006245284A JP 2005058869 A JP2005058869 A JP 2005058869A JP 2005058869 A JP2005058869 A JP 2005058869A JP 2006245284 A JP2006245284 A JP 2006245284A
Authority
JP
Japan
Prior art keywords
photoelectric conversion
film
conversion film
electrode film
imaging device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005058869A
Other languages
Japanese (ja)
Inventor
Daisuke Yokoyama
大輔 横山
Toshiaki Fukunaga
敏明 福永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujifilm Holdings Corp
Original Assignee
Fuji Photo Film Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Photo Film Co Ltd filed Critical Fuji Photo Film Co Ltd
Priority to JP2005058869A priority Critical patent/JP2006245284A/en
Publication of JP2006245284A publication Critical patent/JP2006245284A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a photoelectric conversion stacked type solid-state image sensing device which is excellent in color separation and has high sensitivity. <P>SOLUTION: In the photoelectric conversion film stacked type solid-state image sensing device, a photoelectric conversion film 13 sandwiched between a common electrode film 14 and a pixel electrode film 11 corresponding to pixels is stacked on a semiconductor substrate 1, and the pixel electrode film 11 and a charge accumulating section 2 formed on the semiconductor substrate 1 are connected to each other by a columnar electrode 25. In this device, the photoelectric conversion film 13 is configured by a porous silicon layer. In the porous silicon layer, nano-silicons are arranged comparatively closely with each other, compared to a nano-silicon film formed by vapor phase, and a trajectory phenomenon and avalanche amplification following thereto are easily caused, and quantum efficiency can be improved. Thus, the high color separation with high sensitivity is possible. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光電変換膜を半導体基板上に積層して構成した光電変換膜積層型固体撮像素子に係り、特に、半導体結晶のナノ粒子を光電変換膜として用い色分離が優れた感度の高い光電変換膜積層型固体撮像素子及びその製造方法に関する。   The present invention relates to a photoelectric conversion film stacked solid-state imaging device configured by laminating a photoelectric conversion film on a semiconductor substrate, and in particular, a highly sensitive photoelectric film having excellent color separation using semiconductor crystal nanoparticles as a photoelectric conversion film. The present invention relates to a conversion film laminated solid-state imaging device and a method for manufacturing the same.

従来の単板式カラー固体撮像素子は、画素毎に、赤色(R),緑色(G),青色(B)のいずれかのカラーフィルタを設け、各画素は、R,G,Bのいずれかの波長域の光しか受光することができない構造になっている。このため、光の利用効率が低く、色像の解像度も低く、また、RGB3色を異なる位置で検出するため偽色が生じ易いので光学的ローパスフィルタが必要となり、このフィルタによる光損失も生じていた。   A conventional single-plate color solid-state imaging device is provided with a color filter of red (R), green (G), or blue (B) for each pixel, and each pixel is one of R, G, and B. It has a structure that can only receive light in the wavelength range. For this reason, the light use efficiency is low, the resolution of the color image is low, and the RGB three colors are detected at different positions, so false colors are likely to occur, so an optical low-pass filter is required, and light loss due to this filter also occurs. It was.

さらに、同一平面上にフォトダイオード(光電変換部)と信号読出回路(CMOS型イメージセンサの場合にはMOSトランジスタ回路、CCD型イメージセンサの場合には電荷転送部)とを配置し、入射光をマイクロレンズによって光電変換部に集光しているため、マイクロレンズによる光損失が避けられないという問題がある。   Further, a photodiode (photoelectric conversion unit) and a signal readout circuit (a MOS transistor circuit in the case of a CMOS type image sensor and a charge transfer unit in the case of a CCD type image sensor) are arranged on the same plane, and incident light is transmitted. Since the light is condensed on the photoelectric conversion unit by the microlens, there is a problem that light loss due to the microlens is unavoidable.

また、特許文献1や特許文献2では、シリコン(Si)の光吸収係数の波長依存性を利用して、Si基板の深さ方向に青色光用のPN接合部と緑色光用のPN接合部と赤色光用PN接合部とを設け、色分離を行う固体撮像素子を提案している。   In Patent Document 1 and Patent Document 2, by utilizing the wavelength dependence of the light absorption coefficient of silicon (Si), a PN junction for blue light and a PN junction for green light in the depth direction of the Si substrate. And a red light PN junction, and a solid-state imaging device that performs color separation is proposed.

しかし、シリコンの光吸収係数の波長依存性を利用した固体撮像素子では、原理的に十分な色分離ができないという問題を抱えている。   However, a solid-state imaging device using the wavelength dependence of the light absorption coefficient of silicon has a problem that in principle, sufficient color separation cannot be performed.

そこで、特許文献3では、キャリアのトンネル伝導が可能な絶縁膜で覆われた粒径数ナノメートルのナノシリコン結晶を堆積させて光電変換膜とした光電変換膜積層型固体撮像素子を提案している。また、特許文献4では、超微粒子が実質的に均質な媒質中に分散された光電変換膜を用いた光電変換膜積層型固体撮像素子を提案している。   Therefore, Patent Document 3 proposes a photoelectric conversion film stacked solid-state imaging device in which nanosilicon crystals having a particle diameter of several nanometers covered with an insulating film capable of carrier tunnel conduction are deposited to form a photoelectric conversion film. Yes. Patent Document 4 proposes a photoelectric conversion film stacked solid-state imaging device using a photoelectric conversion film in which ultrafine particles are dispersed in a substantially homogeneous medium.

しかし、どちらも、気相で形成したナノシリコン結晶がランダムに並ぶため、アバランシェ増幅を起こすのに重要なキャリアの弾道現象が起こりにくく、量子効率を上げにくいという問題がある。この問題を解決するために、特許文献5では、ナノシリコン粒子を光電変換膜の膜厚方向に整列して形成しているが、性能が十分でない。   However, in both cases, the nanosilicon crystals formed in the gas phase are randomly arranged, so that there is a problem that the ballistic phenomenon of carriers important for avalanche amplification does not easily occur and the quantum efficiency is not easily increased. In order to solve this problem, in Patent Document 5, nanosilicon particles are aligned in the film thickness direction of the photoelectric conversion film, but the performance is not sufficient.

特開平7−38136公報JP-A-7-38136 米国特許第5965875号明細書US Pat. No. 5,965,875 特開2001−7381号公報JP 2001-7381 A 特開平10−160574公報JP-A-10-160574 特開2003―51608号公報JP 2003-51608 A

光電変換膜積層型固体撮像素子で用いる光電変換膜を、絶縁膜で被覆された半導体ナノ粒子を堆積させて構成する場合、従来は気相で形成したナノシリコン結晶では、アバランシェ増幅を起こすのに重要なキャリアの弾道現象が起こりにくく、量子効率を十分に向上させることができないため、色分離性能や感度が不十分であるという問題がある。   When a photoelectric conversion film used in a photoelectric conversion film stack type solid-state imaging device is formed by depositing semiconductor nanoparticles coated with an insulating film, a conventional nanosilicon crystal formed in a gas phase may cause avalanche amplification. There is a problem in that color separation performance and sensitivity are insufficient because the important carrier ballistic phenomenon hardly occurs and the quantum efficiency cannot be sufficiently improved.

