JP2006243760A - Spatial light modulating device - Google Patents

Spatial light modulating device Download PDF

Info

Publication number
JP2006243760A
JP2006243760A JP2006162297A JP2006162297A JP2006243760A JP 2006243760 A JP2006243760 A JP 2006243760A JP 2006162297 A JP2006162297 A JP 2006162297A JP 2006162297 A JP2006162297 A JP 2006162297A JP 2006243760 A JP2006243760 A JP 2006243760A
Authority
JP
Japan
Prior art keywords
light
spatial light
incident
liquid crystal
readout
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006162297A
Other languages
Japanese (ja)
Other versions
JP4551363B2 (en
Inventor
Yasunori Igasaki
泰則 伊ケ崎
Narihiro Yoshida
成浩 吉田
Haruyoshi Toyoda
晴義 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hamamatsu Photonics KK
Original Assignee
Hamamatsu Photonics KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hamamatsu Photonics KK filed Critical Hamamatsu Photonics KK
Priority to JP2006162297A priority Critical patent/JP4551363B2/en
Publication of JP2006243760A publication Critical patent/JP2006243760A/en
Application granted granted Critical
Publication of JP4551363B2 publication Critical patent/JP4551363B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a spatial light modulating device with high efficiency of using light by the help of a reflection type spatial light modulator. <P>SOLUTION: The readout light in the spatial light modulating device using the reflection type spatial light modulator is P polarized light which is made diagonally incident on a light reflection layer 17. The liquid crystal in the light reflection layer 17 is so oriented that liquid crystal molecules incline within the plane inclusive of both optical axes of readout light which is incident light and modulation light which is exit light i.e. the plane parallel to the normal plane by accompanying the voltage application by a driving circuit 12, for example, to attain horizontal orientation or perpendicular orientation. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶を光変調材料とする空間光変調装置に関し、特に反射型空間光変調器を用いた空間光変調装置に関する。   The present invention relates to a spatial light modulation device using liquid crystal as a light modulation material, and more particularly to a spatial light modulation device using a reflective spatial light modulator.

空間光変調装置には、強度変調型と位相変調型の2つのタイプがある。前者の強度変調型は、液晶テレビやプロジェクタのライトバルブなどに用いられるタイプのものであり、多くの空間光変調装置はこのタイプである。一方、光情報処理やホログラム処理などの分野では後者の位相変調型が有望と考えられている。というのは、位相変調型は強度変調型と異なり、光の利用効率を高くすることができるからである。このような位相変調型の空間光変調器を利用したシステムについては、J・グルックスタットらが"Loseless Light Projection",Optics Letters Vol.22, No.18で開示している。   There are two types of spatial light modulators: intensity modulation type and phase modulation type. The former intensity modulation type is a type used for a light valve of a liquid crystal television or a projector, and many spatial light modulation devices are of this type. On the other hand, the latter phase modulation type is considered promising in fields such as optical information processing and hologram processing. This is because, unlike the intensity modulation type, the phase modulation type can increase the light use efficiency. A system using such a phase modulation type spatial light modulator is disclosed in J. Gruxstadt et al. In "Loseless Light Projection", Optics Letters Vol.22, No.18.

反射型の空間光変調装置の場合、透過型と異なり、読み出し光の入射面と変調光の出射面は同一面であるので、通常はハーフミラーを用いて変調光を読み出し光から分離している。この結果、光の利用効率が下がり、位相変調型のメリットが失われてしまう。ハーフミラーを使用しないシステムとしては、読み出し光を入射面に対して斜めに入射させることで、読み出し光と変調光の光軸をずらす方法があるが、液晶層に斜めに光を入射させた場合、変調光の偏波面が回転するため、垂直入射と比較して低い回折効率しか得られない。この結果、低い光利用効率しか得られないという問題があった。   In the case of a reflective spatial light modulation device, unlike the transmission type, the incident surface of the readout light and the exit surface of the modulated light are the same surface. Therefore, the modulated light is usually separated from the readout light using a half mirror. . As a result, the light utilization efficiency is lowered, and the merit of the phase modulation type is lost. As a system that does not use a half mirror, there is a method in which the optical axis of the readout light and the modulated light is shifted by making the readout light incident obliquely on the incident surface, but when the light is incident obliquely on the liquid crystal layer Since the polarization plane of the modulated light rotates, only a low diffraction efficiency can be obtained as compared with normal incidence. As a result, there is a problem that only low light utilization efficiency can be obtained.

そこで、本発明は、上記問題点に鑑みて、反射型空間光変調器を利用し、光の利用効率の高い空間光変調装置を提供することを課題とする。   In view of the above problems, an object of the present invention is to provide a spatial light modulator that uses a reflective spatial light modulator and has high light utilization efficiency.

