JP2006243547A - Driving control device and image forming apparatus - Google Patents
Driving control device and image forming apparatus Download PDFInfo
- Publication number
- JP2006243547A JP2006243547A JP2005061408A JP2005061408A JP2006243547A JP 2006243547 A JP2006243547 A JP 2006243547A JP 2005061408 A JP2005061408 A JP 2005061408A JP 2005061408 A JP2005061408 A JP 2005061408A JP 2006243547 A JP2006243547 A JP 2006243547A
- Authority
- JP
- Japan
- Prior art keywords
- characteristic value
- encoder
- angular displacement
- roller
- disk
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Control Or Security For Electrophotography (AREA)
- Devices For Conveying Motion By Means Of Endless Flexible Members (AREA)
- Control Of Stepping Motors (AREA)
- Transmission And Conversion Of Sensor Element Output (AREA)
- Electrophotography Configuration And Component (AREA)
Abstract
Description
この発明は、転写装置等に用いられる転写搬送ベルト等の無端移動部材を回動させる駆動ローラを駆動制御する駆動制御装置、およびその駆動制御装置を備えたカラープリンタやカラー複写機等の画像形成装置に関する。 The present invention relates to a drive control device that drives and controls a drive roller that rotates an endless moving member such as a transfer conveyance belt used in a transfer device and the like, and image formation such as a color printer and a color copier equipped with the drive control device. Relates to the device.
カラー画像形成装置におけるカラー画像形成の一般的な方法としては、複数の感光体上にそれぞれ異なる色で形成されるトナー画像を直接転写紙に重ねながら転写させる直接転写方式と、同じく色の異なるトナー画像を中間転写体に重ねながら転写させ、その後に転写紙に一括して転写させる中間転写方式がある。これらの方式は、共通して複数の感光体を転写紙または中間転写体に対向させて並べて配置するのでタンデム方式と呼ばれ、感光体毎にイエロー(Y)、マゼンタ(M)、シアン(C)、ブラック(K)の各色に対して、静電潜像の形成および現像などの電子写真プロセスを実行させ、直接転写方式では走行中の転写紙上に、中間転写方式においては走行中の中間転写体上に転写する。 As a general method of forming a color image in a color image forming apparatus, a direct transfer method in which toner images formed in different colors on a plurality of photosensitive members are transferred while being directly superimposed on a transfer sheet, and toners having the same color There is an intermediate transfer method in which an image is transferred while being superimposed on an intermediate transfer member, and then transferred onto a transfer sheet at once. These methods are commonly called a tandem method because a plurality of photosensitive members are arranged side by side facing a transfer paper or intermediate transfer member. For each photosensitive member, yellow (Y), magenta (M), cyan (C ), An electrophotographic process such as formation and development of an electrostatic latent image is executed for each color of black (K), and on the transfer paper in the direct transfer method, the intermediate transfer in the intermediate transfer method Transfer on the body.
これらの各方式を用いたタンデム方式のカラー画像形成装置では、直接転写方式にあっては、転写紙を担持しながら走行する無端ベルト(エンドレスベルト)を、中間転写方式にあっては、感光体から画像を受け取り担持する無端ベルトを採用するのが一般的である。そして、4個の感光体をそれぞれ含む作像ユニットを無端ベルトの一方の走行辺に沿って並設している。 In a tandem color image forming apparatus using each of these methods, an endless belt (endless belt) that runs while supporting transfer paper is used in the direct transfer method, and a photoconductor in the intermediate transfer method. It is common to employ an endless belt that receives and carries an image. Image forming units each including four photoconductors are arranged side by side along one running side of the endless belt.
上記タンデム方式のカラー画像形成装置では、各色のトナー画像を精度よく重ねることが色ズレの発生を防止する上で重要である。そのため、いずれの転写方式においても転写ベルトの速度変動による色ズレを回避するために、転写ユニットを構成する複数個の従動軸のうちの一つにエンコーダを取り付け、そのエンコーダの回転速度変動に応じて駆動ローラの回転速度をフィードバック制御するのが有効な手段となっている。 In the tandem color image forming apparatus, it is important to prevent the occurrence of color misregistration by accurately superimposing the toner images of the respective colors. Therefore, in any transfer system, an encoder is attached to one of the plurality of driven shafts constituting the transfer unit in order to avoid color misregistration due to the speed fluctuation of the transfer belt, and according to the rotational speed fluctuation of the encoder. Thus, feedback control of the rotational speed of the drive roller is an effective means.
このようなフィードバック制御を実現する最も一般的な方法として、比例制御(PI制御)がある。これはまず、エンコーダの目標角変位Ref(n)とエンコーダの検出角変位P(n−1)との差から位置偏差e(n)を演算する。そして、その演算結果の位置偏差e(n)にローパスフィルタをかけて高周波ノイズを除去するとともに、制御ゲインをかけ、更に一定の標準駆動パルス周波数を加える。これにより得られた駆動パルス周波数により、駆動ローラを駆動する駆動モータを制御することによって、常にエンコーダ出力が目標角変位で駆動されるように制御することができる。 The most common method for realizing such feedback control is proportional control (PI control). First, the position deviation e (n) is calculated from the difference between the target angular displacement Ref (n) of the encoder and the detected angular displacement P (n-1) of the encoder. Then, a low-pass filter is applied to the position deviation e (n) of the calculation result to remove high frequency noise, a control gain is applied, and a certain standard drive pulse frequency is added. By controlling the drive motor that drives the drive roller based on the obtained drive pulse frequency, the encoder output can be controlled to always be driven at the target angular displacement.
実際の制御としては、エンコーダパルスの出力の立上りエッジをカウントするカウンタと、制御周期(例えば1ms)毎にカウントするカウンタを使用し、制御周期(1ms)間に移動する目標角変位の演算結果と、制御周期毎に上記エンコーダカウント値を取得することで得られる検出角変位との差から、位置偏差を取得することができる。
具体的な演算としては、エンコーダが取り付けられている従動軸のローラ径をφ15.615とすると以下のようになる。
As actual control, a counter that counts the rising edge of the output of the encoder pulse and a counter that counts every control cycle (for example, 1 ms) are used, and the calculation result of the target angular displacement that moves during the control cycle (1 ms) The position deviation can be acquired from the difference from the detected angular displacement obtained by acquiring the encoder count value for each control cycle.
A specific calculation is as follows when the roller diameter of the driven shaft to which the encoder is attached is φ15.615.
e(n)=θ0×q−θ1×ne[rad]
なお、この式における各記号の意味は次のとおりである。
e(n)[rad]:今回のサンプリングにて演算された位置偏差
θ0[rad]:制御周期あたりの移動角度(=2π×V×10−3/15.615π[rad])
θ1[rad]:エンコーダ1パルスあたりの移動角度(=2π/p[rad]、ここでpはエンコーダのスリットピッチ)
q:制御周期タイマのカウント値
ne:エンコーダカウント値
V:ベルト線速[mm/s]
e (n) = θ0 × q−θ1 × ne [rad]
The meaning of each symbol in this formula is as follows.
e (n) [rad]: Position deviation calculated in the current sampling θ0 [rad]: Movement angle per control cycle (= 2π × V × 10 −3 /15.615π [rad])
θ1 [rad]: Movement angle per pulse of encoder (= 2π / p [rad], where p is the slit pitch of the encoder)
q: Count value of control cycle timer ne: Encoder count value V: Belt linear velocity [mm / s]
ここで例えば、制御周期1msでエンコーダの分解能を1回転当たり300パルスのものを使用し、転写ベルトを162mm/sで動作するようにフィードバック制御をかけた場合を想定すると以下のようになる。
θ0=2π×162×10−3/15.615π=0.0207487[rad]
θ1=2π×p=2π/300=0.0209439[rad]
以上の演算を制御周期毎に行うことで位置偏差を取得し、フィードバック制御を行う。
Here, for example, assuming that the control resolution is 300 ms and the encoder resolution is 300 pulses per revolution, and the feedback control is performed so that the transfer belt operates at 162 mm / s, the following is assumed.
θ0 = 2π × 162 × 10 −3 /15.615π=0.0207487 [rad]
θ1 = 2π × p = 2π / 300 = 0.0209439 [rad]
A position deviation is acquired by performing the above calculation for every control period, and feedback control is performed.
一般的なエンコーダの構成は、円周方向に数百単位の分解能で光を透過する放射状のスリットを有するディスクを従動ローラ軸に圧入して、従動ローラと同時に回転するようになっていて、このスリットをセンサで検出することで、従動ローラの回転量に応じたパルス信号(パルス状のON/OFF信号)を得られる。このパルス信号を用いて従動ローラの移動角を検出することで、駆動ローラの回転速度を制御している。 A general encoder configuration is configured such that a disk having a radial slit that transmits light with a resolution of several hundred units in the circumferential direction is press-fitted into a driven roller shaft and rotated simultaneously with the driven roller. By detecting the slit with a sensor, a pulse signal (pulsed ON / OFF signal) corresponding to the rotation amount of the driven roller can be obtained. The rotational speed of the driving roller is controlled by detecting the moving angle of the driven roller using this pulse signal.
しかし、エンコーダのディスクの同芯度加工精度の影響で、従動ローラにディスクを取り付ける時に、お互いにずれた状態で取り付けられる場合がある。この状態で回転すると、従動ローラは一定速度で回転しているにも関わらず、ディスクが偏心した状態で回転される。これをセンサ(受光器)で読み取ると、ディスクの1回転成分がセンサの出力つまりパルス信号に出てしまう。更に1回転成分を、フィードバック制御により増幅して駆動ローラを回転させるため、ディスクの1回転毎に転写ベルトの速度変動が発生し、色ズレが発生する。 However, due to the influence of the concentricity processing accuracy of the disk of the encoder, when the disk is mounted on the driven roller, it may be mounted in a state shifted from each other. When rotating in this state, the driven roller is rotated at a constant speed, but the disk is rotated in an eccentric state. When this is read by a sensor (light receiver), one rotation component of the disk is output to the sensor output, that is, a pulse signal. Further, since one rotation component is amplified by feedback control to rotate the driving roller, the transfer belt speed fluctuates every time the disk rotates, and color misregistration occurs.
本来、フィードバック制御では、制御ゲインを上げることで負荷変動に対する応答性を良くしたいところであるが、制御ゲインを上げるとディスクの1回転成分が大きくなり、結果的に色ズレが大きくなるため、実際には制御ゲインが低い状態で、フィードバック制御をせざるを得なかった。そのため、本来制御したい他の変動成分の除去が十分に行われていなかった。 Originally, in feedback control, we would like to improve the response to load fluctuations by increasing the control gain. However, if the control gain is increased, one rotation component of the disk increases, resulting in increased color misregistration. Had to perform feedback control with a low control gain. For this reason, the removal of other variable components that are originally desired to be controlled has not been sufficiently performed.
上述した従動ローラに取り付けられたディスクの偏心で発生する転写ベルトの速度変動を制御する方法として、例えば特許文献1に記載されたものがある。これは、駆動ローラを定速で回転させ、エンコーダ出力から得られる角速度情報を少なくとも駆動ローラ1周期分にわたって取得し、駆動ローラの1/2周期で区切って前半部分と後半部分を足し合わせることにより、駆動ローラによる偏心の速度変動成分を相殺し、従動ローラによる速度変動分のみを抽出するものである。更に、画像形成時には、従動ローラから検出された角速度情報と上記速度変動分の差分を取ることで、ベルトの速度走行を一定にするものである。
この特許文献1に記載の制御方法は、エンコーダのパルス間隔を一定クロックで計測し、駆動ローラを一定速度で回転させたときのエンコーダ速度変動分を、フィードバック制御したときのエンコーダ速度から差し引くことで、ディスク偏心で発生する速度変動をキャンセルし、エンコーダの速度を一定にしようと速度制御するものである。その制御を実現するためには、少なくともエンコーダのパルス間隔からディスクの偏心成分の影響を十分にサンプリングできるだけのクロックレートと、それを処理できる高速なハードウェア、および高い分解能のカウンタやタイマなどの計測手段が必要となり、高価なシステムとなり、コスト的にデメリットがある。
The control method described in
また、上述したようにエンコーダの目標角変位Ref(ni)とエンコーダの検出角変位P(n−1)との差から位置偏差e(n)を算出し、その算出結果から駆動モータの駆動パルス周波数を制御する位置制御の場合、そもそも特許文献1に記載の手法は適用できない。
この発明は、このような問題を解決するためになされたものであり、画像形成装置等における対象ローラ(例えば転写搬送ベルト等の無端移動部材を回動させる駆動ローラあるいはその無端移動部材の回動により従動回転する従動ローラ)に取り付けてあるエンコーダの出力信号に基づいて駆動ローラを駆動制御する駆動制御装置において、エンコーダのディスク偏心により発生する速度変動の安定化を簡易な構成で確実に行えるようにすることを目的とする。
Further, as described above, the position deviation e (n) is calculated from the difference between the target angular displacement Ref (ni) of the encoder and the detected angular displacement P (n−1) of the encoder, and the drive pulse of the drive motor is calculated from the calculation result. In the case of position control for controlling the frequency, the method described in
The present invention has been made to solve such a problem, and is a target roller in an image forming apparatus or the like (for example, a driving roller for rotating an endless moving member such as a transfer conveying belt or the rotation of the endless moving member) In a drive control device that drives and controls the drive roller based on the output signal of the encoder attached to the driven roller that is driven and rotated by the drive, the speed fluctuation caused by the disk eccentricity of the encoder can be reliably stabilized with a simple configuration. The purpose is to.
この発明は、上記の目的を達成するため、以下の駆動制御装置およびそれを備えた画像形成装置を提供する。
請求項1の発明による駆動制御装置は、無端移動部材を回動させる駆動ローラあるいは該無端移動部材の回動により従動回転する従動ローラである対象ローラの周動を検出するエンコーダを備え、該エンコーダの単位時間当りの角変位が一定となるように制御目標値を設定し、該制御目標値に一致させるように上記駆動ローラを駆動制御する駆動制御装置であって、上記エンコーダのディスクが1回転する間の該ディスクの偏心の影響で発生する角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる角変位誤差を特性値として保持する記憶手段と、上記制御目標値に上記特性値を加算して上記駆動ローラを駆動制御する制御手段とを設けたものである。
In order to achieve the above object, the present invention provides the following drive control device and an image forming apparatus including the same.
According to a first aspect of the present invention, there is provided a drive control device comprising an encoder that detects a circumferential movement of a target roller that is a drive roller that rotates an endless moving member or a driven roller that is driven to rotate by rotation of the endless moving member. The drive control device sets a control target value so that the angular displacement per unit time is constant, and drives and controls the drive roller so as to coincide with the control target value. The encoder disk rotates once. An angular displacement error detecting means for detecting an angular displacement error generated due to the eccentricity of the disk during storage, a storage means for holding the angular displacement error obtained from the angular displacement error detecting means as a characteristic value, and the control target And a control means for controlling the drive roller by adding the characteristic value to the value.
請求項2の発明による駆動制御装置は、請求項1の駆動制御装置において、上記角変位誤差検出手段に、上記無端移動部材が一定速度で回動しているときに、上記エンコーダの出力パルス数をカウントするカウント手段と、該カウント手段によるカウント値を一定周期毎にサンプリングする手段と、該手段によるサンプリング結果から傾き成分を除去して第1の特性値を算出する第1の特性値算出手段とを備え、上記記憶手段を、上記第1の特性値算出手段によって算出された第1の特性値を保持する手段とし、上記制御手段に、上記記憶手段内の第1の特性値に基づいて上記制御目標値に加算すべき第2の特性値を算出する第2の特性値算出手段を備えたものである。 The drive control device according to a second aspect of the present invention is the drive control device according to the first aspect, wherein when the endless moving member is rotating at a constant speed, the angular displacement error detecting means rotates the number of output pulses of the encoder. Means for counting the count value, means for sampling the count value by the count means at regular intervals, and first characteristic value calculation means for calculating the first characteristic value by removing the slope component from the sampling result by the means The storage means is a means for holding the first characteristic value calculated by the first characteristic value calculation means, and the control means is based on the first characteristic value in the storage means. There is provided a second characteristic value calculating means for calculating a second characteristic value to be added to the control target value.
請求項3の発明による駆動制御装置は、請求項2の駆動制御装置において、上記第1の特性値を上記ディスクの偏心の波形についての該ディスクの予め定めた基準位置での位相値と最大振幅値とによって構成したものである。
請求項4の発明による駆動制御装置は、請求項2又は3の駆動制御装置において、上記第2の特性値算出手段を、上記第1の特性値から、SIN関数もしくは近似式を用いて、上記エンコーダのディスクの回転位置に応じた上記第2の特性値を算出する手段としたものである。
According to a third aspect of the present invention, there is provided the drive control apparatus according to the second aspect, wherein the first characteristic value is a phase value and a maximum amplitude at a predetermined reference position of the disk with respect to the waveform of the eccentricity of the disk. It consists of values.
A drive control apparatus according to a fourth aspect of the present invention is the drive control apparatus according to the second or third aspect, wherein the second characteristic value calculating means uses the SIN function or the approximate expression from the first characteristic value. This is a means for calculating the second characteristic value corresponding to the rotational position of the disk of the encoder.
請求項5の発明による駆動制御装置は、請求項4の駆動制御装置において、上記第2の特性値算出手段を、電源ON時もしくは上記駆動ローラの駆動開始時に上記第2の特性値を算出する手段とし、該手段によって算出された上記第2の特性値を保持する第2の記憶手段を設け、上記制御手段が、上記駆動ローラを駆動する際に、上記エンコーダのディスクの回転位置に応じて上記第2の記憶手段から上記第2の特性値を読み出し、該第2の特性値を上記制御目標値に加算して上記駆動ローラを駆動制御するようにしたものである。 According to a fifth aspect of the present invention, in the drive control device according to the fourth aspect, the second characteristic value calculating means calculates the second characteristic value when the power is turned on or when the driving roller starts to be driven. And a second storage means for holding the second characteristic value calculated by the means, and the control means drives the drive roller according to the rotational position of the disk of the encoder. The second characteristic value is read from the second storage means, and the second characteristic value is added to the control target value to control the drive roller.
請求項6の発明による画像形成装置は、画像形成用の無端移動部材を回動させる駆動ローラあるいは該無端移動部材の回動により従動回転する従動ローラである対象ローラの周動を検出するエンコーダを備え、該エンコーダの単位時間当りの角変位が一定となるように制御目標値を設定し、該制御目標値に一致させるように上記駆動ローラを駆動制御する駆動制御装置を備えた画像形成装置であって、上記駆動制御装置に、上記エンコーダのディスクが1回転する間の該ディスクの偏心の影響で発生する角変位誤差を検出する角変位誤差検出手段と、該角変位誤差検出手段から得られる角変位誤差を特性値として保持する記憶手段と、上記制御目標値に上記特性値を加算して上記駆動ローラを駆動制御する制御手段とを設けたものである。 According to a sixth aspect of the present invention, there is provided an image forming apparatus comprising: an encoder that detects a peripheral movement of a target roller that is a driving roller that rotates an endless moving member for image formation or a driven roller that is rotated by the rotation of the endless moving member. An image forming apparatus including a drive control device that sets a control target value so that the angular displacement per unit time of the encoder is constant and controls the drive roller so as to match the control target value. In the drive control device, the angular displacement error detecting means for detecting the angular displacement error generated due to the eccentricity of the disk during one rotation of the disk of the encoder, and the angular displacement error detecting means are obtained. Storage means for holding an angular displacement error as a characteristic value and control means for controlling the drive roller by adding the characteristic value to the control target value are provided.
請求項7の発明による画像形成装置は、請求項6の画像形成装置において、上記角変位誤差検出手段に、上記無端移動部材が一定速度で回動しているときに、上記エンコーダの出力パルス数をカウントするカウント手段と、該カウント手段によるカウント値を一定周期毎にサンプリングする手段と、該手段によるサンプリング結果から傾き成分を除去して第1の特性値を算出する第1の特性値算出手段とを備え、上記記憶手段を、上記第1の特性値算出手段によって算出された第1の特性値を保持する手段とし、上記制御手段に、上記記憶手段内の第1の特性値に基づいて上記制御目標値に加算すべき第2の特性値を算出する第2の特性値算出手段を備えたものである。 An image forming apparatus according to a seventh aspect of the invention is the image forming apparatus according to the sixth aspect, wherein the angular displacement error detecting means has the number of output pulses of the encoder when the endless moving member is rotating at a constant speed. Means for counting the count value, means for sampling the count value by the count means at regular intervals, and first characteristic value calculation means for calculating the first characteristic value by removing the slope component from the sampling result by the means The storage means is a means for holding the first characteristic value calculated by the first characteristic value calculation means, and the control means is based on the first characteristic value in the storage means. There is provided a second characteristic value calculating means for calculating a second characteristic value to be added to the control target value.
請求項8の発明による画像形成装置は、請求項7の画像形成装置において、上記第1の特性値を上記ディスクの偏心の波形についての該ディスクの予め定めた基準位置での位相値と最大振幅値とによって構成したものである。
請求項9の発明による画像形成装置は、請求項7又は8の画像形成装置において、上記第2の特性値算出手段を、上記第1の特性値から、SIN関数もしくは近似式を用いて、上記エンコーダのディスクの回転位置に応じた上記第2の特性値を算出する手段としたものである。
An image forming apparatus according to an eighth aspect of the present invention is the image forming apparatus according to the seventh aspect, wherein the first characteristic value is a phase value and a maximum amplitude at a predetermined reference position of the disk with respect to an eccentric waveform of the disk. It consists of values.
An image forming apparatus according to a ninth aspect of the present invention is the image forming apparatus according to the seventh or eighth aspect, wherein the second characteristic value calculating means uses the SIN function or approximate expression from the first characteristic value. This is a means for calculating the second characteristic value corresponding to the rotational position of the disk of the encoder.
請求項10の発明による画像形成装置は、請求項9の画像形成装置において、上記第2の特性値算出手段を、電源ON時もしくは上記駆動ローラの駆動開始時に上記第2の特性値を算出する手段とし、該手段によって算出された上記第2の特性値を保持する第2の記憶手段を設け、上記制御手段が、上記駆動ローラを駆動する際に、上記エンコーダのディスクの回転位置に応じて上記第2の記憶手段から上記第2の特性値を読み出し、該第2の特性値を上記制御目標値に加算して上記駆動ローラを駆動制御するようにしたものである。
請求項11の発明による画像形成装置は、請求項6〜10のいずれかの画像形成装置において、上記無端移動部材を、感光体ベルト,転写ベルト,中間転写ベルト,画像記録媒体搬送用ベルトのうちのいずれか一つ以上としたものである。
An image forming apparatus according to a tenth aspect of the present invention is the image forming apparatus according to the ninth aspect, wherein the second characteristic value calculating means calculates the second characteristic value when the power is turned on or when the driving roller starts to be driven. And a second storage means for holding the second characteristic value calculated by the means, and the control means drives the drive roller according to the rotational position of the disk of the encoder. The second characteristic value is read from the second storage means, and the second characteristic value is added to the control target value to control the drive roller.
An image forming apparatus according to an eleventh aspect of the present invention is the image forming apparatus according to any one of the sixth to tenth aspects, wherein the endless moving member is a photosensitive belt, a transfer belt, an intermediate transfer belt, or an image recording medium conveying belt. One or more of the above.
この発明の駆動制御装置によれば、対象ローラ(無端移動部材を回動させる駆動ローラあるいはその無端移動部材の回動により従動回転する従動ローラ)に取り付けられたエンコーダのディスクが1回転する間の該ディスクの偏心の影響で発生する角変位誤差を検出する角変位誤差検出手段を設け、その角変位誤差検出手段から得られる角変位誤差を特性値として記憶手段に保持し、上記制御目標値に上記特性値を加算して上記駆動ローラを駆動制御するので、上記エンコーダのディスク偏心によって発生する無端移動部材の速度変動の安定化を、簡易な構成で確実に行うことができる。この発明の画像形成装置によれば、上記駆動制御装置を備えることにより、低コストで画像品位に応じた適切な処理を行うことが可能である。 According to the drive control device of the present invention, the disk of the encoder attached to the target roller (the drive roller that rotates the endless moving member or the driven roller that rotates following the endless moving member) rotates once. An angular displacement error detecting means for detecting an angular displacement error generated due to the eccentricity of the disk is provided, and the angular displacement error obtained from the angular displacement error detecting means is held in the storage means as a characteristic value, and is set to the control target value. Since the drive roller is driven and controlled by adding the characteristic values, the speed fluctuation of the endless moving member caused by the disk eccentricity of the encoder can be reliably stabilized with a simple configuration. According to the image forming apparatus of the present invention, it is possible to perform appropriate processing according to the image quality at a low cost by including the drive control device.
以下、この発明を実施するための最良の形態を図面に基づいて具体的に説明する。
まず、図2および図3によって、この発明による駆動制御装置を備えた画像形成装置の構成例について説明する。この画像形成装置は、直接転写方式の電子写真方式によりカラー画像を形成するカラーレーザプリンタ(以下「レーザプリンタ」という)であり、図2はそのレーザプリンタ全体の概略構成図である。
Hereinafter, the best mode for carrying out the present invention will be specifically described with reference to the drawings.
First, a configuration example of an image forming apparatus provided with a drive control apparatus according to the present invention will be described with reference to FIGS. This image forming apparatus is a color laser printer (hereinafter referred to as “laser printer”) that forms a color image by an electrophotographic method of a direct transfer method, and FIG. 2 is a schematic configuration diagram of the entire laser printer.
このレーザプリンタは、図2に示すように、Y(イエロー)、M(マゼンダ)、C(シアン)、K(ブラック)の各色の画像を形成するための4組のトナー像形成部1(1Y,1M,1C,1K)が、図中の矢印Aに沿って転写搬送ベルト60が走行することによって転写紙Pが移動する方向における上流側(図で右下側)から順に配置されている。
この各トナー像形成部1はそれぞれ、像担持体としての感光体ドラム11(11Y,11M,11C,11K)と、現像ユニット12とを備えている。また、各トナー像形成部1の配置は、各感光体ドラム11の回転軸が平行になるように且つ転写紙移動方向に所定のピッチで配列するように、設定されている。
As shown in FIG. 2, the laser printer includes four sets of toner image forming units 1 (1Y) for forming images of each color of Y (yellow), M (magenta), C (cyan), and K (black). , 1M, 1C, 1K) are arranged in order from the upstream side (lower right side in the figure) in the direction in which the transfer paper P moves as the
Each toner
また、このレーザプリンタは、トナー像形成部1のほかに、光書込ユニット2、給紙カセット3,4、レジストローラ対5、転写紙(画像記録媒体)Pを担持して各トナー像形成部の転写位置を通過するように搬送する無端移動部材としての転写搬送ベルト(転写ベルトと画像記録媒体搬送用ベルトの機能を併せたもの)60を備えたベルト駆動装置6、ベルト定着方式の定着ユニット7、および排紙トレイ8等を備えている。なお、ベルト駆動装置6は、後述する制御系(駆動制御装置)を併せたものであり、また転写ユニットとしても機能するものである。
In addition to the toner
このレーザプリンタはさらに、手差しトレイ14、トナー補給容器22も備え、図示していない廃トナーボトル、両面・反転ユニット、電源ユニットなども二点鎖線で示したスペースSの中に備えている。
光書込ユニット2は、光源、ポリゴンミラー、f−θレンズ、反射ミラー等を備えており、画像データに基づいて各感光体ドラム11の表面(外周面)にレーザ光を走査しながら照射する。
The laser printer further includes a manual feed tray 14 and a
The
図3は、上述したベルト駆動装置6の概略構成を示す拡大図である。
このベルト駆動装置6で使用する転写搬送ベルト60は、体積抵抗率が109〜1011Ωcmである高抵抗の無端状単層エンドレスベルト(無端状のベルト部材)であり、その材質は例えばPVDF(ポリフッ化ビニリデン)である。この転写搬送ベルト60は、各トナー像形成部1の感光体ドラム11に接触対向する各転写位置を通過するように、支持ローラ61〜66に張架されている。
FIG. 3 is an enlarged view showing a schematic configuration of the
The
これら支持ローラ61〜66のうちの転写紙移動方向の上流側に位置する入口ローラ61に対し、転写搬送ベルト60を挟んでその外周面側で対向するように静電吸着ローラ80が設けられている。この静電吸着ローラ80には電源18によって所定電圧が印加されており、2つのローラ61,80の間を通過した転写紙Pは帯電して転写搬送ベルト60上に静電吸着される。ローラ63は転写搬送ベルト60を摩擦駆動する駆動ローラであり、駆動モータ(後述)によって矢印Dの方向に回転される。
An
各感光体ドラム11に対向する各転写位置において、転写電界を形成する転写電界形成手段としての転写バイアス印加部材27(27Y,27M,27C,27K)が転写搬送ベルト60の裏面に接触するように設けられている。これらの転写バイアス印加部材27はスポンジ等を外周に設けたバイアスローラであり、各転写バイアス電源9(9Y,9M,9C,9K)からローラ心金に転写バイアス電圧が印加される。この印加された転写バイアス電圧の作用により、転写搬送ベルト60に転写電荷が付与され、各転写位置において該転写搬送ベルト60の表面と感光体ドラム11の表面との間に所定強度の転写電界が形成される。また上記転写が行なわれる領域での転写紙と感光体ドラム11の接触を適切に保ち、最良の転写ニップを得るために、バックアップローラ68を備えている。
The transfer bias applying member 27 (27Y, 27M, 27C, 27K) as transfer electric field forming means for forming a transfer electric field is brought into contact with the back surface of the
各転写バイアス印加部材27とそれらの近傍にそれぞれ配置されるバックアップローラ68は、それぞれ回転可能に揺動ブラケット93に一体的に保持され、回動軸94を中心として回動可能である。この回動は、カム軸97に固定されたカム96が矢印Eの方向に回動することによって時計方向に回動する。
Each transfer
前述した入口ローラ61と静電吸着ローラ80は一体的に、入口ローラブラケット90に支持され、軸91を回動中心として、図3の状態から時計方向に回動可能である。そして、揺動ブラケット93に設けられた孔95に、入口ローラブラケット90に突設されたピン92が嵌入しており、揺動ブラケット93の回動と連動して入口ローラブラケット90も回動する。これらのブラケット90、93の時計方向の回動により、各転写バイアス印加部材27とそれらの近傍にそれぞれ配置されるバックアップローラ68は感光体ドラム11から離され、入口ローラ61と静電吸着ローラ80も下方に移動する。これにより、黒(ブラック)トナーのみで画像を形成する時に、感光体ドラム11Y,11M,11Cと転写搬送ベルト60の接触を避けることが可能になっている。
The
一方、転写バイアス印加部材27Kとその隣のバックアップローラ68は出口ブラケット98に回転可能に支持され、出口ローラ62と同軸の軸99を中心に回動可能になっている。このベルト駆動装置6をレーザプリンタ本体に着脱する際に、図示していないハンドルの操作により出口ブラケット98を時計方向に回動させ、転写バイアス印加部材27Kおよびバックアップローラ68とともに転写搬送ベルト60を、ブラック画像形成用の感光体ドラム11Kから離間させることができる。
On the other hand, the transfer
転写搬送ベルト60の駆動ローラ63に巻きつけられた部分の外周面には、図2に示すように、ブラシローラとクリーニングブレードから構成されたクリーニング装置85が接触するように配置されている。このクリーニング装置85により転写搬送ベルト60上に付着した残留トナー等の異物が除去される。
その転写搬送ベルト60の走行方向で駆動ローラ63のすぐ下流側に、転写搬送ベルト60の外周面を押し込むようにローラ64を設け、駆動ローラ63に対する転写搬送ベルト60の巻き付け角を大きく確保している。また、ローラ64のすぐ下流側には、転写搬送ベルト60の内周面に接触し、押圧部材であるばね69の付勢力により外側へ押圧して転写搬送ベルト60にテンションを与えるテンションローラ65が配設されている。
As shown in FIG. 2, a
A
次に、このレーザプリンタによる画像形成動作について説明する。
このレーザプリンタによる画像形成時には、図2に示す給紙カセット3,4および手差しトレイ14のいずれかより転写紙Pが給紙されて、図示しない搬送ガイドにガイドされながら一点鎖線で示す搬送経路に沿って搬送ローラによって搬送され、レジストローラ対5が設けられている一時停止位置に送られる。
Next, an image forming operation by this laser printer will be described.
At the time of image formation by this laser printer, the transfer paper P is fed from one of the
一方、カラー画像形成時には4組のトナー像形成部1(1Y、1M、1C、1K)の各感光体ドラム11(11Y、11M、11C、11K)は、図2で時計方向に回転しており、それぞれ図示していない帯電部材によって表面が均一に帯電された後、その表面に光書込ユニット2によって、形成すべき画像の各色のデータによって変調されたレーザ光が照射走査され、それぞれ静電潜像が書き込まれる。その後現像ユニットによって各色のトナーによって現像され、各感光体ドラム11の表面に各色のトナー像が形成される。
On the other hand, at the time of color image formation, the photosensitive drums 11 (11Y, 11M, 11C, 11K) of the four sets of toner image forming units 1 (1Y, 1M, 1C, 1K) are rotated clockwise in FIG. After the surface is uniformly charged by a charging member (not shown), the
前述のようにレジストローラ対5に挟持されて一時停止された転写紙Pは、レジストローラ対5により所定のタイミングで送り出され、転写搬送ベルト60に担持されて各トナー像形成部1に向けて順次搬送され、その各転写ニップを通過する。各トナー像形成部1の感光体ドラム11上に形成される各色のトナー像は、それぞれ各転写ニップにおいて転写紙P上で重ね合わされるように順次作像タイミングをずらして作像されており、転写紙Pが各転写ニップを通過する際に上記転写電界やニップ圧の作用を受けて転写紙P上に転写される。この重ね合わせの転写により、転写紙P上にはフルカラートナー像が形成される。
このトナー像転写後の各感光体ドラム11の表面はクリーニング装置13によりクリーニングされ、更に除電されて次の静電潜像の形成に備えられる。
The transfer paper P sandwiched between the
The surface of each
一方、フルカラートナー像が形成された転写紙Pは、定着ユニット7でこのフルカラートナー像が定着された後、切換ガイド21の回動姿勢に対応して、第1の排紙方向Bまたは第2の排紙方向Cに向かう。第1の排紙方向Bから排紙トレイ8上に排出される場合、画像面が下となった、いわゆるフェースダウンの状態でスタックされる。一方、第2の排紙方向Cに排出される場合には、図示していない別の後処理装置(ソータ、綴じ装置など)に向け搬送させるか、またはスイッチバック部を経て両面プリントのために再度レジストローラ対5に搬送される。
On the other hand, the transfer paper P on which the full-color toner image is formed is fixed in the first paper discharge direction B or the second in accordance with the rotation posture of the switching
以上のようにして、このレーザプリンタは転写紙Pにフルカラー画像を形成する。
このようなタンデム方式の画像形成装置では、各色のトナー画像を高い位置精度で重ね合わせることが色ズレの発生を防止する上で重要である。しかしながら、ベルト駆動装置6で使用している駆動ローラ63、入口ローラ61、出口ローラ62、転写搬送ベルト60は、部品製造時に数十μm単位の製造誤差が発生する。この誤差により各部品が一回転した際に発生する変動成分が転写搬送ベルト60に伝達され、転写紙の搬送速度に変動が生じてしまう。
As described above, this laser printer forms a full-color image on the transfer paper P.
In such a tandem image forming apparatus, it is important to prevent the occurrence of color misregistration by superimposing toner images of respective colors with high positional accuracy. However, the
この転写紙の搬送速度(転写搬送ベルト60の回動速度)の変動により、各感光体ドラム11上のトナー像を転写紙Pに転写する際に、それぞれタイミングに微妙なズレが生じ、副走査方向(転写紙の搬送方向)に色ズレが発生してしまう。特に1200×1200DPI等の微小ドットで画像を形成する装置では、数μmのタイミングのズレが色ズレとして目立ってしまう。
そこで、この実施形態におけるベルト駆動装置6(駆動制御装置を含む)では、図3で右下部の従動ローラ(「右下ローラ」という)66の軸上に設けたエンコーダの検出信号(出力パルス信号)によって右下ローラ66の回転速度を検出し、駆動ローラ63の回転をフィードバック制御することにより、転写搬送ベルト60を一定速度で走行させるようにする。
Due to the change in the transfer paper conveyance speed (the rotation speed of the transfer conveyance belt 60), when the toner image on each
Therefore, in the belt drive device 6 (including the drive control device) in this embodiment, the detection signal (output pulse signal) of the encoder provided on the shaft of the lower right driven roller (referred to as “lower right roller”) 66 in FIG. ), The rotational speed of the lower
図4は、転写搬送ベルト60を透視してベルト駆動装置6の全体構成を示す斜視図である。
駆動ローラ63はタイミングベルト33を介して駆動モータ32に連結しており、駆動モータ32の回転速度に比例して回転駆動される。そして、この駆動ローラ63の回転によって転写搬送ベルト60が摩擦回動し、転写搬送ベルト60が回動することによって右下ローラ66が摩擦回転する。前述したように、この実施形態では、右下ローラ66(対象ローラ)の軸上にエンコーダ31を設けており、このエンコーダ31の検出信号から検出した右下ローラ66の回転速度に基づいて駆動モータ32の速度制御を行っている。これは、前述したように、転写搬送ベルト60の位置変動(回動変動)で色ズレが発生するため、それを抑制するために行っている。
FIG. 4 is a perspective view illustrating the entire configuration of the
The
図5は、図4の右下ローラ66とエンコーダ31の構成例を示す斜視図である。
図6は、そのエンコーダ31内のディスク311とセンサの構成例を示す図であり、(a)はディスク311のみの正面図、(b)はディスク311とセンサの側面図である。
図7は、そのディスク311が偏心した状態について説明するための図である。
図8は、図4の駆動モータ32を一定速度で駆動してエンコーダ31の出力パルスのカウント値を一定タイミングでサンプリングしたときのサンプリング結果の異なる例を示す線図である。
FIG. 5 is a perspective view showing a configuration example of the lower
6A and 6B are diagrams showing a configuration example of the
FIG. 7 is a diagram for explaining a state in which the
FIG. 8 is a diagram illustrating different examples of sampling results when the
エンコーダ31は、例えば図5に示すように、ディスク311,発光素子312,受光素子313,圧入ブッシュ314,315を備えている。
ディスク311は、右下ローラ66の軸に圧入ブッシュ314,315を圧入することによって固定され、右下ローラ66の回転と同時に回転するようになっている。
また、このディスク311には、その円周方向に数百単位の分解能で光を透過する放射状のスリットが形成されており、その両側にエンコーダセンサを構成する発光素子312と受光素子313を配置しており、その受光素子313によって右下ローラ66の回転角度に応じた数のパルス信号(パルス状のON/OFF信号)を発生する。そのパルス信号を用いて右下ローラ66の移動角(以下「角変位」と称す)を検出することにより、駆動モータ32の駆動量を制御する。
For example, as shown in FIG. 5, the
The
The
さらに、エンコーダ31には、例えば図6に示すように、ディスク311の内周にはそのディスク回転の1周(1回転)を判定するためのスリット状の基準マーク(ディスクマーク)321が形成されており、その基準マーク321の部位の両側にマークセンサを構成する発光素子322と受光素子323を配置している。そのマークセンサを用いることにより、ディスク311が1回転する毎に基準マーク321を検出し、ディスク311の1回転、つまりディスク311の基準位置を判定することができる。
Further, for example, as shown in FIG. 6, the
ところで、ディスク311を右下ローラ66に圧入するときの同軸穴の加工には、例えば図7に示すように数μmの誤差が発生し、これはゼロにすることは実質的には不可能である。そのため、ディスク311を右下ローラ66に取り付けるときに、お互いにずれた状態で取り付けられる場合があり、この状態で回転すると、右下ローラ66は一定速度で回転しているにも関わらず、ディスク311が偏心した状態で回転される。これをエンコーダセンサ(受光素子313)で読み取ると、ディスク311の1周期毎に角変位変動が発生する。
By the way, for example, as shown in FIG. 7, an error of several μm occurs in the machining of the coaxial hole when the
図8において、(a)はディスク311の偏心がない状態でのサンプリング結果で、(b)は偏心があるときのサンプリング結果を示している。通常、ディスク311の偏心がない状態では、右肩上がりのサンプリング結果となるが、偏心がある場合、正弦波状のサンプリング結果となる。そのサンプリング結果はエンコーダ31の検出角変位を示しているため、サンプリング結果が正弦波状となっているということは、それだけ検出位置誤差が大きいことを示している。ディスク311の同軸穴の加工精度誤差が大きい場合、この正弦波の振幅がより大きく検出される。
In FIG. 8, (a) shows the sampling result when there is no eccentricity of the
図9は、このレーザプリンタにおける上述したベルト駆動装置6の駆動モータ制御部(駆動制御装置)を含む制御部のハードウェア構成例を示すブロック図である。
ベルト駆動装置6の駆動モータ制御部は、エンコーダセンサ331(エンコーダ31の発光素子312と受光素子313とからなる)の出力パルス信号およびマークセンサ332(エンコーダ31の発光素子322と受光素子323とからなる)の出力パルス信号に基づいて駆動モータ32の駆動パルスをデジタル制御する。
FIG. 9 is a block diagram illustrating a hardware configuration example of a control unit including the drive motor control unit (drive control device) of the
The drive motor control unit of the
その駆動モータ制御部を含む制御部600は、CPU601,RAM602,ROM603,IO制御部604,駆動モータIF606,ドライバ607,検出IO部608,およびバス609によって構成されている。
CPU601は、ROM603内のプログラムに基づいてパーソナルコンピュータ等の外部装置38からの画像データの受信、およびその外部装置38との間の制御コマンドの送受信の制御をはじめ、このレーザプリンタ全体の制御を行う中央処理装置である。
The control unit 600 including the drive motor control unit includes a
The
このCPU601は、ROM603内のプログラムに従って動作し、エンコーダセンサ331およびマークセンサ332等を使用することにより、この発明による各手段、つまり角変位誤差検出手段および制御手段としての機能を果たすことができる。
このCPU601には、RAM602,ROM603,IO制御部604,駆動モータIF606,および検出IO部608がバス609を介して相互に接続されている。
RAM602は、CPU601が制御(処理)を行う際に利用するワークメモリや、画像データを展開する際の画像メモリとして使用される読み書き可能なメモリ(記憶手段)である。
The
A
A
ROM603は、CPU601が実行する(CPU601が動作するための)プログラム等の固定データを格納している読み出し専用のメモリである。
IO制御部604は、CPU601からの指示により、モータ,クラッチ,ソレノイド,センサ等の各負荷39との間の信号の入出力を制御する。
駆動モータIF606は、CPU601からの駆動指令により、ドライバ607を介して転写搬送ベルト60を回動させるための駆動モータ32(駆動ローラ63)へ駆動パルス信号を出力することにより、駆動モータ32の回転駆動を制御する。この回転駆動は、駆動パルス信号の周波数に応じて行われるため、転写搬送ベルト60の回動速度の可変制御が可能となる。
The
The
The drive motor IF 606 outputs a drive pulse signal to the drive motor 32 (drive roller 63) for rotating the
エンコーダセンサ331の出力パルス信号は、検出IO部608に入力される。
検出IO部608は、エンコーダセンサ331の出力パルスを処理してデジタル値に変換する。また、この検出IO部608は、エンコーダ31の出力パルスを計数(カウント)するカウンタを含む複数のカウンタ(後述する)を備えている。そして、そのカウンタの値(エンコーダ31の出力パルス数)に予め定められたパルス数対角変位の変換定数をかけて、右下ローラ66の軸(図5)の角変位に対応するデジタル値に変換する。このエンコーダ31のディスク311の角変位に対応するデジタル値の信号は、バス609を介してCPU601に送られる。
The output pulse signal of the
The
ここで、駆動モータIF606,ドライバ607,RAM602について、もう少し詳しく説明する。
駆動モータIF606は、CPU601からバス609を介して駆動指令(駆動周波数の指示を含む)を受けると、その駆動指令に基づいて指示された駆動周波数を有するパルス状の制御信号を生成し、それをドライバ607へ出力する。
Here, the drive motor IF 606, the
When the drive motor IF 606 receives a drive command (including a drive frequency instruction) from the
ドライバ607は、パワー半導体素子(例えばトランジスタ)等によって構成されている。このドライバ607は、駆動モータIF606から入力されるパルス状の制御信号に基づいて動作し、駆動モータ32に駆動パルス信号を出力する(パルス状の駆動電圧を印加する)。その結果、駆動モータ32は、CPU601の駆動指令によって指示された駆動周波数に比例する速度で駆動制御される。これにより、エンコーダ31のディスク311の角変位が目標角変位になるように追値制御され、右下ローラ66が所定の角速度で等角速度回転する。このディスク311の角変位は、エンコーダセンサ331と検出IO部608により検出され、CPU601に取り込まれて制御が繰り返される。
The
RAM602は、CPU601が制御を行う(ROM603内のプログラムを実行する)際のワークメモリや画像メモリとして使用される機能の他に、事前(作像プロセスを実行しないで駆動モータ32を一定速度で駆動した時)に計測しておいたエンコーダ31のディスク偏心に対応したマークセンサ332によるマーク検出時からのディスク1回転分(1周分)の検出角変位誤差データ(一定周期毎にサンプリングしたデータ)が格納されるデータメモリとしての機能を有している。
The
なお、RAM602は揮発性メモリであるため、図示していないEEPROM等の不揮発性メモリに、上記検出角変位誤差データから、例えば図10に示すようなエンコーダ31のディスクの位相・振幅パラメータ(ディスク偏心の波形から傾き成分を除去した第1の特性値)を算出して格納しておき、電源ON時もしくは駆動モータ32の起動時等にSIN関数もしくは近似式を用いて、ディスク1回転分のデータをRAM602上に展開することもできる。図10には、マークセンサ332によってディスク311の1回転毎に検出される基準マーク(ディスクマーク)321(図6参照)の検出パルスも示されている。
Note that since the
ところで、一般に駆動モータのフィードバック制御に用いられる比例制御演算では、前述したように制御周期毎の目標角変位と検出角変位の差に制御ゲインをかけて、駆動モータの駆動速度を制御するため、エンコーダのディスク偏心による検出角変位誤差が大きいと、より増幅して駆動モータを駆動してしまう。そのため、ディスクの1回転(1周期)毎に転写搬送ベルト60の位置変動(回動速度の変動)が発生し、色ズレが発生してしまう。 By the way, in the proportional control calculation generally used for the feedback control of the drive motor, as described above, the control gain is applied to the difference between the target angular displacement and the detected angular displacement for each control cycle to control the drive speed of the drive motor. If the detected angular displacement error due to the disk eccentricity of the encoder is large, it will be further amplified and drive the drive motor. As a result, the position of the transfer / conveying belt 60 (change in rotational speed) occurs every rotation (one cycle) of the disk, and color misregistration occurs.
前述したように、図8の(b)は駆動モータ32を一定速度で駆動した時の挙動を示しているが、これは言い換えると、エンコーダ31のパルス数のカウント値を一定タイミングでサンプリングした結果が、図8の(b)に示したものになっていると、右下ローラ66は一定速度で回転していることになる。
そのため、この実施形態では、図8の(b)に示したように、制御周期毎の目標角変位(実際にはエンコーダ31の単位時間当りの角変位が一定となるような制御目標値である目標角変位に検出角変位誤差を加算したもの)を生成し、その目標角変位に一致するエンコーダ31の角変位をエンコーダセンサ331によって検出し、ディスク偏心(ディスク311の偏心)の影響を受けない比例制御演算を行って駆動モータ32を駆動制御することにより、転写搬送ベルト60の回動速度を一定にすることを特徴としている。
As described above, FIG. 8B shows the behavior when the
Therefore, in this embodiment, as shown in FIG. 8B, the target angular displacement for each control cycle (actually, the control target value is such that the angular displacement per unit time of the
図1は、この発明による駆動制御装置の一実施形態の機能を説明するための構成を示す模式的な機能ブロック図である。この実施形態は、この発明を上述したベルト駆動装置6の制御に適用した場合の例を示す。
この図1において、この制御コントローラ部40は、減算回路41と、高周波ノイズを除去するためのローパスフィルタ42と、比例演算部(ゲインKp)43と、定常駆動パルス周波数設定部44と、加算回路45とによって構成されている。この制御コントローラ部40と目標角変位生成部30とパルス出力器37は、図9のCPU601がROM603内のプログラムを実行し、駆動モータIF606,ドライバ607,および検出IO部608を使用することによって実現することができる。
FIG. 1 is a schematic functional block diagram showing a configuration for explaining functions of an embodiment of a drive control apparatus according to the present invention. This embodiment shows an example when the present invention is applied to the control of the
In FIG. 1, the
目標角変位生成部30は、予め計測した(作像プロセスを実行しないで駆動モータ32を一定速度で駆動した時に計測した)エンコーダ31のディスク偏心によって生じる検出角変位誤差を特性値としてメモリ301(図9のRAM602内のデータメモリに相当する)に保持しておく。そして、作像プロセス時に、マークセンサ332によってディスク311の基準マーク321(基準位置)が検出され、マークセンサ332から出力されるマーク検出信号が入力されるタイミングに応じてメモリ301から特性値を順次読み出す。つまり、マークセンサ332によるディスク311の基準位置の検出タイミングから順次メモリの参照アドレスを切り替えることによって特性値を読み出す。その後、その読み出した特性値を制御目標値である目標角変位に加算して新たな目標角変位Ref(n)とし、それを制御コントローラ部40に入力させる。
The target angular
ここで、特性値(検出角変位誤差)と目標角変位の加算は、マークセンサ332によってディスク311の1回転毎に基準マーク321が検出され、そのマークセンサ332から出力されるマーク検出信号が入力されるタイミングに応じて、周期的に繰り返されるように行われる。
なお、目標角変位生成部30が、予め計測した検出角変位誤差(特性値)を加算した目標角変位Ref(n)をメモリ301に保持しておき、作像プロセス時に、マークセンサ332によるディスク311の基準位置の検出タイミングから順次メモリの参照アドレスを切り替えることによって目標角変位Ref(n)を読み出し、それを制御コントローラ部40に入力させるようにしてもよい。
Here, the addition of the characteristic value (detection angular displacement error) and the target angular displacement is performed by detecting the
The target angular
制御コントローラ部40は、目標角変位生成部30から入力される制御目標値である目標角変位Ref(n)と、エンコーダ31のエンコーダセンサ331からの検出角変位P(n−1)とを減算回路41に入力してその差e(n)をとる。つまり、差分の変位量の演算を行う。なお、検出角変位P(n−1)は実際にはエンコーダセンサ331の出力パルス信号に基づいて算出されるが、それについては追って詳細に説明する。
その差e(n)はローパスフィルタ42を通ることによって高周波ノイズが除去された後、比例演算部43に入力される。
The
The difference e (n) is input to the
比例演算部43は、ローパスフィルタ42からの差e(n)をゲインKpで比例増幅し、補正量(rad)Hzとして加算回路45に与える。
加算回路45は、定常駆動パルス周波数設定部44からの一定の定常駆動パルス周波数(Refpc)Hzに比例演算部43からの補正量(rad)Hzを加算して駆動パルス周波数f(n)を決定し、それをパルス出力器37へ出力する。
パルス出力器37は、加算回路45から受けた駆動パルス周波数f(n)の駆動パルス信号を生成し、それを駆動モータ32へ出力する。
The
The
The
ここで、エンコーダ31のディスク偏心に対応するマークセンサ332による基準マーク321の検出タイミングからのディスク311の1回転分の検出角変位誤差の計測方法について説明する。
まず、ベルト駆動装置6の速度変動を引き起こす恐れのある定着ヒータの熱源をOFFにし、駆動モータ32を一定速度で駆動させる。そして、転写搬送ベルト60の駆動が安定するまで駆動モータ32を駆動させた後、マークセンサ332よって図6に示した基準マーク(ディスクマーク)321を検出し、その検出タイミングを基準にエンコーダ31の出力パルスのカウント値を一定タイミングでサンプリングし、エンコーダ31の目標角変位Ref(n)とエンコーダ31の検出角変位P(n−1)との差e(n)をディスク5回転分にわたり算出する。
Here, a method of measuring the detected angular displacement error for one rotation of the
First, the heat source of the fixing heater that may cause the speed fluctuation of the
ここで、Wはディスク1回転あたりにサンプリングされるデータ数でRAM602の空き容量によって決定し、RAM602の空き容量が多い程、データの分解能を向上させるためにディスク1回転あたりにサンプリングされるデータ数Wを大きい値に設定する。また、実際にディスク1回転あたりにサンプリングされたデータ数が予め設定された値Wと異なる場合には、エラーと判定して、この検出角変位誤差の計測を中止するとともに、このエラー履歴情報をEEPROMなどの不揮発性メモリに格納することによって、後に累積のエラー回数を確認できるようにしておくとよい。
Here, W is the number of data sampled per one rotation of the disk, and is determined by the free capacity of the
なお、この検出角変位誤差の計測では、駆動モータ32を位置制御を行わずに一定速度で駆動しているため、目標角変位Ref(n)とエンコーダ31の検出角変位P(n−1)との差であるe(n)は、図11に示すように傾きを持ってしまう。また、エンコーダ31のディスク偏心に対応するマークセンサ332による基準マーク321の検出タイミングからのディスク1回転分のエンコーダ31の検出角変位誤差以外の他のノイズ成分が含まれてしまう。
次に、e(n)の傾き成分を除去する。最小二乗法の演算により図11に示すようなe(n)の傾き成分k(n)を算出し、e(n)からk(n)を除去したJ(n)=e(n)−k(n)を求める。
In the measurement of the detected angular displacement error, since the
Next, the inclination component of e (n) is removed. The slope component k (n) of e (n) as shown in FIG. 11 is calculated by the least square method, and J (n) = e (n) −k is obtained by removing k (n) from e (n). (N) is obtained.
次に、エンコーダ31のディスク311の1回転周期以外の周期で発生している検出角変位誤差を移動平均処理で除去する。この実施形態では、転写搬送ベルト60を摩擦搬送する駆動ローラ63の偏心による検出角変位誤差を重点的に除去するために、この駆動ローラ63が4回転する時間にサンプリングされるデータ数を用いて移動平均処理を行う。駆動ローラ63が2回転する時間にサンプリングされるデータ数をDとした場合、以下の演算式で移動平均処理を行う。
Next, the detected angular displacement error occurring at a period other than one rotation period of the
J′(0)={J(0)+J(1)+・・+J(2D−1)+J(2D)}/(2D+1)
J′(1)={J(1)+J(2)+・・+J(2D)+J(2D+1)}/(2D+1)
J′(2)={J(2)+J(3)+・・+J(2D+1)+J(2D+2)}/(2D+1)
・
・
J′(n)={J(n)+J(n+1)+・・+J(n+2D−1)+J(n+2D)}/(2D+1)
J '(0) = {J (0) + J (1) +. + J (2D-1) + J (2D)} / (2D + 1)
J '(1) = {J (1) + J (2) +. + J (2D) + J (2D + 1)} / (2D + 1)
J '(2) = {J (2) + J (3) +. + J (2D + 1) + J (2D + 2)} / (2D + 1)
・
・
J '(n) = {J (n) + J (n + 1) +. + J (n + 2D-1) + J (n + 2D)} / (2D + 1)
そして、ディスク1回転周期以外の周期で発生している検出角変位誤差が除去された図12のようなデータを得る。
次に、ディスク偏心に対応するマークセンサ332による基準マーク321の検出タイミングからのディスク1回転分の検出角変位誤差の強調およびランダムノイズ除去のために、ディスク回転周期の周平均処理を行う。この実施形態では、ディスク4回転分のデータにより周平均処理を行う。ディスク1回転でサンプリングされるデータ数をWとした場合、以下の演算で周平均処理を行う。
Then, data as shown in FIG. 12 is obtained in which the detected angular displacement error generated at a period other than one rotation period of the disk is removed.
Next, in order to emphasize the detected angular displacement error for one rotation of the disk from the detection timing of the
J″(0)={J′(0)+J′(W)+J′(2W)+J′(3W)}/4
J″(1)={J′(1)+J′(1+W)+J′(1+2W)+J′(1+3W)}/4
J″(2)={J′(2)+J′(2+W)+J′(2+2W)+J′(2+3W)}/4
・
・
J″(n)={J′(n)+J′(n+W)+J′(n+2W)+J′(n+3W)}/4
J ″ (0) = {J ′ (0) + J ′ (W) + J ′ (2W) + J ′ (3W)} / 4
J ″ (1) = {J ′ (1) + J ′ (1 + W) + J ′ (1 + 2W) + J ′ (1 + 3W)} / 4
J ″ (2) = {J ′ (2) + J ′ (2 + W) + J ′ (2 + 2W) + J ′ (2 + 3W)} / 4
・
・
J ″ (n) = {J ′ (n) + J ′ (n + W) + J ′ (n + 2W) + J ′ (n + 3W)} / 4
そして、得られた図13のようなデータが、エンコーダ31のディスク偏心に対応するマークセンサ332による基準マーク321の検出タイミングからのディスク1回転分の検出角変位誤差となる。
なお、エンコーダ31のディスク311の1回転分の検出角変位誤差データの取得およびディスク311の位相・振幅パラメータの算出は、図9に示した外部装置38により実行命令が入力された場合、このレーザープリンタが朝に初めて電源がONになった場合、あるいは駆動モータ32の起動時に、実行されるようにすればよい。但し、作像プロセスは行わない。
The obtained data as shown in FIG. 13 becomes a detected angular displacement error corresponding to one rotation of the disk from the detection timing of the
The acquisition of the detected angular displacement error data for one rotation of the
エンコーダ31の実際のディスク偏心で発生する検出角変位誤差は、SIN状(正弦波状)となっていて、特にディスク1回転分の全てのデータを持っておく必要もなく、計測時に基準位置(基準マーク321の検出時)からの位相値と振幅値を算出し、このデータ(位相・振幅パラメータ)から検出角変位誤差データを算出しても十分同等の補正データとして扱える。
そのため、制御周期毎の検出角変位誤差データ(補正データ)を、不揮発性メモリに格納しておく必要がなく、上記位相・振幅パラメータのみで補正データを生成するため、揮発性メモリのみのエリアだけ用意すれば制御可能となる。その場合、補正データの生成は、電源ON時もしくは転写モータ起動時等に以下の演算式によって行われる。
The detected angular displacement error caused by the actual disk eccentricity of the
Therefore, it is not necessary to store the detected angular displacement error data (correction data) for each control cycle in the non-volatile memory, and the correction data is generated only with the above phase / amplitude parameters. If prepared, control becomes possible. In this case, the correction data is generated by the following arithmetic expression when the power is turned on or the transfer motor is started.
Δθ[rad]:従動軸の回転角変位変動値〔=b×sin(2×π×ft+τ)〕
上記Δθをマークセンサ332による基準マーク321の検出時からの制御時間に応じて演算し、揮発性メモリであるRAM602に順次格納する。
実際に駆動モータ32を駆動する時は、マークセンサ332が基準マーク321を検知したタイミングに応じて、RAM602の参照アドレスを切り替えてデータを読み出す。その読み出したデータを、前述の制御目標値である目標角変位に加算することによって、ディスク偏心の影響を受けずにフィードバック制御を行うことができる。
Δθ [rad]: Fluctuation value of rotational angle displacement of driven shaft [= b × sin (2 × π × ft + τ)]
The above Δθ is calculated according to the control time from the detection of the
When the
また、ディスク偏心による速度変動(位置変動)のピーク値のみ下げればよい場合には、制御周期毎のディスク偏心による検出角変位誤差データは必要ない。そのため、メモリエリアを削減するために、例えば図14に示すようにディスク1回転あたり20ポイント程度の検出角変位誤差データを生成し、各ポイントにディスク311が到達した時にデータを更新することによっても、速度変動のピーク値を十分に低下させることが可能である。
Further, when only the peak value of the speed fluctuation (position fluctuation) due to the disk eccentricity needs to be lowered, the detected angular displacement error data due to the disk eccentricity for each control cycle is not necessary. Therefore, in order to reduce the memory area, for example, as shown in FIG. 14, detection angle displacement error data of about 20 points per one rotation of the disk is generated, and the data is updated when the
図15および図16に、この発明による駆動制御を実現する上でのタイミングチャートの例を示す。なお、図9には、図示を省略したが、制御部600には、時間計測を行なう制御周期タイマが設けられているものとする。また、検出IO部608には、後述する2つのエンコーダパルスカウンタ(1)(2)および制御周期タイマカウンタが備えられている。
FIG. 15 and FIG. 16 show examples of timing charts for realizing the drive control according to the present invention. Although not shown in FIG. 9, it is assumed that the control unit 600 is provided with a control cycle timer for measuring time. The
まず、図15において、エンコーダ31の出力パルス(エンコーダパルス)をカウントするエンコーダパルスカウンタ(1)のカウント値は、エンコーダパルスの出力の立上りエッジによりインクリメント(+1)される。また、この制御の制御周期は1msであり、制御周期タイマによるCPU601への割込みがかかる毎に制御周期タイマカウンタのカウント値がインクリメント(+1)される。
制御周期タイマの時間計測のスタートは、駆動モータ32のスルーアップおよびセトリング終了後に初めてエンコーダパルスの立上りエッジが検出された時点で行われ、且つ制御周期タイマカウンタのカウント値を「0」にリセットする。
First, in FIG. 15, the count value of the encoder pulse counter (1) that counts the output pulse (encoder pulse) of the
The time measurement of the control cycle timer is started when the rising edge of the encoder pulse is detected for the first time after the through-up and settling of the
また、制御周期タイマによるCPU601への割込みがかかる毎に、エンコーダパルスカウンタ(1)のカウント値:neの取得および制御周期タイマカウンタのカウント値:qの取得およびインクリメント(+1)を行う。
エンコーダパルスカウンタ(2)は、前述のエンコーダパルスカウンタ(1)と同様に、図16に示すように、エンコーダパルスの出力の立上りエッジによりインクリメント(+1)され、マークセンサ332によってディスク311の基準マーク321が検出されている時(マークセンサ332からマーク検出信号が入力されている時)の最初のエンコーダパルスの立ち上りエッジで「0」にリセットされる。そのため、エンコーダパルスカウンタ(2)は実質的に基準マーク321からの移動距離をカウントしていて、この値に応じてディスク311の1回転分の検出角変位誤差データが格納されたRAM602の参照アドレスを切り替える。
Each time the
As shown in FIG. 16, the encoder pulse counter (2) is incremented (+1) by the rising edge of the output of the encoder pulse, as shown in FIG. It is reset to “0” at the rising edge of the first encoder pulse when 321 is detected (when a mark detection signal is input from the mark sensor 332). Therefore, the encoder pulse counter (2) substantially counts the moving distance from the
これらの各エンコーダパルスカウンタ(1,2)のカウント値をもとに、次に示すように位置偏差の演算を行う。
P(n−1)=θ1×ne
Ref(n)=θ0×q+Δθ
e(n)=Ref(n)−P(n−1) (単位:rad)
Based on the count value of each encoder pulse counter (1, 2), the position deviation is calculated as follows.
P (n−1) = θ1 × ne
Ref (n) = θ0 × q + Δθ
e (n) = Ref (n) -P (n-1) (unit: rad)
ここで、上式中の各記号の意味は次の通りである。
e(n)[rad]:(今回のサンプリングにて演算された)位置偏差
θ0[rad]:制御周期1[ms]あたりの移動角度(=2π×V×10−3/Lπ[rad])
Δθ[rad]:従動軸の回転角変位変動値〔=b×sin(2×π×ft+τ)〕(テーブル参照値)
Here, the meaning of each symbol in the above formula is as follows.
e (n) [rad]: Position deviation (calculated in this sampling) θ0 [rad]: Movement angle per control period 1 [ms] (= 2π × V × 10 −3 / Lπ [rad])
Δθ [rad]: Fluctuation value of rotational angle displacement of driven shaft [= b × sin (2 × π × ft + τ)] (table reference value)
θ1[rad]:エンコーダ1パルスあたりの移動角度(=2π/p[rad])
q:制御周期タイマのカウント値
V:ベルト線速[mm/s]
L:右下ローラ径[mm]
b:ディスク偏心で発生する検出角変位誤差の振幅[rad]
τ:ディスク偏心で発生する検出角変位誤差の基準マークでの位相[rad]
f:ディスク回転の周期[Hz]
θ1 [rad]: Movement angle per encoder pulse (= 2π / p [rad])
q: Count value of control cycle timer V: Belt linear velocity [mm / s]
L: Lower right roller diameter [mm]
b: Amplitude of detection angular displacement error [rad] generated due to disk eccentricity
τ: phase at the reference mark [rad] of detected angular displacement error caused by disk eccentricity
f: Disk rotation period [Hz]
この実施形態においては、エンコーダ31を取り付けてある従動ローラである右下ローラ径はφ15.515[mm]である。また、エンコーダ31の分解能pは、1回転あたり300パルスのものとする。
次に、急激な位置変動に応答してしまうことを避けるため、演算された偏差に対して、以下の仕様のフィルタ演算を行うとよい。
In this embodiment, the diameter of the lower right roller, which is a driven roller to which the
Next, in order to avoid responding to a sudden position change, it is preferable to perform a filter calculation with the following specifications on the calculated deviation.
フィルタタイプ:Butterworth IIR ローパスフィルタ
サンプリング周波数:1KHz(=制御周期と等しい)
パスバンドリップル(Rp):0.01dB
ストップバンド端減衰量(Rs):2dB
パスバンド端周波数(Fp):50Hz
ストップバンド端周波数(Fs):100Hz
Filter type: Butterworth IIR low-pass filter Sampling frequency: 1 KHz (= equal to control period)
Passband ripple (Rp): 0.01 dB
Stop band end attenuation (Rs): 2 dB
Passband edge frequency (Fp): 50Hz
Stopband edge frequency (Fs): 100Hz
そのフィルタ演算のブロック図を図17に、フィルタ係数一覧を図18に示す。同じ構成のフィルタを2段カスケード接続し、各段における中間ノードをそれぞれu1(n),u1(n−1),u1(n−2)およびu2(n),u2(n−1),u2(n−2)と定める。ここで、インデックスの示す意味は次のとおりである。
(n):現在のサンプリング
(n−1):1つ前のサンプリング
(n−2):2つ前のサンプリング
A block diagram of the filter operation is shown in FIG. 17, and a list of filter coefficients is shown in FIG. Two stages of filters having the same configuration are cascade-connected, and intermediate nodes in each stage are u1 (n), u1 (n-1), u1 (n-2) and u2 (n), u2 (n-1), u2 respectively. (N-2). Here, the meaning of the index is as follows.
(N): Current sampling (n-1): Previous sampling (n-2): Second previous sampling
以下のプログラム演算をフィードバック実行中に制御タイマ割込みがかかる度に行う。
u1(n)=a11×u1(n−1)+a21×u1(n−2)+e(n)×ISF
e1(n)=b01×u1(n)+b11×u1(n−1)+b21×u1(n−2)
u1(n−2)=u1(n−1)
u1(n−1)=u1(n)
u2(n)=a12×u2(n−1)+a22×u2(n−2)+e1(n)
e′(n)=b02×u2(n)+b12×u2(n−1)+b22×u2(n−2)
u2(n−2)=u2(n−1)
u2(n−1)=u2(n)
図19にこのフィルタの振幅特性を、図20に位相特性を示す。
The following program operations are performed each time a control timer interrupt is generated during feedback execution.
u1 (n) = a11 * u1 (n-1) + a21 * u1 (n-2) + e (n) * ISF
e1 (n) = b01 * u1 (n) + b11 * u1 (n-1) + b21 * u1 (n-2)
u1 (n-2) = u1 (n-1)
u1 (n-1) = u1 (n)
u2 (n) = a12 * u2 (n-1) + a22 * u2 (n-2) + e1 (n)
e '(n) = b02 * u2 (n) + b12 * u2 (n-1) + b22 * u2 (n-2)
u2 (n-2) = u2 (n-1)
u2 (n-1) = u2 (n)
FIG. 19 shows the amplitude characteristics of this filter, and FIG. 20 shows the phase characteristics.
次に、制御対象に対する制御量を求める。制御ブロック図において、まず位置コントローラとしてPID制御を考えると、
F(S)=G(S)×E′(S)=Kp×E′(S)+Ki×E′(S)/S+Kd×S×E′(S) ……(1)
ただし、Kp:比例ゲイン、Ki:積分ゲイン、Kd:微分ゲイン である。
G(S)=F(S)/E′(S)=Kp+Ki/S+Kd×S ……(1)
Next, the control amount for the controlled object is obtained. In the control block diagram, first, considering PID control as a position controller,
F (S) = G (S) × E ′ (S) = Kp × E ′ (S) + Ki × E ′ (S) / S + Kd × S × E ′ (S) (1)
However, Kp: proportional gain, Ki: integral gain, Kd: differential gain.
G (S) = F (S) / E ′ (S) = Kp + Ki / S + Kd × S (1)
ここで、(1)式を双一次変換(S=(2/T)×(1−Z−1)/(1+Z−1))を行うと、次式を得る。
G(Z)=(b0+b1×Z−1+b2×Z−2)/(1−a1×Z−1−a2×Z−2) ……(2)
ただし、a1=0
a2=1
b0=Kp+T×Ki/2+2×Kd/T
b1=T×Ki−4×Kd/T
b2=−Kp+T×Ki/2+2×Kd/T
Here, when the bilinear transformation (S = (2 / T) × (1-Z −1 ) / (1 + Z −1 )) is performed on the equation (1), the following equation is obtained.
G (Z) = (b0 + b1 * Z- 1 + b2 * Z- 2 ) / (1-a1 * Z- 1- a2 * Z- 2 ) (2)
However, a1 = 0
a2 = 1
b0 = Kp + T × Ki / 2 + 2 × Kd / T
b1 = T × Ki−4 × Kd / T
b2 = −Kp + T × Ki / 2 + 2 × Kd / T
(2)式をブロック図として表すと、図21のようになる。ここで、e′(n)、f(n)は、E′(S)、F(S)をそれぞれ離散データとして扱うことを示している。図21において、中間ノードとしてそれぞれw(n)、w(n−1)、w(n−2)を定めると、差分方程式は次式のようになる(PID制御の一般式)。
w(n)=a1×w(n−1)+a2×w(n−2)+e′(n) ………(3)
f(n)=b0×w(n)+b1×w(n−1)+b2×w(n−2) …(4)
ここで、インデックスの示す意味は次のとおりである。
(n):現在のサンプリング
(n−1):1つ前のサンプリング
(n−2):2つ前のサンプリング
The expression (2) is represented as a block diagram as shown in FIG. Here, e ′ (n) and f (n) indicate that E ′ (S) and F (S) are treated as discrete data, respectively. In FIG. 21, when w (n), w (n-1), and w (n-2) are defined as intermediate nodes, the difference equation is as follows (general expression for PID control).
w (n) = a1 * w (n-1) + a2 * w (n-2) + e '(n) (3)
f (n) = b0 * w (n) + b1 * w (n-1) + b2 * w (n-2) (4)
Here, the meaning of the index is as follows.
(N): Current sampling (n-1): Previous sampling (n-2): Second previous sampling
今、位置コントローラとしては比例制御を考えると、積分ゲイン、微分ゲインはゼロとなる。従って、図21における各係数は以下のようになり、(3)式および(4)式は次の(5)式のように簡略化される。
a1=0 a2=1 b0=Kp b1=0 b2=−Kp
w(n)=w(n−2)+e′(n)
f(n)=Kp×w(n)−Kp×w(n−2)
→∴f(n)=Kp×e′(n) ……(5)
Considering proportional control as a position controller, the integral gain and derivative gain are zero. Accordingly, the coefficients in FIG. 21 are as follows, and the expressions (3) and (4) are simplified as the following expression (5).
a1 = 0 a2 = 1 b0 = Kp b1 = 0 b2 = -Kp
w (n) = w (n−2) + e ′ (n)
f (n) = Kp × w (n) −Kp × w (n−2)
→ ∴f (n) = Kp × e ′ (n) (5)
また、F0(S)に対応する離散データf0(n)は、この実施形態の場合、一定であり、
f0(n)=6105[Hz]
である。よって、駆動モータ32に設定するパルス周波数は、最終的に次の(6)式により計算する。
f′(n)=f(n)+f0(n)=Kp×e′(n)+6105[Hz]…(6)
Also, the discrete data f0 (n) corresponding to F0 (S) is constant in this embodiment,
f0 (n) = 6105 [Hz]
It is. Therefore, the pulse frequency set in the
f ′ (n) = f (n) + f0 (n) = Kp × e ′ (n) +6105 [Hz] (6)
図22に前述したエンコーダパルスカウンタ(1)の動作フローチャートを示す。この図22のフローチャートおよび以下に説明するフローチャートにおいて、各ステップを「S」と略記している。
まず、スルーアップ&セトリング後の最初のパルス入力かどうかを判定し(S1)、YESならば、エンコーダパルスカウンタ(1)をゼロクリアし(S2)、制御周期タイマカウンタをゼロクリアし(S3)、制御周期タイマによる割込みを許可し(S4)、制御周期タイマをスタートして(S5)、図示していないメインルーチンへリターンする。また、ステップ1の判定でNOであった場合は、エンコーダパルスカウンタ(1)をインクリメントして(S6)、メインルーチンへリターンする。
FIG. 22 shows an operation flowchart of the encoder pulse counter (1) described above. In the flowchart of FIG. 22 and the flowchart described below, each step is abbreviated as “S”.
First, it is determined whether it is the first pulse input after through-up and settling (S1). If YES, the encoder pulse counter (1) is cleared to zero (S2), the control cycle timer counter is cleared to zero (S3), and control is performed. The interruption by the cycle timer is permitted (S4), the control cycle timer is started (S5), and the process returns to the main routine (not shown). If the determination in
図23に前述したエンコーダパルスカウンタ(2)の動作フローチャートを示す。
まず、エンコーダパルスが入力した時に、マークセンサ332の状態を判定し(S11)、YESならばエンコーダパルスカウンタ(2)をゼロクリアする(S12)。また、ステップ11の判定でNOであった場合、エンコーダパルスカウンタ(2)をインクリメントし(S13)、メインルーチンへリターンする。
FIG. 23 shows an operation flowchart of the encoder pulse counter (2) described above.
First, when an encoder pulse is input, the state of the
さらに、図24に制御周期タイマによる割込み処理のフローチャートを示す。
まず、制御周期タイマカウンタをインクリメントし(S21)、次いでエンコーダパルスカウント値neを取得する(S22)。さらに、テーブルデータを参照してΔθの値を取得し(S23)、テーブルデータ参照アドレスをインクリメントする(S24)。次いで、これらの値を用いて位置偏差演算を行い(S25)、得られた位置偏差に対してフィルタ演算を行い(S26)、そのフィルタ演算の結果をもとに制御量の演算(比例演算)を行う(S27)。そして、実際に駆動モータ32(ステッピングモータ)の駆動パルスの周波数を変更して(S28)、メインルーチンへリターンする。
Further, FIG. 24 shows a flowchart of interrupt processing by the control cycle timer.
First, the control cycle timer counter is incremented (S21), and then the encoder pulse count value ne is acquired (S22). Furthermore, the value of Δθ is acquired by referring to the table data (S23), and the table data reference address is incremented (S24). Next, a position deviation calculation is performed using these values (S25), a filter calculation is performed on the obtained position deviation (S26), and a control amount calculation (proportional calculation) is performed based on the result of the filter calculation. (S27). Then, the frequency of the drive pulse of the drive motor 32 (stepping motor) is actually changed (S28), and the process returns to the main routine.
以上の制御によって、位置制御におけるエンコーダ31のディスク偏心によって発生する転写搬送ベルト60の回動速度を安定化する制御を、安価に且つ画像品位に応じて適切に行うことが可能になる。
なお、上述の実施形態では、転写搬送ベルトの回動により従動回転する従動ローラのうちの右下ローラ66をエンコーダを取り付けた対象ローラとしたが、他の従動ローラ又は転写搬送ベルトを回動させる駆動ローラを対象ローラとしてもよい。また、エンコーダとして、円周方向に数百単位の分解能で光を反射する放射状のマークおよび光を反射する基準マーク(ディスク回転の1回転を判定するためのもの)と、その2種類のマークの部位とそれぞれ対向するように配置した2つのセンサ(それぞれ発光素子と受光素子とからなる)とを備えたものを使用することもできる。
以上、この発明を、転写搬送ベルトを駆動制御する駆動制御装置(ベルト駆動装置)に適用した実施形態について説明したが、この発明はこれに限らず、画像形成用の他の無端移動部材(感光体ベルト,転写ベルト,中間転写ベルト,又は画像記録媒体搬送用ベルト)を駆動制御する駆動制御装置にも適用可能である。
With the above control, it is possible to appropriately perform the control for stabilizing the rotational speed of the
In the above-described embodiment, the lower
As described above, the embodiment in which the present invention is applied to the drive control device (belt drive device) for driving and controlling the transfer conveyance belt has been described. However, the present invention is not limited to this, and other endless moving members (photosensitive members) for image formation. The present invention can also be applied to a drive control device that drives and controls a body belt, a transfer belt, an intermediate transfer belt, or an image recording medium conveyance belt.
すなわち、転写搬送ベルト60上に感光体ドラム11Y,11M,11C,11Kが複数並べて配設されるタンデム式のレーザプリンタにおけるベルト駆動装置にこの発明を適用した例について説明したが、この発明が適用可能な画像形成装置およびベルト駆動装置はこの構成に限るものではない。
複数のローラに張架された無端状ベルトをそのローラのうちの少なくとも1以上のローラ(対象ローラ)によって回転駆動するベルト駆動装置を有する画像形成装置であれば、そのいずれのベルト駆動装置にも適用可能である。
That is, an example in which the present invention is applied to a belt driving device in a tandem type laser printer in which a plurality of
As long as the image forming apparatus has a belt driving device that rotationally drives an endless belt stretched around a plurality of rollers by at least one of the rollers (target rollers), any of the belt driving devices Applicable.
また、前述の実施形態では、転写搬送ベルト60によって転写紙を搬送し、その転写紙上で感光体ドラムからの4色のトナー像を順次転写する直接転写方式のカラープリンタにこの発明を適用したが、中間転写ベルト上に4色のトナー像を転写して、4色重ね合わせた後に転写紙に一括して転写する間接転写方式のカラープリンタ等における中間転写ベルト駆動装置にも、この発明を適用可能である。
さらに、前述の実施形態では露光光源としてはレーザー光を使用しているが、これに限ったものではなく、例えばLEDアレイ等を光源として使用するものでもよい。
In the above-described embodiment, the present invention is applied to a direct transfer type color printer that transports transfer paper by the
Furthermore, although laser light is used as the exposure light source in the above-described embodiment, the present invention is not limited to this. For example, an LED array or the like may be used as the light source.
以上の説明から明らかなように、この発明の駆動制御装置によれば、エンコーダのディスク偏心によって発生する無端移動部材の回動速度変動を安定化する制御を低コストで行うことが可能になり、良好なフィードバック制御を行うことができる。したがって、この発明を利用すれば、無端移動部材の回動速度の安定化を低コストで実現可能な駆動制御装置を提供することができる。
この発明の画像形成装置によれば、上記駆動制御装置を用いることにより、エンコーダのディスク偏心によって発生する無端移動部材(感光体ベルト,転写ベルト,中間転写ベルト,又は画像記録媒体搬送用ベルト)の回動速度の変動を安定化する制御を低コストで且つ画像品位に応じて適切に行うことが可能になる。したがって、この発明を利用すれば、高品位の画像を低コストで取得可能な画像形成装置を提供することができる。
As is apparent from the above description, according to the drive control device of the present invention, it is possible to perform control that stabilizes the rotational speed fluctuation of the endless moving member caused by the disk eccentricity of the encoder at a low cost, Good feedback control can be performed. Therefore, if this invention is utilized, the drive control apparatus which can implement | achieve stabilization of the rotational speed of an endless moving member at low cost can be provided.
According to the image forming apparatus of the present invention, an endless moving member (photosensitive belt, transfer belt, intermediate transfer belt, or image recording medium conveying belt) generated by the disk eccentricity of the encoder is obtained by using the drive control device. Control for stabilizing the fluctuation of the rotation speed can be appropriately performed at low cost according to the image quality. Therefore, if this invention is used, an image forming apparatus capable of acquiring a high-quality image at a low cost can be provided.
1Y,1M,1C,1K:トナー像形成部 6:ベルト駆動装置
30:目標角変位生成部 31:エンコーダ 32:駆動モータ
37:パルス出力器 40:制御コントローラ部 60:転写搬送ベルト
63:駆動ローラ 66:右下ローラ(従動ローラ) 311:ディスク
331:エンコーダセンサ 332:マークセンサ 600:制御部
601:CPU 602:RAM 603:ROM 604:IO制御部
606:駆動モータIF 607:ドライバ 608:検出IO部 609:バス
1Y, 1M, 1C, 1K: toner image forming unit 6: belt driving device 30: target angular displacement generating unit 31: encoder 32: driving motor 37: pulse output device 40: control controller unit 60: transfer conveyance belt 63: driving roller 66: Lower right roller (driven roller) 311: Disk 331: Encoder sensor 332: Mark sensor 600: Controller 601: CPU 602: RAM 603: ROM 604: IO controller 606: Drive motor IF 607: Driver 608: Detection IO Department 609: Bus
Claims (11)
前記エンコーダのディスクが1回転する間の該ディスクの偏心の影響で発生する角変位誤差を検出する角変位誤差検出手段と、
該角変位誤差検出手段から得られる角変位誤差を特性値として保持する記憶手段と、
前記制御目標値に前記特性値を加算して前記駆動ローラを駆動制御する制御手段と
を設けたことを特徴とする駆動制御装置。 An encoder that detects the circumferential movement of a target roller that is a driving roller that rotates the endless moving member or a driven roller that rotates following the rotation of the endless moving member, and the angular displacement per unit time of the encoder is constant A drive control device for setting the control target value and controlling the drive roller so as to match the control target value,
Angular displacement error detecting means for detecting an angular displacement error caused by the eccentricity of the disk during one rotation of the disk of the encoder;
Storage means for holding the angular displacement error obtained from the angular displacement error detection means as a characteristic value;
And a control means for controlling the drive roller by adding the characteristic value to the control target value.
前記角変位誤差検出手段は、前記無端移動部材が一定速度で回動しているときに、前記エンコーダの出力パルス数をカウントするカウント手段と、該カウント手段によるカウント値を一定周期毎にサンプリングする手段と、該手段によるサンプリング結果から傾き成分を除去して第1の特性値を算出する第1の特性値算出手段とを有し、
前記記憶手段は、前記第1の特性値算出手段によって算出された第1の特性値を保持する手段であり、
前記制御手段は、前記記憶手段内の第1の特性値に基づいて前記制御目標値に加算すべき第2の特性値を算出する第2の特性値算出手段を有することを特徴とする駆動制御装置。 The drive control device according to claim 1,
The angular displacement error detecting means counts the number of output pulses of the encoder when the endless moving member is rotating at a constant speed, and samples the count value by the counting means at a constant cycle. Means and first characteristic value calculation means for calculating a first characteristic value by removing a slope component from a sampling result obtained by the means;
The storage means is means for holding the first characteristic value calculated by the first characteristic value calculation means,
The control means has a second characteristic value calculation means for calculating a second characteristic value to be added to the control target value based on the first characteristic value in the storage means. apparatus.
前記第1の特性値は、前記ディスクの偏心の波形についての該ディスクの予め定めた基準位置での位相値と最大振幅値とからなることを特徴とする駆動制御装置。 The drive control apparatus according to claim 2, wherein
The drive control device according to claim 1, wherein the first characteristic value includes a phase value and a maximum amplitude value at a predetermined reference position of the disc with respect to the eccentric waveform of the disc.
前記第2の特性値算出手段は、前記第1の特性値から、SIN関数もしくは近似式を用いて、前記エンコーダのディスクの回転位置に応じた前記第2の特性値を算出する手段であることを特徴とする駆動制御装置。 The drive control device according to claim 2 or 3,
The second characteristic value calculating means is means for calculating the second characteristic value corresponding to the rotational position of the disk of the encoder from the first characteristic value using a SIN function or an approximate expression. A drive control device characterized by the above.
前記第2の特性値算出手段は、電源ON時もしくは前記駆動ローラの駆動開始時に前記第2の特性値を算出する手段であり、
該手段によって算出された前記第2の特性値を保持する第2の記憶手段を設け、
前記制御手段は、前記駆動ローラを駆動する際に、前記エンコーダのディスクの回転位置に応じて前記第2の記憶手段から前記第2の特性値を読み出し、該第2の特性値を前記制御目標値に加算して前記駆動ローラを駆動制御することを特徴とする駆動制御装置。 The drive control device according to claim 4, wherein
The second characteristic value calculating means is a means for calculating the second characteristic value when the power is turned on or when driving of the driving roller is started.
A second storage means for holding the second characteristic value calculated by the means;
The control means reads the second characteristic value from the second storage means in accordance with the rotational position of the disk of the encoder when driving the drive roller, and uses the second characteristic value as the control target. A drive control device, wherein the drive roller is drive-controlled by adding to a value.
前記駆動制御装置に、
前記エンコーダのディスクが1回転する間の該ディスクの偏心の影響で発生する角変位誤差を検出する角変位誤差検出手段と、
該角変位誤差検出手段から得られる角変位誤差を特性値として保持する記憶手段と、
前記制御目標値に前記特性値を加算して前記駆動ローラを駆動制御する制御手段と
を設けたことを特徴とする画像形成装置。 An angular displacement per unit time of the encoder comprising an encoder for detecting the peripheral movement of a target roller which is a driving roller for rotating an endless moving member for image formation or a driven roller driven to rotate by rotation of the endless moving member Is an image forming apparatus including a drive control device that sets a control target value so as to be constant, and drives and controls the drive roller so as to match the control target value.
In the drive control device,
Angular displacement error detecting means for detecting an angular displacement error caused by the eccentricity of the disk during one rotation of the disk of the encoder;
Storage means for holding the angular displacement error obtained from the angular displacement error detection means as a characteristic value;
An image forming apparatus comprising: a control unit that drives the drive roller by adding the characteristic value to the control target value.
前記角変位誤差検出手段は、前記無端移動部材が一定速度で回動しているときに、前記エンコーダの出力パルス数をカウントするカウント手段と、該カウント手段によるカウント値を一定周期毎にサンプリングする手段と、該手段によるサンプリング結果から傾き成分を除去して第1の特性値を算出する第1の特性値算出手段とを有し、
前記記憶手段は、前記第1の特性値算出手段によって算出された第1の特性値を保持する手段であり、
前記制御手段は、前記記憶手段内の第1の特性値に基づいて前記制御目標値に加算すべき第2の特性値を算出する第2の特性値算出手段を有することを特徴とする画像形成装置。 The image forming apparatus according to claim 6.
The angular displacement error detecting means counts the number of output pulses of the encoder when the endless moving member is rotating at a constant speed, and samples the count value by the counting means at a constant cycle. Means and first characteristic value calculation means for calculating a first characteristic value by removing a slope component from a sampling result obtained by the means;
The storage means is means for holding the first characteristic value calculated by the first characteristic value calculation means,
The control unit includes a second characteristic value calculation unit that calculates a second characteristic value to be added to the control target value based on the first characteristic value in the storage unit. apparatus.
前記第1の特性値は、前記ディスクの偏心の波形についての該ディスクの予め定めた基準位置での位相値と最大振幅値とからなることを特徴とする画像形成装置。 The image forming apparatus according to claim 7.
The image forming apparatus according to claim 1, wherein the first characteristic value includes a phase value and a maximum amplitude value at a predetermined reference position of the disc with respect to an eccentric waveform of the disc.
前記第2の特性値算出手段は、前記第1の特性値から、SIN関数もしくは近似式を用いて、前記エンコーダのディスクの回転位置に応じた前記第2の特性値を算出する手段であることを特徴とする画像形成装置。 The image forming apparatus according to claim 7 or 8,
The second characteristic value calculating means is means for calculating the second characteristic value corresponding to the rotational position of the disk of the encoder from the first characteristic value using a SIN function or an approximate expression. An image forming apparatus.
前記第2の特性値算出手段は、電源ON時もしくは前記駆動ローラの駆動開始時に前記第2の特性値を算出する手段であり、
該手段によって算出された前記第2の特性値を保持する第2の記憶手段を設け、
前記制御手段は、前記駆動ローラを駆動する際に、前記エンコーダのディスクの回転位置に応じて前記第2の記憶手段から前記第2の特性値を読み出し、該第2の特性値を前記制御目標値に加算して前記駆動ローラを駆動制御することを特徴とする画像形成装置。 The image forming apparatus according to claim 9.
The second characteristic value calculating means is a means for calculating the second characteristic value when the power is turned on or when driving of the driving roller is started.
A second storage means for holding the second characteristic value calculated by the means;
The control means reads the second characteristic value from the second storage means in accordance with the rotational position of the disk of the encoder when driving the drive roller, and uses the second characteristic value as the control target. An image forming apparatus, wherein the drive roller is driven and controlled by adding to a value.
前記無端移動部材が、感光体ベルト,転写ベルト,中間転写ベルト,画像記録媒体搬送用ベルトのうちのいずれか一つ以上であることを特徴とする画像形成装置。 The image forming apparatus according to any one of claims 6 to 10,
The image forming apparatus, wherein the endless moving member is at least one of a photosensitive belt, a transfer belt, an intermediate transfer belt, and an image recording medium conveyance belt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061408A JP2006243547A (en) | 2005-03-04 | 2005-03-04 | Driving control device and image forming apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061408A JP2006243547A (en) | 2005-03-04 | 2005-03-04 | Driving control device and image forming apparatus |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006243547A true JP2006243547A (en) | 2006-09-14 |
Family
ID=37049997
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005061408A Pending JP2006243547A (en) | 2005-03-04 | 2005-03-04 | Driving control device and image forming apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006243547A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008228470A (en) * | 2007-03-14 | 2008-09-25 | Ricoh Co Ltd | Control method of rotating body driver |
JP2009192576A (en) * | 2008-02-12 | 2009-08-27 | Ricoh Co Ltd | Motor control apparatus, image forming apparatus and program |
WO2009113597A1 (en) * | 2008-03-13 | 2009-09-17 | 理想科学工業株式会社 | Printer and discharge control method |
JP2010178404A (en) * | 2009-01-27 | 2010-08-12 | Fujitec Co Ltd | Motor control apparatus |
JP2014153202A (en) * | 2013-02-08 | 2014-08-25 | Ricoh Co Ltd | Sheet length measurement device |
US9457975B2 (en) | 2014-03-31 | 2016-10-04 | Brother Kogyo Kabushiki Kaisha | Control apparatus |
-
2005
- 2005-03-04 JP JP2005061408A patent/JP2006243547A/en active Pending
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008228470A (en) * | 2007-03-14 | 2008-09-25 | Ricoh Co Ltd | Control method of rotating body driver |
JP2009192576A (en) * | 2008-02-12 | 2009-08-27 | Ricoh Co Ltd | Motor control apparatus, image forming apparatus and program |
WO2009113597A1 (en) * | 2008-03-13 | 2009-09-17 | 理想科学工業株式会社 | Printer and discharge control method |
JPWO2009113597A1 (en) * | 2008-03-13 | 2011-07-21 | 理想科学工業株式会社 | Printing apparatus and discharge control method thereof |
JP4975163B2 (en) * | 2008-03-13 | 2012-07-11 | 理想科学工業株式会社 | Printing apparatus and discharge control method thereof |
US8411308B2 (en) | 2008-03-13 | 2013-04-02 | Riso Kagaku Corporation | Printing machine and ejection control method for the same |
JP2010178404A (en) * | 2009-01-27 | 2010-08-12 | Fujitec Co Ltd | Motor control apparatus |
JP2014153202A (en) * | 2013-02-08 | 2014-08-25 | Ricoh Co Ltd | Sheet length measurement device |
US9457975B2 (en) | 2014-03-31 | 2016-10-04 | Brother Kogyo Kabushiki Kaisha | Control apparatus |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2006209042A (en) | Belt drive control apparatus and image forming apparatus | |
EP1628168B1 (en) | Apparatus for controlling the driving of an endless belt for an image forming apparatus | |
JP4676790B2 (en) | Drive control apparatus and image forming apparatus | |
JP4272565B2 (en) | Belt drive control device and image forming apparatus | |
JP2009007163A (en) | Belt conveyance control device, image forming device, method of controlling belt conveyance, belt conveyance control program, and recording medium | |
JP2005300953A (en) | Color image forming apparatus, its driving control method and program for controlling driving | |
JP2006243547A (en) | Driving control device and image forming apparatus | |
US7499667B2 (en) | Endless belt drive controlling apparatus including angular displacement error calculation and associated image forming apparatus | |
JP5506458B2 (en) | Image forming apparatus | |
JP4533198B2 (en) | Drive control device and image forming apparatus | |
JP2007132992A (en) | Belt drive device and image forming apparatus | |
JP4719043B2 (en) | Drive control apparatus and image forming apparatus | |
JP2006240854A (en) | Drive control device and image forming apparatus | |
JP2006243548A (en) | Drive controller and image forming apparatus | |
JP2007206120A (en) | Drive controller and image forming apparatus | |
JP4680585B2 (en) | Endless belt drive control device and image forming apparatus | |
JP2006244314A (en) | Drive controller and image forming apparatus | |
JP2006259152A (en) | Drive controller, drive control method, image forming apparatus, program and recording medium | |
JP2004205717A (en) | Image forming apparatus | |
JP2007079497A (en) | Recording member carrier, recording member carrier driving device, drive controller, image forming apparatus, and ic tag replacing method | |
JP2007003704A (en) | Image forming apparatus | |
JP2007199433A (en) | Transfer device and image forming apparatus | |
JP2011013572A (en) | Belt drive control device, and image forming apparatus | |
JP2006023598A (en) | Image forming apparatus | |
JP2006058344A (en) | Drive control unit of endless belt |