本発明の目的は、色分離に優れ、感度の高い光電変換膜積層型固体撮像素子及びその製造方法を提供することにある。   An object of the present invention is to provide a photoelectric conversion film stacked solid-state imaging device excellent in color separation and high in sensitivity, and a method for manufacturing the same.

本発明の光電変換膜積層型固体撮像素子は、共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が半導体基板の上に積層され、前記画素電極膜と前記半導体基板に形成された電荷蓄積部とが柱状電極で接続される光電変換膜積層型固体撮像素子において、前記光電変換膜を多孔質シリコン層で構成したことを特徴とする。   In the photoelectric conversion film laminated solid-state imaging device of the present invention, a photoelectric conversion film sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel is stacked on a semiconductor substrate, and formed on the pixel electrode film and the semiconductor substrate. In the photoelectric conversion film laminated solid-state imaging device in which the charge storage portion is connected by a columnar electrode, the photoelectric conversion film is formed of a porous silicon layer.

本発明の光電変換膜積層型固体撮像素子は、共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が絶縁層を介して半導体基板の上に少なくとも3層積層され、各層毎の光電変換膜に夫々被着される前記画素電極膜と前記半導体基板に形成された電荷蓄積部とが柱状電極で接続される光電変換膜積層型固体撮像素子において、第1層の前記光電変換膜の吸収ピークが420nm〜500nm、第2層の前記光電変換膜の吸収ピークが500nm〜580nm、第3層の前記光電変換膜の吸収ピークが580nm〜660nmとなるように各光電変換膜を多孔質シリコン層で構成したことを特徴とする。   In the photoelectric conversion film stacked solid-state imaging device of the present invention, at least three photoelectric conversion films sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel are stacked on a semiconductor substrate with an insulating layer interposed therebetween. In the photoelectric conversion film stack type solid-state imaging device in which the pixel electrode film deposited on each photoelectric conversion film is connected to the charge storage portion formed on the semiconductor substrate with a columnar electrode, the photoelectric conversion of the first layer Each photoelectric conversion film is porous so that the absorption peak of the film is 420 nm to 500 nm, the absorption peak of the photoelectric conversion film of the second layer is 500 nm to 580 nm, and the absorption peak of the photoelectric conversion film of the third layer is 580 nm to 660 nm. It is characterized by comprising a quality silicon layer.

本発明の光電変換膜積層型固体撮像素子の前記多孔質シリコン層は、ポリシリコン層を陽極酸化することで製造したものであることを特徴とする。   The porous silicon layer of the photoelectric conversion film laminated solid-state imaging device of the present invention is manufactured by anodizing a polysilicon layer.

本発明の光電変換膜積層型固体撮像素子の前記画素電極膜は、対応の前記光電変換膜の前記半導体基板側に設けられ、または、光入射側に設けられることを特徴とする。   The pixel electrode film of the photoelectric conversion film stacked solid-state imaging device of the present invention is provided on the semiconductor substrate side of the corresponding photoelectric conversion film or on the light incident side.

本発明の光電変換膜積層型固体撮像素子の製造方法は、信号読出回路が形成された半導体基板の上に絶縁層を介して電極膜を形成し、該電極膜の上にポリシリコン層を製膜し、フッ酸を含む溶液中で前記電極膜と前記溶液との間に電流を流し前記ポリシリコン層を陽極酸化して前記多孔質シリコン層を形成することを特徴とする。   According to the method for manufacturing a photoelectric conversion film stacked solid-state imaging device of the present invention, an electrode film is formed on a semiconductor substrate on which a signal readout circuit is formed via an insulating layer, and a polysilicon layer is formed on the electrode film. The porous silicon layer is formed by anodizing the polysilicon layer by flowing a current between the electrode film and the solution in a solution containing hydrofluoric acid.

本発明によれば、光電変換膜を多孔質シリコン層で構成したため、気相で形成したナノシリコン膜に比べてナノシリコン同士が比較的近接して並んでおり、キャリアの弾道現象とそれに伴うアバランシェ増幅が起き易く、量子効率の向上を図ることができる。このため、感度が高く高度の色分離が可能な光電変換膜積層型固体撮像素子を得ることができる。また、1画素で赤色,緑色,青色の3色の信号を同時に検出する構成のため、ナイキスト周波数成分以上の空間周波数の折返し歪みが色毎に異なることがなくなるため、光学的ローパスフィルタを用いなくても色モアレの発生がなくなり、シェーディングも抑制可能となる。   According to the present invention, since the photoelectric conversion film is composed of a porous silicon layer, the nanosilicones are arranged relatively close to each other as compared with the nanosilicon film formed in the gas phase, and the carrier ballistic phenomenon and the associated avalanche are formed. Amplification is likely to occur, and quantum efficiency can be improved. For this reason, it is possible to obtain a photoelectric conversion film stacked solid-state imaging device with high sensitivity and capable of high-level color separation. In addition, since the red, green, and blue signals are detected simultaneously in one pixel, the aliasing distortion of the spatial frequency that is higher than the Nyquist frequency component does not differ for each color, so an optical low-pass filter is not used. However, no color moire occurs and shading can be suppressed.

以下、本発明の一実施形態について、図面を参照して説明する。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings.

(第1の実施形態)
図1は、本発明の一実施形態に係る光電変換層積層型固体撮像素子の1画素分の断面模式図である。図1に示す光電変換膜積層型固体撮像素子では、n型半導体基板1の表面部にPウェル層が形成されている。そして、1画素に3つの信号電荷蓄積領域(n領域)2,3,4が、Pウェル層の表面に形成されている。図示する例では、領域2を赤色光の入射光量に応じた信号電荷を蓄積する領域、領域3を緑色光の入射光量に応じた信号電荷を蓄積する領域、領域4を青色光の入射光量に応じた信号電荷を蓄積する領域としている。
(First embodiment)
FIG. 1 is a schematic cross-sectional view of one pixel of a photoelectric conversion layer stacked solid-state imaging device according to an embodiment of the present invention. In the photoelectric conversion film laminated solid-state imaging device shown in FIG. 1, a P-well layer is formed on the surface portion of the n-type semiconductor substrate 1. Three signal charge accumulation regions (n regions) 2, 3 and 4 are formed on the surface of the P well layer per pixel. In the illustrated example, the region 2 is a region for storing signal charges according to the amount of incident light of red light, the region 3 is a region for storing signal charges according to the amount of incident light of green light, and the region 4 is an amount of incident light of blue light. It is set as the area | region which accumulate | stores the corresponding signal charge.

この半導体基板1のウェル層表面部には、更に図示しない信号読出回路が形成されるが、この信号読出回路は、従来のCMOS型イメージセンサの様にMOSトランジスタ回路で構成しても、また、従来のCCD型イメージセンサの様に電荷転送路で構成してもよい。   A signal readout circuit (not shown) is further formed on the surface of the well layer of the semiconductor substrate 1. The signal readout circuit may be constituted by a MOS transistor circuit like a conventional CMOS image sensor, You may comprise with a charge transfer path like the conventional CCD type image sensor.

信号電荷蓄積領域2,3,4と図示しない信号読出回路とが形成された半導体基板1の上には絶縁層7が積層され、この絶縁層7の上には、絶縁材料でなる平坦化層8が積層される。   An insulating layer 7 is stacked on the semiconductor substrate 1 on which the signal charge storage regions 2, 3, 4 and a signal readout circuit (not shown) are formed. A planarizing layer made of an insulating material is formed on the insulating layer 7. 8 are stacked.

平坦化層8の上には、画素毎に区画された赤色用の画素電極膜11が積層される。この画素電極膜11は、透明材料で形成されても、また、不透明材料で形成されてもよい。各画素電極膜11の上には、ブロッキング層12が積層され、その上に、赤色の入射光を光電変換する光電変換膜13が積層される。そして、光電変換膜13の上に、透明の共通電極膜(画素電極膜11の対向電極膜)14が各画素共通に一枚構成で積層される。   On the planarizing layer 8, a pixel electrode film 11 for red color divided for each pixel is laminated. The pixel electrode film 11 may be formed of a transparent material or an opaque material. A blocking layer 12 is laminated on each pixel electrode film 11, and a photoelectric conversion film 13 for photoelectrically converting red incident light is laminated thereon. Then, a transparent common electrode film (a counter electrode film of the pixel electrode film 11) 14 is laminated on the photoelectric conversion film 13 so as to be common to each pixel.

共通電極膜14の上には、透明の絶縁層15が積層され、更にその上に、画素毎に区画された緑色用の透明の画素電極膜16が積層される。そして、各画素電極膜16の上に、ブロッキング層17が積層され、更にその上に、緑色の入射光を光電変換する光電変換膜18が積層され、光電変換膜18の上に、透明の共通電極膜(画素電極膜16の対向電極)19が各画素共通に一枚構成で積層される。   A transparent insulating layer 15 is laminated on the common electrode film 14, and a transparent pixel electrode film 16 for green divided for each pixel is further laminated thereon. A blocking layer 17 is stacked on each pixel electrode film 16, and a photoelectric conversion film 18 that photoelectrically converts green incident light is further stacked on the pixel electrode film 16, and a transparent common layer is formed on the photoelectric conversion film 18. An electrode film (a counter electrode of the pixel electrode film 16) 19 is laminated in a single configuration for each pixel.

共通電極膜19の上には、透明の絶縁層20が積層され、更にその上に、画素毎に区画された青色用の透明の画素電極膜21が積層される。そして、各画素電極膜21の上にブロッキング層22が積層され、その上に、青色の入射光を光電変換する光電変換膜23が積層される。光電変換膜23の上には、透明の共通電極膜(画素電極膜21の対向電極膜)24が各画素共通に一枚構成で積層される。更にその上に保護膜が形成される場合もあるが、これは図示を省略する。   A transparent insulating layer 20 is laminated on the common electrode film 19, and a blue transparent pixel electrode film 21 partitioned for each pixel is further laminated thereon. A blocking layer 22 is laminated on each pixel electrode film 21, and a photoelectric conversion film 23 for photoelectrically converting blue incident light is laminated thereon. On the photoelectric conversion film 23, a transparent common electrode film (a counter electrode film of the pixel electrode film 21) 24 is laminated in a single configuration for each pixel. Further, a protective film may be formed thereon, but this is not shown.

赤色用の画素電極膜11は、赤色用の信号電荷蓄積領域2と縦配線(柱状電極)25により電気的に接続され、緑色用の画素電極膜16は、緑色用の信号電荷蓄積領域3と縦配線(柱状電極)26により電気的に接続され、青色用の画素電極膜21は、青色用の信号電荷蓄積領域4と縦配線(柱状電極)27により電気的に接続される。   The red pixel electrode film 11 is electrically connected to the red signal charge storage region 2 by a vertical wiring (columnar electrode) 25, and the green pixel electrode film 16 is connected to the green signal charge storage region 3. The blue pixel electrode film 21 is electrically connected by the vertical wiring (columnar electrode) 26, and the blue signal charge storage region 4 and the vertical wiring (columnar electrode) 27 are electrically connected.

各縦配線25,26,27は、対応する画素電極膜11,16,22及び信号電荷蓄積領域2,3,4以外とは絶縁される。即ち、縦配線が貫通する画素電極膜,共通電極膜,ブロッキング層,光電変換膜には貫通孔が穿設され、縦配線周りは絶縁材料で埋められる。   Each of the vertical wirings 25, 26, 27 is insulated from other than the corresponding pixel electrode films 11, 16, 22 and signal charge storage regions 2, 3, 4. That is, the pixel electrode film, the common electrode film, the blocking layer, and the photoelectric conversion film through which the vertical wiring passes are formed with through holes, and the periphery of the vertical wiring is filled with an insulating material.

本実施形態の光電変換膜積層型固体撮像素子に光が入射すると、入射光の内の青色の波長領域以下の光は光電変換膜23に吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜21から縦配線27を通って信号電荷蓄積領域4に流れ込む。   When light is incident on the photoelectric conversion film stacked solid-state imaging device of the present embodiment, light in the blue wavelength region or less of the incident light is absorbed by the photoelectric conversion film 23, and charges corresponding to the absorbed light amount are generated. This charge flows from the pixel electrode film 21 through the vertical wiring 27 into the signal charge storage region 4.

同様に、入射光の内の緑色の波長領域以下の光は、光電変換膜18によって吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜16から縦配線26を通って信号電荷蓄積領域3に流れ込む。   Similarly, light in the green wavelength region or less of the incident light is absorbed by the photoelectric conversion film 18, and a charge corresponding to the absorbed light amount is generated. This charge passes from the pixel electrode film 16 through the vertical wiring 26. Into the signal charge storage region 3.

同様に、入射光の内の赤色の波長領域以下の光は、光電変換膜13によって吸収され、吸収された光量に応じた電荷が発生し、この電荷が画素電極膜11から縦配線25を通って信号電荷蓄積領域2に流れ込む。   Similarly, light in the red wavelength region or less of the incident light is absorbed by the photoelectric conversion film 13, and a charge corresponding to the absorbed light amount is generated. This charge passes from the pixel electrode film 11 through the vertical wiring 25. Into the signal charge storage region 2.

各信号電荷蓄積領域2,3,4からの信号取出は、従来のCCD型イメージセンサやCMOS型イメージセンサにおける受光部からの信号取出に準じた手法で行うことができる。例えば、一定量のバイアス電荷を信号電荷蓄積領域2,3,4に注入し(リフレッシュモード)ておき、光入射による電荷を蓄積後、信号電荷を読み出す。   Signal extraction from each of the signal charge storage regions 2, 3, and 4 can be performed by a technique according to signal extraction from a light receiving unit in a conventional CCD image sensor or CMOS image sensor. For example, a predetermined amount of bias charge is injected into the signal charge storage regions 2, 3, 4 (refresh mode), the signal charge is read out after storing the charge due to light incidence.

このように、本実施形態に係る光電変換膜積層型固体撮像素子は、夫々が共通電極膜と画素電極膜とによって挟まれた3層の光電変換膜を、最上層の光電変換膜23をB光およびB光より短波の光を吸収する層、中間層の光電変換膜18をG光およびG光より短波の光を吸収する層、最下層の光電変換膜13をR光およびR光より短波の光を吸収する層にすることにより、可視光を青色(B)光,緑色(G)光,赤色(R)光に色分離する。   As described above, in the photoelectric conversion film stacked solid-state imaging device according to this embodiment, the three layers of photoelectric conversion films sandwiched between the common electrode film and the pixel electrode film are used as the uppermost photoelectric conversion film 23. A layer that absorbs light shorter than light and B light; an intermediate photoelectric conversion film 18 that absorbs light shorter than G light and G light; and a lowermost photoelectric conversion film 13 that is shorter than light R and R light. By using the layer that absorbs light, visible light is color-separated into blue (B) light, green (G) light, and red (R) light.

本実施形態では、各光電変換膜13,18,23を、多孔質シリコンを用いて形成することを特徴とする。多孔質シリコンで構成した光電変換膜中のナノシリコン結晶粒は、量子閉じ込め効果により、バルクのシリコンより大きなバンドギャップを有し、その直径が小さくなるほど吸収端の波長は短くなる。この効果を利用し、光入射側の上層から順にナノシリコン直径の小さい光電変換膜とすることで、色分離された信号を得ることができる。   In the present embodiment, each of the photoelectric conversion films 13, 18, and 23 is formed using porous silicon. Nanosilicon crystal grains in the photoelectric conversion film made of porous silicon have a band gap larger than that of bulk silicon due to the quantum confinement effect, and the wavelength of the absorption edge becomes shorter as the diameter becomes smaller. Utilizing this effect, a color-separated signal can be obtained by forming a photoelectric conversion film having a small nanosilicon diameter in order from the upper layer on the light incident side.

また、ナノシリコン結晶粒の表面は薄い数ナノメートルの酸化膜(絶縁膜)で覆われており、この酸化膜はキャリアを閉じ込めて量子閉じ込め効果を発現させる役割を担う他、誘電率がシリコンより小さいため、共通電極膜にバイアス電源を印加した時に生じる光電変換膜内の電界を表面の酸化膜に集中させて弾道的にキャリアを輸送しアバランシェ増幅を起こさせる役割も期待できる。   In addition, the surface of the nanosilicon crystal grains is covered with a thin oxide film (insulating film) of several nanometers. This oxide film plays a role of confining carriers and exhibiting a quantum confinement effect, and has a dielectric constant higher than that of silicon. Since it is small, it can be expected that the electric field in the photoelectric conversion film generated when a bias power supply is applied to the common electrode film is concentrated on the oxide film on the surface and carriers are transported ballistically to cause avalanche amplification.

均質な透明電極(画素電極膜,共通電極膜)としては、酸化錫(SnO)、酸化チタン(TiO)、酸化インジウム(lnO)、酸化インジウムー錫(ITO)薄膜を用いてもよい。その形成方法としては、レーザアブレージョン法、スパッタ法などを採用できる。この透明電極の上に、電子がトンネル可能なSiC膜を積層する。これを下地としてナノシリコン層を積層する。絶縁膜はSiOなどの透明材料で形成し、スパッタ法などで形成できる。 As the homogeneous transparent electrode (pixel electrode film, common electrode film), a tin oxide (SnO 2 ), titanium oxide (TiO 2 ), indium oxide (lnO 2 ), or indium oxide-tin (ITO) thin film may be used. As a formation method thereof, a laser abrasion method, a sputtering method, or the like can be employed. A SiC film capable of tunneling electrons is stacked on the transparent electrode. Using this as a base, a nanosilicon layer is laminated. The insulating film is formed of a transparent material such as SiO 2 and can be formed by a sputtering method or the like.

図2,図3,図4は、図1に示す光電変換膜積層型固体撮像素子の製造工程図であり、夫々(a)図が(b)図に示すA―A線断面模式図であり、(b)図が上面図である。   2, 3, and 4 are manufacturing process diagrams of the photoelectric conversion film laminated solid-state imaging device shown in FIG. 1, and (a) is a schematic cross-sectional view taken along line AA shown in (b). (B) is a top view.

先ず、図2に示す様に、信号読出回路や電荷蓄積領域2,3,4が形成された半導体基板1の上に、絶縁膜7を通常のスパッタ法等で成膜し、通常のレジストとドライエッチング法等により信号電荷蓄積領域2,3,4に接続されるタングステンプラグ25,26,27を形成し、その上全面にAl膜を成膜する。このAl膜をエッチングすることで、タングステンプラグ25,26,27端面の接続膜31,32,33を残し、更にその上に平坦化層8を製膜する。そして再び通常のレジストとドライエッチング法などによりタングステンプラグ25を上方に延ばす。   First, as shown in FIG. 2, an insulating film 7 is formed on the semiconductor substrate 1 on which the signal readout circuit and the charge storage regions 2, 3, and 4 are formed by a normal sputtering method or the like. Tungsten plugs 25, 26, and 27 connected to the signal charge storage regions 2, 3, and 4 are formed by dry etching or the like, and an Al film is formed on the entire surface thereof. By etching this Al film, the connection films 31, 32, 33 on the end faces of the tungsten plugs 25, 26, 27 are left, and the planarizing layer 8 is formed thereon. Then, the tungsten plug 25 is extended upward again by a normal resist and a dry etching method.

次に、平坦化層8の上面に画素電極膜11となるAl電極膜(まだ、画素毎に分離はしない。)を製膜する。Al電極膜を、後述の陽極酸化で用いるフッ酸による耐食から守るために、Al電極膜上にスパッタ法でSiCを成膜する。このとき、キャリアのトンネル伝導が十分可能になるようにSiCの厚みを数ナノメートル程度とするか、もしくはP型のSiCを用いて正孔ブロッキング層12としても働く膜とするのがよい。   Next, an Al electrode film (not yet separated for each pixel) to be the pixel electrode film 11 is formed on the upper surface of the planarizing layer 8. In order to protect the Al electrode film from corrosion resistance due to hydrofluoric acid used in anodic oxidation described later, SiC is deposited on the Al electrode film by sputtering. At this time, it is preferable that the thickness of SiC is about several nanometers so that carrier tunnel conduction can be sufficiently performed, or a film that also functions as the hole blocking layer 12 using P-type SiC.

次に、プラズマCVD法により数μmのポリシリコン層を成膜する。続いて、このポリシリコン層の陽極酸化を行う。図5は、陽極酸化法の模式図である。4フッ化エチレン樹脂製の容器50内にフッ酸とエタノールの混合溶液を入れ、この容器50の底部分に、ポリシリコン層を上面側とした基板51を載置する。そして、タングステンランプ52の照射のもと、ポリシリコン層と混合溶液との間に電流を流して陽極酸化する。   Next, a polysilicon layer of several μm is formed by plasma CVD. Subsequently, the polysilicon layer is anodized. FIG. 5 is a schematic diagram of the anodic oxidation method. A mixed solution of hydrofluoric acid and ethanol is placed in a container 50 made of tetrafluoroethylene resin, and a substrate 51 with the polysilicon layer as the upper surface side is placed on the bottom of the container 50. Then, under the irradiation of the tungsten lamp 52, an anodic oxidation is performed by passing a current between the polysilicon layer and the mixed solution.

この際、ポリシリコン層の上面のみがフッ酸とエタノールの混合溶液に浸されるようにすることが必要である。溶液中に白金電極53を設けてこれを陰極とし、Al電極膜から導線を引き出して陽極とする。陽極,陰極間に流す電流値を制御しながら陽極酸化を進める。本実施形態の光電変換膜積層型固体撮像素子では、光電変換膜に被着される画素電極膜の元となる電極膜をそのまま陽極酸化の電極として利用するため、陽極酸化が容易にできるという利点がある。   At this time, it is necessary to immerse only the upper surface of the polysilicon layer in a mixed solution of hydrofluoric acid and ethanol. A platinum electrode 53 is provided in the solution to serve as a cathode, and a conducting wire is drawn from the Al electrode film to serve as an anode. Anodic oxidation is advanced while controlling the current value flowing between the anode and cathode. In the photoelectric conversion film stacked solid-state imaging device of the present embodiment, the electrode film that is the source of the pixel electrode film deposited on the photoelectric conversion film is used as it is as an anodizing electrode, so that anodization can be easily performed. There is.

ポリシリコン層の陽極酸化によって得られる多孔質シリコン中には、数ナノメートルの薄い酸化膜で覆われたナノシリコン結晶粒が連なって形成される。陽極酸化時の条件として、電流密度,溶液のフッ酸比率,基板の特性(ポリシリコン層のドープ種やドープ密度等),温度,光照射量等を変えることによって、ナノシリコン粒の平均直径や体積密度,多孔質化の進む速度等の制御が可能である。   In the porous silicon obtained by anodic oxidation of the polysilicon layer, nanosilicon crystal grains covered with a thin oxide film of several nanometers are continuously formed. By changing the current density, the hydrofluoric acid ratio of the solution, the characteristics of the substrate (such as the doping type and doping density of the polysilicon layer), the temperature, the amount of light irradiation, etc. It is possible to control the volume density, the speed at which the porosity is increased, and the like.

また、陽極酸化後に硫酸中で同様に電流を流すことにより、ナノシリコン結晶粒の表面を酸化させて平均直径を制御したり、結晶欠陥を減らすことができる。従って、これらの条件を変えることにより、B,G,Rそれぞれの光の吸収に適した粒径や密度のナノシリコン結晶粒を含む多孔質シリコン膜を光電変換膜として得ることができる。   Further, by passing a current similarly in sulfuric acid after anodic oxidation, the surface of the nanosilicon crystal grains can be oxidized to control the average diameter or to reduce crystal defects. Therefore, by changing these conditions, a porous silicon film containing nanosilicon crystal grains having a particle size and density suitable for absorption of light of B, G, and R can be obtained as a photoelectric conversion film.

次に、図3に示す様に、Al電極膜を画素毎に分離するため、また、タングステンプラグ26,27を更に上方に延ばして夫々の画素電極膜16,21に接続するために、光電変換膜13として形成した多孔質シリコン膜にレジスト塗布してフッ素系のガスにより多孔質シリコン膜13およびSiC膜(ブロッキング層12)をドライエッチングし、更にAl電極膜を塩素系のガスでドライエッチングし、画素間を分離する。   Next, as shown in FIG. 3, photoelectric conversion is performed in order to separate the Al electrode film for each pixel and to extend the tungsten plugs 26 and 27 further upward to connect to the respective pixel electrode films 16 and 21. The porous silicon film formed as the film 13 is coated with a resist, the porous silicon film 13 and the SiC film (blocking layer 12) are dry-etched with a fluorine-based gas, and the Al electrode film is further dry-etched with a chlorine-based gas. Separate the pixels.

次に、図4に示す様に、エッチングした箇所をスパッタ法によりSiOで埋めた後、これを平坦化する。そして、平坦化した表面全面にITO電極をスパッタ法により製膜し、このITO電極膜を共通電極膜14とする。 Next, as shown in FIG. 4, the etched portion is filled with SiO 2 by sputtering, and then planarized. Then, an ITO electrode is formed on the entire planarized surface by sputtering, and this ITO electrode film is used as the common electrode film 14.

次に、図示は省略するが、信号電荷蓄積領域3,4に立設されるタングステンプラグ26,27を更に上層に延ばすためドライエッチングとプラグ埋め込みを行い、上述したと同様の処理を繰り返すことで、緑色光の光電変換を行う光電変換膜18や青色光の光電変換を行う光電変換膜23を陽極酸化で形成する。但し、緑色光及び青色光の光電変換膜については、画素電極及び共通電極を共に透明なITO膜からなるITO電極とする。この場合、陽極酸化の条件を夫々に適した条件とすることで、ナノシリコン結晶粒の粒径を適切な粒径とする。以上の様にして、図1に示す光電変換膜積層型固体撮像素子が製造される。   Next, although not shown, dry etching and plug embedding are performed in order to extend the tungsten plugs 26 and 27 erected in the signal charge storage regions 3 and 4 to an upper layer, and the same processing as described above is repeated. The photoelectric conversion film 18 that performs photoelectric conversion of green light and the photoelectric conversion film 23 that performs photoelectric conversion of blue light are formed by anodic oxidation. However, for the green and blue light photoelectric conversion films, both the pixel electrode and the common electrode are ITO electrodes made of a transparent ITO film. In this case, the grain size of the nanosilicon crystal grains is set to an appropriate grain size by setting the conditions for anodic oxidation appropriately. As described above, the photoelectric conversion film laminated solid-state imaging device shown in FIG. 1 is manufactured.

(第2の実施形態)
図6は、本発明の第2の実施形態に係る光電変換膜積層型固体撮像素子の1画素分の断面模式図であり、図7,図8,図9は、その製造工程図である。第1の実施形態と同一部材には同一符号を付す。尚、最上層28は、保護膜を兼用した透明絶縁膜である。
(Second Embodiment)
FIG. 6 is a schematic cross-sectional view of one pixel of a photoelectric conversion film stacked solid-state imaging device according to the second embodiment of the present invention, and FIGS. 7, 8, and 9 are manufacturing process diagrams thereof. The same members as those in the first embodiment are denoted by the same reference numerals. The uppermost layer 28 is a transparent insulating film that also serves as a protective film.

前述した第1の実施形態に係る光電変換膜積層型固体撮像素子は、各光電変換膜13,18,23の下側(基板1側)に画素電極膜11,16,21を設け、各光電変換膜13,18,23の上側(光入射側)に共通電極膜14,19,24を設けている。これに対し、本実施形態では、逆に、各光電変換膜13,18,23の下側(基板1側)に共通電極膜14,19,24を設け、上側(光入射側)に画素電極膜11,16,21を設けている。製造工程も第1の実施形態とほぼ同一であり、各タングステンプラグ25,26,27を画素電極膜11,16,21の上側から接続する構成部分が異なる。   In the photoelectric conversion film stacked solid-state imaging device according to the first embodiment described above, the pixel electrode films 11, 16, and 21 are provided below the photoelectric conversion films 13, 18, and 23 (on the substrate 1 side). Common electrode films 14, 19, and 24 are provided above the conversion films 13, 18, and 23 (light incident side). In contrast, in the present embodiment, conversely, the common electrode films 14, 19, and 24 are provided on the lower side (substrate 1 side) of the photoelectric conversion films 13, 18, and 23, and the pixel electrodes are provided on the upper side (light incident side). Films 11, 16, and 21 are provided. The manufacturing process is also substantially the same as in the first embodiment, and the components for connecting the tungsten plugs 25, 26, 27 from the upper side of the pixel electrode films 11, 16, 21 are different.

第1の実施形態の場合、各光電変換膜13,18,23を形成するためにポリシリコン層を陽極酸化するとき、画素電極膜の元となるAl電極膜を陽極としている。このAl電極膜は、図1に示す様に、夫々、タングステンプラグ(縦配線)を介して信号電荷蓄積領域2,3,4に接続され、また、この信号電荷蓄積領域2,3,4は図示しない信号読出回路に接続されている。このため、Al電極膜を陽極として電圧を印加して陽極酸化を行うと、この電圧は信号読出回路にも影響を及ぼす構成となっている。   In the case of the first embodiment, when the polysilicon layer is anodized in order to form the photoelectric conversion films 13, 18, and 23, the Al electrode film that is the source of the pixel electrode film is used as the anode. As shown in FIG. 1, the Al electrode film is connected to the signal charge storage regions 2, 3, and 4 via tungsten plugs (vertical wiring), and the signal charge storage regions 2, 3, and 4 are connected to each other. It is connected to a signal readout circuit (not shown). For this reason, when anodization is performed by applying a voltage using the Al electrode film as an anode, the voltage has an effect on the signal readout circuit.

これに対し、本実施形態では、ポリシリコン層を陽極酸化するとき、基板1側の共通電極膜が信号読出回路とは接続されていないため、陽極酸化時の影響が信号読出回路に及ばないという利点がある。   On the other hand, in this embodiment, when the polysilicon layer is anodized, the common electrode film on the substrate 1 side is not connected to the signal readout circuit, so that the influence at the time of anodization does not affect the signal readout circuit. There are advantages.

尚、図1,図6に示す実施形態では、1画素分のみを示したが、この画素をアレイ状に二次元的に配列することで、デジタルカメラ等に搭載する固体撮像素子が形成される。この場合、画素間の混色を避けるために、素子最上面に透明の絶縁膜(保護膜)を形成し、その上に画素毎に開口を持つ遮光膜を形成するのが好ましい。また、画素毎にマイクロレンズを形成し、集光効率を向上させるのが良い。   In the embodiment shown in FIGS. 1 and 6, only one pixel is shown, but a solid-state imaging device mounted on a digital camera or the like is formed by arranging the pixels two-dimensionally in an array. . In this case, in order to avoid color mixing between pixels, it is preferable to form a transparent insulating film (protective film) on the uppermost surface of the element and to form a light shielding film having an opening for each pixel on the transparent insulating film. Further, it is preferable to form a microlens for each pixel to improve the light collection efficiency.

更に、最上層の光電変換膜23で光電変換されてしまう不可視光である紫外線を光電変換膜23に入射する前にカットする紫外線カットフィルタや、3層の光電変換膜13,18,23のいずれでも光電変換されることなく半導体基板に到達してしまう赤外線を半導体基板の手前でカットする赤外線カットフイルタを設けたり、多孔質シリコン層の上層に形成した絶縁膜中に光吸収されない光を遮光する膜を設けるのも良い。あるいは、最下層の電極膜(図1の画素電極膜11,図6の共通電極膜14)を不透明な金属膜とし、上層で吸収されなかった赤外線をカットする構成としてもよい。   Further, any one of an ultraviolet cut filter that cuts ultraviolet rays that are invisible light photoelectrically converted by the uppermost photoelectric conversion film 23 before entering the photoelectric conversion film 23, and three layers of photoelectric conversion films 13, 18, and 23. However, an infrared cut filter that cuts the infrared rays that reach the semiconductor substrate without photoelectric conversion before the semiconductor substrate is provided, or light that is not absorbed is blocked in the insulating film formed on the upper layer of the porous silicon layer. A film may be provided. Alternatively, the lowermost electrode film (the pixel electrode film 11 in FIG. 1 and the common electrode film 14 in FIG. 6) may be made of an opaque metal film to cut off infrared rays that have not been absorbed in the upper layer.

以上述べた様に、本実施形態の光電変換膜積層型固体撮像素子で用いる多孔質シリコン層で形成した光電変換膜は、高解像度特性、一様性、また下地基板に対する堆積の容易性を有しながら、結晶材料と同等の熱的安定性、キャリア動特性、アバランシェ増倍の可能性を併せ持ち、さらに、吸収波長を膜厚方向にも基板面内方向にも調節できる利点がある。   As described above, the photoelectric conversion film formed of the porous silicon layer used in the photoelectric conversion film stacked solid-state imaging device of this embodiment has high resolution characteristics, uniformity, and easy deposition on the base substrate. However, it has the same thermal stability as that of the crystal material, carrier dynamic characteristics, and the possibility of avalanche multiplication, and has an advantage that the absorption wavelength can be adjusted both in the film thickness direction and in the substrate in-plane direction.

また、上述した実施形態では、ナノ粒子としてシリコン粒子を用いたが、バンドギャップを大きく変えるために、シリコンナノ結晶に類似したゲルマニウムやシリコンゲルマニウムやSiCなどその他の半導体のナノ結晶を用いることも可能である。   In the above-described embodiment, silicon particles are used as the nanoparticles. However, in order to greatly change the band gap, other semiconductor nanocrystals such as germanium, silicon germanium, and SiC similar to silicon nanocrystals can be used. It is.

本発明の光電変換膜積層型撮像素子は、デジタルカメラ、ビデオカメラ、ファクシミリ、スキャナ、複写機等に用いる撮像素子として利用可能であり、また、バイオセンサや化学センサなどの光センサとしても利用可能である。   The photoelectric conversion film laminated image sensor of the present invention can be used as an image sensor used in a digital camera, a video camera, a facsimile, a scanner, a copying machine, etc., and can also be used as an optical sensor such as a biosensor or a chemical sensor. It is.

本発明の第1の実施形態に係る光電変換膜積層型固体撮像素子の1画素分の断面模式図である。It is a cross-sectional schematic diagram for 1 pixel of the photoelectric converting film laminated | stacked solid-state image sensor which concerns on the 1st Embodiment of this invention. 図1に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 3 is a manufacturing process diagram of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 3 is a manufacturing process diagram of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 3 is a manufacturing process diagram of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 図1に示す光電変換膜積層型固体撮像素子の光電変換膜を陽極酸化して製造する陽極酸化模式図である。FIG. 2 is a schematic diagram of anodization produced by anodizing the photoelectric conversion film of the photoelectric conversion film stacked solid-state imaging device shown in FIG. 1. 本発明の第2の実施形態に係る光電変換膜積層型固体撮像素子の1画素分の断面模式図である。It is a cross-sectional schematic diagram for 1 pixel of the photoelectric conversion film laminated | stacked solid-state image sensor which concerns on the 2nd Embodiment of this invention. 図6に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 7 is a manufacturing process diagram of the photoelectric conversion film laminated solid-state imaging device shown in FIG. 6. 図6に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 7 is a manufacturing process diagram of the photoelectric conversion film laminated solid-state imaging device shown in FIG. 6. 図6に示す光電変換膜積層型固体撮像素子の製造工程図である。FIG. 7 is a manufacturing process diagram of the photoelectric conversion film laminated solid-state imaging device shown in FIG. 6.

符号の説明Explanation of symbols

1 半導体基板
2 赤色用の信号電荷蓄積領域
3 緑色用の信号電荷蓄積領域
4 青色用の信号電荷蓄積領域
11 赤色用の画素電極膜
13 赤色用の光電変換膜(多孔質シリコン層)
14 赤色用の共通電極膜
15 層間絶縁層
16 緑色用の画素電極膜
18 緑色用の光電変換膜(多孔質シリコン層)
19 緑色用の共通電極膜
20 層間絶縁層
21 青色用の画素電極膜
23 青色用の光電変換膜(多孔質シリコン層)
24 青色用の共通電極膜
25,26,27 縦配線(柱状電極)
DESCRIPTION OF SYMBOLS 1 Semiconductor substrate 2 Red signal charge storage area 3 Green signal charge storage area 4 Blue signal charge storage area 11 Red pixel electrode film 13 Red photoelectric conversion film (porous silicon layer)
14 Common electrode film for red 15 Interlayer insulating layer 16 Pixel electrode film for green 18 Photoelectric conversion film for green (porous silicon layer)
19 Green common electrode film 20 Interlayer insulating layer 21 Blue pixel electrode film 23 Blue photoelectric conversion film (porous silicon layer)
24 Blue common electrode film 25, 26, 27 Vertical wiring (columnar electrode)

Claims (6)

共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が半導体基板の上に積層され、前記画素電極膜と前記半導体基板に形成された電荷蓄積部とが柱状電極で接続される光電変換膜積層型固体撮像素子において、前記光電変換膜を多孔質シリコン層で構成したことを特徴とする光電変換膜積層型固体撮像素子。 A photoelectric conversion film sandwiched between a common electrode film and a pixel electrode film corresponding to a pixel is stacked on a semiconductor substrate, and the pixel electrode film and a charge storage portion formed on the semiconductor substrate are connected by a columnar electrode. A photoelectric conversion film laminated solid-state imaging device, wherein the photoelectric conversion film is composed of a porous silicon layer. 共通電極膜と画素対応の画素電極膜とによって挟まれた光電変換膜が絶縁層を介して半導体基板の上に少なくとも3層積層され、各層毎の光電変換膜に夫々被着される前記画素電極膜と前記半導体基板に形成された電荷蓄積部とが柱状電極で接続される光電変換膜積層型固体撮像素子において、第1層の前記光電変換膜の吸収ピークが420nm〜500nm、第2層の前記光電変換膜の吸収ピークが500nm〜580nm、第3層の前記光電変換膜の吸収ピークが580nm〜660nmとなるように各光電変換膜を多孔質シリコン層で構成したことを特徴とする光電変換膜積層型固体撮像素子。 The photoelectric conversion film sandwiched between the common electrode film and the pixel electrode film corresponding to the pixel is laminated on the semiconductor substrate via the insulating layer, and the pixel electrode is attached to the photoelectric conversion film for each layer. In a photoelectric conversion film stacked solid-state imaging device in which a film and a charge storage portion formed on the semiconductor substrate are connected by a columnar electrode, the absorption peak of the photoelectric conversion film of the first layer is 420 nm to 500 nm, Each photoelectric conversion film is composed of a porous silicon layer so that the absorption peak of the photoelectric conversion film is 500 nm to 580 nm, and the absorption peak of the photoelectric conversion film of the third layer is 580 nm to 660 nm. Film stack type solid-state imaging device. 前記多孔質シリコン層は、ポリシリコン層を陽極酸化することで製造したものであることを特徴とする請求項1または請求項2に記載の光電変換膜積層型固体撮像素子。 3. The photoelectric conversion film stacked solid-state imaging device according to claim 1, wherein the porous silicon layer is manufactured by anodizing a polysilicon layer. 4. 前記画素電極膜は、対応の前記光電変換膜の前記半導体基板側に設けられることを特徴とする請求項1乃至請求項3のいずれかに記載の光電変換膜積層型固体撮像素子。 4. The photoelectric conversion film stacked solid-state imaging device according to claim 1, wherein the pixel electrode film is provided on the semiconductor substrate side of the corresponding photoelectric conversion film. 5. 前記画素電極膜は、対応の前記光電変換膜の光入射側に設けられることを特徴とする請求項1乃至請求項3のいずれかに記載の光電変換膜積層型固体撮像素子。 4. The photoelectric conversion film stacked solid-state imaging device according to claim 1, wherein the pixel electrode film is provided on a light incident side of the corresponding photoelectric conversion film. 5. 信号読出回路が形成された半導体基板の上に絶縁層を介して電極膜を形成し、該電極膜の上にポリシリコン層を製膜し、フッ酸を含む溶液中で前記電極膜と前記溶液との間に電流を流し前記ポリシリコン層を陽極酸化して前記多孔質シリコン層を形成することを特徴とする請求項1乃至請求項5のいずれかに記載の光電変換膜積層型固体撮像素子の製造方法。 An electrode film is formed on a semiconductor substrate on which a signal readout circuit is formed via an insulating layer, a polysilicon layer is formed on the electrode film, and the electrode film and the solution are contained in a solution containing hydrofluoric acid. 6. The photoelectric conversion film stacked solid-state imaging device according to claim 1, wherein a current is passed between the first and second polysilicon layers, and the polysilicon layer is anodized to form the porous silicon layer. Manufacturing method.
JP2005058869A 2005-03-03 2005-03-03 Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same Pending JP2006245284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005058869A JP2006245284A (en) 2005-03-03 2005-03-03 Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005058869A JP2006245284A (en) 2005-03-03 2005-03-03 Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same

Publications (1)

Publication Number Publication Date
JP2006245284A true JP2006245284A (en) 2006-09-14

Family

ID=37051381

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005058869A Pending JP2006245284A (en) 2005-03-03 2005-03-03 Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same

Country Status (1)

Country Link
JP (1) JP2006245284A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066909A2 (en) * 2007-11-20 2009-05-28 Siliconfile Technologies Inc. Unit pixel of image sensor including photodiode having stacking structure
WO2016002576A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
JP2016033977A (en) * 2014-07-31 2016-03-10 キヤノン株式会社 Photoelectric conversion device and imaging system
WO2017163559A1 (en) * 2016-03-23 2017-09-28 ソニー株式会社 Solid-state imaging element and electronic device
JP2021519427A (en) * 2018-03-29 2021-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pixel definition in porous silicon quantum dot radiation detectors
WO2021161134A1 (en) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 Imaging device
US11910625B2 (en) 2019-02-20 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Imaging device and method for driving imaging device

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009066909A3 (en) * 2007-11-20 2009-08-27 Siliconfile Technologies Inc. Unit pixel of image sensor including photodiode having stacking structure
WO2009066909A2 (en) * 2007-11-20 2009-05-28 Siliconfile Technologies Inc. Unit pixel of image sensor including photodiode having stacking structure
US10211250B2 (en) 2014-07-03 2019-02-19 Sony Semiconductor Solutions Corporation Solid-state image sensor electronic device
WO2016002576A1 (en) * 2014-07-03 2016-01-07 ソニー株式会社 Solid-state imaging device and electronic device
JPWO2016002576A1 (en) * 2014-07-03 2017-04-27 ソニーセミコンダクタソリューションズ株式会社 Solid-state imaging device and electronic device
JP2016033977A (en) * 2014-07-31 2016-03-10 キヤノン株式会社 Photoelectric conversion device and imaging system
WO2017163559A1 (en) * 2016-03-23 2017-09-28 ソニー株式会社 Solid-state imaging element and electronic device
US10651222B2 (en) 2016-03-23 2020-05-12 Sony Corporation Solid-state imaging device and electronic apparatus
US11411034B2 (en) 2016-03-23 2022-08-09 Sony Corporation Solid-state imaging device and electronic apparatus
JP2021519427A (en) * 2018-03-29 2021-08-10 コーニンクレッカ フィリップス エヌ ヴェKoninklijke Philips N.V. Pixel definition in porous silicon quantum dot radiation detectors
JP7191116B2 (en) 2018-03-29 2022-12-16 コーニンクレッカ フィリップス エヌ ヴェ Pixel definition in porous silicon quantum dot radiation detectors
US11910625B2 (en) 2019-02-20 2024-02-20 Panasonic Intellectual Property Management Co., Ltd. Imaging device and method for driving imaging device
WO2021161134A1 (en) * 2020-02-14 2021-08-19 株式会社半導体エネルギー研究所 Imaging device

Similar Documents

Publication Publication Date Title
JP5050063B2 (en) Solid-state imaging device
US7476904B2 (en) Photoelectric converting film stack type solid-state image pickup device
US7760254B2 (en) Single plate-type color solid-state image sensing device
JP4741015B2 (en) Image sensor
JP4547281B2 (en) Photoelectric conversion film stack type solid-state imaging device
US7400023B2 (en) Photoelectric converting film stack type solid-state image pickup device and method of producing the same
JP4500706B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP4924617B2 (en) Solid-state image sensor, camera
US7339216B1 (en) Vertical color filter sensor group array with full-resolution top layer and lower-resolution lower layer
JP2006245284A (en) Photoelectric conversion film stacked type solid-state image sensing device and method of manufacturing same
JP2015106621A (en) Solid-state imaging element and manufacturing method, and electronic equipment
EP3340305B1 (en) Electronic devices and methods of manufacturing the same
JP2007027744A (en) Photodetection system and module
JP4572130B2 (en) Solid-state image sensor
JP2016033972A (en) Imaging apparatus and imaging system
JP2006245285A (en) Photoelectric conversion film stacked type solid-state image sensing device
US20220028913A1 (en) Light detecting element and photoelectric conversion device
TW202224201A (en) Imaging element, stacked-type imaging element, solid-state imaging device, and driving method for solid-state imaging device
JP4500702B2 (en) Photoelectric conversion film stack type solid-state imaging device
JP2006245527A (en) Solid state imaging element
JP2005353626A (en) Photoelectric conversion film laminated solid state imaging element and its manufacturing method
JP2005347599A (en) Color photo detector and imaging device
JP2005303284A (en) Photoelectric film laminated solid-state imaging device
JP2006210497A (en) Photoelectric conversion layer stacked solid-state imaging element and its signal correction method
JP2005303273A (en) Photoelectric conversion film stacked solid-state image sensor

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061124