上記課題を解決するため、液晶を光変調材料とする光変調層と光反射層とを有し、該光変調層に光反射層の反対側から入射させた読み出し光を該光反射層で反射させて光変調層を再び通過させることで2回光変調を行い変調光を入射面側から出力する位相変調型の反射型空間光変調器と、反射型空間光変調器に画像情報を書き込むための書き込み手段と、反射型空間光変調器の入射面側に配置され、読み出し光の光軸と反射型空間光変調器の入射面の法線とを含む法面内に偏光方向を有する直線偏光の光を読み出し光として反射型空間光変調器に入射させる読み出し光入射手段と、を備え、変調光もまた法面内に偏光方向を有する直線偏光の光であって、光変調層内の液晶は、電圧印加に伴って、読み出し光と変調光の両方の光軸を含む面と平行な面内で液晶分子が傾斜するよう配向されていることを特徴とする。   In order to solve the above-mentioned problem, a light modulation layer using a liquid crystal as a light modulation material and a light reflection layer are provided, and readout light incident on the light modulation layer from the opposite side of the light reflection layer is reflected by the light reflection layer. In order to write the image information in the reflection type spatial light modulator and the phase modulation type reflection type spatial light modulator that performs the light modulation twice and outputs the modulated light from the incident surface side by passing the light modulation layer again. Linearly polarized light having a polarization direction within a normal plane that is disposed on the incident surface side of the reflective spatial light modulator and includes the optical axis of the readout light and the normal of the incident surface of the reflective spatial light modulator Reading light incident means for making the reflected light enter the reflective spatial light modulator, and the modulated light is also linearly polarized light having a polarization direction in the normal plane, and the liquid crystal in the light modulation layer Is a plane that includes the optical axes of both the readout light and the modulated light when a voltage is applied. Liquid crystal molecules in the line plane is characterized in that it is oriented to be inclined.

これによれば、読み出し光の光軸と空間光変調器の入射面の法線を含む法面内に偏光方向を有する直線偏光の読み出し光を斜めに入射させると、読み出し光は、読み出し光の光軸と空間光変調器の入射面の法線を含む法面内に偏光方向を有する光となる。光変調層内の液晶は、電圧印加に伴いこの法面内で傾斜するように配置されているので、読み出し光の偏光と液晶分子の配向方向に捻じれが生じないので、偏波面を回転させることなく位相変調を施すことができる。反射光も同様であるから最終的に出力される変調光の偏波面は入射光と同一であり、法面内に偏光方向を有する直線偏光の光として出力される。したがって、垂直入射時と同様に高い回折効率を保つことが可能である。   According to this, when linearly-polarized readout light having a polarization direction is incident obliquely within a normal plane including the optical axis of the readout light and the normal of the entrance surface of the spatial light modulator, the readout light is The light has a polarization direction within the normal plane including the normal axis of the optical axis and the incident surface of the spatial light modulator. Since the liquid crystal in the light modulation layer is arranged so as to be inclined in this normal plane with voltage application, the polarization plane of the readout light and the orientation direction of the liquid crystal molecules are not twisted. Phase modulation can be performed without any problem. Since the reflected light is the same, the polarization plane of the finally output modulated light is the same as the incident light, and is output as linearly polarized light having a polarization direction within the normal plane. Therefore, it is possible to maintain high diffraction efficiency as in the case of normal incidence.

変調光の出射光路上に配置され、変調光をフーリエ変換するフーリエ変換レンズをさらに備えることが好ましい。   It is preferable to further include a Fourier transform lens that is arranged on the outgoing light path of the modulated light and that performs Fourier transform on the modulated light.

情報出力用レーザダイオードアレイを備える第1の並列演算ボードと、情報入力用受光器アレイを備える第2の並列演算ボードとの間での素子間の接続を切り替える空間光変調装置であって、第1の並列演算ボードの情報出力用レーザダイオードアレイは、読み出し光を反射型空間光変調器に入射させる読み出し光入射手段であり、第1の並列演算ボードから出力される読み出し光を反射型空間光変調器に入射させるとともに、変調光を第2の並列演算ボードの情報入力用受光器アレイへ入射させるプリズムと、読み出し光及び変調光をフーリエ変換するフーリエ変換レンズと、をさらに備えることが好ましい。   A spatial light modulation device that switches connection between elements between a first parallel operation board including an information output laser diode array and a second parallel operation board including an information input light receiver array, The laser diode array for information output of one parallel operation board is read light incident means for causing the read light to enter the reflective spatial light modulator, and the read light output from the first parallel operation board is reflected to the reflective spatial light. It is preferable to further include a prism that allows the modulated light to be incident on the information input light receiver array of the second parallel operation board and a Fourier transform lens that performs Fourier transform on the read light and the modulated light.

書き込み手段は、書き込み光を出射する書き込み光源と、書き込み光が通過する際に所定の画像情報を当該書き込み光に書き込む液晶テレビと、書き込み光に書き込む画像情報を制御する制御手段と、を有することが好ましい。   The writing means includes a writing light source that emits writing light, a liquid crystal television that writes predetermined image information to the writing light when the writing light passes, and a control means that controls the image information written to the writing light. Is preferred.

読み出し光入射手段は、法面内に偏光方向を有するP偏光の光を読み出し光として反射型空間光変調器に入射させ、変調光もまた法面内に偏光方向を有するP偏光の光であってもよい。   The reading light incident means causes P-polarized light having a polarization direction in the normal plane to enter the reflective spatial light modulator as read light, and the modulated light is also P-polarized light having a polarization direction in the normal plane. May be.

読み出し光入射手段がレーザであることが好ましい。   The reading light incident means is preferably a laser.

光変調層内の液晶は、垂直配向あるいは水平配向処理されていることが好ましい。液晶を垂直配向、あるいは水平配向処理することにより液晶分子は、所定の面内に捻れなしに配列される。この所定の面を法面に合わせることで偏波面の回転なしに位相変調を施すことが容易になる。   The liquid crystal in the light modulation layer is preferably subjected to vertical alignment or horizontal alignment treatment. Liquid crystal molecules are arranged in a predetermined plane without twisting by subjecting the liquid crystal to vertical alignment or horizontal alignment treatment. By aligning the predetermined plane with the slope, it becomes easy to perform phase modulation without rotation of the polarization plane.

読み出し光入射手段は、読み出し光を反射型空間光変調器の光反射層に斜めに入射させることが好ましい。   The reading light incident means preferably causes the reading light to enter the light reflection layer of the reflective spatial light modulator obliquely.

本発明によれば、読み出し光に法面内に偏光方向を有する直線偏光を斜め入射で用い、空間光変調器の光変調層内の液晶を、電圧印加に際して読み出し光の法面に平行な面内で液晶分子が傾斜するように配向しているので、光変調に際して光の偏波面が回転することがない。そして、空間光変調器に斜めに光を入反射させるので、入射光軸と出射光軸が分離され、入射、出射の光学系の配置の自由度が増し、光の利用効率が高められる。   According to the present invention, the linearly polarized light having the polarization direction in the normal plane is used for the read light at an oblique incidence, and the liquid crystal in the light modulation layer of the spatial light modulator is a plane parallel to the normal plane of the read light when a voltage is applied. Since the liquid crystal molecules are aligned so as to be inclined, the plane of polarization of light does not rotate during light modulation. Since the light is obliquely incident and reflected on the spatial light modulator, the incident optical axis and the outgoing optical axis are separated, the degree of freedom of arrangement of the incident and outgoing optical systems is increased, and the light use efficiency is increased.

以下、添付図面を参照して本発明の好適な実施の形態について説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては可能な限り同一の参照番号を附し、重複する説明は省略する。   Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. In order to facilitate the understanding of the description, the same reference numerals are given to the same components in the drawings as much as possible, and duplicate descriptions are omitted.

図1は、本発明に係る空間光変調装置の光変調層の構成を示す概略断面図であり、図2は、この光変調層を有する光変調器部分の構成を示す概略断面図であり、図3は、この光変調器を有する本発明に係る空間光変調装置の第1の実施形態を示す概略図である。   FIG. 1 is a schematic cross-sectional view showing a configuration of a light modulation layer of a spatial light modulation device according to the present invention, and FIG. 2 is a schematic cross-sectional view showing a configuration of a light modulator portion having this light modulation layer. FIG. 3 is a schematic diagram showing a first embodiment of a spatial light modulation device according to the present invention having this light modulator.

まず、図1、図2を参照して本発明に係る空間光変調装置に用いられる空間光変調器の構造について説明する。   First, the structure of the spatial light modulator used in the spatial light modulation device according to the present invention will be described with reference to FIGS.

図2に示される空間光変調器(SLM)1は、書き込み光の入射面に入射光の不要な反射を防止するARコート11を施したガラス基板12の入射面と反対の面に、ITO13を介して入射光の強度に応じて抵抗が変化するアモルファスシリコン(a−Si)からなる光導電層14と誘電体多層膜製のミラー層15が積層されている。一方、読み出し光側は、同じくARコート22を施したガラス基板21の入射面と反対の面にITO20が積層されており、ミラー層15とITO20上に配向層16、19がそれぞれ設けられて、これらの配向層16、19同士を対向させて枠状のスペーサー18を介して接続し、スペーサー18の枠内にネマチック液晶を充填して液晶層を設けて、光変調層17を形成している。配向層16により、光変調層17内のネマチック液晶は配向層16の表面に対して、平行あるいは垂直に配向されている。そして、ITO13、20に駆動装置2が接続されて、両者の間に所定の電圧が印加されている。   The spatial light modulator (SLM) 1 shown in FIG. 2 has ITO 13 on the surface opposite to the incident surface of the glass substrate 12 on which the AR coating 11 that prevents unnecessary reflection of incident light is applied to the incident surface of the writing light. A photoconductive layer 14 made of amorphous silicon (a-Si) whose resistance changes according to the intensity of incident light and a mirror layer 15 made of a dielectric multilayer film are laminated. On the other hand, on the reading light side, ITO 20 is laminated on the surface opposite to the incident surface of the glass substrate 21 similarly provided with the AR coating 22, and the alignment layers 16 and 19 are provided on the mirror layer 15 and the ITO 20, respectively. The alignment layers 16 and 19 are connected to each other through a frame-shaped spacer 18, and a liquid crystal layer is provided by filling a frame of the spacer 18 with a nematic liquid crystal to form a light modulation layer 17. . By the alignment layer 16, the nematic liquid crystal in the light modulation layer 17 is aligned parallel or perpendicular to the surface of the alignment layer 16. And the drive apparatus 2 is connected to ITO13 and 20, and the predetermined voltage is applied between both.

ここで、光変調層17内の液晶の配向について図1を参照して説明する。図1(a)は、光変調層17として平行配向液晶型を用いた場合を、同図(b)は、垂直配向液晶型を用いた場合をそれぞれ示している。   Here, the alignment of the liquid crystal in the light modulation layer 17 will be described with reference to FIG. FIG. 1A shows a case where a parallel alignment liquid crystal type is used as the light modulation layer 17, and FIG. 1B shows a case where a vertical alignment liquid crystal type is used.

図1(a)及び(b)に示されるように、図の紙面に垂直な方向をX方向とし、紙面をYZ平面とし、光変調層17の厚み方向をZ方向とする。本発明に係る空間光変調装置においては、後述するように、光変調層17に入射する光は、図1(a)及び(b)におけるYZ平面を法面としている。ここで、法面とは、直線偏光の光がミラーに入射して反射される際に入射光軸、反射光軸、ミラーの法線のいずれをも含む面を指すものである。そして、入射光はP偏光、すなわち、この法線内に偏光方向を有している直線偏光の光である。そして、光変調層17内の液晶は、光変調層17に電圧を印加した際にこの法面に平行な面内で配向方向が傾くように配向されている。このように光変調層17内の液晶分子を配向させることで、入射した光の偏波面が回転することがなく、出射光の偏光方向もP偏光のまま維持される。   As shown in FIGS. 1A and 1B, the direction perpendicular to the paper surface in the figure is the X direction, the paper surface is the YZ plane, and the thickness direction of the light modulation layer 17 is the Z direction. In the spatial light modulation device according to the present invention, as described later, the light incident on the light modulation layer 17 has the YZ plane in FIGS. 1A and 1B as a slope. Here, the normal plane refers to a plane including any of the incident optical axis, the reflected optical axis, and the mirror normal when linearly polarized light is incident on the mirror and reflected. The incident light is P-polarized light, that is, linearly polarized light having a polarization direction within the normal. The liquid crystal in the light modulation layer 17 is aligned so that the alignment direction is inclined in a plane parallel to the normal plane when a voltage is applied to the light modulation layer 17. By aligning the liquid crystal molecules in the light modulation layer 17 in this way, the polarization plane of the incident light is not rotated, and the polarization direction of the emitted light is maintained as P-polarized light.

次に、図3を参照して本発明に係る光変調装置の第1の実施形態について説明する。図2に示されるSLM1の書き込み光入射面側に、書き込み光の光源3と、書き込み光の画像を表示する透過型液晶テレビ5と、書き込み光に含まれる画像信号をSLM1の光導電層14に結像させる結像レンズ6とが配置されており、透過型液晶テレビ6には、画像表示を制御する書き込み用電気信号発生器4が接続されている。   Next, a first embodiment of the light modulation device according to the present invention will be described with reference to FIG. A light source 3 for writing light, a transmissive liquid crystal television 5 for displaying an image of the writing light, and an image signal included in the writing light on the photoconductive layer 14 of the SLM 1 on the writing light incident surface side of the SLM 1 shown in FIG. An imaging lens 6 that forms an image is disposed, and a writing electric signal generator 4 that controls image display is connected to the transmissive liquid crystal television 6.

一方、SLM1の読み出し光入射面側には、この入射面の法面内で法線と角度θ傾けられた光軸上に、読み出し光光源となるHe−Neレーザ7と、レンズ8と、スペイシャルフィルタ9と、コリメートレンズ10とが配置されており、出射光路上には、フーリエ変換レンズ30が配置されている。   On the other hand, on the reading light incident surface side of the SLM 1, a He—Ne laser 7 serving as a reading light source, a lens 8, and a spacer are disposed on an optical axis inclined at an angle θ with respect to the normal line within the normal surface of the incident surface. A Schal filter 9 and a collimating lens 10 are arranged, and a Fourier transform lens 30 is arranged on the outgoing optical path.

続いて、本実施形態の動作を説明する。書き込み光側の光源3から出射された書き込み光には、液晶テレビ5を通過する際に、電気信号発生器4の制御により所定の画像情報が書き込まれる。この画像情報を有する書き込み光は、結像レンズ6によりSLM1の光導電層14に結像される。SLM1の両ITO13、20間には駆動装置2により数ボルトの交流電圧が印加されているが、光導電層14に書き込まれた画像によって、光導電層14は画素位置によって電気的インピーダンスが変化する。この結果、光変調層17は画素位置によって印加される電圧の分圧が異なってくる。この場合、光源3、液晶テレビ5、及び電気信号発生器(制御手段)4がSLM1に画像情報を書き込むための書き込み手段として機能する。   Next, the operation of this embodiment will be described. In the writing light emitted from the light source 3 on the writing light side, predetermined image information is written under the control of the electric signal generator 4 when passing through the liquid crystal television 5. The writing light having this image information is imaged on the photoconductive layer 14 of the SLM 1 by the imaging lens 6. An AC voltage of several volts is applied between the ITOs 13 and 20 of the SLM 1 by the driving device 2, but the electrical impedance of the photoconductive layer 14 varies depending on the pixel position depending on the image written on the photoconductive layer 14. . As a result, the divided voltage applied to the light modulation layer 17 varies depending on the pixel position. In this case, the light source 3, the liquid crystal television 5, and the electric signal generator (control means) 4 function as writing means for writing image information into the SLM 1.

一方、He−Neレーザ7から出射された直線偏光光は、レンズ8、スペイシャルフィルタ9、コリメートレンズ9により平行光に調整され、P偏光としてSLM1の光変調層17へと入射する。前述したように、光変調層17は画素位置によって印加される電圧の分圧が異なるので、この電圧に応じて液晶分子の傾きが変化する。このとき、液晶分子は法面内でその配向方向が変化する。この結果、画素位置によって光変調層17の屈折率が変化する。光変調層17に入射した読み出し光はこの屈折率変化により位相変調され、ミラー層15により反射されて、入射面から再び出力される。このときに、偏波面の回転が起こらないので、効率の良い位相変調が行なえる。出射された読み出し光をフーリエ変換レンズ30でフーリエ変換することにより、所定のホログラム画像を表示することができる。この場合、He−Neレーザ7、レンズ8、スペイシャルフィルタ9、及びコリメートレンズ10がSLM1に読み出し光を入射させる読み出し光入射手段として機能する。   On the other hand, the linearly polarized light emitted from the He—Ne laser 7 is adjusted to parallel light by the lens 8, the spatial filter 9 and the collimating lens 9, and enters the light modulation layer 17 of the SLM 1 as P-polarized light. As described above, since the divided voltage applied to the light modulation layer 17 varies depending on the pixel position, the inclination of the liquid crystal molecules changes according to this voltage. At this time, the orientation direction of the liquid crystal molecules changes within the slope. As a result, the refractive index of the light modulation layer 17 changes depending on the pixel position. The readout light incident on the light modulation layer 17 is phase-modulated by this refractive index change, reflected by the mirror layer 15, and output again from the incident surface. At this time, since the polarization plane does not rotate, efficient phase modulation can be performed. A predetermined hologram image can be displayed by Fourier transforming the emitted readout light with the Fourier transform lens 30. In this case, the He—Ne laser 7, the lens 8, the spatial filter 9, and the collimating lens 10 function as reading light incident means that causes the reading light to enter the SLM 1.

本発明者らは、本発明に係る空間光変調装置の光利用効率向上を確認するための比較実験を行なったので、以下、その結果について報告する。   The present inventors conducted a comparative experiment for confirming the improvement of the light utilization efficiency of the spatial light modulation device according to the present invention.

実験は、図3に示される装置において、液晶テレビ6に縦じま画像を表示させ、表示させる縦じまの本数、つまり空間周波数と読み出し光の入出射角度θを変えた時に、SLM1から出射される読み出し光の1次回折光の強度割合、すなわち回折効率を測定したものである。実験に際しては、SLM1の光変調層17として平行配向液晶を用い、本発明に係る図1(a)に示される配向を用いた実施例と、図4に示されるように、読み出し光にS偏光を用い、読み出し光の法面に液晶の配向方向を直交して配置した比較例とで、比較を行なった。   In the apparatus shown in FIG. 3, when the vertical stripe image is displayed on the liquid crystal television 6 and the number of vertical stripes to be displayed, that is, the spatial frequency and the incident / exit angle θ of the readout light is changed, the readout light emitted from the SLM 1 is used. The intensity ratio of the first-order diffracted light, that is, the diffraction efficiency was measured. In the experiment, parallel alignment liquid crystal was used as the light modulation layer 17 of the SLM 1, and the embodiment using the alignment shown in FIG. 1A according to the present invention and the S-polarized light as shown in FIG. Comparison was made with a comparative example in which the alignment direction of the liquid crystal was arranged orthogonal to the slope of the readout light.

図5に実施例の回折効率の実験結果を、図6R>6に比較例の回折効率の実験結果をそれぞれ示す。   FIG. 5 shows the experimental results of the diffraction efficiency of the example, and FIG. 6 shows the experimental results of the diffraction efficiency of the comparative example.

実施例では、入出射角θが変化しても回折効率はほぼ一致して高い効率を示しているのに対し、比較例では、入出射角θが大きくなるほど回折効率が低下していることが確認された。実施例、つまり、本発明に係る第1の実施形態では、回折効率、つまり光の利用効率を高く維持したまま入出射角θを大きくとることができる。このため、読み出し光の入射光路と出射光路を追加の光学部材を用いることなく完全に分離することができる。したがって、高い光の利用効率を得ることができる。さらに、入射光路と出射光路の設計の自由度が増すという利点がある。   In the example, even when the incident / exit angle θ changes, the diffraction efficiencies are almost the same and show high efficiency, whereas in the comparative example, the diffraction efficiency decreases as the incident / exit angle θ increases. confirmed. In the first embodiment according to the present invention, that is, in the first embodiment of the present invention, the incident / exit angle θ can be increased while maintaining the diffraction efficiency, that is, the light utilization efficiency high. For this reason, the incident optical path and the outgoing optical path of the readout light can be completely separated without using an additional optical member. Therefore, high light utilization efficiency can be obtained. Further, there is an advantage that the degree of freedom in designing the incident optical path and the outgoing optical path is increased.

図7は、本発明に係る空間光変調装置の第2の実施形態を示す概略図である。この装置は、光で情報をやりとりする並列演算ボード40と50の間で各素子間の接続を切り替える光インターコネクション装置60である。   FIG. 7 is a schematic diagram showing a second embodiment of the spatial light modulation device according to the present invention. This device is an optical interconnection device 60 that switches connections between elements between parallel operation boards 40 and 50 that exchange information with light.

両並列演算ボード40、50は、それぞれ情報入力用の受光器アレイ41、51と情報出力用のレーザダイオードアレイ42、52を備えている。そして、光インターコネクション装置60は、並列演算ボード40のレーザダイオードアレイ42と並列演算ボード50の受光器アレイ51の間に配置されている。   Both parallel operation boards 40 and 50 include light receiving arrays 41 and 51 for information input and laser diode arrays 42 and 52 for information output, respectively. The optical interconnection device 60 is disposed between the laser diode array 42 of the parallel calculation board 40 and the light receiver array 51 of the parallel calculation board 50.

インターコネクション装置60は、図1、図2に示される構造のSLM1を備えており、その読み出し光入射面側には、入射面側からフーリエ変換レンズ30とプリズム61が配置されている。一方、書き込み光入射面側には、入射面側から結像レンズ6、書き込み画像表示用の透過型液晶テレビ5、光源3が配置され、液晶テレビ5は書き込み画像制御装置4に接続されている。   The interconnection device 60 includes the SLM 1 having the structure shown in FIGS. 1 and 2, and the Fourier transform lens 30 and the prism 61 are disposed on the reading light incident surface side from the incident surface side. On the other hand, an imaging lens 6, a transmissive liquid crystal television 5 for displaying a written image, and a light source 3 are arranged on the writing light incident surface side, and the liquid crystal television 5 is connected to the writing image control device 4. .

次に、この光インターコネクション装置60の動作を説明する。制御装置4を制御して液晶テレビ5に光路切替用のホログラムパターンを表示させ、光源3から書き込み光を出射させると、結像レンズ6を介して、液晶テレビ5に表示されたホログラムパターンがSLM1の光導電層14に結像される。この場合、光源3、液晶テレビ5、制御装置(制御手段)4、及び結像レンズ6がSLM1に画像情報を書き込むための書き込み手段として機能する。   Next, the operation of the optical interconnection device 60 will be described. When the controller 4 is controlled to display a hologram pattern for switching the optical path on the liquid crystal television 5 and write light is emitted from the light source 3, the hologram pattern displayed on the liquid crystal television 5 is converted into the SLM 1 via the imaging lens 6. An image is formed on the photoconductive layer 14. In this case, the light source 3, the liquid crystal television 5, the control device (control means) 4, and the imaging lens 6 function as writing means for writing image information to the SLM 1.

並列演算ボード40の出力信号は、レーザダイオードアレイ42により2次元あるいは1次元の画像情報として出力される。この画像は、プリズム61により反射され、フーリエ変換レンズ30を介してSLM1に導かれる。そして、SLM1の光変調層17へと入射される。液晶テレビ5に表示された光路切替用のホログラムパターンに応じて読み出し光は所定の光変調を受ける。こうして変調された画像は、再びフーリエ変換レンズ30を介してプリズム61により反射されて並列演算ボード50の受光器アレイ51へと入射する。液晶テレビ6に表示するホログラムイメージを変えることにより、並列演算ボード40のレーザダイオードアレイ42と並列演算ボード50の受光器アレイの任意の画素同士の接続を切り替えることが可能である。この場合、並列演算ボード40、及びレーザダイオードアレイ42がSLM1に読み出し光を入射させる読み出し光入射手段として機能する。   The output signal of the parallel operation board 40 is output as two-dimensional or one-dimensional image information by the laser diode array 42. This image is reflected by the prism 61 and guided to the SLM 1 via the Fourier transform lens 30. And it injects into the light modulation layer 17 of SLM1. The readout light undergoes predetermined light modulation in accordance with the optical path switching hologram pattern displayed on the liquid crystal television 5. The image thus modulated is reflected again by the prism 61 through the Fourier transform lens 30 and is incident on the light receiver array 51 of the parallel calculation board 50. By changing the hologram image displayed on the liquid crystal television 6, it is possible to switch the connection between arbitrary pixels of the laser diode array 42 of the parallel calculation board 40 and the light receiver array of the parallel calculation board 50. In this case, the parallel calculation board 40 and the laser diode array 42 function as read light incident means for causing the read light to enter the SLM 1.

読み出し光として直線偏光を用い、SLM1の液晶配向方向を図1(a)または(b)のように設定することで、高い回折効率を得ることができるので、並列演算ボード40、50間を確実に接続することができる。   Since linearly polarized light is used as the readout light and the liquid crystal alignment direction of the SLM 1 is set as shown in FIG. 1A or 1B, high diffraction efficiency can be obtained. Can be connected to.

本発明の空間光変調装置は、以上説明した実施形態に限られるものではなく、位相変調を利用する各種の空間光変調装置に適用可能である。例えば、コンピュータ合成ホログラム、光コンピューティングなどに適用できる。直線偏光の光源としては、各種のレーザを用いることができる。   The spatial light modulation device of the present invention is not limited to the embodiment described above, and can be applied to various spatial light modulation devices using phase modulation. For example, it can be applied to computer synthesized holograms, optical computing, and the like. Various lasers can be used as the linearly polarized light source.

また、液晶の配向方向は、図1(a)及び(b)に示される水平配向、垂直配向に限られるものではなく、ハイブリッド配向や傾斜配向であってもよい。ただし、電圧印加に際して液晶分子が法面内で傾斜するような方向に配向している必要があることは言うまでもない。   Further, the alignment direction of the liquid crystal is not limited to the horizontal alignment and the vertical alignment shown in FIGS. 1A and 1B, and may be a hybrid alignment or a tilt alignment. However, it goes without saying that the liquid crystal molecules need to be aligned in a direction inclined in the normal plane when a voltage is applied.

本発明に係る空間光変調装置の光変調層内の液晶配置を説明する図である。It is a figure explaining the liquid crystal arrangement | positioning in the light modulation layer of the spatial light modulation apparatus which concerns on this invention. 本発明に係る空間光変調装置に用いられる空間光変調器の構成を示す図である。It is a figure which shows the structure of the spatial light modulator used for the spatial light modulation apparatus which concerns on this invention. 本発明に係る空間光変調装置の第1の実施形態を示す図である。1 is a diagram showing a first embodiment of a spatial light modulation device according to the present invention. 比較例の空間光変調装置の光変調層内の液晶配置を説明する図である。It is a figure explaining the liquid crystal arrangement | positioning in the light modulation layer of the spatial light modulation apparatus of a comparative example. 第1の実施形態における回折効率の測定結果を示すグラフである。It is a graph which shows the measurement result of the diffraction efficiency in 1st Embodiment. 比較例における回折効率の測定結果を示すグラフである。It is a graph which shows the measurement result of the diffraction efficiency in a comparative example. 本発明に係る空間光変調装置の第2の実施形態を示す図である。It is a figure which shows 2nd Embodiment of the spatial light modulation apparatus which concerns on this invention.

符号の説明Explanation of symbols

1…空間光変調器、2…駆動装置、3…光源、5…液晶テレビ、6…結像レンズ、7…レーザ、13、20…ITO、14…光導電層、15…ミラー層、17…光変調層、30…フーリエ変換レンズ。 DESCRIPTION OF SYMBOLS 1 ... Spatial light modulator, 2 ... Drive apparatus, 3 ... Light source, 5 ... Liquid crystal television, 6 ... Imaging lens, 7 ... Laser, 13, 20 ... ITO, 14 ... Photoconductive layer, 15 ... Mirror layer, 17 ... Light modulation layer, 30 ... Fourier transform lens.

Claims (8)

液晶を光変調材料とする光変調層と光反射層とを有し、該光変調層に前記光反射層の反対側から入射させた読み出し光を該光反射層で反射させて前記光変調層を再び通過させることで2回光変調を行い変調光を入射面側から出力する位相変調型の反射型空間光変調器と、
前記反射型空間光変調器に画像情報を書き込むための書き込み手段と、
前記反射型空間光変調器の前記入射面側に配置され、前記読み出し光の光軸と前記反射型空間光変調器の前記入射面の法線とを含む法面内に偏光方向を有する直線偏光の光を前記読み出し光として前記反射型空間光変調器に入射させる読み出し光入射手段と、を備え、
前記変調光もまた前記法面内に偏光方向を有する直線偏光の光であって、
前記光変調層内の液晶は、電圧印加に伴って、前記読み出し光と前記変調光の両方の光軸を含む面と平行な面内で液晶分子が傾斜するよう配向されていることを特徴とする空間光変調装置。
A light modulation layer comprising a liquid crystal as a light modulation material; and a light reflection layer, wherein the light reflection layer reflects the read light incident on the light modulation layer from the opposite side of the light reflection layer. A phase modulation type reflective spatial light modulator that performs light modulation twice by passing the light again and outputs the modulated light from the incident surface side, and
Writing means for writing image information to the reflective spatial light modulator;
Linearly polarized light disposed on the incident surface side of the reflective spatial light modulator and having a polarization direction within a normal plane including the optical axis of the readout light and the normal of the incident surface of the reflective spatial light modulator Read light incident means for making the light of the above incident on the reflective spatial light modulator as the read light,
The modulated light is also linearly polarized light having a polarization direction in the normal plane,
The liquid crystal in the light modulation layer is oriented so that liquid crystal molecules are tilted in a plane parallel to a plane including the optical axes of both the readout light and the modulated light in accordance with voltage application. Spatial light modulation device.
前記変調光の出射光路上に配置され、前記変調光をフーリエ変換するフーリエ変換レンズをさらに備えることを特徴とする請求項1記載の空間光変調装置。   The spatial light modulation device according to claim 1, further comprising a Fourier transform lens arranged on an emission optical path of the modulated light and performing Fourier transform on the modulated light. 情報出力用レーザダイオードアレイを備える第1の並列演算ボードと、情報入力用受光器アレイを備える第2の並列演算ボードとの間での素子間の接続を切り替える空間光変調装置であって、
前記第1の並列演算ボードの前記情報出力用レーザダイオードアレイは、前記読み出し光を前記反射型空間光変調器に入射させる前記読み出し光入射手段であり、
前記第1の並列演算ボードから出力される前記読み出し光を前記反射型空間光変調器に入射させるとともに、前記変調光を前記第2の並列演算ボードの前記情報入力用受光器アレイへ入射させるプリズムと、
前記読み出し光及び前記変調光をフーリエ変換するフーリエ変換レンズと、をさらに備えることを特徴とする請求項1記載の空間光変調装置。
A spatial light modulation device that switches connection between elements between a first parallel operation board including an information output laser diode array and a second parallel operation board including an information input light receiver array,
The information output laser diode array of the first parallel operation board is the read light incident means for causing the read light to be incident on the reflective spatial light modulator.
A prism that causes the readout light output from the first parallel computing board to enter the reflective spatial light modulator and causes the modulated light to enter the information input light receiver array of the second parallel computing board. When,
The spatial light modulation device according to claim 1, further comprising a Fourier transform lens that Fourier transforms the readout light and the modulated light.
前記書き込み手段は、書き込み光を出射する書き込み光源と、前記書き込み光が通過する際に所定の画像情報を当該書き込み光に書き込む液晶テレビと、前記書き込み光に書き込む前記画像情報を制御する制御手段と、を有することを特徴とする請求項1〜3の何れか一項記載の空間光変調装置。   The writing means includes a writing light source that emits writing light, a liquid crystal television that writes predetermined image information to the writing light when the writing light passes, and a control means that controls the image information to be written to the writing light. The spatial light modulation device according to claim 1, wherein 前記読み出し光入射手段は、前記法面内に偏光方向を有するP偏光の光を前記読み出し光として前記反射型空間光変調器に入射させ、
前記変調光もまた前記法面内に偏光方向を有するP偏光の光であることを特徴とする請求項1〜4の何れか一項記載の空間光変調装置。
The readout light incident means causes P-polarized light having a polarization direction in the normal plane to enter the reflective spatial light modulator as the readout light,
The spatial light modulator according to claim 1, wherein the modulated light is also P-polarized light having a polarization direction in the normal plane.
前記読み出し光入射手段がレーザであることを特徴とする請求項1〜5の何れか一項記載の空間光変調装置。   6. The spatial light modulation device according to claim 1, wherein the reading light incident means is a laser. 前記光変調層内の液晶は、垂直配向あるいは水平配向処理されていることを特徴とする請求項1〜6の何れか一項記載の空間光変調装置。   The spatial light modulation device according to claim 1, wherein the liquid crystal in the light modulation layer is subjected to a vertical alignment process or a horizontal alignment process. 前記読み出し光入射手段は、前記読み出し光を前記反射型空間光変調器の前記光反射層に斜めに入射させることを特徴とする請求項1〜7の何れか一項記載の空間光変調装置。
The spatial light modulation device according to claim 1, wherein the readout light incident unit obliquely enters the readout light into the light reflection layer of the reflective spatial light modulator.
JP2006162297A 2006-06-12 2006-06-12 Spatial light modulator Expired - Fee Related JP4551363B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006162297A JP4551363B2 (en) 2006-06-12 2006-06-12 Spatial light modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006162297A JP4551363B2 (en) 2006-06-12 2006-06-12 Spatial light modulator

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP34582698A Division JP3878758B2 (en) 1998-12-04 1998-12-04 Spatial light modulator

Publications (2)

Publication Number Publication Date
JP2006243760A true JP2006243760A (en) 2006-09-14
JP4551363B2 JP4551363B2 (en) 2010-09-29

Family

ID=37050157

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006162297A Expired - Fee Related JP4551363B2 (en) 2006-06-12 2006-06-12 Spatial light modulator

Country Status (1)

Country Link
JP (1) JP4551363B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509215A (en) * 2012-01-25 2015-03-26 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Optical device and method
US10996399B2 (en) 2016-12-06 2021-05-04 Roadmap Systems Ltd Space-division multiplexed reconfigurable, wavelength selective switch

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643681A (en) * 1979-08-03 1981-04-22 Hughes Aircraft Co Method and device for displaying multimodeeimage using liquid crystal optical valve
JPH04158332A (en) * 1990-10-23 1992-06-01 Seiko Epson Corp Optical image processing device
JPH06230409A (en) * 1993-01-28 1994-08-19 Victor Co Of Japan Ltd Optical modulation element
JPH08234195A (en) * 1995-02-28 1996-09-13 Fuji Photo Film Co Ltd Spatial optical modulation element

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5643681A (en) * 1979-08-03 1981-04-22 Hughes Aircraft Co Method and device for displaying multimodeeimage using liquid crystal optical valve
JPH04158332A (en) * 1990-10-23 1992-06-01 Seiko Epson Corp Optical image processing device
JPH06230409A (en) * 1993-01-28 1994-08-19 Victor Co Of Japan Ltd Optical modulation element
JPH08234195A (en) * 1995-02-28 1996-09-13 Fuji Photo Film Co Ltd Spatial optical modulation element

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015509215A (en) * 2012-01-25 2015-03-26 ケンブリッジ・エンタープライズ・リミテッドCambridge Enterprise Limited Optical device and method
US9774930B2 (en) 2012-01-25 2017-09-26 Cambridge Enterprise Limited Optical device and methods
US10856057B2 (en) 2012-01-25 2020-12-01 Cambridge Enterprise Limited Optical device and methods
US10996399B2 (en) 2016-12-06 2021-05-04 Roadmap Systems Ltd Space-division multiplexed reconfigurable, wavelength selective switch

Also Published As

Publication number Publication date
JP4551363B2 (en) 2010-09-29

Similar Documents

Publication Publication Date Title
JP3878758B2 (en) Spatial light modulator
KR101505927B1 (en) Device for amplitude and phase modulation of light
US9158279B2 (en) Spatial light modulators, holographic 3-dimensional display apparatuses including the spatial light modulators, and methods of modulating spatial light
TWI810703B (en) Device for combining light beams which interact with adjacently arranged pixels of a light modulator
KR100225790B1 (en) Optical deflector optical scanner informational readout system and projector
KR100263210B1 (en) Polarisation Independent Optical Phase Modulator
US6348990B1 (en) Spatial light modulator and spatial light modulating method
US8711466B2 (en) Illumination unit for a direct-view display
JP4829850B2 (en) Optical modulator, display device, holographic device, and hologram recording device
CN111095090B (en) Holographic projector
JP2008203503A (en) Hologram reproducing apparatus, hologram reproducing method, and phase modulating element
JP5374495B2 (en) Optical modulator representing complex information
JP3141440B2 (en) Optical device
KR20140055974A (en) Beam combiner, method for fabricating the same, digital hologram image display device including the same
JP3257556B2 (en) Optical device
JP2001272636A (en) Laser beam machining device
CN113950643B (en) Spatial light modulation
JP4551363B2 (en) Spatial light modulator
JP3990534B2 (en) Laser processing equipment
JP3980822B2 (en) Image projection apparatus and image projection method
JP3539425B2 (en) Optical device
JP3473027B2 (en) Optical device
JP5846770B2 (en) Electrode structure of liquid crystal display panel and hologram recording apparatus
KR102697993B1 (en) Spatial Light Modulation
KR20220115620A (en) Light modulator with high light efficiency

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100706

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100709

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees