JP2006242390A - Heat exchanger - Google Patents

Heat exchanger Download PDF

Info

Publication number
JP2006242390A
JP2006242390A JP2005054165A JP2005054165A JP2006242390A JP 2006242390 A JP2006242390 A JP 2006242390A JP 2005054165 A JP2005054165 A JP 2005054165A JP 2005054165 A JP2005054165 A JP 2005054165A JP 2006242390 A JP2006242390 A JP 2006242390A
Authority
JP
Japan
Prior art keywords
titanium
layer
titanium oxide
carbon
doped
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005054165A
Other languages
Japanese (ja)
Other versions
JP4716309B2 (en
Inventor
Masahiro Furuya
正裕 古谷
Moriyasu Tokiwai
守泰 常磐井
Takeshi Takahashi
高橋  毅
Hirokazu Kobayashi
博和 小林
Nobuyuki Tanaka
伸幸 田中
Miki Mikami
己紀 三上
Masahiro Kuroda
昌宏 黒田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Research Institute of Electric Power Industry
Original Assignee
Central Research Institute of Electric Power Industry
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Research Institute of Electric Power Industry filed Critical Central Research Institute of Electric Power Industry
Priority to JP2005054165A priority Critical patent/JP4716309B2/en
Publication of JP2006242390A publication Critical patent/JP2006242390A/en
Application granted granted Critical
Publication of JP4716309B2 publication Critical patent/JP4716309B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28BSTEAM OR VAPOUR CONDENSERS
    • F28B1/00Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser
    • F28B1/02Condensers in which the steam or vapour is separate from the cooling medium by walls, e.g. surface condenser using water or other liquid as the cooling medium

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Catalysts (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a heat exchanger using a photocatalyst capable of stably exhibiting an anti-fouling property and corrosion resistance over a long period irrespective of a refrigerant. <P>SOLUTION: A multifunctional layer composed of titanium oxide or titanium alloy oxide doped with carbon, is arranged in at least a part of an inner surface of at least a small diameter tube 103a for circulating seawater serving as the refrigerant therethrough. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は熱交換器に関し、特に発電プラントの復水器に用いる熱交換器等として有用なものである。   The present invention relates to a heat exchanger, and is particularly useful as a heat exchanger or the like used for a condenser of a power plant.

熱交換器は、多くの用途に用いられているが、その一つとして発電プラントの復水器がある。かかる復水器の場合、冷媒としては通常海水が用いられる。したがって、この冷媒を流通させる管路の内周面は汚損されやすく、また異物も付着し易い。そこで、定期的な清掃が必要になるが、現状ではかかるメンテナンスに多大の費用を要していた。すなわちランニングコストを高騰させている。   Heat exchangers are used in many applications, and one of them is a power plant condenser. In such a condenser, seawater is usually used as the refrigerant. Therefore, the inner peripheral surface of the conduit through which the refrigerant flows is easily soiled and foreign matter is also likely to adhere. Therefore, periodic cleaning is required, but at present, such maintenance requires a great deal of cost. That is, the running cost is increased.

一方、大・中規模のビルのトイレや、公共施設のトイレに使われている、水洗時に流す(フラッシング)の中水(雨水など、上水と下水の中間の水)は、雑菌が混じっていることが多く、高温になると、悪臭や異臭が発生し、たまに変色するような場合があるため、可及的に低温にすることが肝要であるが、このため冷凍機を用いて前記中水を冷却する装置も開発されている。   On the other hand, miscellaneous germs are mixed in the flush water used for toilets in large and medium-sized buildings and toilets in public facilities (flushing) during flushing (water between rainwater and other sewage). In many cases, when the temperature is high, bad odors and odors may be generated and sometimes discolored. Therefore, it is important to make the temperature as low as possible. A device for cooling the air has also been developed.

ところが、かかる装置においては、水中の雑菌のために、熱交換器の表面が直ぐに汚れたり、装置自体の劣化が激しい。   However, in such an apparatus, the surface of the heat exchanger is immediately soiled due to various germs in the water, or the apparatus itself is severely deteriorated.

また、バイオリアクター用熱交換器では、低温だけでなく、ある程度の温度域で保持するような場合もある。この場合には積極的に生菌が活性化するので、使われる熱交換器の表面や装置全体は直ぐに汚れることになる。   In addition, the bioreactor heat exchanger may be held not only at a low temperature but also in a certain temperature range. In this case, since viable bacteria are activated actively, the surface of the heat exchanger used and the entire apparatus are immediately contaminated.

さらに、温泉熱を利用する温泉熱交換器では、硫化水素等の有毒ガスの濃度が濃い環境での使用となるので特に耐食性に優れることが必要である。   Furthermore, since the hot spring heat exchanger using hot spring heat is used in an environment where the concentration of a toxic gas such as hydrogen sulfide is high, it is particularly necessary to have excellent corrosion resistance.

一方、極めて良好な防汚特性、耐食性を発揮するものとして光触媒が注目されている。例えば、1)熱伝導性金属材料から成るフィン表面が、光触媒と無機系抗菌剤と有機系バインダーで被覆した構成である光触媒熱交換器、2)熱伝導性金属材料から成るフィン表面が、酸化チタン粒子の表面に微細な細孔を有する光触媒として不活性なセラミック膜をコートした光触媒粒子と、有機系バインダーで被覆した構成である光触媒熱交換器、3)
所定の隙間を空けて多数のアルミニウム製薄板を並設することによって親水性フィンを構成した熱交換器において、該アルミニウム製薄板の表面全体に光触媒を含む親水性バインダを塗布するとともに該バインダに光触媒を担持させ、該光触媒に紫外光を照射することにより親水性が増す親水性フィンを構成した光触媒熱交換器等が提案されている。
On the other hand, photocatalysts are attracting attention as those that exhibit extremely good antifouling properties and corrosion resistance. For example, 1) a photocatalytic heat exchanger in which a fin surface made of a heat conductive metal material is coated with a photocatalyst, an inorganic antibacterial agent and an organic binder, and 2) a fin surface made of a heat conductive metal material is oxidized. Photocatalyst heat exchanger with a structure coated with an organic binder and photocatalyst particles coated with an inert ceramic film as a photocatalyst having fine pores on the surface of titanium particles, 3)
In a heat exchanger in which hydrophilic fins are formed by arranging a large number of aluminum thin plates in parallel with a predetermined gap, a hydrophilic binder containing a photocatalyst is applied to the entire surface of the aluminum thin plate and the photocatalyst is applied to the binder. A photocatalyst heat exchanger or the like is proposed in which hydrophilic fins are formed that increase the hydrophilicity by irradiating the photocatalyst with ultraviolet light.

ところが、従来技術に係る光触媒製品は耐久性が乏しく、光触媒層の剥離等によって長期間の使用が困難であるばかりでなく、光触媒機能を発揮させるためには十分な紫外光を照射する必要があるという実用上の大きな問題を有していた。すなわち、防汚性乃至耐久性に優れる熱交換器の出現が待望されている。   However, the photocatalyst products according to the prior art have poor durability and are difficult to use for a long period of time due to peeling of the photocatalyst layer, etc., and it is necessary to irradiate with sufficient ultraviolet light to exert the photocatalytic function It had a big problem in practical use. That is, the advent of a heat exchanger excellent in antifouling properties and durability is awaited.

特開平2002−071298号公報Japanese Patent Laid-Open No. 2002-071298 特開平2002−071297号公報Japanese Patent Application Laid-Open No. 2002-071297 特開平2001−033190号公報Japanese Patent Laid-Open No. 2001-033190

本発明は、上記従来技術に鑑み、冷媒の如何に関わらず長期に亘り安定に防汚性、耐食性等を発揮し得る光触媒を用いた熱交換器を提供することを目的とする。   An object of the present invention is to provide a heat exchanger using a photocatalyst that can stably exhibit antifouling property, corrosion resistance, etc. over a long period of time regardless of the refrigerant.

前記目的を達成する本発明の第1の態様は、炭素ドープされた酸化チタン又はチタン合金酸化物からなる多機能層を少なくとも冷媒が流通する管路の内面の少なくとも一部に設けたことを特徴とする。   The first aspect of the present invention that achieves the above object is characterized in that a multifunctional layer made of carbon-doped titanium oxide or titanium alloy oxide is provided on at least a part of the inner surface of a conduit through which refrigerant flows. And

本発明の第2の態様は、上記第1の態様において、前記多機能層が基体の表面に一体的に形成されたものであると共に該炭素がTi−C結合の状態でドープされており、該基体の少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンであることを特徴とする。   According to a second aspect of the present invention, in the first aspect, the multi-functional layer is integrally formed on the surface of the substrate, and the carbon is doped in a Ti-C bond state. At least the surface layer of the substrate is titanium, a titanium alloy, a titanium alloy oxide, or titanium oxide.

本発明の第3の態様は、上記第2の態様において、前記基体は、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる表面部形成層と心材とからなり、該心材がチタン、チタン合金、酸化チタン及びチタン合金酸化物以外の材質であることを特徴とする。   According to a third aspect of the present invention, in the second aspect, the base body includes a surface portion forming layer made of titanium, titanium alloy, titanium alloy oxide, or titanium oxide, and a core material. It is a material other than an alloy, titanium oxide, and titanium alloy oxide.

本発明の第4の態様は、上記第2又は3の態様において、前記多機能層のビッカース硬度が300以上であることを特徴とする。   According to a fourth aspect of the present invention, in the second or third aspect, the multi-functional layer has a Vickers hardness of 300 or more.

本発明の第5の態様は、上記第2又は3の態様において、前記多機能層のビッカース硬度が1000以上であることを特徴とする。   According to a fifth aspect of the present invention, in the second or third aspect, the multi-functional layer has a Vickers hardness of 1000 or more.

本発明の第6の態様は、少なくとも表面側がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有していると共に該突起部が炭素ドープされている多機能層を少なくとも冷媒が流通する管路の内面に設けたことを特徴とする。   The sixth aspect of the present invention has a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface of the base made of titanium, titanium alloy, titanium alloy oxide or titanium oxide at least on the surface side. And a multi-functional layer in which the protrusion is carbon-doped is provided at least on the inner surface of the conduit through which the refrigerant flows.

本発明の第7の態様は、上記第6の態様において、前記多機能層が、微細柱が林立しているものであり且つ該微細中が炭素ドープされていることを特徴とする。   According to a seventh aspect of the present invention, in the sixth aspect, the multi-functional layer is characterized in that fine columns are erected and the inside of the fine is carbon-doped.

本発明の第8の態様は、上記第6又は7において、ドープされた炭素がTi−C結合の状態で含まれていることを特徴とすることを特徴とする。   The eighth aspect of the present invention is characterized in that, in the sixth or seventh aspect, doped carbon is contained in a Ti-C bond state.

本発明の第9の態様は、上記第6〜8の何れかの態様において、前記基体は、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる表面部形成層と心材とからなり、該心材がチタン、チタン合金、酸化チタン及びチタン合金酸化物以外の材質であることを特徴とする。   According to a ninth aspect of the present invention, in any one of the sixth to eighth aspects, the substrate includes a surface portion forming layer made of titanium, a titanium alloy, a titanium alloy oxide, or titanium oxide, and a core material. The core material is a material other than titanium, titanium alloy, titanium oxide, and titanium alloy oxide.

本発明の第10の態様は、上記第1〜9の何れかの態様の熱交換器において、前記管路の内部に、前記多機能層に対して可視光又は紫外光を照射する光源を具備することを特徴とする。   According to a tenth aspect of the present invention, in the heat exchanger according to any one of the first to ninth aspects, a light source that irradiates visible light or ultraviolet light to the multifunctional layer is provided inside the conduit. It is characterized by doing.

まず、本発明に用いることができる多機能層を有する多機能材について説明する。   First, a multifunctional material having a multifunctional layer that can be used in the present invention will be described.

本発明で用いる第1の多機能材は、表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより得られるものであり、炭素がTi−C結合の状態でドープされており、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する炭素ドープ酸化チタン層からなる多機能層を表面層として有するものである。   The first multifunctional material used in the present invention has a surface layer made of titanium, a titanium alloy, a titanium alloy oxide, or a titanium oxide at a high temperature using a combustion flame of a gas mainly composed of hydrocarbon. It is obtained by heat treatment, carbon is doped in a Ti-C bond state, and has excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and It has a multifunctional layer composed of a carbon-doped titanium oxide layer that functions as a visible light responsive photocatalyst as a surface layer.

即ち、本発明で用いる第1の多機能材は、少なくとも表面層が炭素ドープ酸化チタン層からなると共に該炭素がTi−C結合の状態でドープされており、耐久性に優れ且つ可視光応答型光触媒として機能する多機能層を有することを特徴とする。   That is, the first multifunctional material used in the present invention has at least a surface layer composed of a carbon-doped titanium oxide layer and is doped with the carbon in a Ti-C bond state, and has excellent durability and a visible light response type. It has a multi-functional layer that functions as a photocatalyst.

本発明で用いる第1の多機能材は、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面を、例えば、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理することにより製造することができる。すなわち、これにより、基体の表面層であるチタン、チタン合金、チタン合金酸化物又は酸化チタンの表面に炭素ドープ酸化チタン層が一体的に形成された構造部材となり、表面が耐久性に優れ且つ可視光応答型光触媒として機能する第1の多機能材となる。この少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体は、その基体の全体がチタン、チタン合金、チタン合金酸化物又は酸化チタンの何れかで構成されていても、或いはチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる表面部形成層と心材とで構成されていてそれらの材質が異なっていてもよい。すなわち、この場合には、複合材料の基体の表面層であるチタン、チタン合金、チタン合金酸化物又は酸化チタンの表面に炭素ドープ酸化チタン層が一体的に形成された構造部材となり、これを表面が耐久性に優れ且つ可視光応答型光触媒として機能する第1の多機能材としてもよい。   The first multifunctional material used in the present invention uses, for example, a gas combustion flame mainly composed of hydrocarbons on the surface of a substrate whose surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide. And can be produced by heat treatment at a high temperature. In other words, this results in a structural member in which a carbon-doped titanium oxide layer is integrally formed on the surface of titanium, titanium alloy, titanium alloy oxide or titanium oxide, which is the surface layer of the substrate, and the surface is excellent in durability and visible. It becomes the 1st multifunctional material which functions as a photoresponsive photocatalyst. The substrate whose at least surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide may be composed of titanium, titanium alloy, titanium alloy oxide or titanium oxide as a whole, or It is comprised by the surface part formation layer and core material which consist of titanium, a titanium alloy, a titanium alloy oxide, or a titanium oxide, and those materials may differ. That is, in this case, a structural member in which a carbon-doped titanium oxide layer is integrally formed on the surface of titanium, titanium alloy, titanium alloy oxide, or titanium oxide, which is the surface layer of the composite material substrate, is formed on the surface. However, it is good also as a 1st multifunctional material which is excellent in durability and functions as a visible light responsive photocatalyst.

少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が表面部形成層と心材とで構成されていてそれらの材質が異なっている場合には、その表面部形成層の厚さは形成される炭素ドープ酸化チタン層の厚さと同一であっても(即ち、表面部形成層全体が炭素ドープ酸化チタン層となる)、厚くてもよい(即ち、表面部形成層の厚さ方向の一部が炭素ドープ酸化チタン層となり、一部がそのまま残る)。また、その心材の材質は第1の発明の製造方法における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、セラミックス、その他の陶磁器、高温耐熱性ガラス等を用いることができる。このような薄膜状の表面層と心材とで構成されている基体としては、例えば、心材の表面にチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる皮膜をスパッタリング、蒸着、溶射等の方法で形成したもの、あるいは、市販の酸化チタンゾルをスプレーコーティング、スピンコーティングやディッピングにより心材の表面上に付与して皮膜を形成したもの等を挙げることができる。   If at least the surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide and the surface portion forming layer and the core material are different from each other, the thickness of the surface portion forming layer The thickness may be the same as the thickness of the carbon-doped titanium oxide layer to be formed (that is, the entire surface portion forming layer becomes a carbon-doped titanium oxide layer) or may be thick (that is, the thickness of the surface portion forming layer). Part of the direction becomes a carbon-doped titanium oxide layer, and part remains as it is). The material of the core is not particularly limited as long as it does not burn, melt, or deform during the heat treatment in the manufacturing method of the first invention. For example, iron, iron alloy, non-ferrous alloy, ceramics, other ceramics, high temperature heat resistant glass, etc. can be used as the core material. Examples of the substrate composed of such a thin film-like surface layer and a core material include, for example, a method of sputtering, vapor deposition, thermal spraying, etc., on a surface of the core material made of titanium, titanium alloy, titanium alloy oxide, or titanium oxide. Or a film formed by applying a commercially available titanium oxide sol on the surface of the core material by spray coating, spin coating or dipping.

上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはない。例えば、Ti−6Al−4V、Ti−6Al−6V−2Sn、Ti−6Al−2Sn−4Zr−6Mo、Ti−10V−2Fe−3Al、Ti−7Al−4Mo、Ti−5Al−2.5Sn、Ti−6Al−5Zr−0.5Mo−0.2Si、Ti−5.5Al−3.5Sn−3Zr−0.3Mo−1Nb−0.3Si、Ti−8Al−1Mo−1V、Ti−6Al−2Sn−4Zr−2Mo、Ti−5Al−2Sn−2Zr−4Mo−4Cr、Ti−11.5Mo−6Zr−4.5Sn、Ti−15V−3Cr−3Al−3Sn、Ti−15Mo−5Zr−3Al、Ti−15Mo−5Zr、Ti−13V−11Cr−3Al等を用いることができる。   Various known titanium alloys can be used as the titanium alloy, and are not particularly limited. For example, Ti-6Al-4V, Ti-6Al-6V-2Sn, Ti-6Al-2Sn-4Zr-6Mo, Ti-10V-2Fe-3Al, Ti-7Al-4Mo, Ti-5Al-2.5Sn, Ti- 6Al-5Zr-0.5Mo-0.2Si, Ti-5.5Al-3.5Sn-3Zr-0.3Mo-1Nb-0.3Si, Ti-8Al-1Mo-1V, Ti-6Al-2Sn-4Zr- 2Mo, Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-11.5Mo-6Zr-4.5Sn, Ti-15V-3Cr-3Al-3Sn, Ti-15Mo-5Zr-3Al, Ti-15Mo-5Zr, Ti-13V-11Cr-3Al or the like can be used.

第1の多機能材の製造においては、炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用いることができ、特に還元炎を利用することが望ましい。炭化水素含有量が少ない燃料を用いる場合には、炭素のドープ量が不十分であったり、皆無であったりし、その結果として硬度が不十分となり、且つ可視光下での光触媒活性も不十分となる。本発明で用いる第1の多機能材の製造においてはこの炭化水素を主成分とするガスとは炭化水素を少なくとも50容量%含有するガスを意味し、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを意味する。本発明で用いる第1の多機能材の製造においては、炭化水素を主成分とするガスがアセチレンを50容量%以上含有することが好ましく、炭化水素がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易いと考えられる。   In the production of the first multifunctional material, a gas combustion flame mainly composed of hydrocarbons, particularly acetylene can be used, and it is particularly desirable to use a reducing flame. When using a fuel with a low hydrocarbon content, the carbon doping amount is insufficient or none, resulting in insufficient hardness and insufficient photocatalytic activity under visible light. It becomes. In the production of the first multifunctional material used in the present invention, the hydrocarbon-based gas means a gas containing at least 50% by volume of hydrocarbon, for example, containing at least 50% by volume of acetylene, As appropriate, it means a gas mixed with air, hydrogen, oxygen or the like. In the production of the first multifunctional material used in the present invention, the gas containing hydrocarbon as a main component preferably contains 50% by volume or more of acetylene, and the hydrocarbon is most preferably 100% of acetylene. When unsaturated hydrocarbons, especially acetylene having a triple bond, are used, in the process of combustion, especially in the reducing flame part, the unsaturated bond part decomposes to form an intermediate radical substance. It is considered that carbon doping is likely to occur because of its high activity.

本発明の第1の多機能材の製造において、加熱処理する基体の表面層がチタン又はチタン合金である場合には、該チタン又はチタン合金を酸化する酸素が必要であり、その分だけ空気又は酸素を含んでいる必要がある。   In the production of the first multifunctional material of the present invention, when the surface layer of the substrate to be heat-treated is titanium or a titanium alloy, oxygen that oxidizes the titanium or titanium alloy is necessary, and air or It needs to contain oxygen.

本発明で用いる第1の多機能材の製造においては、表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面を、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理するが、この場合に、基体の表面に炭化水素を主成分とするガスの燃焼炎を直接当てて高温で加熱処理しても、そのような基体の表面を炭化水素を主成分とするガスの燃焼ガス雰囲気中で高温で加熱処理してもよく、この加熱処理は例えば炉内で実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その燃焼炎を該基体の表面に当てればよい。燃焼ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼ガス雰囲気を利用する。なお、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が粉末状である場合には、そのような粉末を火炎中に導入し、火炎中に所定時間滞留させて加熱処理するか、或いはそのような粉末を流動状態の高温の燃焼ガス中に流動床状態に所定時間維持することにより粒子全体を炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタンとするか、炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有する粉末にすることができる。   In the production of the first multifunctional material used in the present invention, the surface of the substrate whose surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide is used with a gas combustion flame mainly composed of hydrocarbons. In this case, the surface of such a substrate is mainly composed of hydrocarbons even if it is heated at a high temperature by directly applying a combustion flame of a gas mainly composed of hydrocarbons to the surface of the substrate. Heat treatment may be performed at a high temperature in a combustion gas atmosphere of a component gas, and this heat treatment may be performed in a furnace, for example. When heat treatment is performed at a high temperature by directly applying a combustion flame, the above-described fuel gas may be burned in a furnace and the combustion flame may be applied to the surface of the substrate. When heat treatment is performed in a combustion gas atmosphere at a high temperature, the above fuel gas is burned in a furnace and the high-temperature combustion gas atmosphere is used. In addition, when at least the surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide in a powder form, such powder is introduced into the flame and heated by being retained in the flame for a predetermined time. By treating or maintaining such powder in a fluidized hot combustion gas in a fluidized bed for a predetermined time, the entire particle is carbon doped titanium oxide doped with carbon in Ti-C bonds. Alternatively, a powder having a carbon-doped titanium oxide layer in which carbon is doped in a Ti—C bond state can be obtained.

加熱処理については、基体の表面温度が900〜1500℃、好ましくは1000〜1200℃となり、基体の表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層が形成されるように加熱処理する必要がある。基体の表面温度が900℃未満で終わる加熱処理の場合には、得られる炭素ドープ酸化チタン層を有する基体の耐久性は不十分となり、且つ可視光下での光触媒活性も不十分となる。一方、基体の表面温度が1500℃を超える加熱処理の場合には、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じ、第1の発明で目的としている耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)の効果が得られない。又、基体の表面温度が900〜1500℃の範囲内となる加熱処理の場合であっても、加熱処理時間が長くなると、加熱処理後の冷却時にその基体表面部から極薄膜の剥離が生じ、第1の多機能材の重要な機能である耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)の効果が得られないので、加熱処理後の冷却時にその基体表面部に剥離をもたらさない程度の時間であることが必要である。即ち、その加熱処理時間は該表面層を炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層とするのに十分な時間であるが加熱後の冷却時にその基体表面部からの極薄膜の剥離をもたらすことのない時間である必要がある。この加熱処理時間は加熱温度と相関関係にあるが、約400秒以下であることが好ましい。   As for the heat treatment, the surface temperature of the substrate becomes 900 to 1500 ° C., preferably 1000 to 1200 ° C., and a carbon-doped titanium oxide layer doped with carbon in a Ti—C bond state is formed as the surface layer of the substrate. It is necessary to heat-treat. In the case of the heat treatment in which the surface temperature of the substrate ends below 900 ° C., the durability of the substrate having the carbon-doped titanium oxide layer obtained is insufficient and the photocatalytic activity under visible light is also insufficient. On the other hand, in the case of heat treatment in which the surface temperature of the substrate exceeds 1500 ° C., the ultrathin film peels off from the surface of the substrate during cooling after the heat treatment, and the durability (high hardness, (Scratch resistance, abrasion resistance, chemical resistance, heat resistance) effect cannot be obtained. Moreover, even in the case of the heat treatment in which the surface temperature of the substrate is in the range of 900 to 1500 ° C., if the heat treatment time becomes long, the ultrathin film is peeled off from the surface of the substrate during cooling after the heat treatment, Since the effect of durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance), which is an important function of the first multifunctional material, cannot be obtained, its substrate during cooling after heat treatment It is necessary that the time is such that peeling does not occur on the surface portion. That is, the heat treatment time is sufficient to make the surface layer a carbon-doped titanium oxide layer doped with carbon in a Ti-C bond state. It must be a time that does not result in peeling of the thin film. This heat treatment time is correlated with the heating temperature, but is preferably about 400 seconds or less.

本発明で用いる第1の多機能材の製造においては、加熱温度及び加熱処理時間を調整することにより炭素を0.3〜15at%、好ましくは1〜10at%含有する炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を比較的容易に得ることができる。炭素のドープ量が少ない場合には炭素ドープ酸化チタン層は透明であり、炭素のドープ量が増えるに従って炭素ドープ酸化チタン層は半透明、不透明となる。従って、透明な板状心材の上に透明な炭素ドープ酸化チタン層を形成することにより耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する透明板を得ることができ、また、表面に有色模様を有する板上に透明な炭素ドープ酸化チタン層を形成することにより耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する化粧板を得ることができる。なお、少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体が表面部形成層と心材とで構成されていてその表面部形成層の厚さが500nm以下である場合には、その表面部形成層の融点近傍まで加熱すると、海に浮かぶ多数の小島状の起伏が表面に生じて半透明となる。   In the production of the first multifunctional material used in the present invention, carbon containing 0.3 to 15 at%, preferably 1 to 10 at% of carbon is Ti—C bond by adjusting the heating temperature and heat treatment time. A carbon-doped titanium oxide layer doped in a state can be obtained relatively easily. When the carbon doping amount is small, the carbon-doped titanium oxide layer is transparent, and as the carbon doping amount increases, the carbon-doped titanium oxide layer becomes translucent and opaque. Therefore, by forming a transparent carbon-doped titanium oxide layer on a transparent plate-shaped core material, it has excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and visible light response A transparent plate that functions as a mold photocatalyst can be obtained, and durability (high hardness, scratch resistance, abrasion resistance) can be obtained by forming a transparent carbon-doped titanium oxide layer on a plate having a colored pattern on the surface. , A decorative plate that is excellent in chemical resistance and heat resistance) and functions as a visible light responsive photocatalyst. In the case where at least the surface layer is made of titanium, titanium alloy, titanium alloy oxide or titanium oxide, and the substrate is composed of the surface portion forming layer and the core material, and the thickness of the surface portion forming layer is 500 nm or less. When heated to the vicinity of the melting point of the surface portion forming layer, a large number of small island-like undulations floating in the sea are generated on the surface and become translucent.

炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有する第1の多機能材においては、炭素ドープ酸化チタン層の厚さは10nm以上であることが好ましく、高硬度、耐スクラッチ性、耐摩耗性を達成するためには50nm以上であることが一層好ましい。炭素ドープ酸化チタン層の厚さが10nm未満である場合には、得られる炭素ドープ酸化チタン層を有する多機能材の耐久性は不十分となる傾向がある。炭素ドープ酸化チタン層の厚さの上限については、コストと達成される効果とを考慮する必要があるが、特に制限されるものではない。   In the first multifunctional material having a carbon-doped titanium oxide layer doped with carbon in a Ti—C bond state, the thickness of the carbon-doped titanium oxide layer is preferably 10 nm or more, and has high hardness and scratch resistance. In order to achieve the properties and wear resistance, the thickness is more preferably 50 nm or more. When the thickness of the carbon-doped titanium oxide layer is less than 10 nm, the resulting multifunctional material having the carbon-doped titanium oxide layer tends to be insufficient. The upper limit of the thickness of the carbon-doped titanium oxide layer is not particularly limited, although it is necessary to consider the cost and the effect achieved.

本発明で用いる第1の多機能材の炭素ドープ酸化チタン層は、従来の化学修飾酸化チタンや、従来から提案されている種々の原子又はアニオンXをドープしてなるチタン化合物Ti−O−Xを含有する酸化チタンとは異なり、炭素を比較的多量に含有し、ドープされた炭素がTi−C結合の状態で含まれている。この結果として、耐スクラッチ性、耐磨耗性等の機械的強度が向上し、ビッカース硬度が著しく増大すると考えられる。また、耐熱性も向上する。   The carbon-doped titanium oxide layer of the first multifunctional material used in the present invention is a conventional chemically modified titanium oxide or a titanium compound Ti—O—X doped with various conventionally proposed atoms or anions X. Unlike titanium oxide containing, the carbon is contained in a relatively large amount, and doped carbon is contained in a Ti-C bond state. As a result, it is considered that mechanical strength such as scratch resistance and abrasion resistance is improved and Vickers hardness is remarkably increased. Moreover, heat resistance is also improved.

本発明で用いる第1の多機能材の炭素ドープ酸化チタン層は、300以上、好ましくは500以上、さらに好ましくは700以上、最も好ましくは1000以上のビッカース硬度を有している。1000以上のビッカース硬度は硬質クロムめっきの硬度よりも固いものである。従って、本発明の第1の多機能材は、従来硬質クロムめっきが利用されていた種々の技術分野に有意に利用できる。   The carbon-doped titanium oxide layer of the first multifunctional material used in the present invention has a Vickers hardness of 300 or more, preferably 500 or more, more preferably 700 or more, and most preferably 1000 or more. A Vickers hardness of 1000 or more is harder than that of hard chrome plating. Therefore, the first multifunctional material of the present invention can be significantly used in various technical fields in which hard chrome plating has been conventionally used.

本発明で用いる第1の多機能材の多機能層である炭素ドープ酸化チタン層は、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として有効に作用するものである。従って、本発明で用いる第1の多機能材は可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現する。また、本発明で用いる第1の多機能材の炭素ドープ酸化チタン層は接触角3°以下の超親水性を示す。   The carbon-doped titanium oxide layer, which is a multifunctional layer of the first multifunctional material used in the present invention, responds not only to ultraviolet rays but also to visible light having a wavelength of 400 nm or more, and functions effectively as a photocatalyst. Therefore, the first multifunctional material used in the present invention can be used as a visible light responsive photocatalyst and exhibits a photocatalytic function not only outdoors but also indoors. The carbon-doped titanium oxide layer of the first multifunctional material used in the present invention exhibits super hydrophilicity with a contact angle of 3 ° or less.

本発明で用いる第1の多機能材の炭素ドープ酸化チタン層は耐薬品性にも優れており、1M硫酸及び1M水酸化ナトリウムのそれぞれの水溶液に一週間浸漬した後、皮膜硬度、耐摩耗性及び光電流密度を測定し、処理前の測定値と比較したところ、有為な変化はみられなかった。因みに、市販の酸化チタン皮膜については、一般的にはバインダーはその種類によって酸又はアルカリに溶解するので膜が剥離してしまい、耐酸性、耐アルカリ性がほとんどない。   The carbon-doped titanium oxide layer of the first multifunctional material used in the present invention has excellent chemical resistance, and after being immersed in an aqueous solution of 1M sulfuric acid and 1M sodium hydroxide for one week, the film hardness and abrasion resistance When the photocurrent density was measured and compared with the measured value before the treatment, no significant change was observed. Incidentally, with respect to commercially available titanium oxide films, generally, the binder dissolves in acid or alkali depending on the kind thereof, so that the film peels off, and there is almost no acid resistance and alkali resistance.

更に、本発明で用いる第1の多機能材の炭素ドープ酸化チタン層は、γ線等の放射線にも応答する触媒としても使用できる。すなわち、本発明者らは、酸化チタン等の溶射膜が放射線に応答して原子炉構造部材の応力腐食割れやスケール付着等を抑制することを先に発明しているが、本発明で用いる第1の多機能材の炭素ドープ酸化チタン層も同様にこのような放射線応答型触媒として使用した場合に、基材の電位を低下させて孔食や全面腐食、並びに応力腐食割れを抑制でき、また酸化力によりスケールや汚れ等を分解することができるという効果を奏する。他の放射線触媒の成膜法と比較して簡便であり、かつ耐薬品性及び耐摩耗性等の耐久性の観点からも優れている。   Furthermore, the carbon-doped titanium oxide layer of the first multifunctional material used in the present invention can be used as a catalyst that also responds to radiation such as gamma rays. That is, the inventors have previously invented that a thermal spray film such as titanium oxide suppresses stress corrosion cracking, scale adhesion, etc. of the nuclear reactor structural member in response to radiation, but the first used in the present invention. Similarly, when the carbon-doped titanium oxide layer of the multifunctional material 1 is used as such a radiation-responsive catalyst, the potential of the substrate can be lowered to suppress pitting corrosion, overall corrosion, and stress corrosion cracking, There is an effect that scales and dirt can be decomposed by oxidizing power. It is simpler than other radiocatalyst film-forming methods, and is excellent from the viewpoint of durability such as chemical resistance and wear resistance.

また、第2の多機能材は、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に不飽和炭化水素、特にアセチレンの燃焼炎を直接当てて特定の条件下で加熱処理するか、又は該基体の表面を特定の条件下で不飽和炭化水素、特にアセチレンの燃焼排ガス雰囲気中で加熱処理することによって、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が形成されること、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とが得られること、即ち、この両者とも表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有していること、この両者とも有用な多機能材であること、また該酸化チタン又はチタン合金酸化物からなる突起部である微細柱、連続した狭幅突起部が炭素ドープされていることにより、光触媒活性が高く、可視光応答型光触媒として機能し、更にVOCも容易に吸着でき、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れたものである。   In addition, the second multifunctional material has a specific condition in which a combustion flame of unsaturated hydrocarbon, particularly acetylene, is directly applied to the surface of a substrate having at least a surface layer made of titanium, titanium oxide, titanium alloy or titanium alloy oxide. Or by heating the surface of the substrate in a combustion exhaust gas atmosphere of an unsaturated hydrocarbon, particularly acetylene, under specific conditions, and the surface layer is made of titanium oxide or a titanium alloy oxide. A layer in which fine columns are erected is formed, and the layer in which the fine columns are erected is cut in a direction along the surface layer so that at least a part of the titanium oxide or titanium alloy oxide is formed on the substrate. A member in which a layer in which a fine pillar made of is exposed is exposed, a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on a thin film, and a fine pillar standing on the protrusion But Both of which have a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface, both of which are useful multifunctional materials. Being a fine column that is a projection made of the titanium oxide or titanium alloy oxide, and a continuous narrow projection is carbon-doped, so that the photocatalytic activity is high and functions as a visible light responsive photocatalyst, Furthermore, VOC can be easily adsorbed, has high hardness, and has excellent peel resistance, wear resistance, chemical resistance, and heat resistance.

即ち、本発明で用いる第2の多機能材は、表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有しており、例えば、表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出しているか又は薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出しており、該突起部、例えば該微細柱、該狭幅突起部が炭素ドープされていることを特徴とする。   That is, the second multifunctional material used in the present invention has a large number of protrusions made of titanium oxide or titanium alloy oxide on at least a part of the surface. A layer in which fine columns made of titanium alloy oxide are forested is exposed, or a large number of continuous narrow projections made of titanium oxide or titanium alloy oxide on a thin film and forested on the projections Fine columns are exposed, and the protrusions, for example, the fine columns and the narrow protrusions are carbon-doped.

本発明で用いる第2の多機能材は、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面を例えば不飽和炭化水素、特にアセチレンの燃焼炎で加熱処理して、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に、普通には該基体上の大部分に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることにより製造でき、即ち、この両者とも表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有している多機能材であり、この両者とも本発明で用いる第2の多機能材である。   The second multifunctional material used in the present invention is obtained by subjecting the surface of a substrate having at least a surface layer made of titanium, titanium oxide, a titanium alloy or a titanium alloy oxide to a heat treatment with a combustion flame of, for example, an unsaturated hydrocarbon, particularly acetylene. In the surface layer, a layer in which fine columns made of titanium oxide or titanium alloy oxide are erected is formed, and then, for example, thermal stress, shear stress, tensile force is applied, and the tiny columns are erected The layer is cut in a direction along the surface layer, and a layer in which fine columns made of the titanium oxide or the titanium alloy oxide are forested is formed on at least a part of the substrate, usually on a large part of the substrate. By obtaining an exposed member, and a member in which a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on the thin film and fine columns standing on the protrusions are exposed Can be manufactured, ie A multifunctional material Both have a number of projections of at least a portion of titanium oxide or titanium alloy oxide on the surface, both these two is a second multifunctional material used in the present invention.

この少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体は、その基体の全体がチタン、酸化チタン、チタン合金又はチタン合金酸化物の何れかで構成されていてもよく、或いはチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層とその他の材質からなる心材とで構成されていてもよい。   The substrate whose at least surface layer is made of titanium, titanium oxide, titanium alloy or titanium alloy oxide, the entire substrate may be composed of titanium, titanium oxide, titanium alloy or titanium alloy oxide, Or you may be comprised by the core part which consists of a surface part formation layer which consists of titanium, a titanium oxide, a titanium alloy, or a titanium alloy oxide, and another material.

少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体が、チタン、酸化チタン、チタン合金又はチタン合金酸化物からなる表面部形成層とその他の材質からなる心材とで構成されている場合には、その表面部形成層の厚さ(量)は形成される酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の量に匹敵する厚さであっても(即ち、表面部形成層全体が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となる)、それより厚くてもよい(即ち、表面部形成層の厚さ方向の一部が酸化チタン又はチタン合金酸化物からなる微細柱が林立している層となり、残部が変化しないでそのまま残る)。また、その心材の材質は本発明で用いる第2の多機能材の製造における加熱処理の際に燃焼したり、溶融したり、変形したりするものでなければ、特に制限されることはない。例えば、心材として鉄、鉄合金、非鉄合金、ガラス、セラミックス等を用いることができる。このような薄膜状の表面層と心材とで構成されている基体としては、例えば、心材の表面にチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる皮膜をスパッタリング、蒸着、溶射等の方法で形成したもの、或いは、市販の酸化チタンゾルをスプレーコーティング、スピンコーティングやディッピングにより心材の表面上に付与して皮膜を形成したもの等を挙げることができる。この表面層の厚さについては好ましくは0.5μm以上、より好ましくは4μm以上である。   At least the surface layer is made of titanium, titanium oxide, a titanium alloy or a titanium alloy oxide, and the substrate is composed of a surface portion forming layer made of titanium, titanium oxide, a titanium alloy or a titanium alloy oxide and a core material made of other materials. The thickness (amount) of the surface portion forming layer is equal to the amount of the layer in which fine columns made of titanium oxide or titanium alloy oxide are formed ( That is, the entire surface portion forming layer is a layer in which fine columns made of titanium oxide or titanium alloy oxide are erected), or may be thicker (that is, a part of the surface portion forming layer in the thickness direction is A fine column made of titanium oxide or titanium alloy oxide becomes a forested layer, and the rest remains unchanged.) The material of the core material is not particularly limited as long as it does not burn, melt or deform during the heat treatment in the production of the second multifunctional material used in the present invention. For example, iron, iron alloy, non-ferrous alloy, glass, ceramics, or the like can be used as the core material. Examples of the substrate composed of such a thin film surface layer and a core material include, for example, a method of sputtering, vapor deposition, thermal spraying, etc., on a surface of the core material made of titanium, titanium oxide, titanium alloy or titanium alloy oxide. Or a film formed by applying a commercially available titanium oxide sol on the surface of the core material by spray coating, spin coating or dipping. The thickness of this surface layer is preferably 0.5 μm or more, more preferably 4 μm or more.

上記のチタン合金として公知の種々のチタン合金を用いることができ、特に制限されることはなく、第1の多機能材と同様なものを用いることができる。   Various known titanium alloys can be used as the titanium alloy, and the titanium alloy is not particularly limited and can be the same as the first multifunctional material.

本発明で用いる第2の多機能材の製造においては、例えば、不飽和炭化水素、特にアセチレンを主成分とするガスの燃焼炎を用い、特に還元炎を利用することが望ましい。本発明の多機能材の製造においては不飽和炭化水素を少なくとも50容量%含有するガス、例えば、アセチレンを少なくとも50容量%含有し、適宜、空気、水素、酸素等を混合したガスを用いることが好ましい。本発明で用いる第2の多機能材の製造においては、燃料成分がアセチレン100%であることが最も好ましい。不飽和炭化水素、特に三重結合を有するアセチレンを用いた場合には、その燃焼の過程で、特に還元炎部分で、不飽和結合部分が分解して中間的なラジカル物質が形成され、このラジカル物質は活性が強いので炭素ドープが生じ易く、ドープされた炭素がTi−C結合の状態で含まれる。このように微細柱に炭素ドープが生じると微細柱の硬度が高くなり、結果として多機能材の硬度、耐磨耗性等の機械的強度が向上し、耐熱性も向上する。   In the production of the second multifunctional material used in the present invention, for example, it is desirable to use a combustion flame of a gas mainly containing an unsaturated hydrocarbon, particularly acetylene, and particularly to use a reducing flame. In the production of the multifunctional material of the present invention, a gas containing at least 50% by volume of unsaturated hydrocarbon, for example, a gas containing at least 50% by volume of acetylene and appropriately mixed with air, hydrogen, oxygen or the like is used. preferable. In the production of the second multifunctional material used in the present invention, the fuel component is most preferably 100% acetylene. When unsaturated hydrocarbons, especially acetylene having a triple bond, are used, in the process of combustion, especially in the reducing flame part, the unsaturated bond part decomposes to form an intermediate radical substance. Has a strong activity, and carbon doping is likely to occur, and doped carbon is contained in a Ti-C bond state. Thus, when carbon dope arises in a micro pillar, the hardness of a micro pillar will become high, As a result, mechanical strength, such as hardness of a multifunctional material and abrasion resistance, will improve, and heat resistance will also improve.

本発明で用いる第2の多機能材の製造においては、表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる基体の表面に燃焼炎を直接当てて加熱処理するか、又は該基体の表面を燃焼排ガス雰囲気中で加熱処理するのであるが、この加熱処理は例えばガスバーナーにより、或いは炉内で実施することができる。燃焼炎を直接当てて高温で加熱処理する場合には、ガスバーナーにより、その燃焼炎を該基体の表面に当てればよい。燃焼排ガス雰囲気中で高温で加熱処理する場合には、上記のような燃料ガスを炉内で燃焼させ、その高温の燃焼排ガスを含む雰囲気を利用すればよい。   In the production of the second multifunctional material used in the present invention, the surface layer is subjected to heat treatment by directly applying a combustion flame to the surface of the substrate made of titanium, titanium oxide, titanium alloy or titanium alloy oxide, or the substrate. The surface is heated in a combustion exhaust gas atmosphere. This heat treatment can be carried out, for example, by a gas burner or in a furnace. When the combustion flame is directly applied and heat treatment is performed at a high temperature, the combustion flame may be applied to the surface of the substrate by a gas burner. When heat treatment is performed in a combustion exhaust gas atmosphere at a high temperature, the above fuel gas may be burned in a furnace and an atmosphere containing the high-temperature combustion exhaust gas may be used.

加熱処理については、少なくとも表面層がチタン、酸化チタン、チタン合金又はチタン合金酸化物からなる該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることが可能なように、加熱温度、加熱処理時間を調整する必要がある。この加熱処理は600℃以上の温度で実施することが好ましい。   For the heat treatment, at least the surface layer is made of titanium, titanium oxide, a titanium alloy or a titanium alloy oxide, and a layer in which fine columns made of titanium oxide or a titanium alloy oxide stand is formed inside the surface layer. For example, applying a thermal stress, a shear stress, or a tensile force to cut the layer in which the fine pillars are erected in a direction along the surface layer, so that at least a part of the titanium oxide or titanium alloy oxide is formed on the substrate. A member in which a layer in which a fine pillar made of is exposed is exposed, a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide on a thin film, and a fine pillar standing on the protrusion It is necessary to adjust the heating temperature and the heat treatment time so as to obtain the exposed member. This heat treatment is preferably performed at a temperature of 600 ° C. or higher.

このような条件下で加熱処理することにより、微細柱が林立している層の高さが1〜20μm程度であり、その上の薄膜の厚さが0.1〜10μm程度であり、微細柱の平均太さが0.2〜3μm程度である中間体が形成される。その後に、例えば熱応力、剪断応力、引張力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させることにより、該基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材(即ち、基体上の微細柱が林立している層の上に存在していた薄膜の全部又は大部分が剥離するが、微細柱が林立している層の上に存在していた薄膜の一部が剥離しないで残ることがある)と、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材とを得ることができる。   By performing the heat treatment under such conditions, the height of the layer in which the fine pillars stand is about 1 to 20 μm, and the thickness of the thin film thereon is about 0.1 to 10 μm. Intermediates having an average thickness of about 0.2 to 3 μm are formed. Thereafter, for example, by applying a thermal stress, a shear stress, or a tensile force to cut the layer in which the fine pillars are erected in a direction along the surface layer, at least a part of the titanium oxide or the substrate is formed on the substrate. A member in which a layer with fine columns made of titanium alloy oxide is exposed (that is, all or most of the thin film existing on the layer with fine columns on the substrate is peeled off) However, a part of the thin film existing on the layer where the fine pillars are erected may remain without being peeled) and a large number of continuous narrow widths made of titanium oxide or titanium alloy oxide on the thin film It is possible to obtain a protrusion and a member in which a fine pillar standing on the protrusion is exposed.

熱応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、基体の表面及び裏面の何れか一方を冷却するか、又は加熱することにより基体の表面と裏面との間に温度差を設ける。この冷却方法として例えば上記の熱い中間体の表面又は裏面の何れかを冷却用物体、例えばステンレスブロックと接触させるか、冷気(常温の空気)を上記の熱い中間体の表面又は裏面の何れかに吹き付ける。上記の熱い中間体を放冷しても熱応力が生じるが、その程度は低い。   In the case of cutting a layer in which fine columns are erected by applying thermal stress in a direction along the surface layer, for example, either the surface or the back surface of the substrate is cooled or heated to heat the surface of the substrate. A temperature difference is provided between the back surface and the back surface. As this cooling method, for example, either the surface or the back surface of the hot intermediate is brought into contact with a cooling object, such as a stainless steel block, or cold air (room temperature air) is applied to either the surface or the back surface of the hot intermediate. Spray. Even if the hot intermediate is allowed to cool, thermal stress is generated, but the degree is low.

剪断応力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、上記の中間体の表面及び裏面に摩擦力により相対的に逆方向の力を与える。また、引張力を与えて微細柱が林立している層を表面層に沿う方向で切断させる場合には、例えば、真空吸着盤等を用いて上記の中間体の表面及び裏面をそれらの面の垂直方向で逆方向に引張る。なお、基体上の少なくとも一部に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材のみを利用する場合には、上記の中間体の薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材に相当する部分を研磨、スパッタリング等によって除去することもできる。   When shearing stress is applied and the layer in which the fine pillars are erected is cut in a direction along the surface layer, for example, a relatively reverse force is applied to the front and back surfaces of the intermediate by frictional force. In addition, when a layer in which fine columns are erected is cut in a direction along the surface layer by applying a tensile force, for example, the surface and the back surface of the above intermediate body are removed from those surfaces using a vacuum suction disk or the like. Pull in the opposite direction in the vertical direction. When using only a member in which a layer in which fine columns made of titanium oxide or titanium alloy oxide are forested is exposed on at least a part of the substrate, oxidation is performed on the intermediate thin film. A portion corresponding to a member in which a large number of continuous narrow protrusions made of titanium or a titanium alloy oxide and fine columns standing on the protrusions are exposed can be removed by polishing, sputtering, or the like.

上記のようにして得られた基体上の少なくとも一部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出している部材においては、微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって微細柱が林立している層の高さが変化するが、微細柱が林立している層の高さは一般的には1〜20μm程度であり、微細柱の平均太さが0.5〜3μm程度である。この部材はVOCを容易に吸着でき、表面積が大きいので光触媒としての活性が高く、更には皮膜硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性にも優れた第2の多機能材である。   In a member in which a layer with fine columns made of titanium oxide or titanium alloy oxide is exposed on at least a part of the substrate obtained as described above, the layer with fine columns is set Although the height of the layer in which the fine column stands is changed depending on the height position of the fine column cut in the direction along the surface layer, the height of the layer in which the fine column stands is generally 1 to The average thickness of the fine columns is about 0.5 to 3 μm. This member can easily adsorb VOC, has a large surface area, has a high activity as a photocatalyst, and also has a high film hardness, a second multi-layer excellent in peeling resistance, abrasion resistance, chemical resistance, and heat resistance. It is a functional material.

一方、上記のようにして得られた薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は小片状となり、各小片上の突起部の高さは2〜12μm程度であり、該微細柱の高さは微細柱が林立している層を表面層に沿う方向で切断させた微細柱の高さ位置によって変化するが、微細柱が林立している層の高さは一般的には1〜5μm程度であり、微細柱の平均太さが0.2〜0.5μm程度である。しかし、微細柱が林立している層を表面層に沿う方向で切断させ条件によっては微細柱が殆ど存在しないで多数の連続した狭幅突起部が露出している場合もある。この部材もVOCを吸着でき、表面積が大きいので光触媒としての活性が高い。また、この部材はそのまま用いることも粉砕して用いることもでき、その粉砕物もVOCを容易に吸着でき、表面積が大きいので光触媒としての活性が高い。   On the other hand, on the thin film obtained as described above, a large number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide and members with exposed fine columns standing on the protrusions are small. The height of the protrusion on each small piece is about 2 to 12 μm, and the height of the fine column is the height of the fine column obtained by cutting the layer in which the fine column stands in the direction along the surface layer. Although the height varies depending on the position, the height of the layer in which the fine pillars stand is generally about 1 to 5 μm, and the average thickness of the fine pillars is about 0.2 to 0.5 μm. However, a layer in which the fine columns are erected is cut in a direction along the surface layer, and depending on the conditions, there are cases where a large number of continuous narrow protrusions are exposed without the presence of the fine columns. This member can also adsorb VOCs and has a large surface area, so it has high activity as a photocatalyst. Further, this member can be used as it is or after being pulverized, and the pulverized product can easily adsorb VOC and has a large surface area, so it has high activity as a photocatalyst.

本発明で用いる第2の多機能材においては、酸化チタン又はチタン合金酸化物からなる微細柱、多数の連続した狭幅突起部及び該突起部上に林立している微細柱が炭素ドープされているので、紫外線は勿論、400nm以上の波長の可視光にも応答し、光触媒として特に有効に作用し、可視光応答型光触媒として使用することができ、室外は勿論、室内でも光触媒機能を発現する。   In the second multifunctional material used in the present invention, carbon-doped fine columns made of titanium oxide or titanium alloy oxide, a large number of continuous narrow projections, and fine columns standing on the projections are carbon-doped. Therefore, it responds not only to ultraviolet rays but also visible light having a wavelength of 400 nm or more, works particularly effectively as a photocatalyst, and can be used as a visible light responsive photocatalyst, and exhibits a photocatalytic function not only outdoors but also indoors. .

本発明で用いる第2の多機能材を構成する酸化チタン又はチタン合金酸化物からなる微細柱が林立している層の各々の微細柱の形状については、図10及び図13の顕微鏡写真から判断されるように、角柱状、円柱状、角錐状、円錐状、逆角錐状若しくは逆円錐状等で、基板の表面とは直角方向又は傾斜した方向に真っ直ぐ伸びているもの、湾曲又は屈曲しながら伸びているもの、枝状に分岐して伸びているもの、それらの複合体状のもの等がある。また、その全体形状としては、霜柱状、起毛カーペット状、珊瑚状、列柱状、積木で組み立てられた柱状等の種々の表現で示すことができる。また、それらの微細柱の太さ、高さ、その付け根(底面)の大きさ等は加熱条件等により変化する。   The shape of each fine column of the layer in which the fine column made of titanium oxide or titanium alloy oxide constituting the second multifunctional material used in the present invention stands is judged from the micrographs of FIGS. As described above, a prismatic shape, a cylindrical shape, a pyramid shape, a conical shape, an inverted pyramid shape, or an inverted conical shape, etc., which extends straight or perpendicular to the surface of the substrate, is curved or bent There are those that extend, those that branch and extend, and those that are complex. Moreover, as the whole shape, it can show by various expressions, such as a frost column shape, a raising carpet shape, a basket shape, a row column shape, and the column shape assembled with blocks. In addition, the thickness and height of the fine columns, the size of the base (bottom surface), and the like vary depending on heating conditions and the like.

本発明で用いる第2の多機能材である、薄膜上に酸化チタン又はチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している部材は、図12の顕微鏡写真から判断されるように、その多数の連続した狭幅突起部はクルミの殻の外側の外見、軽石の外見をしていると見ることができ、また各々の連続した狭幅突起部は湯じわやちぢみ状の模様が屈曲していると見ることができる。また、該突起部上に林立している微細柱の形状は上記した基体上の微細柱が林立している層の各々の微細柱の形状と同様であるが、微細柱と薄膜との接合部で切断されるものが多いので、該突起部上に林立している微細柱の密度は上記の基体上の微細柱が林立している層の微細柱の密度よりも一般的に小さくなる。   A number of continuous narrow protrusions made of titanium oxide or titanium alloy oxide and fine columns standing on the protrusions are exposed on the thin film, which is the second multifunctional material used in the present invention. As can be seen from the photomicrograph of FIG. 12, the member can be viewed as having a number of consecutive narrow protrusions appearing outside the walnut shell, pumice. It can be seen that the narrow-width protrusions are bent in the shape of a water bath or a stagnation. In addition, the shape of the fine column standing on the protrusion is the same as the shape of each fine column in the layer where the fine column on the base is standing, but the junction between the fine column and the thin film Therefore, the density of the fine columns standing on the protrusion is generally smaller than the density of the fine columns in the layer where the fine columns on the base are standing.

本発明で用いる第3の多機能材は、基体表面にコーティング等の手法により炭素がドープされた酸化チタン又はチタン合金酸化の粉末(以下、炭素ドープ酸化チタン粉末という)を含む多機能層を設けたものである。この場合の多機能層は、炭素ドープ酸化チタンと無機系バインダーとを含むコーティング剤により形成されるものである。ここで、無機系バインダーとしては、例えば、エチルシリケートなどのアルコキシシラン、アルコキシシランの部分縮合物、シリカゾルなどを挙げることができる。   The third multifunctional material used in the present invention is provided with a multifunctional layer containing titanium oxide or titanium alloy oxidized powder (hereinafter referred to as carbon-doped titanium oxide powder) doped with carbon by a technique such as coating on the surface of the substrate. It is a thing. The multifunctional layer in this case is formed by a coating agent containing carbon-doped titanium oxide and an inorganic binder. Here, examples of the inorganic binder include alkoxysilanes such as ethyl silicate, partial condensates of alkoxysilanes, and silica sols.

このような第3の多機能材に用いられる炭素ドープ酸化チタン粉末は、チタン粉末を基体として用い、第1の多機能材の製造方法と同様に、炭化水素、特にアセチレンを主成分とするガスの燃焼炎等を用いた加熱処理により形成することができる。この場合、粉末の粒径が小さい場合に上記のような加熱処理により粒子全体を炭素ドープ酸化チタンとすることが可能であるが、この用途では表面層のみが炭素ドープ酸化チタンとなれば良いのであり、従って、粉末の粒径については何ら制限されることはない。しかし、加熱処理の容易性、製造の容易性を考慮すると15nm以上であることが好ましい。   The carbon-doped titanium oxide powder used for such a third multifunctional material uses a titanium powder as a substrate and, as in the first multifunctional material production method, a gas containing hydrocarbon, particularly acetylene as a main component. It can be formed by heat treatment using a combustion flame or the like. In this case, when the particle size of the powder is small, it is possible to make the entire particle carbon-doped titanium oxide by heat treatment as described above. However, in this application, only the surface layer needs to be carbon-doped titanium oxide. Therefore, the particle size of the powder is not limited at all. However, considering the ease of heat treatment and the ease of production, it is preferably 15 nm or more.

また、炭素ドープ酸化チタン粉末は、第2の多機能材の微細柱又は微細柱を有する薄膜を粉砕することにより得ることができる。   The carbon-doped titanium oxide powder can be obtained by pulverizing the fine columns of the second multifunctional material or the thin film having fine columns.

なお、何れの場合も、炭素ドープ酸化チタン粉末は、炭素がTi−C結合の状態でドープされたものが特に好ましく、その効果は上述した通りである。   In any case, the carbon-doped titanium oxide powder is particularly preferably one in which carbon is doped in a Ti—C bond state, and the effect thereof is as described above.

以下に、本発明で用いる多機能材の機能を実施例及び比較例に基づいてさらに詳細に説明する。   Below, the function of the multifunctional material used by this invention is demonstrated in detail based on an Example and a comparative example.

実施例1〜3(第1の多機能材)
アセチレンの燃焼炎を用い、厚さ0.3mmのチタン板をその表面温度が約1100℃となるように加熱処理することにより、表面層として炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を形成した。1100℃での加熱処理時間をそれぞれ5秒(実施例1)、3秒(実施例2)、1秒(実施例3)に調整することにより炭素ドープ量及び炭素ドープ酸化チタン層の厚さが異なる炭素ドープ酸化チタン層を有するチタン板を形成した。
Examples 1 to 3 (first multifunctional material)
Carbon dope in which carbon is doped in a Ti—C bond state as a surface layer by heat-treating a titanium plate having a thickness of 0.3 mm using an acetylene combustion flame so that its surface temperature is about 1100 ° C. A titanium plate having a titanium oxide layer was formed. By adjusting the heat treatment time at 1100 ° C. to 5 seconds (Example 1), 3 seconds (Example 2), and 1 second (Example 3), respectively, the amount of carbon doping and the thickness of the carbon-doped titanium oxide layer were reduced. Titanium plates with different carbon doped titanium oxide layers were formed.

この実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について蛍光X線分析装置で炭素含有量を求めた。その炭素含有量に基づいてTiO2-xCxの分子構造を仮定すると、実施例1については炭素含有量8at%、TiO1.760.24、実施例2については炭素含有量約3.3at%、TiO1.900.10、実施例3については炭素含有量1.7at%、TiO1.950.05であった。また、実施例1〜3で形成された炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。 The carbon content was calculated | required with the fluorescent-X-ray-analysis apparatus about the carbon dope titanium oxide layer with which the carbon formed in this Example 1-3 was doped in the state of Ti-C bond. Assuming the molecular structure of TiO 2 -xCx based on the carbon content, the carbon content of Example 1 is 8 at%, TiO 1.76 C 0.24 , the carbon content of Example 2 is about 3.3 at%, and TiO 1.90. Regarding C 0.10 and Example 3, the carbon content was 1.7 at% and TiO 1.95 C 0.05 . In addition, the carbon-doped titanium oxide layer in which the carbon formed in Examples 1 to 3 was doped in a Ti—C bond state was superhydrophilic with a contact angle of about 2 ° with water droplets.

比較例1
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン板にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有するチタン板を形成した。
Comparative Example 1
A commercially available titanium oxide sol (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) was spin-coated on a titanium plate having a thickness of 0.3 mm, and then a titanium plate having a titanium oxide film whose adhesion was improved by heating was formed.

比較例2
SUS板上に酸化チタンがスプレーコートされている市販品を比較例2の酸化チタン皮膜を有する基体とした。
Comparative Example 2
A commercially available product in which titanium oxide was spray-coated on a SUS plate was used as the substrate having the titanium oxide film of Comparative Example 2.

試験例1(ビッカース硬度)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、ナノハードネステスター(NHT)(スイスのCSM Instruments製)により、圧子:ベルコビッチタイプ、試験荷重:2mN、負荷除荷速度:4mN/minの条件下で皮膜硬度を測定したところ、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層はビッカース硬度が1340と高い値であった。一方、比較例1の酸化チタン皮膜のビッカース硬度は160であった。
Test Example 1 (Vickers hardness)
The carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state and the titanium oxide film of Comparative Example 1 were subjected to indenter: Belkovic using a nanohard nesting tester (NHT) (manufactured by CSM Instruments, Switzerland). When the film hardness was measured under the conditions of type, test load: 2 mN, load unloading speed: 4 mN / min, the carbon-doped titanium oxide layer doped with carbon in the state of Ti-C bond in Example 1 had a Vickers hardness. Was a high value of 1340. On the other hand, the Vickers hardness of the titanium oxide film of Comparative Example 1 was 160.

これらの結果を図1に示す。なお、参考のため、硬質クロムめっき層及びニッケルめっき層のビッカース硬度の文献値(友野、「実用めっきマニュアル」、6章、オーム社(1971)から引用)を併せて示す。実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は、ニッケルめっき層や硬質クロムめっき層よりも高硬度であることは明らかである。   These results are shown in FIG. For reference, the literature values of the Vickers hardness of the hard chromium plating layer and nickel plating layer (Tomono, “Practical Plating Manual”, Chapter 6, Ohmsha (1971)) are also shown. It is clear that the carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state has higher hardness than the nickel plating layer and the hard chromium plating layer.

試験例2(耐スクラッチ性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、マイクロスクラッチテスター(MST)(スイスのCSM Instruments製)により、圧子:ロックウェル(ダイヤモンド)、先端半径200μm、初期荷重:0N、最終荷重:30N、負荷速度:50N/min、スクラッチ長:6mm、ステージ速度:10.5mm/minの条件下で耐スクラッチ性試験を実施した。スクラッチ痕内に小さな膜の剥離が起こる「剥離開始」荷重及びスクラッチ痕全体に膜の剥離が起こる「全面剥離」荷重を求めた。その結果は第1表に示す通りであった。
Test Example 2 (Scratch resistance)
For the carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state and the titanium oxide film of Comparative Example 1, a microscratch tester (MST) (manufactured by CSM Instruments, Switzerland) was used as an indenter: Rockwell. The scratch resistance test was performed under the conditions of (diamond), tip radius 200 μm, initial load: 0 N, final load: 30 N, load speed: 50 N / min, scratch length: 6 mm, stage speed: 10.5 mm / min. A “peeling start” load at which a small film peels off within the scratch mark and an “overall peel” load at which the film peels across the scratch mark were determined. The results were as shown in Table 1.

Figure 2006242390
Figure 2006242390

試験例3(耐摩耗性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、高温トライボメーター(HT−TRM)(スイスのCSM Instruments製)により、試験温度:室温及び470℃、ボール:直径12.4mmのSiC球、荷重:1N、摺動速度:20mm/sec、回転半径:1mm、試験回転数:1000回転の条件下で摩耗試験を実施した。
Test Example 3 (Abrasion resistance)
The carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state and the titanium oxide film of Comparative Example 1 were tested at a test temperature using a high-temperature tribometer (HT-TRM) (manufactured by CSM Instruments, Switzerland). A wear test was performed under the conditions of: room temperature and 470 ° C., ball: SiC sphere having a diameter of 12.4 mm, load: 1 N, sliding speed: 20 mm / sec, rotation radius: 1 mm, test rotation speed: 1000 rotations.

この結果、比較例1の酸化チタン皮膜については、室温及び470℃の両方について剥離が発生したが、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層については、室温及び470℃の両方の条件下で有意なトレース摩耗は検出されなかった。   As a result, for the titanium oxide film of Comparative Example 1, peeling occurred at both room temperature and 470 ° C., but for the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state, No significant trace wear was detected under both room temperature and 470 ° C conditions.

試験例4(耐薬品性)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層を有するチタン板を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬した後、上記の皮膜硬度、耐摩耗性、及び後記する光電流密度を測定したところ、浸漬の前後で、結果に有意な差は認められなかった。即ち、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層は高い耐薬品性を有することが認められた。
Test Example 4 (Chemical resistance)
After immersing the titanium plate having the carbon-doped titanium oxide layer doped with the carbon of Example 1 in a Ti—C bond state in a 1M sulfuric acid aqueous solution and a 1M sodium hydroxide aqueous solution for 1 week at room temperature, When the wear resistance and the photocurrent density described below were measured, no significant difference was observed in the results before and after immersion. That is, it was confirmed that the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state had high chemical resistance.

試験例5(炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の構造)
実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果を図2に示す。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.7eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例1の炭素ドープ酸化チタン層中ではCがTi−C結合としてドープされていると判断される。なお、炭素ドープ酸化チタン層の深さ方向の異なる位置の11点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。
Test Example 5 (Structure of carbon-doped titanium oxide layer doped with carbon in a Ti-C bond state)
For the carbon-doped titanium oxide layer in which the carbon of Example 1 was doped in a Ti—C bond state, the acceleration voltage was 10 kV, the target was Al, and Ar ion sputtering was performed for 2700 seconds using an X-ray photoelectron spectrometer (XPS). Done and started the analysis. If this sputtering rate is 0.64 Å / s corresponding to the SiO 2 film, the depth is about 173 nm. The result of the XPS analysis is shown in FIG. The highest peak appears when the binding energy is 284.6 eV. This is judged to be a C—H (C) bond commonly found in Cls analysis. The next highest peak is seen when the binding energy is 281.7 eV. Since the bond energy of the Ti—C bond is 281.6 eV, it is determined that C is doped as a Ti—C bond in the carbon-doped titanium oxide layer of Example 1. As a result of XPS analysis at 11 points at different positions in the depth direction of the carbon-doped titanium oxide layer, similar peaks appeared in the vicinity of 281.6 eV at all points.

また、炭素ドープ酸化チタン層と基体との境界でもTi−C結合が確認された。従って、炭素ドープ酸化チタン層中のTi−C結合により硬度が高くなっており、また、炭素ドープ酸化チタン層と基体との境界でのTi−C結合により皮膜剥離強度が著しく大きくなっていることが予想される。   Ti-C bonds were also confirmed at the boundary between the carbon-doped titanium oxide layer and the substrate. Accordingly, the hardness is increased due to the Ti—C bond in the carbon-doped titanium oxide layer, and the film peeling strength is significantly increased due to the Ti—C bond at the boundary between the carbon-doped titanium oxide layer and the substrate. Is expected.

試験例6(波長応答性)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜の波長応答性をOriel社のモノクロメーターを用いて測定した。具体的には、それぞれの層、皮膜に対し、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、光電流密度を測定した。
Test Example 6 (wavelength response)
The wavelength responsiveness of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 were doped in a Ti—C bond state and the titanium oxide films of Comparative Examples 1 and 2 were measured using an Oriel monochromator. Specifically, a voltage of 0.3 V was applied to each layer and film between the counter electrode in a 0.05 M aqueous sodium sulfate solution, and the photocurrent density was measured.

その結果を図3に示す。図3には、得られた光電流密度jpを照射波長に対して示してある。実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の波長吸収端は、490nmに及んでおり、炭素ドープ量の増大に伴って光電流密度が増大することが認められた。なお、ここには示していないが、炭素ドープ量が10at%を越えると電流密度が減少する傾向になり、さらに15at%を越えるとその傾向は顕著になることがわかった。よって、炭素ドープ量が1〜10at%程度に最適値があることが認められた。一方、比較例1、2の酸化チタン皮膜では、光電流密度が著しく小さく、且つ波長吸収端も410nm程度であることが認められた。   The result is shown in FIG. FIG. 3 shows the obtained photocurrent density jp with respect to the irradiation wavelength. The wavelength absorption edge of the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state extends to 490 nm, and the photocurrent density increases as the carbon doping amount increases. Was recognized. Although not shown here, it has been found that when the carbon doping amount exceeds 10 at%, the current density tends to decrease, and when the carbon doping amount exceeds 15 at%, the tendency becomes remarkable. Therefore, it was recognized that the carbon doping amount has an optimum value of about 1 to 10 at%. On the other hand, in the titanium oxide films of Comparative Examples 1 and 2, it was confirmed that the photocurrent density was extremely small and the wavelength absorption edge was about 410 nm.

試験例7(光エネルギー変換効率)
実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1、2の酸化チタン皮膜について、式
η=jp(Ews−Eapp)/I
で定義される光エネルギー変換効率ηを求めた。ここで、Ewsは水の理論分解電圧(=1.23V)、Eappは印加電圧(=0.3V)、Iは照射光強度である。この結果を図4に示す。図4は光エネルギー変換効率ηを照射光波長に対して示してある。
Test example 7 (light energy conversion efficiency)
For the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state and the titanium oxide films of Comparative Examples 1 and 2, the formula η = jp (Ews−Eapp) / I
The light energy conversion efficiency η defined by Here, Ews is the theoretical decomposition voltage of water (= 1.23 V), Eapp is the applied voltage (= 0.3 V), and I is the irradiation light intensity. The result is shown in FIG. FIG. 4 shows the light energy conversion efficiency η with respect to the irradiation light wavelength.

図4から明らかなように、実施例1〜3の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の光エネルギー変換効率は著しく高く、波長450nm付近での変換効率が比較例1、2の酸化チタン皮膜の紫外線領域(200〜380nm)での変換効率より優れていることが認められた。また、実施例1の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層の水分解効率は、波長370nmで約8%であり、350nm以下では10%を越える効率が得られることがわかった。   As is clear from FIG. 4, the carbon-doped titanium oxide layer in which the carbons of Examples 1 to 3 are doped in a Ti—C bond state has extremely high light energy conversion efficiency, and the conversion efficiency in the vicinity of a wavelength of 450 nm is a comparative example. It was recognized that the conversion efficiency in the ultraviolet region (200 to 380 nm) of the 1 and 2 titanium oxide films was superior. Further, the water decomposition efficiency of the carbon-doped titanium oxide layer in which the carbon of Example 1 is doped in a Ti—C bond state is about 8% at a wavelength of 370 nm, and an efficiency exceeding 10% can be obtained at 350 nm or less. I understood.

試験例8(消臭試験)
実施例1及び2の炭素がTi−C結合の状態でドープされた炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、消臭試験を実施した。具体的には、消臭試験に一般的に用いられるアセトアルデヒドを炭素ドープ酸化チタン層を有する基体と共に1000mlのガラス容器に封入し、初期の吸着による濃度減少の影響が無視できるようになってから、UVカットフィルタ付き蛍光灯にて可視光を照射し、所定の照射時間毎にアセトアルデヒド濃度をガスクロマトグラフィーで測定した。なお、各皮膜の表面積は8.0cm2とした。
Test Example 8 (Deodorization test)
A deodorizing test was performed on the carbon-doped titanium oxide layer in which the carbons of Examples 1 and 2 were doped in a Ti-C bond state and the titanium oxide film of Comparative Example 1. Specifically, after acetaldehyde generally used in deodorization tests is enclosed in a 1000 ml glass container together with a substrate having a carbon-doped titanium oxide layer, the influence of concentration reduction due to initial adsorption can be ignored. Visible light was irradiated with a fluorescent lamp with a UV cut filter, and the acetaldehyde concentration was measured by gas chromatography at every predetermined irradiation time. The surface area of each film was 8.0 cm 2 .

この結果を図5に示す。図5には、アセトアルデヒド濃度を可視光照射後の経過時間に対して示してある。実施例1及び2の炭素ドープ酸化チタン層のアセトアルデヒド分解速度は、比較例1の酸化チタン皮膜のアセトアルデヒド分解速度の約2倍以上の高い値となっており、また、炭素ドープ量が多く、光エネルギー変換効率の高い実施例1の炭素ドープ酸化チタン層の方が、実施例2の炭素ドープ酸化チタン層と比較して分解速度が高いことがわかった。   The result is shown in FIG. FIG. 5 shows the acetaldehyde concentration with respect to the elapsed time after irradiation with visible light. The acetaldehyde decomposition rate of the carbon-doped titanium oxide layers of Examples 1 and 2 is higher than the acetaldehyde decomposition rate of the titanium oxide film of Comparative Example 1, and the carbon doping amount is large. It was found that the carbon-doped titanium oxide layer of Example 1 having a higher energy conversion efficiency has a higher decomposition rate than the carbon-doped titanium oxide layer of Example 2.

試験例9(防汚試験)
実施例1の炭素ドープ酸化チタン層及び比較例1の酸化チタン皮膜について、防汚試験を実施した。各皮膜を(財)電力中央研究所内の喫煙室内に設置し、145日後の表面の汚れを観察した。なお、この喫煙室内には太陽光の直接の入射はない。
Test example 9 (antifouling test)
An antifouling test was carried out on the carbon-doped titanium oxide layer of Example 1 and the titanium oxide film of Comparative Example 1. Each coating was placed in a smoking room in the Central Research Institute of Electric Power Co., Ltd., and surface contamination after 145 days was observed. There is no direct incidence of sunlight in the smoking room.

この結果を示す写真を図6に示す。比較例1の酸化チタン皮膜の表面には脂が付着し、薄い黄色を呈していたが、実施例1の炭素ドープ酸化チタン層の表面は特に変化がみられず、清浄に保たれており、防汚効果が十分に発揮されたことが認められた。   A photograph showing the results is shown in FIG. Fat was attached to the surface of the titanium oxide film of Comparative Example 1 and had a pale yellow color, but the surface of the carbon-doped titanium oxide layer of Example 1 was not particularly changed and was kept clean. It was confirmed that the antifouling effect was sufficiently exhibited.

実施例4〜7(第1の多機能材)
実施例1〜3と同様にアセチレンの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン板を形成した。
Examples 4 to 7 (first multifunctional material)
By using an acetylene combustion flame in the same manner as in Examples 1 to 3, a titanium plate having a thickness of 0.3 mm was heated at the surface temperature shown in Table 2 for the time shown in Table 2, thereby forming a surface layer. A titanium plate having a carbon-doped titanium oxide layer was formed.

比較例3
天然ガスの燃焼炎を用い、厚さ0.3mmのチタン板を、第2表に示す表面温度で第2表に示す時間の間加熱処理した。
Comparative Example 3
Using a natural gas combustion flame, a 0.3 mm thick titanium plate was heat-treated at the surface temperature shown in Table 2 for the time shown in Table 2.

試験例10
実施例4〜7の炭素ドープ酸化チタン層及び比較例3の皮膜について、上記の試験例1と同様にしてビッカース硬度(HV)を測定した。それらの結果を第2表に示す。また、実施例4〜7で形成された炭素ドープ酸化チタン層は、水滴との接触角が2°程度の超親水性であった。
Test Example 10
The Vickers hardness (HV) of the carbon-doped titanium oxide layers of Examples 4 to 7 and the film of Comparative Example 3 was measured in the same manner as in Test Example 1 above. The results are shown in Table 2. Moreover, the carbon dope titanium oxide layer formed in Examples 4-7 was super hydrophilicity whose contact angle with a water droplet was about 2 degrees.

Figure 2006242390
Figure 2006242390

第2表に示すデータから明らかなように、天然ガスの燃焼ガスで表面温度が850℃になるように加熱処理した場合にはビッカース硬度160の皮膜しか得られなかったが、表面温度が1000℃以上になるようにアセチレンの燃焼ガスを用いて加熱処理した実施例4〜7の場合にはビッカース硬度1200の炭素ドープ酸化チタン層が得られた。   As is apparent from the data shown in Table 2, when the heat treatment was performed with the combustion gas of natural gas so that the surface temperature became 850 ° C., only a film having a Vickers hardness of 160 was obtained, but the surface temperature was 1000 ° C. In Examples 4 to 7 where heat treatment was performed using acetylene combustion gas as described above, a carbon-doped titanium oxide layer having a Vickers hardness of 1200 was obtained.

試験例11
実施例4〜7の炭素ドープ酸化チタン層及び比較例1及び3の酸化チタン皮膜について、試験例6と同様に、0.05M硫酸ナトリウム水溶液中で対極との間に電圧を0.3V印加し、300nm〜520nmの光を照射して光電流密度を測定した。その結果を図7に示す。図7には、得られた光電流密度jpを電位ECP(V vs. SSE)に対して示してある。
Test Example 11
For the carbon-doped titanium oxide layers of Examples 4 to 7 and the titanium oxide films of Comparative Examples 1 and 3, as in Test Example 6, a voltage of 0.3 V was applied between the counter electrode in a 0.05 M sodium sulfate aqueous solution. The photocurrent density was measured by irradiating with light of 300 nm to 520 nm. The result is shown in FIG. FIG. 7 shows the obtained photocurrent density jp with respect to the potential ECP (V vs. SSE).

アセチレンの燃焼ガスを用いて表面温度が1000〜1200℃になるように加熱処理して得た実施例4〜6の炭素ドープ酸化チタン層は、相対的に光電流密度が大きく優れていることがわかった。一方、表面温度が850℃になるように加熱処理して得た比較例3の酸化チタン及び表面温度が1500℃になるように加熱処理して得た実施例7の炭素ドープ酸化チタン層は光電流密度が相対的に小さいことがわかった。   The carbon-doped titanium oxide layers of Examples 4 to 6 obtained by heat treatment using an acetylene combustion gas so that the surface temperature becomes 1000 to 1200 ° C. have relatively high photocurrent density and are excellent. all right. On the other hand, the titanium oxide of Comparative Example 3 obtained by heat treatment so that the surface temperature becomes 850 ° C. and the carbon-doped titanium oxide layer of Example 7 obtained by heat treatment so that the surface temperature becomes 1500 ° C. It was found that the current density was relatively small.

実施例8(第1の多機能材)
アセチレンの燃焼炎を用い、厚さ0.3mmのTi−6Al−4V合金板をその表面温度が約1100℃となるように加熱処理することにより、表面層が炭素ドープ酸化チタンを含有するチタン合金からなる合金板を形成した。1100℃での加熱処理時間を60秒とした。このようにして形成された炭素ドープ酸化チタンを含有する層は水滴との接触角が2°程度の超親水性であり、また実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
Example 8 (first multifunctional material)
A titanium alloy whose surface layer contains carbon-doped titanium oxide by heat treatment of a Ti-6Al-4V alloy plate having a thickness of 0.3 mm using an acetylene combustion flame so that its surface temperature is about 1100 ° C. An alloy plate made of The heat treatment time at 1100 ° C. was 60 seconds. The layer containing carbon-doped titanium oxide thus formed is superhydrophilic with a contact angle with water droplets of about 2 °, and has the same photocatalytic activity as that of the carbon-doped titanium oxide layer obtained in Example 4. showed that.

実施例9(第1の多機能材)
厚さ0.3mmのステンレス鋼板(SUS316)の表面にスパッタリングによって膜厚が約500nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が約900℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するステンレス鋼板を形成した。900℃での加熱処理時間を15秒とした。このようにして形成された炭素ドープ酸化チタン層は水滴との接触角が2°程度の超親水性であり、また、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
Example 9 (first multifunctional material)
A titanium thin film having a thickness of about 500 nm was formed on the surface of a stainless steel plate (SUS316) having a thickness of 0.3 mm by sputtering. A stainless steel sheet having a carbon-doped titanium oxide layer as a surface layer was formed by heat treatment using an acetylene combustion flame so that the surface temperature was about 900 ° C. The heat treatment time at 900 ° C. was 15 seconds. The carbon-doped titanium oxide layer thus formed is superhydrophilic with a contact angle with water droplets of about 2 °, and exhibits the same photocatalytic activity as the carbon-doped titanium oxide layer obtained in Example 4. It was.

実施例10(第1の多機能材)
粒径20μmの酸化チタン粉末をアセチレンの燃焼炎中に供給し、燃焼炎中に所定時間滞留させてその表面温度が約1000℃となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するチタン粉末を形成した。1000℃での加熱処理時間を4秒とした。このようにして形成された炭素ドープ酸化チタン層を有するチタン粉末、実施例4で得られた炭素ドープ酸化チタン層と同様な光触媒活性を示した。
Example 10 (first multifunctional material)
A titanium oxide powder having a particle size of 20 μm is supplied into an acetylene combustion flame, and is retained in the combustion flame for a predetermined time, and heat-treated so that the surface temperature is about 1000 ° C. A titanium powder having a layer was formed. The heat treatment time at 1000 ° C. was 4 seconds. The titanium powder having the carbon-doped titanium oxide layer formed as described above showed the same photocatalytic activity as that of the carbon-doped titanium oxide layer obtained in Example 4.

実施例11〜12(第1の多機能材)
厚さ1mmのガラス板(パイレックス(登録商標))の表面にスパッタリングによって膜厚が約100nmのチタン薄膜を形成した。アセチレンの燃焼炎を用い、その表面温度が1100℃(実施例11)、又は1500℃(実施例12)となるように加熱処理することにより、表面層として炭素ドープ酸化チタン層を有するガラス板を形成した。1100℃、又は1500℃での加熱処理時間を10秒とした。このようにして形成された炭素ドープ酸化チタン層は表面温度が1100℃の場合には図8(a)に写真で示すように透明であったが、表面温度が1500℃の場合には図9に示すように海に浮かぶ多数の小島状の起伏が表面に生じており、図8(b)に示すように半透明となった。
Examples 11 to 12 (first multifunctional material)
A titanium thin film having a thickness of about 100 nm was formed by sputtering on the surface of a 1 mm thick glass plate (Pyrex (registered trademark)). A glass plate having a carbon-doped titanium oxide layer as a surface layer is obtained by heat treatment using an acetylene combustion flame so that the surface temperature is 1100 ° C. (Example 11) or 1500 ° C. (Example 12). Formed. The heat treatment time at 1100 ° C. or 1500 ° C. was 10 seconds. The carbon-doped titanium oxide layer thus formed was transparent as shown in the photograph in FIG. 8A when the surface temperature was 1100 ° C., but when the surface temperature was 1500 ° C., FIG. As shown in FIG. 8, many small island-like undulations floating in the sea are generated on the surface, and it became translucent as shown in FIG.

実施例13〜16(第2の多機能材)
厚さ0.3mmのチタン板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。即ち、加熱処理で表面層内部に形成された酸化チタンからなる微細柱が林立している層がその後の冷却で該微細柱が林立している層が該表面層に沿う方向で切断された。このようにして実施例13〜16の第2の多機能材を得た。
Examples 13 to 16 (second multifunctional material)
The surface of the titanium plate having a thickness of 0.3 mm was subjected to heat treatment with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the flame is applied is brought into contact with a flat surface of a stainless steel block having a thickness of 30 mm and cooled, a layer in which fine columns made of white titanium oxide stand on the most part of the titanium plate surface is exposed. And a small piece member in which a large number of continuous narrow protrusions made of white titanium oxide on the thin film and fine columns standing on the protrusions are exposed. That is, the layer in which the fine columns made of titanium oxide formed in the surface layer by heat treatment are erected is cut in the direction along the surface layer by the subsequent cooling. Thus, the 2nd multifunctional material of Examples 13-16 was obtained.

図10は、実施例13で得られた第2の多機能材の顕微鏡写真であり、チタン板表面1上に白色の酸化チタンからなる微細柱が林立している層2が露出しており、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3がその層2上の一部に残っている状態を示している。なお、実施例13〜16の製造方法ではチタン板表面1は露出しないが、図10の顕微鏡写真は微細柱が林立している層2の一部を除去した状態を示している。図11は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真であり、図12は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態を示す顕微鏡写真であり、図13は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。   FIG. 10 is a photomicrograph of the second multifunctional material obtained in Example 13, in which the layer 2 in which fine columns made of white titanium oxide stand on the titanium plate surface 1 is exposed, A state in which a small piece member 3 in which a large number of continuous narrow protrusions made of white titanium oxide on a thin film and fine columns standing on the protrusions are exposed remains on a part of the layer 2 Is shown. In addition, in the manufacturing method of Examples 13-16, although the titanium plate surface 1 is not exposed, the micrograph of FIG. 10 has shown the state which removed a part of layer 2 in which the fine pillar stands. FIG. 11 is a photomicrograph showing the state of the surface on the thin film side of the small piece member 3 in which a large number of continuous narrow protrusions made of white titanium oxide and thin columns standing on the protrusions are exposed on the thin film. FIG. 12 shows a number of continuous narrow widths of small piece members 3 in which a large number of continuous narrow-width projections made of white titanium oxide are exposed on a thin film and fine columns standing on the projections are exposed. FIG. 13 is a photomicrograph showing the state of the surface of the protrusion and the surface on which the fine pillars standing on the protrusion are exposed, and FIG. 13 shows the layer 2 where the fine pillars made of white titanium oxide stand. It is a microscope picture which shows a state.

実施例17(第2の多機能材)
厚さ0.3mmのTi−6Al−4V合金板の表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、チタン合金板表面の大部分にチタン合金酸化物からなる微細柱が林立している層が露出している部材と、薄膜上にチタン合金酸化物からなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
Example 17 (second multifunctional material)
The surface of a Ti-6Al-4V alloy plate having a thickness of 0.3 mm was heat-treated with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the flame is applied is brought into contact with a flat surface of a stainless steel block having a thickness of 30 mm and cooled, a layer in which fine columns made of titanium alloy oxide stand on most of the surface of the titanium alloy plate is exposed. And a small piece member in which a number of continuous narrow protrusions made of titanium alloy oxide on the thin film and fine columns standing on the protrusions are exposed.

実施例18(第2の多機能材)
厚さ0.3mmのステンレス鋼板(SUS316)の表面に電子ビーム蒸着によって膜厚が約3μmのチタン薄膜を形成した。その薄膜表面を、アセチレンの燃焼炎により、第3表に示す表面層温度で第3表に示す時間加熱処理した。その後その燃焼炎を当てた表面を厚さ30mmのステンレスブロックの平らな面と接触させて冷却すると、ステンレス鋼板表面の大部分に白色の酸化チタンからなる微細柱が林立している層が露出している部材と、薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している小片部材とに分離した。
Example 18 (second multifunctional material)
A titanium thin film having a thickness of about 3 μm was formed on the surface of a stainless steel plate (SUS316) having a thickness of 0.3 mm by electron beam evaporation. The surface of the thin film was heat-treated with an acetylene combustion flame at the surface layer temperature shown in Table 3 for the time shown in Table 3. After that, when the surface to which the combustion flame is applied is brought into contact with a flat surface of a 30 mm thick stainless steel block and cooled, a layer in which fine columns made of white titanium oxide are forested is exposed on the majority of the surface of the stainless steel plate. And a small piece member in which a large number of continuous narrow protrusions made of white titanium oxide on the thin film and fine columns standing on the protrusions are exposed.

比較例4
市販されている酸化チタンゾル(石原産業製STS−01)を厚さ0.3mmのチタン板にスピンコートした後、加熱して密着性を高めた酸化チタン皮膜を有するチタン板を形成した。
Comparative Example 4
A commercially available titanium oxide sol (STS-01 manufactured by Ishihara Sangyo Co., Ltd.) was spin-coated on a titanium plate having a thickness of 0.3 mm, and then a titanium plate having a titanium oxide film whose adhesion was improved by heating was formed.

試験例12(引っかき硬度試験:鉛筆法)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材の微細柱側表面について、JIS K 5600−5−4(1999)に基づき、三菱鉛筆株式会社製ユニ1H〜9H鉛筆を用いて鉛筆引っかき硬度試験を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められなかった。
Test Example 12 (Scratch hardness test: pencil method)
Mitsubishi Pencil Co., Ltd., based on JIS K 5600-5-4 (1999), on the surface of the fine column side of the member in which the layer in which the fine column is grown is exposed on the substrate surface obtained in Examples 13 to 18 A pencil scratch hardness test was carried out using Uni 1H-9H pencils. The results were as shown in Table 3. That is, no damage was observed when a 9H pencil was used for all the test pieces.

試験例13(耐薬品性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を1M硫酸水溶液及び1M水酸化ナトリウム水溶液にそれぞれ室温で1週間浸漬し、水洗し、乾燥させた後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐薬品性を有することが認められた。
Test Example 13 (Chemical resistance test)
The members having exposed layers with fine pillars exposed on the substrate surfaces obtained in Examples 13 to 18 were immersed in 1M sulfuric acid aqueous solution and 1M sodium hydroxide aqueous solution for 1 week at room temperature, washed with water and dried. Then, the above scratch hardness test: the pencil method was carried out. The results were as shown in Table 3. That is, even when a 9H pencil was used for all the test pieces, no damage was observed, and it was confirmed that the test pieces had high chemical resistance.

試験例14(耐熱性試験)
実施例13〜18で得られた基板表面に微細柱が林立している層が露出している部材を管状炉内に入れ、大気雰囲気下で室温から1時間かけて500℃まで昇温させ、500℃の恒温で2時間保持し、更に1時間かけて室温まで静置冷却した後、上記の引っかき硬度試験:鉛筆法を実施した。その結果は第3表に示す通りであった。即ち、全ての試験片について9Hの鉛筆を用いた場合にも損傷は認められず、高い耐熱性を有することが認められた。
Test example 14 (heat resistance test)
A member in which a layer in which fine columns are erected is exposed on the surface of the substrate obtained in Examples 13 to 18 is placed in a tubular furnace, and the temperature is raised from room temperature to 500 ° C. in an air atmosphere over 1 hour. After holding at a constant temperature of 500 ° C. for 2 hours and further allowing to cool to room temperature over 1 hour, the above-described scratch hardness test: pencil method was performed. The results were as shown in Table 3. That is, no damage was observed even when a 9H pencil was used for all the test pieces, and it was confirmed that the specimen had high heat resistance.

Figure 2006242390
Figure 2006242390

試験例15(防汚試験)
試料として、実施例16で得られた基板表面に微細柱が林立している層が露出している表面積8cm2の部材及び比較例4で得られた酸化チタン皮膜を有する表面積8cm2のチタン板を用いて消臭試験を実施した。具体的には、それらの試料をそれぞれ、約12μmol/Lの濃度に調整したメチレンブルー水溶液80mL中に浸漬し、初期の吸着による濃度減少の影響が無視できるようになってから、松下電器産業株式会社製のUVカットフィルター付き蛍光灯により可視光を照射し、所定の照射時間毎に波長660nmにおけるメチレンブルー水溶液の吸光度をHACH社製水質検査装置DR/2400で測定した。その結果は図14に示す通りであった。
Test Example 15 (Anti-fouling test)
As a sample, an 8 cm 2 surface area member having a surface area of 8 cm 2 exposed from the surface of the substrate obtained in Example 16 and a layer having fine pillars and a titanium oxide film having a surface area of 8 cm 2 obtained in Comparative Example 4. A deodorization test was conducted using Specifically, each of these samples was immersed in 80 mL of an aqueous methylene blue solution adjusted to a concentration of about 12 μmol / L, and the influence of concentration reduction due to initial adsorption became negligible. Matsushita Electric Industrial Co., Ltd. Visible light was irradiated with a fluorescent lamp with a UV cut filter manufactured, and the absorbance of the methylene blue aqueous solution at a wavelength of 660 nm was measured with a water quality inspection apparatus DR / 2400 manufactured by HACH at every predetermined irradiation time. The result was as shown in FIG.

図14から、実施例16で得られた基板表面に微細柱が林立している層が露出している部材は、比較例4で得られた酸化チタン皮膜を有するチタン板に比較して、メチレンブルーの分解速度が速く、防汚効果が高いことが分かる。   From FIG. 14, the member in which the layer with the fine pillars exposed on the surface of the substrate obtained in Example 16 is exposed to methylene blue as compared with the titanium plate having the titanium oxide film obtained in Comparative Example 4. It can be seen that the decomposition speed of is high and the antifouling effect is high.

試験例16(結晶構造と結合状態)
実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱から得た試料についてX線回折(XRD)を行った結果、ルチル型の結晶構造を有することが判明した。
Test Example 16 (Crystal structure and bonding state)
As a result of performing X-ray diffraction (XRD) on the sample obtained from the fine column of the member in which the layer in which the fine column is erected on the substrate surface obtained in Example 15 is exposed, it has a rutile-type crystal structure. It has been found.

また、実施例15で得られた基板表面に微細柱が林立している層が露出している部材の微細柱部分について、X線光電子分光分析装置(XPS)で、加速電圧:10kV、ターゲット:Alとし、2700秒間Arイオンスパッタリングを行い、分析を開始した。このスパッタ速度がSiO2膜相当の0.64Å/sとすると、深度は約173nmとなる。そのXPS分析の結果は図15に示す通りであった。結合エネルギーが284.6eVである時に最も高いピークが現れる。これはCls分析に一般的に見られるC−H(C)結合であると判断される。次に高いピークが結合エネルギー281.6eVである時に見られる。Ti−C結合の結合エネルギーが281.6eVであるので、実施例15の微細柱中ではCがTi−C結合としてドープされていると判断される。なお、微細柱の高さ位置の異なる位置の14点でXPS分析を行った結果、全ての点で281.6eV近傍に同様なピークが現れた。 Further, with respect to the fine column portion of the member in which the layer with the fine columns grown on the surface of the substrate obtained in Example 15 is exposed, an X-ray photoelectron spectrometer (XPS) is used to accelerate voltage: 10 kV, target: Al was used for Ar sputtering for 2700 seconds, and analysis was started. If this sputtering rate is 0.64 Å / s corresponding to the SiO 2 film, the depth is about 173 nm. The result of the XPS analysis was as shown in FIG. The highest peak appears when the binding energy is 284.6 eV. This is judged to be a C—H (C) bond commonly found in Cls analysis. The next highest peak is seen when the binding energy is 281.6 eV. Since the bond energy of the Ti—C bond is 281.6 eV, it is determined that C is doped as a Ti—C bond in the fine column of Example 15. As a result of XPS analysis at 14 points at different heights of the fine columns, similar peaks appeared in the vicinity of 281.6 eV at all points.

以上説明したように、第1の多機能材は、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能するので、可視光応答型光触媒として使用できるだけでなく、従来硬質クロムめっきが利用されていた種々の技術分野にも有意に利用できる。また、基材の電位を低下させて孔食や全面腐食、並びに応力腐食割れ等の防止等を目的とする製品への応用が期待できる。さらに、紫外線のみならずγ線等の放射線に応答する放射線応答型触媒として原子炉構造物等の応力腐食割れやスケール付着等を抑制するために使用することで、他の成膜手法と比較して容易に成膜でき、かつ耐久性を向上させることもできるものである。   As described above, the first multifunctional material is excellent in durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and functions as a visible light responsive photocatalyst. Not only can it be used as a photoresponsive photocatalyst, it can also be used significantly in various technical fields where hard chrome plating has been used. In addition, it can be expected to be applied to products aimed at reducing the potential of the base material to prevent pitting corrosion, overall corrosion, stress corrosion cracking, and the like. In addition, it is used as a radiation-responsive catalyst that responds to not only ultraviolet rays but also γ-rays, etc. to suppress stress corrosion cracking and scale adhesion of reactor structures, etc. Therefore, the film can be easily formed and the durability can be improved.

また、第2の多機能材は、光触媒活性が高く、可視光応答型光触媒として機能し、更にVOCも容易に吸着でき、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れている。   In addition, the second multifunctional material has high photocatalytic activity, functions as a visible light responsive photocatalyst, and can easily adsorb VOC, has high hardness, peel resistance, wear resistance, chemical resistance, and heat resistance. Is excellent.

さらに、第3の多機能材は、光触媒活性が高く、可視光応答型光触媒として機能するものである。   Furthermore, the third multifunctional material has a high photocatalytic activity and functions as a visible light responsive photocatalyst.

以下、上述した多機能材を適用した熱交換器の一例を説明する。図16は本発明の実施の形態に係る熱交換器を有する発電プラントを概念的に示す説明図である。同図に示すように、高圧タービン100及び低圧タービン101,102を駆動した蒸気は復水器103,104で海水と熱交換することにより凝縮されて液体に戻る。すなわち、復水器103,104は海水を冷媒とする熱交換器として機能する。ここで、海水は、循環水ポンプ105により取水口を介して取水され、弁106,107を介して復水器103,104内に流入するとともに弁108,109を介して放水口から海に戻すようになっている。一方、蒸気は復水器103,104で海水と熱交換して液体となり低圧復水ポンプ110により冷却水としてボイラ、原子炉等の熱源に戻される。発電機111は、高圧タービン100、低圧タービン101,102を原動機として駆動される。   Hereinafter, an example of the heat exchanger to which the multifunctional material described above is applied will be described. FIG. 16 is an explanatory diagram conceptually showing a power plant having a heat exchanger according to an embodiment of the present invention. As shown in the figure, the steam that has driven the high-pressure turbine 100 and the low-pressure turbines 101 and 102 is condensed by returning heat to seawater in the condensers 103 and 104 and returns to the liquid. That is, the condensers 103 and 104 function as a heat exchanger using seawater as a refrigerant. Here, seawater is taken in through the water intake by the circulating water pump 105, flows into the condensers 103 and 104 through the valves 106 and 107, and returns to the sea from the water outlet through the valves 108 and 109. It is like that. On the other hand, the steam exchanges heat with seawater in the condensers 103 and 104 to become liquid, and is returned to a heat source such as a boiler or a nuclear reactor as cooling water by the low-pressure condensate pump 110. The generator 111 is driven using the high-pressure turbine 100 and the low-pressure turbines 101 and 102 as prime movers.

かかる発電システムにおいて復水器103,104として使用する熱交換器は、炭素ドープされた酸化チタン又はチタン合金酸化物からなる多機能層を少なくとも冷媒が流通する管路の内面の少なくとも一部に設けたもの、又は少なくとも表面側がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有していると共に該突起部が炭素ドープされている多機能層を少なくとも冷媒が流通する管路の内面に設けたものである。   In such a power generation system, the heat exchanger used as the condenser 103, 104 is provided with a multifunctional layer made of carbon-doped titanium oxide or titanium alloy oxide on at least a part of the inner surface of the conduit through which the refrigerant flows. Or at least a part of the surface of the substrate made of titanium, titanium alloy, titanium alloy oxide or titanium oxide at least on the surface side, and a plurality of protrusions made of titanium oxide or titanium alloy oxide. A multi-functional layer in which the portion is carbon-doped is provided at least on the inner surface of the conduit through which the refrigerant flows.

さらに詳言すると、図17は図16のA部分の復水器103を抽出して示す拡大図であるが、同図に示すように、取水口から流入した海水は、凝縮器として機能する復水器103内の細管103aに至り、各細管103aを流通する間に蒸気と熱交換する。復水器103(復水器104も全く同じ構成である。)においては、少なくとも前記細管103aの内周に前記多機層を有している。また、各細管103aの内部には光源(図示せず。)が設けてある。この光源は多機能層に光触媒機能を発揮させるためのものであるが、可視光乃至紫外光の何れでもよく、例えば可撓性に優れ、自由に細管103a内に挿入することができる高ファイバが好適である。すなわち、光源は必要なときに細管103a内に挿入する形式のものが好適である。ここで、多機能層及び光源は、細管103aのみならず
海水を取り入れる取水管や海水を放出する放水管に設けることも勿論でき、この場合には細管103aにこれらを設けた場合と同様の作用・効果を得る。
More specifically, FIG. 17 is an enlarged view showing the condenser 103 in the portion A of FIG. 16, but as shown in the figure, the seawater flowing from the intake port is the condenser that functions as a condenser. It reaches the narrow tube 103a in the water bottle 103 and exchanges heat with steam while flowing through each thin tube 103a. In the condenser 103 (the condenser 104 has the same configuration), the multi-layer is provided at least on the inner periphery of the narrow tube 103a. In addition, a light source (not shown) is provided inside each narrow tube 103a. This light source is for causing the multifunctional layer to exhibit a photocatalytic function, and may be visible light or ultraviolet light. For example, a high fiber that has excellent flexibility and can be freely inserted into the narrow tube 103a is used. Is preferred. That is, the light source is preferably of a type that is inserted into the narrow tube 103a when necessary. Here, the multi-functional layer and the light source can of course be provided not only in the narrow tube 103a but also in a water intake tube that takes in seawater or a water discharge tube that discharges seawater.・ Effects.

上述の如き多機能層を設ける第1の方法としては、細管103aとなる構造体を、表面にチタン、チタン合金、チタン合金酸化物又は酸化チタンの表面部形成層を有する金属部材、又はチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる部材で構成し、これを第1の多機能材として説明したように、炭化水素を主成分とするガスの燃焼炎を用いて高温で加熱処理し、かかる部材で管路を形成する方法を挙げることができる。   As a first method of providing the multi-functional layer as described above, the structure serving as the thin tube 103a is made of a metal member having a surface portion forming layer of titanium, titanium alloy, titanium alloy oxide or titanium oxide on the surface, or titanium, Consists of a member made of titanium alloy, titanium alloy oxide or titanium oxide, and as described as the first multifunctional material, heat treatment is performed at a high temperature using a combustion flame of gas mainly composed of hydrocarbon. The method of forming a pipe line with such a member can be mentioned.

これにより、細管103aの内面に、炭素がTi−C結合の状態でドープされており、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れ且つ可視光応答型光触媒として機能する炭素ドープ酸化チタン層からなる多機能層を形成することができる。   As a result, the inner surface of the thin tube 103a is doped with carbon in a Ti—C bond state, and has excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and visible light. A multifunctional layer composed of a carbon-doped titanium oxide layer that functions as a responsive photocatalyst can be formed.

また、第2の方法としては、前記構造体を、表面にチタン、チタン合金、チタン合金酸化物又は酸化チタンの表面部形成層を有する金属部材、又はチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる部材で構成し、上述した第2の多機能材として説明したように、表面を例えば不飽和炭化水素、特にアセチレンの燃焼炎で加熱処理して、該表面層内部に酸化チタン又はチタン合金酸化物からなる微細柱が林立している層を形成させ、次いで、例えば熱応力、剪断応力、引張応力を与えて、該微細柱が林立している層を該表面層に沿う方向で切断させて該基体上の表面に、普通には該基体上の大部分に該酸化チタン又はチタン合金酸化物からなる微細柱が林立している層が露出させるとともに、かかる部材で管路を形成する方法を挙げることができる。これにより、第2の多機能材が具備する多機能層、すなわち、光触媒活性が高く、可視光線応答型光触媒として機能し、更にVOCも容易に吸着でき、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れている多機能層を容易に設けることができる。   In addition, as a second method, the structure is a metal member having a surface portion forming layer of titanium, titanium alloy, titanium alloy oxide or titanium oxide on the surface, or titanium, titanium alloy, titanium alloy oxide or oxidation. As described above as the second multifunctional material composed of a member made of titanium, the surface is heat-treated with, for example, an unsaturated hydrocarbon, particularly an acetylene combustion flame, and titanium oxide or titanium is formed inside the surface layer. Form a layer in which fine columns made of alloy oxide stand, and then apply thermal stress, shear stress, tensile stress, for example, and cut the layer in which the fine columns stand along the surface layer Then, a layer in which fine columns made of the titanium oxide or titanium alloy oxide are forested is usually exposed on the surface of the substrate, and most of the surface of the substrate, and a pipe line is formed by such a member. method It can gel. As a result, the multifunctional layer of the second multifunctional material, that is, the photocatalytic activity is high, functions as a visible light responsive photocatalyst, VOC can be easily adsorbed, the hardness is high, the peel resistance, and the wear resistance. A multifunctional layer having excellent properties, chemical resistance and heat resistance can be easily provided.

ここで、第1の方法及び第2の方法で使用される表面にチタン、チタン合金、チタン合金酸化物又は酸化チタンの表面形成層を有する金属部材は、例えば、鉄、鉄合金、ステンレスなどの心材の表面に、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる皮膜をスパッタリング、蒸着、溶射等の方法で形成したもの、あるいは、市販の酸化チタンゾルをスプレーコーティング、スピンコーティングやディッピングにより形成したもの等を挙げることができる。   Here, the metal member having the surface forming layer of titanium, titanium alloy, titanium alloy oxide or titanium oxide on the surface used in the first method and the second method is, for example, iron, iron alloy, stainless steel, etc. A film made of titanium, titanium alloy, titanium alloy oxide or titanium oxide is formed on the surface of the core material by sputtering, vapor deposition, thermal spraying or the like, or a commercially available titanium oxide sol is formed by spray coating, spin coating or dipping Can be mentioned.

なお、第1の方法及び第2の方法における加熱処理方法は、第1の多機能材や第2の多機能材の製造方法で詳細に説明したので、ここでの説明は省略する。   In addition, since the heat processing method in the 1st method and the 2nd method was demonstrated in detail by the manufacturing method of the 1st multifunctional material or the 2nd multifunctional material, description here is abbreviate | omitted.

さらに、第3の方法としては、前記構造体の表面に、コーティング等の手法により炭素ドープ酸化チタン粉末を含む多機能層を設ける方法である。この場合には、上述した第1乃至第2の方法の場合と比較して耐久性に劣るが、光触媒活性が高く、可視光線応答型光触媒として機能する多機能層を非常に簡便に設けることができるという利点がある。   Furthermore, as a third method, a multifunctional layer containing carbon-doped titanium oxide powder is provided on the surface of the structure by a technique such as coating. In this case, although it is inferior in durability as compared with the cases of the first and second methods described above, it is very easy to provide a multifunctional layer that has a high photocatalytic activity and functions as a visible light responsive photocatalyst. There is an advantage that you can.

以上説明した多機能層を具備する細管103aを有する復水器103において、特に、第1の方法又は第3の方法で第1の多機能部材を適用したものでは、第1の多機能材は、耐久性(高硬度、耐スクラッチ性、耐磨耗性、耐薬品性、耐熱性)に優れると共に多機能層の耐剥離性に優れ且つ可視光応答型光触媒として機能するので、耐久性に優れると共に高度に衛生状態を保持できるものとして極めて優れているという効果を奏する。すなわち、海水中の異物で傷つくことがなく、耐久性に優れ、また塩分等、腐食性の強い冷媒を用いる場合でもこの冷媒に対する耐食性も有するものとなり、さらに可視光又は好ましくは紫外光を照射することにより、光触媒の有機物分解機能により水垢等の付着を防止して長期に亘り高効率の熱交換を継続することができる。   In the condenser 103 having the thin tube 103a having the multi-functional layer described above, particularly when the first multi-functional member is applied by the first method or the third method, the first multi-functional material is , With excellent durability (high hardness, scratch resistance, abrasion resistance, chemical resistance, heat resistance) and excellent peeling resistance of the multi-functional layer and functions as a visible light responsive photocatalyst. At the same time, there is an effect that it is extremely excellent as a highly hygienic state. That is, it is not damaged by foreign matter in seawater, has excellent durability, and even when a highly corrosive refrigerant such as salt is used, it also has corrosion resistance against this refrigerant, and is further irradiated with visible light or preferably ultraviolet light. As a result, the organic matter decomposition function of the photocatalyst prevents adhesion of scales and the like, and the high-efficiency heat exchange can be continued for a long time.

また、第2の方法又は第3の方法で第2の多機能材を適用した場合は、耐久性の面では上述したものより多少劣るが、光触媒活性が高く、可視光線応答型光触媒として機能し、更にVOCも容易に吸着でき、硬度も高く、耐剥離性、耐摩耗性、耐薬品性、耐熱性に優れ、さらに、多機能層の耐剥離性に優れているので、付着した有機物や微生物を分解することができる。   In addition, when the second multifunctional material is applied in the second method or the third method, the durability is somewhat inferior to that described above, but the photocatalytic activity is high, and it functions as a visible light responsive photocatalyst. In addition, VOC can be adsorbed easily, has high hardness, excellent peeling resistance, abrasion resistance, chemical resistance, and heat resistance, and also has excellent peeling resistance for multi-functional layers. Can be disassembled.

さらに、第1の方法又は第2の方法で細管103a自体をチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる部材で構成した場合には、細管103aが、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面に多機能層を有する部材、すなわち、表面に多機能層を具備するチタン系積層部材で構成されることになり、軽量で剛性が高く、構造体全体が生体適合性に優れたものになるという効果を奏するものとなる。   Further, when the narrow tube 103a itself is composed of a member made of titanium, titanium alloy, titanium alloy oxide or titanium oxide by the first method or the second method, the thin tube 103a is oxidized by titanium, titanium alloy or titanium alloy. It is composed of a member having a multifunctional layer on the surface of a substrate made of a product or titanium oxide, that is, a titanium-based laminated member having a multifunctional layer on the surface, and is lightweight and highly rigid, and the entire structure is a living body. The effect of being excellent in adaptability is achieved.

なお、上記実施の形態では、熱交換器が復水器103,104の場合について説明したが、勿論これに限る必要はない。ビルのトイレや、公共施設のトイレに使われている、中水(雨水など、上水と下水の中間の水)を冷却する熱交換器、バイオリアクター用熱交換器、温泉熱交換器等に用いる場合、顕著な防汚機能、脱臭機能、清浄機能等を発揮することができる。   In addition, although the said embodiment demonstrated the case where the heat exchanger was the condenser 103,104, of course, it is not necessary to restrict to this. For heat exchangers that cool intermediate water (rain water and other intermediate water, sewage water), bioreactor heat exchangers, hot spring heat exchangers, etc. used in toilets in buildings and public facilities When used, a remarkable antifouling function, deodorizing function, cleaning function, etc. can be exhibited.

また、上記多機能層は管路の内周に限定して設ける必要もない。ケーシングの表面等の汚れやすい部分等に適用することで上述の如き顕著な光触媒機能を発揮させることができる。また、空気等の気体を取り入れるためのファン等にも同様に適用でき、同様の作用・効果を得る。   Further, the multi-functional layer need not be provided only on the inner periphery of the pipe. By applying it to the easily contaminated part such as the surface of the casing, the remarkable photocatalytic function as described above can be exhibited. Further, the present invention can be similarly applied to a fan for taking in gas such as air, and the same operation and effect can be obtained.

図1は試験例1の皮膜硬度試験の結果を示す図である。FIG. 1 is a view showing the results of the film hardness test of Test Example 1. FIG. 図2は試験例5のXPS分析の結果を示す図である。FIG. 2 is a diagram showing the results of XPS analysis in Test Example 5. 図3は試験例6の光電流密度の波長応答性を示す図である。FIG. 3 is a graph showing the wavelength response of the photocurrent density in Test Example 6. 図4は試験例7の光エネルギー変換効率の試験結果を示す図である。FIG. 4 is a diagram showing test results of light energy conversion efficiency in Test Example 7. 図5は試験例8の消臭試験の結果を示す図である。FIG. 5 is a diagram showing the results of the deodorization test of Test Example 8. 図6は試験例9の防汚試験の結果を示す写真である。FIG. 6 is a photograph showing the results of the antifouling test of Test Example 9. 図7は試験例11の結果を示す図である。FIG. 7 is a diagram showing the results of Test Example 11. 図8は実施例11及び12で得られた炭素ドープ酸化チタン層の光透過状態を示す写真である。FIG. 8 is a photograph showing the light transmission state of the carbon-doped titanium oxide layers obtained in Examples 11 and 12. 図9は実施例12で得られた炭素ドープ酸化チタン層の表面状態を示す写真である。FIG. 9 is a photograph showing the surface state of the carbon-doped titanium oxide layer obtained in Example 12. 図10は実施例13で得られた多機能材の状態を示す顕微鏡写真である。FIG. 10 is a photomicrograph showing the state of the multifunctional material obtained in Example 13. 図11は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の薄膜側表面の状態を示す顕微鏡写真である。FIG. 11 is a photomicrograph showing the state of the surface on the thin film side of the small piece member 3 in which a large number of continuous narrow protrusions made of white titanium oxide on the thin film and fine columns standing on the protrusions are exposed. is there. 図12は薄膜上に白色の酸化チタンからなる多数の連続した狭幅突起部及び突起部上に林立している微細柱が露出している小片部材3の多数の連続した狭幅突起部及び該突起部上に林立している微細柱が露出している側の表面の状態を示す顕微鏡写真である。FIG. 12 shows a number of continuous narrow-width protrusions made of white titanium oxide on a thin film and a number of continuous narrow-width protrusions of a small piece member 3 in which fine columns standing on the protrusions are exposed. It is a microscope picture which shows the state of the surface of the side where the fine pillar standing on the protrusion part is exposed. 図13は白色の酸化チタンからなる微細柱が林立している層2の状態を示す顕微鏡写真である。FIG. 13 is a photomicrograph showing the state of the layer 2 in which fine columns made of white titanium oxide stand. 図14は試験例15(防汚試験)の結果を示すグラフである。FIG. 14 is a graph showing the results of Test Example 15 (antifouling test). 図15は試験例16(結晶構造と結合状態)の結果を示すグラフである。FIG. 15 is a graph showing the results of Test Example 16 (crystal structure and bonding state). 図16は本発明の実施の形態に係る熱交換器を有する発電プラントを概念的に示す説明図である。FIG. 16 is an explanatory diagram conceptually showing a power plant having a heat exchanger according to an embodiment of the present invention. 図17は図16のA部を抽出・拡大した拡大図である。FIG. 17 is an enlarged view of the portion A in FIG. 16 extracted and enlarged.

符号の説明Explanation of symbols

100 高圧タービン
101,102 低圧タービン
103,104 復水器
103a 細管
105 循環水ポンプ
106,107,108,109 弁
110 低圧復水ポンプ
111 発電機
DESCRIPTION OF SYMBOLS 100 High pressure turbine 101,102 Low pressure turbine 103,104 Condenser 103a Narrow pipe 105 Circulating water pump 106,107,108,109 Valve 110 Low pressure condensate pump 111 Generator

Claims (10)

炭素ドープされた酸化チタン又はチタン合金酸化物からなる多機能層を少なくとも冷媒が流通する管路の内面の少なくとも一部に設けたことを特徴とする熱交換器。   A heat exchanger characterized in that a multifunctional layer made of carbon-doped titanium oxide or titanium alloy oxide is provided on at least a part of the inner surface of a conduit through which refrigerant flows. 請求項1において、前記多機能層が基体の表面に一体的に形成されたものであると共に該炭素がTi−C結合の状態でドープされており、該基体の少なくとも表面層がチタン、チタン合金、チタン合金酸化物又は酸化チタンであることを特徴とする熱交換器。   2. The multi-functional layer according to claim 1, wherein the multi-functional layer is integrally formed on the surface of the substrate and the carbon is doped in a Ti-C bond state, and at least the surface layer of the substrate is made of titanium or a titanium alloy. A heat exchanger characterized by being a titanium alloy oxide or titanium oxide. 請求項2において、前記基体は、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる表面部形成層と心材とからなり、該心材がチタン、チタン合金、酸化チタン及びチタン合金酸化物以外の材質であることを特徴とする熱交換器。   In Claim 2, the said base | substrate consists of a surface part formation layer and core material which consist of titanium, titanium alloy, titanium alloy oxide, or titanium oxide, and this core material is other than titanium, titanium alloy, titanium oxide, and titanium alloy oxide. A heat exchanger made of a material. 請求項2又は3において、前記多機能層のビッカース硬度が300以上であることを特徴とする熱交換器。   4. The heat exchanger according to claim 2, wherein the multi-functional layer has a Vickers hardness of 300 or more. 請求項2又は3において、前記多機能層のビッカース硬度が1000以上であることを特徴とする熱交換器。   4. The heat exchanger according to claim 2, wherein the multifunctional layer has a Vickers hardness of 1000 or more. 少なくとも表面側がチタン、チタン合金、チタン合金酸化物又は酸化チタンからなる基体の表面の少なくとも一部に酸化チタン又はチタン合金酸化物からなる多数の突起部を有していると共に該突起部が炭素ドープされている多機能層を少なくとも冷媒が流通する管路の内面に設けたことを特徴とする熱交換器。   At least part of the surface of the base body made of titanium, titanium alloy, titanium alloy oxide or titanium oxide has at least a part of the protrusions made of titanium oxide or titanium alloy oxide, and the protrusions are carbon-doped. A heat exchanger characterized in that a multifunctional layer is provided at least on the inner surface of a conduit through which a refrigerant flows. 請求項6において、前記多機能層が、微細柱が林立しているものであり且つ該微細中が炭素ドープされていることを特徴とする熱交換器。   7. The heat exchanger according to claim 6, wherein the multifunctional layer has a structure in which fine columns are erected and the inside of the fine is carbon-doped. 請求項6又は7において、ドープされた炭素がTi−C結合の状態で含まれていることを特徴とすることを特徴とする熱交換器。   The heat exchanger according to claim 6 or 7, wherein doped carbon is contained in a Ti-C bond state. 請求項6〜8の何れかにおいて、前記基体は、チタン、チタン合金、チタン合金酸化物又は酸化チタンからなる表面部形成層と心材とからなり、該心材がチタン、チタン合金、酸化チタン及びチタン合金酸化物以外の材質であることを特徴とする熱交換器。   9. The substrate according to claim 6, wherein the base body includes a surface portion forming layer made of titanium, titanium alloy, titanium alloy oxide, or titanium oxide and a core material, and the core material is titanium, titanium alloy, titanium oxide, and titanium. A heat exchanger made of a material other than an alloy oxide. 請求項1〜9の何れかの熱交換器において、前記管路の内部に、前記多機能層に対して可視光又は紫外光を照射する光源を具備することを特徴とする熱交換器。
The heat exchanger according to any one of claims 1 to 9, further comprising a light source that irradiates visible light or ultraviolet light to the multifunctional layer inside the conduit.
JP2005054165A 2005-02-28 2005-02-28 Heat exchanger Expired - Fee Related JP4716309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005054165A JP4716309B2 (en) 2005-02-28 2005-02-28 Heat exchanger

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005054165A JP4716309B2 (en) 2005-02-28 2005-02-28 Heat exchanger

Publications (2)

Publication Number Publication Date
JP2006242390A true JP2006242390A (en) 2006-09-14
JP4716309B2 JP4716309B2 (en) 2011-07-06

Family

ID=37048989

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005054165A Expired - Fee Related JP4716309B2 (en) 2005-02-28 2005-02-28 Heat exchanger

Country Status (1)

Country Link
JP (1) JP4716309B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515950A1 (en) * 2009-12-21 2012-10-31 Wallenius Water Aktiebolag Plate heat exchanger comprising uv generating members
WO2021054247A1 (en) * 2019-09-20 2021-03-25 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner, and refrigerator
KR20230088340A (en) 2020-10-13 2023-06-19 쿠리타 고교 가부시키가이샤 Method of treating circulating cooling water and method of improving cooling performance

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310998A (en) * 1996-05-23 1997-12-02 Toshiba Corp Sea water flowing equipment and its maintenance and repairing method
WO2001010553A1 (en) * 1999-08-05 2001-02-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic material and photocatalytic article
JP2002253974A (en) * 2001-03-01 2002-09-10 Andes Denki Kk Photocatalytic thin film material and application article thereof
JP2002341086A (en) * 2001-05-17 2002-11-27 Mitsubishi Heavy Ind Ltd Rust prevention method and plant applying method
JP2002370034A (en) * 2001-06-15 2002-12-24 Andes Denki Kk Oxide photocatalyst material using inorganic metallic compound and applied article thereof
JP2003117549A (en) * 2001-10-17 2003-04-22 Showa Engineering Co Ltd Apparatus for removing contaminant in liquid and method therefor
JP2004000988A (en) * 1999-08-05 2004-01-08 Toyota Central Res & Dev Lab Inc Photocatalytic substance, photocatalytic body and manufacturing method for them
JP2004261600A (en) * 2003-03-03 2004-09-24 Greatbatch-Hittman Inc Low polarization coating for implantable electrode
JP2005047786A (en) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd Titanium dioxide microparticle, method for producing the same, and method for producing visible-ray-activatable photocatalyst

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09310998A (en) * 1996-05-23 1997-12-02 Toshiba Corp Sea water flowing equipment and its maintenance and repairing method
WO2001010553A1 (en) * 1999-08-05 2001-02-15 Kabushiki Kaisha Toyota Chuo Kenkyusho Photocatalytic material and photocatalytic article
JP2004000988A (en) * 1999-08-05 2004-01-08 Toyota Central Res & Dev Lab Inc Photocatalytic substance, photocatalytic body and manufacturing method for them
JP2002253974A (en) * 2001-03-01 2002-09-10 Andes Denki Kk Photocatalytic thin film material and application article thereof
JP2002341086A (en) * 2001-05-17 2002-11-27 Mitsubishi Heavy Ind Ltd Rust prevention method and plant applying method
JP2002370034A (en) * 2001-06-15 2002-12-24 Andes Denki Kk Oxide photocatalyst material using inorganic metallic compound and applied article thereof
JP2003117549A (en) * 2001-10-17 2003-04-22 Showa Engineering Co Ltd Apparatus for removing contaminant in liquid and method therefor
JP2005047786A (en) * 2002-09-18 2005-02-24 Toshiba Ceramics Co Ltd Titanium dioxide microparticle, method for producing the same, and method for producing visible-ray-activatable photocatalyst
JP2004261600A (en) * 2003-03-03 2004-09-24 Greatbatch-Hittman Inc Low polarization coating for implantable electrode

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2515950A1 (en) * 2009-12-21 2012-10-31 Wallenius Water Aktiebolag Plate heat exchanger comprising uv generating members
EP2515950A4 (en) * 2009-12-21 2014-02-26 Wallenius Water Ab Plate heat exchanger comprising uv generating members
WO2021054247A1 (en) * 2019-09-20 2021-03-25 株式会社山一ハガネ Heat exchanger member, heat exchanger, air conditioner, and refrigerator
JPWO2021054247A1 (en) * 2019-09-20 2021-03-25
CN113853506A (en) * 2019-09-20 2021-12-28 山一钢有限公司 Member for heat exchanger, air conditioner, and refrigerator
JP7373227B2 (en) 2019-09-20 2023-11-02 株式会社 山一ハガネ Heat exchanger parts, heat exchangers, indoor units for air conditioners, outdoor units for air conditioners, and refrigerators
KR20230088340A (en) 2020-10-13 2023-06-19 쿠리타 고교 가부시키가이샤 Method of treating circulating cooling water and method of improving cooling performance

Also Published As

Publication number Publication date
JP4716309B2 (en) 2011-07-06

Similar Documents

Publication Publication Date Title
JP4623502B2 (en) Radiation resistant member and nuclear power generation system using the same
JP4902125B2 (en) Multifunctional material with mirror surface
JP4716309B2 (en) Heat exchanger
JP4692987B2 (en) Antiseptic equipment
JP4534144B2 (en) Purification device
JP4623510B2 (en) Reactor structural material
JP4822245B2 (en) Power supply equipment
JP4656496B2 (en) Deodorizing device or deodorizing system
JP4541928B2 (en) Kitchen system
JP4662128B2 (en) Air cleaning device or air cleaning system
JP2006238921A (en) Toilet cleaning system
JP5240789B2 (en) Purification device
JP5041392B2 (en) Oil treatment equipment
JP4597713B2 (en) Metal container
JP4450320B2 (en) Communication equipment or equipment
JP4756574B2 (en) air conditioner
JP4807725B2 (en) Manufacturing method of energy generating equipment
JP4807723B2 (en) Manufacturing method of heat-resistant member
JP2006239481A (en) Organic substance decomposition system
JP4807726B2 (en) Measuring instrument
JP2006230957A (en) Industrial machine
JP4888934B2 (en) Roll device
JP4814536B2 (en) Manufacturing method of non-ferrous metal products
JP4814535B2 (en) Manufacturing method of steel products
JP4578274B2 (en) Animal husbandry equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101028

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101124

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110120

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110323

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110323

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140408

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees