JP2006241019A - New dendrimer and light-emitting element given by using the same - Google Patents

New dendrimer and light-emitting element given by using the same Download PDF

Info

Publication number
JP2006241019A
JP2006241019A JP2005056036A JP2005056036A JP2006241019A JP 2006241019 A JP2006241019 A JP 2006241019A JP 2005056036 A JP2005056036 A JP 2005056036A JP 2005056036 A JP2005056036 A JP 2005056036A JP 2006241019 A JP2006241019 A JP 2006241019A
Authority
JP
Japan
Prior art keywords
compounds
dendrimer
group
dendron
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005056036A
Other languages
Japanese (ja)
Inventor
Masaki Matsui
正樹 松居
Toru Kitaguchi
透 北口
Kazumasa Funabiki
一正 船曳
Saori Tanaka
沙織 田中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daicel Corp
Original Assignee
Daicel Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daicel Chemical Industries Ltd filed Critical Daicel Chemical Industries Ltd
Priority to JP2005056036A priority Critical patent/JP2006241019A/en
Publication of JP2006241019A publication Critical patent/JP2006241019A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Nitrogen Condensed Heterocyclic Rings (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a dendrimer having high solubility and light emission intensity, controlled in concentration quenching, and given by using a light-emitting pigment as a core. <P>SOLUTION: This new dendrimer is composed of a light-emitting compound having a reactive group (light-emitting pigment such as a squalirium-based compound and a perylene-based compound) and a first to fifth generation dendron which links with the reactive group of the light-emitting compound and is composed of at least one repeating unit expressed by general formula (1) (X<SB>1</SB>is a bonding group; and p is 0 or 1) and a unit expressed by formula (2) (X<SB>2</SB>is a bonding group; and R<SP>1</SP>and R<SP>2</SP>are identical to or different from each other and are each H, a halogen atom, an alkyl, an alkoxy or a hydrocarbon ring) and composing a terminal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発光性化合物とデンドロンとが結合した新規デンドリマー及びそれを用いた発光素子(有機エレクトロルミネッセンス(EL)素子)に関する。   The present invention relates to a novel dendrimer in which a light-emitting compound and a dendron are bonded, and a light-emitting element (organic electroluminescence (EL) element) using the same.

有機EL材料には低分子材料と高分子材料が知られており、低分子材料では真空蒸着法により製膜して有機ELが製造されている。一方、後者の有機EL材料に関し、有機EL素子の発光層には、通常、発光量子収率の大きい蛍光色素が添加される。特開2004−123595号公報(特許文献1)には、アゼピン化合物と、このアゼピン化合物を発光層に含む有機EL素子が開示されている。   Low molecular weight materials and high molecular weight materials are known as organic EL materials, and low molecular weight materials are formed by vacuum deposition to produce organic EL. On the other hand, with respect to the latter organic EL material, a fluorescent dye having a large emission quantum yield is usually added to the light emitting layer of the organic EL element. Japanese Unexamined Patent Application Publication No. 2004-123595 (Patent Document 1) discloses an azepine compound and an organic EL element containing the azepine compound in a light emitting layer.

このような発光層を有機高分子と発光性化合物(又は蛍光色素)とで構成すると、発光性化合物の含有量を高めても発光強度が向上しない現象、すなわち濃度消光が生じる。また、発光性化合物は、通常、溶媒や有機高分子に対する溶解性や親和性が低いため、発光性化合物の含有量が制約される。さらに、発光性化合物の添加に伴って発光のための駆動電圧が高くなるため、低電圧で発光させることができない。   When such a light emitting layer is composed of an organic polymer and a light emitting compound (or fluorescent dye), a phenomenon in which the light emission intensity is not improved even when the content of the light emitting compound is increased, that is, concentration quenching occurs. Moreover, since the luminescent compound usually has low solubility and affinity for a solvent or an organic polymer, the content of the luminescent compound is limited. Furthermore, since the driving voltage for light emission increases with the addition of the light-emitting compound, light cannot be emitted at a low voltage.

特開2004−55355号公報(特許文献2)には、透明基板と、この透明基板上に配置され、マトリックス樹脂と蛍光変換色素とデンドリマーとを含む色素変換層とを備えた色変換フィルタが開示されている。この文献には、蛍光変換色素とデンドリマーとが共有結合を介して結合していること、デンドリマーに蛍光変換色素が包接されていることも記載され、前記蛍光変換色素として、ローダミン色素、シアニン色素、ピリジン色素、オキサジン色素、クマリン色素、クマリン色素系染料、ナフタルイミド系色素が例示されている。前記特許文献2には、トリフェニルエタンをコアとし、このコアにローダミンBとデンドリマーとが結合したローダミンB−デンドリマー結合体が具体的に記載されているが、他の色素とデンドリマーとの結合については記載されていない。   Japanese Patent Application Laid-Open No. 2004-55355 (Patent Document 2) discloses a color conversion filter including a transparent substrate and a dye conversion layer disposed on the transparent substrate and including a matrix resin, a fluorescent conversion dye, and a dendrimer. Has been. This document also describes that a fluorescence conversion dye and a dendrimer are bonded via a covalent bond, and that the fluorescence conversion dye is included in the dendrimer. As the fluorescence conversion dye, a rhodamine dye and a cyanine dye are used. And pyridine dyes, oxazine dyes, coumarin dyes, coumarin dyes, and naphthalimide dyes. Patent Document 2 specifically describes a rhodamine B-dendrimer conjugate in which triphenylethane is used as a core, and rhodamine B and dendrimer are bound to the core. Regarding the binding between other dyes and dendrimers. Is not listed.

特開2004−99874号公報(特許文献3)には、置換基を有していてもよい二価の有機基である線状部Xと、置換基を有していてもよい三価の有機基である分岐部Yとからなる式:−X−Y< で表される単位であって、前記線状部Xが少なくとも1つのチエニレン構造を含み、かつ前記分岐部と少なくとも部分的に共役しているデンドリマーが開示されている。この文献には、前記デンドリマーを用いた電子デバイス素子(発光デバイス素子など)も記載されている。しかし、特許文献2のデンドリマーはチエニレン構造を含むため発光色が制限される可能性がある。   JP-A-2004-99874 (Patent Document 3) discloses a linear part X which is a divalent organic group which may have a substituent, and a trivalent organic which may have a substituent. A unit consisting of a branched portion Y as a group: -X-Y <, wherein the linear portion X contains at least one thienylene structure and is at least partially conjugated with the branched portion. A dendrimer has been disclosed. This document also describes an electronic device element (such as a light emitting device element) using the dendrimer. However, since the dendrimer of Patent Document 2 contains a thienylene structure, the emission color may be limited.

なお、「Synthetic Metals」Vol.102, 1571-1574(1999)(非特許文献1)には、コアをジスチルベンゼンで構成し、端部がスチルベンである共役型デンドリマーをホール輸送層材料として用い、発光材料としてピリジンポリマーを用いた二層構造のEL素子が開示されている。「化学工業」((株)化学工業社発行)8月号26〜30頁(2001)(非特許文献2)には、フッ素化フェニレンデンドリマーを電子輸送層に用いた多層型EL素子が開示されている。
特開2004−123595号公報(特許請求の範囲) 特開2004−55355号公報(特許請求の範囲、段落番号[0022]〜[0030]) 特開2004−99874号公報(特許請求の範囲、実施例2) 「Synthetic Metals」Vol.102, 1571-1574(1999) 「化学工業」((株)化学工業社発行)8月号26〜30頁(2001)
“Synthetic Metals” Vol.102, 1571-1574 (1999) (Non-Patent Document 1) uses a conjugated dendrimer having a core composed of distilbenzene and an end portion being stilbene as a hole transport layer material. An EL element having a two-layer structure using a pyridine polymer as a light emitting material is disclosed. "Chemical Industry" (published by Chemical Industry Co., Ltd.) August issue, pages 26-30 (2001) (non-patent document 2) discloses a multilayer EL device using a fluorinated phenylene dendrimer as an electron transport layer. ing.
JP 2004-123595 A (Claims) JP 2004-55355 A (claims, paragraph numbers [0022] to [0030]) Japanese Patent Laying-Open No. 2004-99874 (Claims, Example 2) `` Synthetic Metals '' Vol.102, 1571-1574 (1999) "Chemical Industry" (published by Chemical Industry Co., Ltd.) August issue, pages 26-30 (2001)

従って、本発明の目的は、濃度消光を低減できるとともに、低電圧で発光可能な新規デンドリマーおよびそれを用いた発光素子(有機EL素子)を提供することにある。   Accordingly, an object of the present invention is to provide a novel dendrimer capable of reducing concentration quenching and emitting light at a low voltage, and a light emitting element (organic EL element) using the same.

本発明の他の目的は、溶剤に対する溶解性や有機高分子に対する親和性が高く、発光強度を向上できる新規デンドリマーおよびそれを用いた発光素子を提供することにある。   Another object of the present invention is to provide a novel dendrimer having a high solubility in a solvent and an affinity for an organic polymer and capable of improving the light emission intensity, and a light emitting device using the same.

本発明のさらに他の目的は、駆動電圧が低く発光効率が高い発光素子を提供することにある。   Still another object of the present invention is to provide a light emitting device having a low driving voltage and high luminous efficiency.

本発明者らは、前記課題を達成するため鋭意検討した結果、発光性化合物(発光色素など)にデンドロン(樹状側鎖)を結合させると、溶剤に対する溶解性、有機高分子に対する親和性を向上できるとともに、濃度消光を著しく抑制でき、駆動電圧が低く、かつ発光効率の高い有機EL素子が得られることを見いだし、本発明を完成した。   As a result of intensive studies to achieve the above-mentioned problems, the present inventors have found that when a dendron (dendritic side chain) is bound to a luminescent compound (such as a luminescent dye), solubility in a solvent and affinity for an organic polymer are improved. The inventors have found that an organic EL device that can be improved, concentration quenching can be remarkably suppressed, driving voltage is low, and luminous efficiency is high is obtained, and the present invention has been completed.

すなわち、本発明の新規デンドリマーは、反応性基を有する発光性化合物と、この発光性化合物の反応性基に結合したデンドロンとで構成されている。すなわち、発光性化合物とデンドロンとが直接結合している。本発明の新規デンドリマーは、前記発光性化合物とデンドロンとが結合しているため、発光性化合物の溶剤に対する溶解性や樹脂に対する親和性を向上できるとともに、発光強度を高めることができる。さらに、濃度消光を低減でき、高濃度に含有させて効率よく発光できる。さらには、デンドロンが、発光性化合物(発光性色素など)へのキャリアの捕捉を抑制するためか、駆動電圧が低くても効率よく発光できる。そのため、新規デンドリマーは、発光素子用又は有機EL用新規デンドリマーということもできる。   That is, the novel dendrimer of the present invention is composed of a luminescent compound having a reactive group and a dendron bonded to the reactive group of the luminescent compound. That is, the luminescent compound and the dendron are directly bonded. In the novel dendrimer of the present invention, since the luminescent compound and dendron are bonded, the solubility of the luminescent compound in the solvent and the affinity for the resin can be improved, and the emission intensity can be increased. Furthermore, concentration quenching can be reduced, and light can be emitted efficiently when contained in a high concentration. Furthermore, the dendron can emit light efficiently even if the driving voltage is low, because the trapping of carriers into the light emitting compound (such as a light emitting dye) is suppressed. Therefore, the new dendrimer can also be referred to as a new dendrimer for a light emitting element or an organic EL.

前記デンドリマーにおいて、デンドロンは、下記式(1)で表される少なくとも1つの繰り返し単位と、下記式(2)で表され、かつ末端を構成する単位とで構成された第n世代(n=1〜5)のデンドロンであってもよい。   In the dendrimer, the dendron is an nth generation (n = 1) composed of at least one repeating unit represented by the following formula (1) and a unit represented by the following formula (2) and constituting a terminal. It may be a dendron of ~ 5).

Figure 2006241019
Figure 2006241019

(式中、X1及びX2はそれぞれ連結基、pは0又は1、R1及びR2は、同一又は異なって、水素原子、ハロゲン原子、アルキル基、アルコキシ基、又は炭化水素環基を示す)
前記式において、R1及びR2はt−ブチル基などであってもよい。デンドリマーにおいて、発光性化合物からのデンドロンの分岐数mは1〜3程度であってもよく、デンドロンは第n世代(n=1〜4)のデンドロンであってもよい。前記発光性化合物は、発光性色素、電荷輸送剤、電子輸送剤及びホール輸送剤から選択された少なくとも一種の化合物であってもよい。具体的には、発光性化合物は、縮合多環式炭化水素類(ペリレン系化合物など)、複素環化合物又は縮合複素環化合物(スクアリリウム系化合物、クマリン系化合物、ピラジン系化合物、キナクリドン系化合物、ナフタルイミド系化合物、ピロメテン系化合物、オキサジアゾール系化合物、フルオレン系化合物、スチリルベンゼン系化合物、シアニン系化合物、メロシアニン系化合物など)から選択された少なくとも一種であってもよい。前記発光性化合物は、発光性色素(又は蛍光色素)である場合が多い。
Wherein X 1 and X 2 are each a linking group, p is 0 or 1, and R 1 and R 2 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a hydrocarbon ring group. Show)
In the above formula, R 1 and R 2 may be a t-butyl group or the like. In the dendrimer, the number m of dendron branches from the luminescent compound may be about 1 to 3, and the dendron may be an nth generation (n = 1 to 4) dendron. The luminescent compound may be at least one compound selected from a luminescent dye, a charge transport agent, an electron transport agent, and a hole transport agent. Specifically, the luminescent compound includes condensed polycyclic hydrocarbons (such as perylene compounds), heterocyclic compounds or condensed heterocyclic compounds (squarylium compounds, coumarin compounds, pyrazine compounds, quinacridone compounds, naphthalene compounds, It may be at least one selected from phthalimide compounds, pyromethene compounds, oxadiazole compounds, fluorene compounds, styrylbenzene compounds, cyanine compounds, merocyanine compounds, and the like. In many cases, the luminescent compound is a luminescent dye (or fluorescent dye).

本発明は、電極間に有機層を備えた発光素子であり、前記有機層に前記デンドリマーが含有されている発光素子も含む。この発光素子において、前記有機層はデンドリマーを含む発光層であってよい。また、発光層は、デンドリマーと少なくとも一種の高分子とで構成してもよい。   The present invention is a light emitting device having an organic layer between electrodes, and includes a light emitting device in which the dendrimer is contained in the organic layer. In this light emitting device, the organic layer may be a light emitting layer containing a dendrimer. The light emitting layer may be composed of a dendrimer and at least one polymer.

本発明では、発光性化合物とデンドロン(樹状側鎖)とを結合させているため、濃度消光を低減できるとともに、低電圧で発光可能である。また、溶剤に対する溶解性や有機高分子に対する親和性が高く、発光強度を大きく向上できる。さらに、キャリアが発光性化合物に捕捉されるのをデンドロンが規制するためか、駆動電圧を低減できる。そのため、駆動電圧が低く発光効率が高い有機EL素子を得ることができる。   In the present invention, since the luminescent compound and the dendron (dendritic side chain) are bonded, concentration quenching can be reduced and light can be emitted at a low voltage. Moreover, the solubility with respect to a solvent and the affinity with respect to an organic polymer are high, and it can improve luminescence intensity greatly. Furthermore, the drive voltage can be reduced because the dendron restricts the carrier from being captured by the luminescent compound. Therefore, an organic EL element with a low driving voltage and high luminous efficiency can be obtained.

[発光性化合物]
発光性化合物は、蛍光化合物及び/又はリン光化合物であってもよく、発光性(特に電気的作用により発光可能な化合物)を有する限り、電荷輸送剤、電子輸送剤およびホール輸送剤であってもよい。また、発光性化合物はデンドロン(樹状側鎖)との結合部位(すなわち、デンドロンに対する反応性基)を有していればよい。
[Luminescent compound]
The light-emitting compound may be a fluorescent compound and / or a phosphorescent compound, and may be a charge transport agent, an electron transport agent, and a hole transport agent as long as it has a light-emitting property (particularly a compound capable of emitting light by an electrical action). Also good. Moreover, the luminescent compound should just have a coupling | bond part (namely, reactive group with respect to a dendron) with a dendron (dendritic side chain).

発光性化合物(蛍光又はリン光色素などの発光性色素、以下、色素を含めて単に化合物という)としては、例えば、スチリル系化合物(スチリルベンゼン系化合物など)、縮合多環式炭化水素類(ルブレン系化合物、ピレン系化合物、ジベンゾクリセン系化合物などのクリセン系化合物、ペリレン系化合物、コロネン系化合物、フルオレン系化合物など)、トリフェニレン系化合物(ジビニルフェニル結合トリフェンニン系化合物などを含む)、窒素原子、酸素原子、硫黄原子から選択された少なくとも一種のヘテロ原子を含む複素環化合物又は縮合複素環化合物(スクアリリウム系化合物、クマリン系化合物、ピラジン系化合物、キナクリドン、ジメチルキナクリドン、ジエチルキナクリドンなどのキナクリドン系化合物、ナフタルイミド系化合物(カルバゾール−ナフタルイミド系化合物などを含む)、ピロメテン系化合物、ピラン系化合物、カルバゾール系化合物、ベンズオキサゾール系化合物(メチル置換ベンズオキサゾール系化合物などを含む)、ベンズイミダゾール系化合物、ベンゾチアゾール系化合物、ローダミン系化合物、シアニン系化合物、メロシアニン系化合物、オキサジン系化合物、トリアリールピラゾリン系化合物、ピリジン系化合物(ジピラゾールピリジン系化合物、キンキピリジン系化合物を含む)、ビチアゾール系化合物など)、ジピリリルジシアノベンゼン系化合物、アリールアミン系化合物、ボリル系化合物(ジメシチルボリルアントラセン系化合物などを含む)、ポルフィリン系化合物など;金属錯体、例えば、リチウム系錯体、マグネシウム系錯体、亜鉛系錯体、ルテニウム系錯体、銅系錯体、ボロン系錯体、ランタニド系錯体、オキサジアゾール−べリリウム系錯体、ユーロピウム系錯体(テルビウム置換ユーロピウム系錯体を含む)、ホスフィン−金錯体、テルビウム系錯体、アルミニウム系錯体(チオフェン−アルミニウム系錯体を含む)などが例示できる。これらの化合物は、置換基(C1-4アルキル基、カルボニル基、ジアルキルアミノ基、シアノ基など)を有していてもよい。 Examples of luminescent compounds (luminescent dyes such as fluorescent or phosphorescent dyes, hereinafter simply referred to as compounds including dyes) include, for example, styryl compounds (styryl benzene compounds, etc.), condensed polycyclic hydrocarbons (rubrene) Compounds, pyrene compounds, chrysene compounds such as dibenzochrysene compounds, perylene compounds, coronene compounds, fluorene compounds), triphenylene compounds (including divinylphenyl-bonded triphenine compounds), nitrogen atoms, oxygen Heterocyclic compounds or condensed heterocyclic compounds containing at least one heteroatom selected from atoms and sulfur atoms (quinacridone compounds such as squarylium compounds, coumarin compounds, pyrazine compounds, quinacridone, dimethylquinacridone, diethylquinacridone, na Phthalimide Compounds (including carbazole-naphthalimide compounds), pyromethene compounds, pyran compounds, carbazole compounds, benzoxazole compounds (including methyl-substituted benzoxazole compounds), benzimidazole compounds, benzothiazole compounds , Rhodamine compounds, cyanine compounds, merocyanine compounds, oxazine compounds, triarylpyrazoline compounds, pyridine compounds (including dipyrazolepyridine compounds and quinkipyridine compounds), bithiazole compounds, etc., dipyriri Rudicyanobenzene compounds, arylamine compounds, boryl compounds (including dimesitylborylanthracene compounds), porphyrin compounds, etc .; metal complexes such as lithium complexes, magnesium Complex, zinc complex, ruthenium complex, copper complex, boron complex, lanthanide complex, oxadiazole-beryllium complex, europium complex (including terbium-substituted europium complex), phosphine-gold complex, Examples include terbium complexes and aluminum complexes (including thiophene-aluminum complexes). These compounds may have a substituent (C 1-4 alkyl group, carbonyl group, dialkylamino group, cyano group, etc.).

さらに、電荷輸送剤(電荷輸送能を有する化合物)としては、例えば、バソフェナントロリン系化合物などが例示できる。電子輸送剤(電子輸送性発光化合物又は電子注入輸送剤)としては、例えば、オキサジアゾール系化合物などが例示できる。   Furthermore, examples of the charge transport agent (compound having charge transport ability) include a bathophenanthroline compound. Examples of the electron transporting agent (electron transporting light emitting compound or electron injecting transporting agent) include oxadiazole compounds.

ホール輸送剤(ホール輸送性発光化合物又はホール注入輸送剤)としては、例えば、スピロ系化合物、イソインドール系化合物(イソインドール、ポリイソインドールなど)、ピラゾリン系化合物、トリアリールアミン系化合物(トリフェニルアミン系化合物など)、インドロカルバゾール系化合物、カルコケニド系化合物、フルオレニル基含有化合物などが例示できる。   Examples of the hole transporting agent (hole transporting luminescent compound or hole injecting transporting agent) include spiro compounds, isoindole compounds (isoindole, polyisoindole, etc.), pyrazoline compounds, triarylamine compounds (triphenyl). Examples thereof include amine compounds), indolocarbazole compounds, chalcogenide compounds, fluorenyl group-containing compounds, and the like.

これらの発光性化合物のうち発光性色素、例えば、スチリルベンゼン系化合物、縮合多環式炭化水素類(ペリレン系化合物、フルオレン系化合物など)、複素環化合物又は縮合複素環化合物(スクアリリウム系化合物、クマリン系化合物、ピラジン系化合物、キナクリドン系化合物、ナフタルイミド系化合物、ピロメテン系化合物、オキサジアゾール系化合物、シアニン系化合物、メロシアニン系化合物など)を用いる場合が多い。なお、複素環化合物又は縮合複素環化合物は、通常、窒素原子、酸素原子及び硫黄原子(特に、窒素原子及び酸素原子)から選択された少なくとも1つのヘテロ原子を環の構成原子として含む5又は6員環を有する場合が多く、5又は6員環は芳香族性であってもよく、非芳香族性であってもよい。   Among these luminescent compounds, luminescent dyes such as styrylbenzene compounds, condensed polycyclic hydrocarbons (perylene compounds, fluorene compounds, etc.), heterocyclic compounds or condensed heterocyclic compounds (squarylium compounds, coumarins) Compound, pyrazine compound, quinacridone compound, naphthalimide compound, pyromethene compound, oxadiazole compound, cyanine compound, merocyanine compound, etc.) are often used. In addition, the heterocyclic compound or the condensed heterocyclic compound usually contains at least one hetero atom selected from a nitrogen atom, an oxygen atom and a sulfur atom (particularly a nitrogen atom and an oxygen atom) as a ring constituting atom. In many cases, it has a member ring, and the 5- or 6-member ring may be aromatic or non-aromatic.

これらの発光性化合物は反応性基を有する。この反応性基の種類は、デンドロンに対して結合可能である限り特に制限されず、例えば、ハロゲン原子(塩素、臭素、ヨウ素原子など)、反応性金属原子(リチウム原子など)、ヒドロキシル基又はその反応性誘導基(低級アルコキシ基など)、メルカプト基、カルボキシル基又はその反応性誘導体基(アシルハライド基(ハロホルミル基)、酸無水物基など)、アミノ基又はイミノ基、エポキシ基(又はグリシジル基)、イソシアネート基などが例示できる。反応性基は、ヒドロキシル基、カルボキシル基又は酸無水物基などであってもよい。なお、反応性基を有していない発光性化合物には、単一又は複数の公知の化学反応を利用して反応性基を導入できる。   These luminescent compounds have a reactive group. The type of the reactive group is not particularly limited as long as it can be bonded to the dendron. For example, a halogen atom (chlorine, bromine, iodine atom, etc.), a reactive metal atom (lithium atom, etc.), a hydroxyl group or its group Reactive derivative groups (such as lower alkoxy groups), mercapto groups, carboxyl groups or reactive derivative groups thereof (acyl halide groups (haloformyl groups), acid anhydride groups, etc.), amino groups or imino groups, epoxy groups (or glycidyl groups) ), Isocyanate groups and the like. The reactive group may be a hydroxyl group, a carboxyl group or an acid anhydride group. In addition, a reactive group can be introduce | transduced into the luminescent compound which does not have a reactive group using a single or several well-known chemical reaction.

[デンドリマー]
本発明のデンドリマー(又は発光素子用デンドリマー)は、前記発光性化合物(コア)の反応性基に対してデンドロン(樹木状側鎖又は超分岐側鎖)が結合した構造を有する。このデンドロンは非芳香族性基で構成してもよいが、芳香族性基を有しているのが好ましい。また、発光性化合物(コア)に対してデンドロンは共役又は非共役の関係で結合していてもよく、通常、非共役又は非伝導性(又は非導電性)の関係で結合している場合が多い。さらに、デンドロンを構成するデンドリック構造単位は互いに共役又は非共役の関係で結合していてもよく、通常、非共役又は非伝導性(又は非導電性)の関係で結合している場合が多い。
[Dendrimer]
The dendrimer of the present invention (or the dendrimer for a light emitting device) has a structure in which a dendron (a dendritic side chain or a hyperbranched side chain) is bonded to a reactive group of the light emitting compound (core). The dendron may be composed of a non-aromatic group, but preferably has an aromatic group. In addition, the dendron may be bonded to the luminescent compound (core) in a conjugated or non-conjugated relationship, and is usually bonded in a non-conjugated or non-conductive (or non-conductive) relationship. Many. Furthermore, the dendritic structural units constituting the dendron may be bonded to each other in a conjugated or non-conjugated relationship, and are usually bonded in a non-conjugated or non-conductive (or non-conductive) relationship.

発光性化合物(コア)とデンドロンとは前記式(1)の連結基X1を介して結合し、単位(1)の結合手のうち連結基X1を含まない遊離の結合手は単位(2)の結合手(連結基X2を含む結合手)と結合する。発光性化合物の反応性基とデンドロンの官能基との反応には、種々の反応、例えば、ハロゲン原子や反応性金属原子(リチウム原子など)と、活性水素原子(又は活性水素原子を有する官能基、例えば、ヒドロキシル基、カルボキシル基、アミノ基、イミノ基など)との反応、ヒドロキシル基又はその反応性誘導基(低級アルコキシ基など)やメルカプト基と、ハロゲン原子、カルボキシル基又は酸無水物基、アルコキシシリル基、及び/又はイソシアネート基との反応、カルボキシル基又はその反応性誘導体基(アシルハライド基、酸無水物基など)と、ヒドロキシル基、アミノ基、及び/又はエポキシ基との反応、アミノ基又はイミノ基と、カルボキシル基、エポキシ基、及び/又はイソシアネート基との反応、エポキシ基(又はグリシジル基)とカルボキシル基、及び/又はアミノ基との反応、イソシアネート基とヒドロキシル基、及び/又はアミノ基などとの反応などが例示できる。また、ハロゲン原子などを利用したカップリング反応なども利用できる。 The light-emitting compound (core) and the dendron are bonded through the linking group X 1 of the formula (1), and the free bond that does not include the linking group X 1 is the unit (2 ) Bond (a bond including a linking group X 2 ). The reaction between the reactive group of the luminescent compound and the functional group of the dendron includes various reactions, for example, a halogen atom or a reactive metal atom (such as a lithium atom) and an active hydrogen atom (or a functional group having an active hydrogen atom) A hydroxyl group, a carboxyl group, an amino group, an imino group, etc.), a hydroxyl group or a reactive derivative group thereof (such as a lower alkoxy group) or a mercapto group, a halogen atom, a carboxyl group or an acid anhydride group, Reaction with alkoxysilyl group and / or isocyanate group, reaction of carboxyl group or reactive derivative group thereof (acyl halide group, acid anhydride group, etc.) with hydroxyl group, amino group and / or epoxy group, amino Reaction of a group or imino group with a carboxyl group, an epoxy group, and / or an isocyanate group, an epoxy group (or glycine) The reaction of Le group) and a carboxyl group, and / or amino groups, such as reaction with an isocyanate group and a hydroxyl group, and / or amino groups can be exemplified. A coupling reaction using a halogen atom or the like can also be used.

前記式(1)及び(2)において、連結基X1及びX2としては、直接結合(p=0)、酸素原子(エーテル結合)、硫黄原子(スルフィド結合)、窒素原子、アルキレン基(直鎖状又は分岐鎖状C1-4アルキレン基)、アルキレンオキシ基[基−RO−又は−OR−(Rは直鎖状又は分岐鎖状C1-4アルキレン基)]、エステル結合(−COO−又は−OCO−)、イミド結合(ジカルボン酸イミド結合を含む)、アミド結合、ウレタン結合、尿素結合などが例示できる。これらの連結基X1及びX2はそれぞれ同一であってもよく互いに異なっていてもよい。連結基X1及びX2は、通常、直接結合(p=0)、エーテル結合、アルキレンオキシ基[基−RO−又は−OR−(Rは直鎖状又は分岐鎖状C1-2アルキレン基)]である場合が多い。連結基X1はジカルボン酸イミド結合などを構成してもよい。式中、係数pは0又は1である。 In the formulas (1) and (2), the linking groups X 1 and X 2 include a direct bond (p = 0), an oxygen atom (ether bond), a sulfur atom (sulfide bond), a nitrogen atom, an alkylene group (direct Chain or branched C 1-4 alkylene group), alkyleneoxy group [group —RO— or —OR— (where R is a linear or branched C 1-4 alkylene group)], ester bond (—COO -Or -OCO-), an imide bond (including a dicarboxylic acid imide bond), an amide bond, a urethane bond, a urea bond, and the like. These linking groups X 1 and X 2 may be the same or different from each other. The linking groups X 1 and X 2 are usually a direct bond (p = 0), an ether bond, an alkyleneoxy group [group —RO— or —OR— (where R is a linear or branched C 1-2 alkylene group). )] In many cases. The linking group X 1 may constitute a dicarboxylic imide bond. In the formula, the coefficient p is 0 or 1.

前記式(2)において、R1及びR2としては、水素原子、ハロゲン原子(フッ素、臭素、塩素又はヨウ素原子)、アルキル基(例えば、メチル、エチル、プロピル、イソプロピル、ブチル、イソブチル、s−ブチル、t−ブチル、ペンチル、イソペンチル、ネオペンチル、t−ペンチル、ヘキシル基などの直鎖状又は分岐鎖状C1-6アルキル基)、アルコキシ基(例えば、メトキシ、エトキシ、プロポキシ、イソプロポキシ、ブトキシ、イソブトキシ、s−ブトキシ、t−ブトキシ、ペンチルオキシ、イソペンチルオキシ、ヘキシルオキシ基などの直鎖状又は分岐鎖状C1-6アルコキシ基)、環状炭化水素基(例えば、シクロヘキシルなどのC3-8シクロアルキル基、フェニル基などのC6-10アリール基)などが例示できる。好ましい置換基R1及びR2は、バルキーな置換基、例えば、t−ブチル基などの分岐鎖状C3-5アルキル基である。置換基R1及びR2は、それぞれ同一であってもよく異なっていてもよい。 In the formula (2), R 1 and R 2 are a hydrogen atom, a halogen atom (fluorine, bromine, chlorine or iodine atom), an alkyl group (for example, methyl, ethyl, propyl, isopropyl, butyl, isobutyl, s- Linear or branched C 1-6 alkyl group such as butyl, t-butyl, pentyl, isopentyl, neopentyl, t-pentyl, hexyl group), alkoxy group (for example, methoxy, ethoxy, propoxy, isopropoxy, butoxy) , Isobutoxy, s-butoxy, t-butoxy, linear or branched C 1-6 alkoxy groups such as pentyloxy, isopentyloxy and hexyloxy groups, cyclic hydrocarbon groups (for example, C 3 such as cyclohexyl) -8 cycloalkyl group, C 6-10 aryl group such as phenyl group) and the like. Preferred substituents R 1 and R 2 are bulky substituents, for example branched C 3-5 alkyl groups such as a t-butyl group. The substituents R 1 and R 2 may be the same or different.

代表的なデンドロンは、少なくとも1つの前記式(1)で表される単位(少なくとも1つの繰り返し単位)を有し、かつ規則的な分岐構造を有しているが、分岐構造が規則的でないハイパーブランチ(超分岐)構造であってもよい。前記式(1)で表されるn個の繰り返し単位と、前記式(2)で表される2n個の単位とで第n世代(Gn)デンドロンを構成できる。例えば、1つの前記式(1)で表される繰り返し単位と、2つの前記式(2)で表される単位とで第1世代(G1)デンドロン、2つの前記式(1)で表される繰り返し単位と、4つの前記式(2)で表される単位とで第2世代(G2)デンドロン、3つの前記式(1)で表される繰り返し単位と、8つの前記式(2)で表される単位とで第3世代(G3)デンドロンを構成できる。デンドロンの世代nは、1〜5(好ましくは1〜4)程度である。なお、第0世代(G0)のデンドロン(モノマー)は、前記式(2)で表される単位に対応させることができる。 A typical dendron has at least one unit represented by the formula (1) (at least one repeating unit) and has a regular branched structure, but the hyperbranched structure is not regular. A branch (super-branch) structure may be used. The n-th generation (Gn) dendron can be composed of n repeating units represented by the formula (1) and 2 n units represented by the formula (2). For example, the first generation (G1) dendron and the two repeating units represented by the formula (1) and the two units represented by the formula (2) are represented by the two formulas (1). The second generation (G2) dendron with the repeating unit and the four units represented by the formula (2), the three repeating units represented by the formula (1), and the eight represented by the formula (2) A third generation (G3) dendron can be configured with the unit. The generation n of the dendron is about 1 to 5 (preferably 1 to 4). The 0th generation (G0) dendron (monomer) can correspond to the unit represented by the formula (2).

さらに、発色性化合物の価数(又は反応性基の数)をmとすると、分岐数(又は結合数)mの第n世代のデンドリマーを得ることができる。分岐数mは、1〜5程度、通常、1〜3程度である。デンドリマーの世代nは、1〜10、好ましくは1〜5(例えば、2〜5)程度であってもよい。好ましいデンドリマーは、分岐数m=1の第n世代(Gn,n=1〜5、好ましくは1〜4(例えば、2〜4)程度)のデンドリマー、分岐数m=2の第n世代(Gn,n=1〜4、好ましくは2〜4程度)のデンドリマー、分岐数m=3の第n世代(Gn,n=1〜4、好ましくは2〜4程度)のデンドリマーである。デンドリマーは、分岐数m=2の第n世代(Gn,n=2〜3程度)のデンドリマーである場合が多い。   Furthermore, when the valence (or the number of reactive groups) of the chromogenic compound is m, an n-th generation dendrimer having a branch number (or bond number) m can be obtained. The number of branches m is about 1 to 5, usually about 1 to 3. The generation n of the dendrimer may be about 1 to 10, preferably about 1 to 5 (for example, 2 to 5). A preferred dendrimer is an n-th generation (Gn, n = 1 to 5, preferably about 1 to 4 (for example, 2 to 4)) dendrimer having a branch number m = 1, or an n-th generation (Gn , N = 1 to 4, preferably about 2 to 4), and n-th generation (Gn, n = 1 to 4, preferably about 2 to 4) dendrimer with m = 3 branches. Dendrimers are often n-th generation (Gn, n = 2 to 3) dendrimers having a branch number m = 2.

なお、デンドリマーの世代が大きくなると、溶剤に対する溶解性や有機高分子との親和性を向上させることができるとともに、発光強度も向上できる。さらに、デンドリマーの世代が大きくなると、発光のための駆動電圧を低減できるとともに、濃度消光を低減でき、高濃度に含有させても効率よく発光できる。そのため、本発明のデンドリマーは、発光素子の発光材料、例えば、有機EL素子の発光層を構成する色素(例えば、製膜性色素、ドーパント色素など)として利用できる。   In addition, when the generation of a dendrimer becomes large, the solubility with respect to a solvent and affinity with an organic polymer can be improved, and emission intensity can also be improved. Furthermore, when the generation of dendrimers is increased, the driving voltage for light emission can be reduced, the concentration quenching can be reduced, and light can be efficiently emitted even when contained in a high concentration. Therefore, the dendrimer of the present invention can be used as a light-emitting material of a light-emitting element, for example, a dye constituting a light-emitting layer of an organic EL element (for example, a film-forming dye or a dopant dye).

デンドロンは、公知乃至慣用の方法で調製でき、種々の書籍や文献、例えば、Tetrahedron, 58 (2002) 825-843などを参照できる。また、デンドリマーは、公知乃至慣用の方法、例えば、コアとなる発光性化合物にモノマーを逐次結合させて枝分かれさせていくダイバージェント(Divergent)法、予め枝状デンドロンを調製し、コアとなる発光性化合物に結合させるコンバージェント(Convergent)法、これらを組み合わせた方法などを利用して調製できる。これらの反応には、クロスカップリング反応などの公知又は慣用の反応が利用できる。   Dendron can be prepared by a known or conventional method, and various books and documents such as Tetrahedron, 58 (2002) 825-843 can be referred to. Dendrimers are also known or commonly used methods, for example, a divergent method in which monomers are sequentially bonded to a core light-emitting compound and branched, a branched dendron is prepared in advance, and the core light-emitting property is obtained. It can be prepared using a convergent method for binding to a compound, a method combining these, and the like. For these reactions, known or conventional reactions such as cross-coupling reactions can be used.

本発明の新規デンドリマー(又は発光素子用デンドリマー)のうち第2世代のデンドロンを有するデンドリマーは、例えば、下記式で表すことができる。   Among the novel dendrimers (or dendrimers for light-emitting elements) of the present invention, a dendrimer having a second generation dendron can be represented by the following formula, for example.

Figure 2006241019
Figure 2006241019

(式中、Aは発光性化合物の残基、mは分岐数1〜3を示し、X1,X2,p,R1,R2は、前記に同じ)
[発光素子]
本発明の発光素子(又は有機EL素子)は、一対の電極と、この電極間に介在する有機層とで構成されており、この有機層は少なくとも前記デンドリマー(発光性デンドリマー)を含んでいる。前記有機層は少なくとも1つの層で構成すればよく、代表的な例では、前記有機層は、発光層単独、正孔輸送層と発光性電子輸送層との組合せ、発光性正孔輸送層と電子輸送層との組合せ、正孔輸送層と発光層と電子輸送層との組合せで構成してもよい。好ましい態様において、前記デンドリマーは発光層に含有されている。
(In the formula, A represents a residue of the luminescent compound, m represents 1 to 3 branches, and X 1 , X 2 , p, R 1 , and R 2 are the same as above)
[Light emitting element]
The light-emitting element (or organic EL element) of the present invention is composed of a pair of electrodes and an organic layer interposed between the electrodes, and the organic layer contains at least the dendrimer (light-emitting dendrimer). The organic layer may be composed of at least one layer. In a typical example, the organic layer is a light emitting layer alone, a combination of a hole transport layer and a light emitting electron transport layer, a light emitting hole transport layer, A combination with an electron transport layer, or a combination of a hole transport layer, a light emitting layer, and an electron transport layer may be used. In a preferred embodiment, the dendrimer is contained in the light emitting layer.

図1は、本発明の有機EL素子の一例を示す概略断面図である。この例では、有機EL素子は、透明基板(ガラス基板など)1に形成された透明電極(陽極)2と、この透明電極上に形成された正孔輸送層5と、この正孔輸送層上に形成された発光層4と、この発光層上に形成された電子輸送層6と、この電子輸送層上に形成された陰極3とで構成された積層構造を有しており、前記陽極2及び陰極3には、それぞれリード線9a及び9bが接続されている。   FIG. 1 is a schematic cross-sectional view showing an example of the organic EL element of the present invention. In this example, the organic EL element includes a transparent electrode (anode) 2 formed on a transparent substrate (glass substrate or the like) 1, a hole transport layer 5 formed on the transparent electrode, and a hole transport layer on the hole transport layer. And the cathode 2 formed on the electron transporting layer 4, the anode 2, the light emitting layer 4 formed on the light emitting layer, the electron transporting layer 6 formed on the light emitting layer, and the cathode 3 formed on the electron transporting layer. The lead wires 9a and 9b are connected to the cathode 3 and the cathode 3, respectively.

図2は本発明の有機EL素子の他の例を示す概略断面図である。図2に示す有機EL素子では、図1に示す素子において、前記透明電極2と正孔輸送層5との間に、陽極バッファ層(正孔注入層)7を介在させている。さらに、本発明の有機EL素子のさらに他の例を示す図3において、透明電極(陽極)2上に形成された正孔輸送層5と、この正孔輸送層の上に形成された発光性電子輸送層8と、この発光性電子輸送層8上に形成された陰極3とで構成された積層構造の有機EL素子が示されている。さらには、図4に示す有機EL素子では、図3に示す素子において、透明電極(陽極)2と正孔輸送層5との間に陽極バッファ層(正孔注入層)7を介在させている。   FIG. 2 is a schematic sectional view showing another example of the organic EL element of the present invention. In the organic EL element shown in FIG. 2, an anode buffer layer (hole injection layer) 7 is interposed between the transparent electrode 2 and the hole transport layer 5 in the element shown in FIG. Further, in FIG. 3 showing still another example of the organic EL device of the present invention, the hole transport layer 5 formed on the transparent electrode (anode) 2 and the light emitting property formed on the hole transport layer. An organic EL element having a laminated structure composed of an electron transport layer 8 and a cathode 3 formed on the light-emitting electron transport layer 8 is shown. Furthermore, in the organic EL device shown in FIG. 4, an anode buffer layer (hole injection layer) 7 is interposed between the transparent electrode (anode) 2 and the hole transport layer 5 in the device shown in FIG. .

前記有機層のうち少なくとも発光層は、前記デンドリマーを含んでいる。なお、前記デンドリマーとともに他のドーパント色素(又は発光性化合物)を併用してもよい。このようなドーパント色素(又は発光性化合物)としては、例えば、例示の発光性化合物の他、例えば、2,5−ビス(5−tert−ブチル−2−ベンゾオキサゾリル)−チオフェンなどのビス(C1-6アルキル−ベンゾオキサゾリル)チオフェン、ナイルレッド、4−(ジシアノメチレン)−2−メチル−6−(p−ジメチルアミノスチリル)−4H−ピランなどの4−(ジシアノC1-4アルキレン)−2−C1-4アルキル−6−(p−ジC1-4アルキルアミノスチリル)−4H−ピラン;1,1,4,4−テトラフェニル−1,3−ブタジエン(TPB)などのテトラC6-12アリール−1,3−ブタジエン;1,4−ビス(2−(4−エチルフェニル)エチニル)ベンゼンなどのビス(2−(4−C1-4アルキルフェニル)C2-4アルキニル)ベンゼン;4,4’−ビス(2,2’−ジフェニルビニル)ビフェニルなどのビス(2,2’−ジC6-12アリールビニル)ビフェニル;N,N,N−トリス(ターフェニルアミン)(p−TTA)などが挙げられる。これらの発光性化合物は単独で又は2種以上組み合わせて使用できる。 Among the organic layers, at least a light emitting layer contains the dendrimer. In addition, you may use together another dopant pigment | dye (or luminescent compound) with the said dendrimer. Examples of such dopant dyes (or luminescent compounds) include luminescent compounds such as 2,5-bis (5-tert-butyl-2-benzoxazolyl) -thiophene in addition to the exemplified luminescent compounds. 4- (dicyano C 1-, such as (C 1-6 alkyl-benzoxazolyl) thiophene, Nile red, 4- (dicyanomethylene) -2-methyl-6- (p-dimethylaminostyryl) -4H-pyran 4 alkylene) -2-C 1-4 alkyl-6- (p-diC 1-4 alkylaminostyryl) -4H-pyran; 1,1,4,4-tetraphenyl-1,3-butadiene (TPB) Tetra C 6-12 aryl-1,3-butadiene; bis (2- (4-C 1-4 alkylphenyl) C 2 such as 1,4-bis (2- (4-ethylphenyl) ethynyl) benzene -4 alkynyl) benzene 4,4'-bis (2,2'-diphenyl vinyl) bis biphenyl (2,2'-C 6-12 aryl-vinyl) biphenyl; N, N, N-tris (terphenyl amine) (p -TTA). These luminescent compounds can be used alone or in combination of two or more.

発光性化合物は高分子であってもよい。高分子発光性化合物としては、例えば、オリゴフェニレンビニレンテトラマー、π共役系高分子[例えば、フルオレン系ポリマー(液晶性キラル置換フルオレン系ポリマー、スピロ型フルオレン系ポリマー、ビナフチル−フルオレン系コポリマー、フルオレン−カルバゾール系コポリマー、液晶性ジオクチルフルオレン系ポリマーなどを含む)、ビナフタレン含有ポリマー、ジシラニレンオリゴチエニレン系ポリマー、シリコン青色発光コポリマー、オキサジアゾール系ポリマー(オキサジアゾール−カルバゾール−ナフタルイミド系コポリマー、全芳香族オキサジアゾール系ポリマーなどを含む)、PPV系ポリマー(ポルフィリン基グラフトPPV系ポリマー、ジシアノフェニレンビニレン−PPV系コポリマーなどを含む)、チェニレン−フェニレン系コポリマー、ジエチルベンゼン系ポリマー、アセチレン系ポリマー、ビニル−ピリジン系ゲル状ポリマー、チオフェン系発光ポリマー(チオフェン−フルオレン系コポリマー、アルキルチオフェン系コポリマー、エチレンオキサイド基付加チオフェン系ポリマー、オリゴチオフェンベースポリマーなどを含む)、クマリン系ポリマー(カルバゾイルメタクリレート−クマリン系コポリマーなどを含む)、カルバゾイルシアノテレフタリデン系ポリマー、ナフタルイミド系ポリマー、アルミニウムキレート系ポリマー、オクタフルオロビフェニル基含有ポリマーなど]、σ共役系高分子(ポリシラン系ポリマーなど)などが例示できる。   The light emitting compound may be a polymer. Examples of the polymer light-emitting compound include oligophenylene vinylene tetramer, π-conjugated polymer [eg, fluorene polymer (liquid crystalline chiral substituted fluorene polymer, spiro fluorene polymer, binaphthyl-fluorene copolymer, fluorene-carbazole Copolymer, liquid crystalline dioctyl fluorene polymer, etc.), binaphthalene-containing polymer, disilanylene oligothienylene polymer, silicon blue light emitting copolymer, oxadiazole polymer (oxadiazole-carbazole-naphthalimide copolymer, all Aromatic oxadiazole polymers), PPV polymers (including porphyrin-grafted PPV polymers, dicyanophenylene vinylene-PPV copolymers, etc.), Chenille -Phenylene copolymer, diethylbenzene polymer, acetylene polymer, vinyl-pyridine gel polymer, thiophene light emitting polymer (thiophene-fluorene copolymer, alkylthiophene copolymer, ethylene oxide group-added thiophene polymer, oligothiophene base polymer, etc. ), Coumarin polymers (including carbazoyl methacrylate-coumarin copolymers), carbazoyl cyanoterephthalidene polymers, naphthalimide polymers, aluminum chelate polymers, octafluorobiphenyl group-containing polymers, etc.], σ conjugates Examples thereof include polymer-based polymers (such as polysilane polymers).

正孔輸送層は、ホール輸送機能を有する有機化合物(ホール輸送剤)を含んでいてもよく、ホール輸送剤としては、例えば、N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1'−ビフェニル−4,4'−ジアミン(TPD)、N,N'−ジフェニル−N,N'−ビス(1−ナフチル)−1,1'−ビフェニル−4,4'−ジアミン(NPD)、1,1−ビス[(ジ−4−トリルアミノ)フェニル]シクロヘキサン、N,N,N',N'−テトラ(3−メチルフェニル)−1,3−ジアミノベンゼン(PDA)、4,4',4"−トリス(3−メチルフェニルフェニルアミノ)トリフェニルアミン(m−MTDATA)、4,4’,4”−トリス(1−ナフチルフェニルアミノ)トリフェニルアミン(1−TNATA)、4,4’,4”−トリス(2−ナフチルフェニルアミノ)トリフェニルアミン(2−TNATA)、4,4’,4”−トリ(N−カルバゾリル)トリフェニルアミン(TCTA)、1,3,5−トリス[4−(3−メチルフェニルフェニルアミノ)フェニル]ベンゼン(m−MTDAPB)、トリフェニルアミンなどの芳香族第3級アミン類;フタロシアニン類などが挙げられる。ホール輸送剤としては、高分子ホール輸送剤、例えば、ポリイミド、ポリシロキサン、トリフェニルアミンポリマー、フルオレン含有アリールアミンポリマー、ジフェニルアセチレン系ポリマー、カルバゾール−チオフェン系コポリマーなどを用いてもよい。これらのホール輸送剤は単独で又は二種以上組み合わせて使用できる。   The hole transport layer may contain an organic compound (hole transport agent) having a hole transport function. Examples of the hole transport agent include N, N′-diphenyl-N, N′-bis (3-methyl). Phenyl) -1,1'-biphenyl-4,4'-diamine (TPD), N, N'-diphenyl-N, N'-bis (1-naphthyl) -1,1'-biphenyl-4,4 ' -Diamine (NPD), 1,1-bis [(di-4-tolylamino) phenyl] cyclohexane, N, N, N ', N'-tetra (3-methylphenyl) -1,3-diaminobenzene (PDA) 4,4 ′, 4 ″ -tris (3-methylphenylphenylamino) triphenylamine (m-MTDATA), 4,4 ′, 4 ″ -tris (1-naphthylphenylamino) triphenylamine (1-TNATA) ), 4, 4 ', 4 "-tri (2-naphthylphenylamino) triphenylamine (2-TNATA), 4,4 ′, 4 ″ -tri (N-carbazolyl) triphenylamine (TCTA), 1,3,5-tris [4- (3- Methylphenylphenylamino) phenyl] benzene (m-MTDAPB), aromatic tertiary amines such as triphenylamine; phthalocyanines and the like. As the hole transport agent, a polymer hole transport agent such as polyimide, polysiloxane, triphenylamine polymer, fluorene-containing arylamine polymer, diphenylacetylene polymer, carbazole-thiophene copolymer, and the like may be used. These hole transport agents can be used alone or in combination of two or more.

なお、正孔輸送層には、発光機能を付与するためには、発光機能を有する有機化合物又は高分子を添加してもよく、正孔輸送層には、発光機能を有する有機化合物又は高分子で構成された発光層を積層してもよい。また、電子輸送層は、電子輸送機能を有する有機化合物又は高分子で構成することができ、発光機能と電子輸送機能とを併せ持つ発光性電子輸送層として形成してもよい。   In addition, an organic compound or a polymer having a light emitting function may be added to the hole transport layer in order to impart a light emitting function, and an organic compound or a polymer having a light emitting function may be added to the hole transport layer. You may laminate the light emitting layer comprised by these. The electron transport layer can be composed of an organic compound or a polymer having an electron transport function, and may be formed as a light-emitting electron transport layer having both a light-emitting function and an electron transport function.

前記電子輸送層は、前記電子輸送機能を有する有機化合物(電子輸送剤)を含んでいてもよい。電子輸送剤としては、例えば、オキサジアゾール誘導体[例えば、2−(4−ビフェニル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)、2,5−ビス(1−ナフチル)−1,3,4−オキサジアゾール(BND)、1,3−ビス[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]ベンゼン(BPOB)、1,3,5−トリス[5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾリル]ベンゼン(TPOB)、1,3,5−トリス[5−(1−ナフチル)−1,3,4−オキサジアゾリル]ベンゼン(TNOB)などの置換基を有していてもよいC6-20アリール基を有するオキサジアゾール誘導体];ジフェノキノン類[例えば、3,5,3’,5’−テトラキス−t−ブチルジフェノキノンなどの置換基(C1-10アルキル基など)を有していてもよいジフェノキノン類;1,2,3,4,5−ペンタフェニル−1,3−シクロペンタジエン(PPCP);トリス(8−キノリノラト)アルミニウム(Alq3)、ビス(ベンゾキノリノラト)ベリリウム錯体、トリス(10−ヒドロキシベンゾ[h]キノリノラト)ベリリウム錯体などのキノリノラト錯体;1,3,5−トリス[5−(ジメシチルボリル)−2−チエニル]ベンゼン、5,5’−ビス(ジメシチルボリル)−2,2’−ビチオフェン(BMB−2T)、5,5’’−ビス(ジメシチルボリル)−2,2’:5’,2’’−ターチオフェン(BMB−3T)などのチオフェン類が挙げられる。これらのうち、TPOBなどのオキサジアゾール類;Alq3などのキノリノラト錯体;1,3,5−トリス[5−(ジメシチルボリル)−2−チエニル]ベンゼン、BMB−2T及びBMB−3Tなどのチオフェン類などを用いる場合が多い。電子輸送剤としては、高分子電子輸送剤、例えば、フルオレン系ポリマー、ウレタン系ポリマー、フッ素化デンドリマー化合物などを用いてもよい。前記電子輸送剤は、単独で又は二種以上組み合わせて使用してもよい。 The electron transport layer may include an organic compound (electron transport agent) having the electron transport function. Examples of the electron transfer agent include oxadiazole derivatives [eg, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD), 2,5 -Bis (1-naphthyl) -1,3,4-oxadiazole (BND), 1,3-bis [5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl] benzene (BPOB) 1,3,5-tris [5- (4-tert-butylphenyl) -1,3,4-oxadiazolyl] benzene (TPOB), 1,3,5-tris [5- (1-naphthyl) -1 , 3,4-oxadiazolyl] oxadiazole derivatives having a C 6-20 aryl group optionally having substituents such as benzene (TNOB)]; diphenoquinones [eg, 3,5,3 ′, 5 ′ -Tetra Diphenoquinones optionally having a substituent (such as C 1-10 alkyl group) such as kiss-t-butyldiphenoquinone; 1,2,3,4,5-pentaphenyl-1,3-cyclopentadiene (PPCP); quinolinolato complexes such as tris (8-quinolinolato) aluminum (Alq 3 ), bis (benzoquinolinolato) beryllium complex, tris (10-hydroxybenzo [h] quinolinolato) beryllium complex; Tris [5- (dimesitylboryl) -2-thienyl] benzene, 5,5′-bis (dimesitylboryl) -2,2′-bithiophene (BMB-2T), 5,5 ″ -bis (dimesitylboryl) -2,2 And thiophenes such as ': 5', 2 ″ -terthiophene (BMB-3T). Of these, oxadiazoles such as TPOB; quinolinolato complexes such as Alq 3 ; thiophenes such as 1,3,5-tris [5- (dimesitylboryl) -2-thienyl] benzene, BMB-2T and BMB-3T Etc. are often used. As the electron transport agent, a polymer electron transport agent, for example, a fluorene polymer, a urethane polymer, a fluorinated dendrimer compound, or the like may be used. You may use the said electron transport agent individually or in combination of 2 or more types.

前記電子輸送機能及び/又はホール輸送機能を有する有機高分子としては、例えば、主鎖又は側鎖にホール輸送機能基及び/又は電子輸送機能基を有するビニル系重合体、例えば、ポリフェニレンビニレン類[例えば、ポリフェニレンビニレン、ポリ(2,5−ジメトキシフェニレンビニレン)、ポリナフタレンビニレンなどの置換基(C1-10アルコキシ基など)を有していてもよいC6-12アリーレンビニレンの単独又は共重合体];ポリフェニレン類(特に、ポリパラフェニレン類)[例えば、ポリパラフェニレン、ポリ2,5−ジメトキシパラフェニレンなどの置換基(C1-10アルコキシ基など)を有していてもよいフェニレンの単独又は共重合体];ポリチオフェン類[ポリ(3−アルキルチオフェン)などのポリC1-20アルキルチオフェン類、ポリ(3−シクロヘキシルチオフェン)などのポリC3-20シクロアルキルチオフェン類、ポリ(3−(4−n−ヘキシルフェニル)チオフェン)などの置換基(C1-10アルキル基)を有していてもよいC6-20アリールチオフェン類などのチオフェン類の単独又は共重合体];ポリC1-20アルキルフルオレンなどのポリフルオレン類;ポリビニルカルバゾール(例えば、ポリ−N−ビニルカルバゾール(PVK)など);ポリスチレン類(例えば、ポリ−4−N,N−ジフェニルアミノスチレン、ポリ−4−(5−ナフチル−1,3,4−オキサジアゾール)スチレン);ポリ(メタ)アクリルアミド[例えば、ポリ(N−(p−ジフェニルアミノ)フェニルメタクリルアミド)、ポリ(N,N’−ジフェニル−N,N’−ビス(3−メチルフェニル)−1,1’−ビフェニル−4,4’−ジアミノメタクリルアミド)(PTPDMA)など]などの主鎖又は側鎖にホール輸送機能基及び/又は電子輸送機能基を有するビニル系重合体;ポリメチルフェニルシランなどのポリC1-4アルキルフェニルシラン;芳香族アミン誘導体を側鎖または主鎖に有する重合体(例えば、ポリアニリン系ポリマー);またはこれらの共重合体などが挙げられる。これらの電子輸送機能及び/又はホール輸送機能を有する有機高分子は単独で又は二種以上組み合わせて使用してもよい。 Examples of the organic polymer having an electron transport function and / or hole transport function include, for example, vinyl polymers having a hole transport function group and / or an electron transport function group in the main chain or side chain, such as polyphenylene vinylenes [ For example, C 6-12 arylene vinylene which may have a substituent (C 1-10 alkoxy group etc.) such as polyphenylene vinylene, poly (2,5-dimethoxyphenylene vinylene), polynaphthalene vinylene, etc. Compound]; polyphenylenes (especially polyparaphenylenes) [for example, phenylene which may have a substituent (C 1-10 alkoxy group etc.) such as polyparaphenylene, poly2,5-dimethoxyparaphenylene, etc. a homo- or copolymer], poly C 1-20 Arukiruchiofu such polythiophenes [poly (3-alkylthiophene) Yes emission, poly (3-cyclohexyl) poly C 3-20 cycloalkyl thiophenes such as poly (3- (4-n-hexyl-phenyl) thiophene) substituents such as (C 1-10 alkyl group) Thiophenes, such as C 6-20 arylthiophenes, which may be homo- or copolymers]; polyfluorenes such as poly C 1-20 alkyl fluorene; polyvinyl carbazole (eg, poly-N-vinyl carbazole (PVK ); Polystyrenes (eg, poly-4-N, N-diphenylaminostyrene, poly-4- (5-naphthyl-1,3,4-oxadiazole) styrene); poly (meth) acrylamide [eg, , Poly (N- (p-diphenylamino) phenylmethacrylamide), poly (N, N′-diphenyl-N, N′-bis (3-methyl) Vinyl) polymer having a hole transporting functional group and / or an electron transporting functional group in the main chain or side chain thereof, such as a phenyl) -1,1′-biphenyl-4,4′-diaminomethacrylamide) (PTPDMA), etc .; Examples thereof include poly C 1-4 alkylphenyl silanes such as polymethylphenyl silane; polymers having aromatic amine derivatives in the side chain or main chain (for example, polyaniline polymers); or copolymers thereof. These organic polymers having an electron transport function and / or a hole transport function may be used alone or in combination of two or more.

陽極バッファ層(ホール注入層)を構成する材料としては、慣用の陽極バッファ層用材料、例えば、ポリ(3,4−エチレンジオキシチオフェン)(PEDOT)などが挙げられる。PEDOTは、単独で用いてもよいが、ポリスチレンスルホネート(PSS)で化学的にドーピングして用いてもよい。PSSでドーピングしたPEDOTは、水/メタノール溶液の状態で、(株)バイエルより「BAYTRON P AI 4083」などとして入手可能である。   Examples of the material constituting the anode buffer layer (hole injection layer) include conventional anode buffer layer materials, such as poly (3,4-ethylenedioxythiophene) (PEDOT). PEDOT may be used alone or may be chemically doped with polystyrene sulfonate (PSS). PEDOT doped with PSS is available as “BAYTRON P AI 4083” from Bayer Co., Ltd. in a water / methanol solution state.

有機EL素子を構成する層(正孔輸送層、発光層、電子輸送層、発光性電子輸送層など)の厚みは、特に制限されず、それぞれ5nm〜1μm、好ましくは10〜800nm、さらに好ましくは30〜500nm、特に50〜300nm程度である。   The thickness of the layer constituting the organic EL element (hole transport layer, light emitting layer, electron transport layer, luminescent electron transport layer, etc.) is not particularly limited, and is 5 nm to 1 μm, preferably 10 to 800 nm, more preferably, respectively. It is about 30 to 500 nm, particularly about 50 to 300 nm.

有機EL素子の陽極には、透明導電膜(例えば、インジウム−スズ−酸化物(ITO)膜、酸化スズ膜、酸化亜鉛膜、アルミニウム膜など)などが使用され、陰極としては、仕事関数の小さい高導電性金属(例えば、マグネシウム、リチウム、アルミニウム又は銀など)、カルシウムなどが使用される。陰極としてマグネシウムを使用する場合には、有機EL素子用フィルムとの接着性を向上させるために、少量(例えば、1〜10重量%)の銀と共蒸着させてもよい。好ましい陰極としては、マグネシウム−銀合金電極、アルミニウム電極、カルシウム電極、リチウム/アルミニウム積層電極、弗化リチウム/アルミニウム積層電極などが挙げられる。   A transparent conductive film (for example, indium-tin-oxide (ITO) film, tin oxide film, zinc oxide film, aluminum film, etc.) is used for the anode of the organic EL element, and the work function is small as the cathode. A highly conductive metal (for example, magnesium, lithium, aluminum or silver), calcium or the like is used. When using magnesium as a cathode, in order to improve adhesiveness with the film for organic EL elements, you may co-evaporate with a small amount (for example, 1-10 weight%) of silver. Preferred cathodes include magnesium-silver alloy electrodes, aluminum electrodes, calcium electrodes, lithium / aluminum laminated electrodes, lithium fluoride / aluminum laminated electrodes, and the like.

前記有機EL素子を構成する層(正孔輸送層、発光層、電子輸送層、発光性電子輸送層など)は、慣用の方法、例えば、蒸着(真空蒸着法など)、塗布又は流延(スピンコート法など)などにより形成できる。また、ホール輸送剤、発光性化合物や電子輸送剤などの各機能層の成分が成膜性に劣る場合、必要により、前記ホール輸送機能、発光性、電子輸送機能を阻害しない範囲でバインダー樹脂と併用してもよい。前記バインダー樹脂としては、各種熱可塑性樹脂[ポリエチレン、ポリプロピレン、エチレン−(メタ)アクリル酸エステル共重合体などのオレフィン系樹脂;ポリスチレン、ゴム変性ポリスチレン(HIPS)などのスチレン系樹脂;アクリル系樹脂(ポリメチル(メタ)アクリレート又はその共重合体など);ポリビニルアルコールなどのビニルアルコール系重合体;ポリ塩化ビニルなどのビニル系樹脂;6−ナイロンなどのポリアミド系樹脂;ポリエステル樹脂[ポリアルキレンテレフタレート系共重合体(ポリエチレンテレフタレート系共重合体など)などのアルキレンアリレート系樹脂など];フッ素系樹脂;ポリカーボネート;ポリアセタール;ポリフェニレンエーテル;ポリフェニレンスルフィド;ポリエーテルスルホン;ポリエーテルケトン;熱可塑性ポリイミド;熱可塑性ポリウレタン;ノルボルネン系ポリマーなど]、熱硬化性樹脂[フェノール樹脂、アミノ樹脂(尿素樹脂、メラミン樹脂など)、熱硬化性アクリル樹脂、不飽和ポリエステル樹脂、アルキド樹脂、ジアリルフタレート樹脂、エポキシ樹脂、シリコーン樹脂など]などが使用できる。これらのバインダー樹脂は単独で又は二種以上組み合わせて使用できる。バインダー樹脂としては、通常、被膜形成能を有し、かつ溶媒可溶性の樹脂が使用される。   The layers (hole transport layer, light emitting layer, electron transport layer, luminescent electron transport layer, etc.) constituting the organic EL element are formed by a conventional method such as vapor deposition (vacuum vapor deposition method, etc.), coating or casting (spin Etc.). In addition, when the components of each functional layer such as a hole transport agent, a luminescent compound, and an electron transport agent are inferior in film formability, if necessary, the binder resin and the binder resin can be used as long as the hole transport function, the luminescent property, and the electron transport function are not impaired. You may use together. Examples of the binder resin include various thermoplastic resins [olefin resins such as polyethylene, polypropylene, and ethylene- (meth) acrylate ester copolymers; styrene resins such as polystyrene and rubber-modified polystyrene (HIPS); acrylic resins ( Polymethyl (meth) acrylate or copolymers thereof; vinyl alcohol polymers such as polyvinyl alcohol; vinyl resins such as polyvinyl chloride; polyamide resins such as 6-nylon; polyester resins [polyalkylene terephthalate copolymer Alkylene arylate resins such as polymers (polyethylene terephthalate copolymer, etc.)]; fluorine resins; polycarbonate; polyacetal; polyphenylene ether; polyphenylene sulfide; Ether ketone; Thermoplastic polyimide; Thermoplastic polyurethane; Norbornene polymer, etc.], Thermosetting resin [Phenol resin, Amino resin (Urea resin, Melamine resin, etc.), Thermosetting acrylic resin, Unsaturated polyester resin, Alkyd resin, Diallyl phthalate resin, epoxy resin, silicone resin, etc.] can be used. These binder resins can be used alone or in combination of two or more. As the binder resin, a resin having a film forming ability and a solvent soluble is usually used.

正孔輸送層、発光層、電子輸送層、発光性電子輸送層におけるバインダー樹脂の割合は、例えば、1〜70重量%、好ましくは5〜50重量%、さらに好ましくは10〜30重量%程度であってもよい。   The ratio of the binder resin in the hole transport layer, the light emitting layer, the electron transport layer, and the light emitting electron transport layer is, for example, 1 to 70% by weight, preferably 5 to 50% by weight, and more preferably about 10 to 30% by weight. There may be.

本発明の有機EL素子は、慣用の方法、例えば、透明基板上に前記透明電極を形成し、この透明電極上に、蒸着、塗布液のコーティング(例えば、スピンコーティングなど)を利用して前記有機層(正孔輸送層、発光層、電子輸送層や発光性電子輸送層、陽極バッファ層(ホール注入層))を順次形成し、有機層上に陰極を形成することにより有機EL素子を製造できる。   The organic EL device of the present invention is formed by using a conventional method, for example, forming the transparent electrode on a transparent substrate, and depositing the coating on the transparent electrode using a coating solution (for example, spin coating). An organic EL device can be manufactured by sequentially forming layers (a hole transport layer, a light emitting layer, an electron transport layer, a light emitting electron transport layer, and an anode buffer layer (hole injection layer)) and forming a cathode on the organic layer. .

なお、基板としては、例えば、透明基板(例えば、ソーダガラス、無アルカリガラス、石英ガラスなどのガラス板、ポリエステル、ポリスルホン、ポリエーテルスルホンなどの高分子シートまたはフィルムなど)が使用でき、フレキシブルな有機EL素子を作製する場合には、高分子フィルムが利用できる。   As the substrate, for example, a transparent substrate (for example, a glass plate such as soda glass, non-alkali glass, or quartz glass, a polymer sheet or film such as polyester, polysulfone, or polyethersulfone) can be used. When producing an EL element, a polymer film can be used.

本発明のデンドリマーは発光性化合物とデンドロンとが結合しており、発光材料として有用である。また、本発明の発光素子(有機EL素子)は、種々のディスプレイ装置、例えば、携帯電話などの携帯情報通信装置、パーソナルコンピュータなどのデータ又は画像処理装置(コンピュータシステム)、テレビジョンシステムなどの表示装置として利用するのに有用である。   The dendrimer of the present invention is useful as a light-emitting material because a light-emitting compound and a dendron are bonded. In addition, the light-emitting element (organic EL element) of the present invention is a display of various display devices, for example, a portable information communication device such as a mobile phone, data such as a personal computer, an image processing device (computer system), a television system, or the like. Useful as a device.

以下に、実施例に基づいて本発明をより詳細に説明するが、本発明はこれらの実施例によって限定されるものではない。なお、デンドロンは、Tetrahedron, 58 (2002) 825-843に従って調製した。   Hereinafter, the present invention will be described in more detail based on examples, but the present invention is not limited to these examples. Dendron was prepared according to Tetrahedron, 58 (2002) 825-843.

合成例1(G0−Brの調製)
3,5−ジ(tert−ブチル)トルエン(4.56g,22mmol)とN−ブロモコハク酸イミド(3.9g,22mmol)とを含む四塩化炭素溶液(25ml)を4時間還流し、室温に冷却した後、固形物をろ過した。ろ液を濃縮し、3,5−ジ(tert−ブチル)ベンジルブロミド(G0−Br)を含む無色のシロップ状の粗生成物を得た。この粗生成物をカラムクロマトグラフィ(SiO2,ヘキサン/トルエン(容積比)=20/1)で精製し、目的化合物3,5−ジ(tert−ブチル)ベンジルブロミド(G0−Br)を得た。
Synthesis Example 1 (Preparation of G0-Br)
A carbon tetrachloride solution (25 ml) containing 3,5-di (tert-butyl) toluene (4.56 g, 22 mmol) and N-bromosuccinimide (3.9 g, 22 mmol) was refluxed for 4 hours and cooled to room temperature. The solid was filtered. The filtrate was concentrated to obtain a colorless syrupy crude product containing 3,5-di (tert-butyl) benzyl bromide (G0-Br). The crude product was purified by column chromatography (SiO 2, hexane / toluene (volume ratio) = 20/1) to give the desired compound 3,5-di (tert- butyl) benzyl bromide (G0-Br).

収率:70%
1H−NMR(CDCl3)δ:1.33(s,18H),4.52(s,2H),7.23−7.26(m,3H)。
Yield: 70%
1 H-NMR (CDCl 3 ) δ: 1.33 (s, 18H), 4.52 (s, 2H), 7.23-7.26 (m, 3H).

合成例2(G0−NPの調製)
3,5−ジ(tert−ブチル)ベンジルブロミド(G0−Br)(0.6g,1.5mmol)と、フタルイミドカリウム(0.333g,1.8mmol)とを含む乾燥ジメチルホルムアミド(DMF,10ml)の懸濁液を70〜75℃で5時間加熱した。反応混合液を室温に冷却し、水(20ml)を添加した。黄色油状物を分離し、ジクロロメタン(2×15ml)で抽出した。有機層を合わせて乾燥し、ろ過し濃縮して黄色シロップ状物を生成させ、メタノールから結晶化させて白色固体の標記化合物N−(3,5−ジ(tert−ブチル)ベンジル)フタルイミド(G0−NP)を得た。
Synthesis Example 2 (Preparation of G0-NP)
Dry dimethylformamide (DMF, 10 ml) containing 3,5-di (tert-butyl) benzyl bromide (G0-Br) (0.6 g, 1.5 mmol) and potassium phthalimide (0.333 g, 1.8 mmol) The suspension of was heated at 70-75 ° C. for 5 hours. The reaction mixture was cooled to room temperature and water (20 ml) was added. The yellow oil was separated and extracted with dichloromethane (2 × 15 ml). The combined organic layers were dried, filtered and concentrated to yield a yellow syrup that was crystallized from methanol to give the title compound N- (3,5-di (tert-butyl) benzyl) phthalimide (G0) as a white solid. -NP).

収率:80%
融点:141−143℃
1H−NMR(CDCl3)δ:1.31(s,18H),4.85(s,2H),7.34−7.36(m,3H),7.69(dd,J=5.2及び3.2Hz,2H),7.84(dd,J=5.2及び3.2Hz,2H)
EIMS(70eV)m/z(相対強度):349(M+,25),334(100),292(17),160(88),131(27),77(16),57(67)。
Yield: 80%
Melting point: 141-143 ° C
1 H-NMR (CDCl 3 ) δ: 1.31 (s, 18H), 4.85 (s, 2H), 7.34-7.36 (m, 3H), 7.69 (dd, J = 5 .2 and 3.2 Hz, 2H), 7.84 (dd, J = 5.2 and 3.2 Hz, 2H)
EIMS (70 eV) m / z (relative intensity): 349 (M + , 25), 334 (100), 292 (17), 160 (88), 131 (27), 77 (16), 57 (67).

合成例3(G0−NH2の調製)
エタノール(10ml)にN−(3,5−ジ(tert−ブチル)ベンジル)フタルイミド(G0−NP,0.35g,1mmol)とヒドラジン1水和物(0.5ml)とが分散した懸濁液を20分間還流し、白色ゼラチン状析出物を生成させた。室温に冷却した後、ジエチルエーテル(50ml)と20%水酸化カリウム(50ml)とを添加した。水層をジエチルエーテル(3×40ml)で洗浄した。有機層を合わせて水(2×40ml)で洗浄し、有機層を無水硫酸ナトリウムで一昼夜乾燥した。粗生成物をカラムクロマトグラフィ(SiO2,ジクロロメタン)で精製し、標記化合物3,5−ジ(tert−ブチル)ベンジルアミン(G0−NH2)を得た。
Synthesis Example 3 (Preparation of G0-NH 2 )
Suspension in which N- (3,5-di (tert-butyl) benzyl) phthalimide (G0-NP, 0.35 g, 1 mmol) and hydrazine monohydrate (0.5 ml) are dispersed in ethanol (10 ml) Was refluxed for 20 minutes to produce a white gelatinous precipitate. After cooling to room temperature, diethyl ether (50 ml) and 20% potassium hydroxide (50 ml) were added. The aqueous layer was washed with diethyl ether (3 × 40 ml). The organic layers were combined and washed with water (2 × 40 ml), and the organic layer was dried over anhydrous sodium sulfate overnight. The crude product was purified by column chromatography (SiO 2, dichloromethane) to give the title compound 3,5-di (tert- butyl) benzylamine (G0-NH 2).

収率:70%
1H−NMR(CDCl3)δ:1.34(s,18H),3.86(s,2H),7.16(s,2H),7.32(s,1H)
EIMS(70 eV)m/z(相対強度):218(M+−H,4),203(29),162(23),133(29),57(100)。
Yield: 70%
1 H-NMR (CDCl 3 ) δ: 1.34 (s, 18H), 3.86 (s, 2H), 7.16 (s, 2H), 7.32 (s, 1H)
EIMS (70 eV) m / z (relative intensity): 218 (M + −H, 4), 203 (29), 162 (23), 133 (29), 57 (100).

合成例4(G1−OHの調製)
3,5−ジ(tert−ブチル)ベンジルブロミド(G0−Br,3.96g,14mmol)と、3,5−ジヒドロキシベンジルアルコール(0.98g,7mmol)と、乾燥炭酸カリウム(4.83g,35mmol)と、18−クラウン−6−エーテル(0.74g,2.8mmol)と、乾燥アセトン(150ml)との混合物をアルゴン雰囲気下で加熱して還流し48時間激しく撹拌した。混合物を冷却して減圧下で乾固させた。残渣に水を加え、ジクロロメタンで抽出した。水層をジクロロメタンで2回洗浄し、有機層を合わせた。粗生成物をカラムクロマトグラフィ(SiO2,ジクロロメタン)で精製し、標記化合物3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルアルコール(G1−OH)を得た。
Synthesis Example 4 (Preparation of G1-OH)
3,5-di (tert-butyl) benzyl bromide (G0-Br, 3.96 g, 14 mmol), 3,5-dihydroxybenzyl alcohol (0.98 g, 7 mmol), and dry potassium carbonate (4.83 g, 35 mmol) ), 18-crown-6-ether (0.74 g, 2.8 mmol) and dry acetone (150 ml) were heated to reflux under an argon atmosphere and stirred vigorously for 48 hours. The mixture was cooled to dryness under reduced pressure. Water was added to the residue and extracted with dichloromethane. The aqueous layer was washed twice with dichloromethane and the organic layers were combined. The crude product was purified by column chromatography (SiO 2, dichloromethane) to obtain the title compound 3,5-bis [3,5-di (tert- butyl) benzyloxy] to give the benzyl alcohol (G1-OH).

収率:70%;
融点:134−136℃
1H−NMR(CDCl3)δ:1.34(s,36H),4.66(s,2H),5.01(s,4H),6.63(t,J=2.2Hz,1H),6.67(d,J=2.2Hz,2H),7.27(d,J=1.9Hz,4H),7.40(t,J=1.9Hz,2H)
EIMS(70eV)m/z(相対強度):544(M+,3),203(100),57(36)。
Yield: 70%;
Melting point: 134-136 ° C
1 H-NMR (CDCl 3 ) δ: 1.34 (s, 36H), 4.66 (s, 2H), 5.01 (s, 4H), 6.63 (t, J = 2.2 Hz, 1H ), 6.67 (d, J = 2.2 Hz, 2H), 7.27 (d, J = 1.9 Hz, 4H), 7.40 (t, J = 1.9 Hz, 2H)
EIMS (70 eV) m / z (relative intensity): 544 (M + , 3), 203 (100), 57 (36).

合成例5(G1−Brの調製)
G1−OH(2.1g,3.86mmol)のエーテル溶液(25ml)に、三臭化リン(1.0g,3.69mmol)のエーテル溶液(5ml)を0℃でゆっくりと添加した。混合物を2時間撹拌し、水(10ml)でゆっくりとクエンチした。有機層をエーテル(2×10ml)で抽出した。有機層を合わせて食塩水(10ml)で洗浄し、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。粗固体生成物をヘキサンから再結晶させ、白色粉末状の標記化合物3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルブロミド(G1−Br)を得た。
Synthesis Example 5 (Preparation of G1-Br)
To an ether solution (25 ml) of G1-OH (2.1 g, 3.86 mmol), an ether solution (5 ml) of phosphorus tribromide (1.0 g, 3.69 mmol) was slowly added at 0 ° C. The mixture was stirred for 2 hours and slowly quenched with water (10 ml). The organic layer was extracted with ether (2 × 10 ml). The organic layers were combined, washed with brine (10 ml), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The crude solid product was recrystallized from hexane to obtain the title compound 3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyl bromide (G1-Br) as a white powder.

収率:85%
融点:103−105℃
1H−NMR(CDCl3)δ:1.35(s,36H),4.44(s,2H),5.01(s,4H),6.62(t,J=2.2Hz,1H),6.68(d,J=2.2Hz,2H),7.27(d,J=1.8Hz,4H),7.41(t,J=1.8Hz,2H)
EIMS(70eV)m/z(相対強度):347(M+−(3,5−ジ−t−ブチルベンジル+t−ブチル),4),203(100),57(41)。
Yield: 85%
Melting point: 103-105 ° C
1 H-NMR (CDCl 3 ) δ: 1.35 (s, 36H), 4.44 (s, 2H), 5.01 (s, 4H), 6.62 (t, J = 2.2 Hz, 1H ), 6.68 (d, J = 2.2 Hz, 2H), 7.27 (d, J = 1.8 Hz, 4H), 7.41 (t, J = 1.8 Hz, 2H)
EIMS (70 eV) m / z (relative intensity): 347 (M + -(3,5-di-t-butylbenzyl + t-butyl), 4), 203 (100), 57 (41).

合成例6(G1−NPの調製)
G0−Brに代えてG1−Brを用いる以外、合成例2と同様にして標記化合物N−[3,5−ビス[3,5−ジ(t−ブチル)ベンジルオキシ]ベンジル]フタルイミド(G1−NP)を得た。
Synthesis Example 6 (Preparation of G1-NP)
The title compound N- [3,5-bis [3,5-di (t-butyl) benzyloxy] benzyl] phthalimide (G1--) was used in the same manner as in Synthesis Example 2, except that G1-Br was used instead of G0-Br. NP).

収率:94%
融点:196−198℃
1H−NMR(CDCl3)δ:1.33(s,36H),4.81(s,2H),4.96(s,4H),6.59(t,J=2.3Hz,1H),6.71(d,J=2.3Hz,2H),7.25(d,J=1.8Hz,4H),7.39(t,J=1.8Hz,2H),7.71(dd,J=5.6及び3.2Hz,2H),7.85(dd,J=5.6及び3.2Hz,2H)
EIMS(70eV)m/z(相対強度):470(M+−(3,5−ジ−t−ブチルベンジル)+H,24),203(100),57(32)。
Yield: 94%
Melting point: 196-198 ° C
1 H-NMR (CDCl 3 ) δ: 1.33 (s, 36H), 4.81 (s, 2H), 4.96 (s, 4H), 6.59 (t, J = 2.3 Hz, 1H ), 6.71 (d, J = 2.3 Hz, 2H), 7.25 (d, J = 1.8 Hz, 4H), 7.39 (t, J = 1.8 Hz, 2H), 7.71 (Dd, J = 5.6 and 3.2 Hz, 2H), 7.85 (dd, J = 5.6 and 3.2 Hz, 2H)
EIMS (70 eV) m / z (relative intensity): 470 (M + -(3,5-di-t-butylbenzyl) + H, 24), 203 (100), 57 (32).

合成例7(G1−NH2の調製)
G0−NPに代えてG1−NPを用いる以外、合成例3と同様にして標記化合物3,5−ビス[3,5−ジ(t−ブチル)ベンジルオキシ]ベンジルアミン(G1−NH2)を得た。
Synthesis Example 7 (Preparation of G1-NH 2 )
The title compound 3,5-bis [3,5-di (t-butyl) benzyloxy] benzylamine (G1-NH 2 ) was obtained in the same manner as in Synthesis Example 3, except that G1-NP was used instead of G0-NP. Obtained.

収率:80%
融点:81−83℃
1H−NMR(CDCl3)δ:1.34(s,36H),3.83(s,2H),5.01(s,4H),6.58(t,J=2.3Hz,1H),6.61(d,J=2.3Hz,2H),7.28(d,J=1.8Hz,4H),7.41(t,J=1.8Hz,2H)
EIMS(70eV)m/z(相対強度):544(MH+,19),469(16),380(18),340(27),203(100),57(94)。
Yield: 80%
Melting point: 81-83 ° C
1 H-NMR (CDCl 3 ) δ: 1.34 (s, 36H), 3.83 (s, 2H), 5.01 (s, 4H), 6.58 (t, J = 2.3 Hz, 1H ), 6.61 (d, J = 2.3 Hz, 2H), 7.28 (d, J = 1.8 Hz, 4H), 7.41 (t, J = 1.8 Hz, 2H)
EIMS (70 eV) m / z (relative intensity): 544 (MH + , 19), 469 (16), 380 (18), 340 (27), 203 (100), 57 (94).

合成例8(G2−OHの調製)
G0−Brに代えてG1−Brを用いる以外、合成例4と同様にして標記化合物3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルアルコール(G2−OH)を得た。
Synthesis Example 8 (Preparation of G2-OH)
The title compound 3,5-bis [3,5-bis (3,5-di (t-butyl) benzyloxy) benzyloxy] was synthesized in the same manner as in Synthesis Example 4 except that G1-Br was used instead of G0-Br. Benzyl alcohol (G2-OH) was obtained.

収率:70%
融点:69−71℃
1H−NMR(CDCl3)δ:1.34(s,72H),4.64(d,J=6.2 Hz,2H),5.00(s,12H),6.58(t,J=2.2Hz,1H),6.63(d,J=2.2Hz,2H),6.65(t,J=2.2Hz,1H),6.73(d,J=2.2Hz,4H),7.28(d,J=1.8Hz,8H),7.41(t,J=1.8Hz,4H)。
Yield: 70%
Melting point: 69-71 ° C
1 H-NMR (CDCl 3 ) δ: 1.34 (s, 72H), 4.64 (d, J = 6.2 Hz, 2H), 5.00 (s, 12H), 6.58 (t, J = 2.2 Hz, 1H), 6.63 (d, J = 2.2 Hz, 2H), 6.65 (t, J = 2.2 Hz, 1H), 6.73 (d, J = 2.2 Hz) , 4H), 7.28 (d, J = 1.8 Hz, 8H), 7.41 (t, J = 1.8 Hz, 4H).

合成例9(G2−Brの調製)
G2−OH(1.8g,1.51mmol)のテトラヒドロフラン(THF)溶液(10ml)に四臭化炭素(0.5g,1.51mmol)とトリフェニルホスフィン(0.4g,1.51mmol)とを添加した。混合物を40分間撹拌したところいくつかの析出物が観察された。四臭化炭素(0.25g,0.76mmol)とトリフェニルホスフィン(0.2g,0.76mmol)とをさらに追加して添加した。反応混合物をさらに1時間撹拌した。反応を水(5ml)でクエンチし、混合物をジクロロメタン(4×30ml)で抽出した。有機層を合わせて食塩水(5ml)で洗浄し、無水硫酸ナトリウムで乾燥し、減圧下で濃縮した。残粗をカラムクロマトグラフィ(SiO2,ジクロロメタン)で精製し、標記化合物3,5−ビス[3,5−ビス(3,5−ジ(tert−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルブロミド(G2−Br)を得た。
Synthesis Example 9 (Preparation of G2-Br)
Carbon tetrabromide (0.5 g, 1.51 mmol) and triphenylphosphine (0.4 g, 1.51 mmol) were added to a tetrahydrofuran (THF) solution (10 ml) of G2-OH (1.8 g, 1.51 mmol). Added. The mixture was stirred for 40 minutes and some precipitate was observed. Additional carbon tetrabromide (0.25 g, 0.76 mmol) and triphenylphosphine (0.2 g, 0.76 mmol) were added. The reaction mixture was stirred for an additional hour. The reaction was quenched with water (5 ml) and the mixture was extracted with dichloromethane (4 × 30 ml). The organic layers were combined, washed with brine (5 ml), dried over anhydrous sodium sulfate, and concentrated under reduced pressure. The Zan'ara was purified by column chromatography (SiO 2, dichloromethane) to give the title compound 3,5-bis [3,5-bis (3,5-di (tert- butyl) benzyloxy) benzyloxy] benzyl bromide (G2- Br) was obtained.

収率:83%
融点:63−65℃
1H−NMR(CDCl3)δ:1.32(s,72H),4.42(s,2H),4.99(s,4H),5.01(s,8H),6.57(t,J=2.2Hz,1H),6.64(t,J=2.2Hz,2H),6.65(d,J=2.2Hz,1H),6.72(d,J=2.2Hz,4H),7.27(d,J=1.8Hz,8H),7.41(t,J=1.8Hz,4H)。
Yield: 83%
Melting point: 63-65 ° C
1 H-NMR (CDCl 3 ) δ: 1.32 (s, 72H), 4.42 (s, 2H), 4.99 (s, 4H), 5.01 (s, 8H), 6.57 ( t, J = 2.2 Hz, 1H), 6.64 (t, J = 2.2 Hz, 2H), 6.65 (d, J = 2.2 Hz, 1H), 6.72 (d, J = 2) .2 Hz, 4H), 7.27 (d, J = 1.8 Hz, 8H), 7.41 (t, J = 1.8 Hz, 4H).

合成例10(G2−NPの調製)
G0−Brに代えてG2−Brを用いる以外、合成例2と同様にして標記化合物N−[3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジル]フタルイミド(G2−NP)を得た。
Synthesis Example 10 (Preparation of G2-NP)
The title compound N- [3,5-bis [3,5-bis (3,5-di (t-butyl) benzyloxy) was synthesized in the same manner as in Synthesis Example 2, except that G2-Br was used instead of G0-Br. [Benzyloxy] benzyl] phthalimide (G2-NP) was obtained.

収率:90%
融点:85−87℃
1H−NMR(CDCl3)δ:1.33(s,72H),4.79(s,2H),4.96(s,4H),4.99(s,8H),6.55(t,J=2.1Hz,1H),6.62(t,J=2.1Hz,2H),6.68(d,J=2.1Hz,2H),6.71(d,J=2.1Hz,4H),7.27(d,J=1.8Hz,8H),7.40(t,J=1.8Hz,4H),7.68(dd,J=5.3及び3.2Hz,2H),7.82(dd,J=5.3及び3.2Hz,2H)。
Yield: 90%
Melting point: 85-87 ° C
1 H-NMR (CDCl 3 ) δ: 1.33 (s, 72H), 4.79 (s, 2H), 4.96 (s, 4H), 4.99 (s, 8H), 6.55 ( t, J = 2.1 Hz, 1H), 6.62 (t, J = 2.1 Hz, 2H), 6.68 (d, J = 2.1 Hz, 2H), 6.71 (d, J = 2) .1 Hz, 4H), 7.27 (d, J = 1.8 Hz, 8H), 7.40 (t, J = 1.8 Hz, 4H), 7.68 (dd, J = 5.3 and 3. 2 Hz, 2H), 7.82 (dd, J = 5.3 and 3.2 Hz, 2H).

合成例11(G2−NH2の調製)
G0−NPに代えてG2−NPを用いる以外、合成例3と同様にして標記化合物3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルアミン(G2−NH2)を得た。
Synthesis Example 11 (Preparation of G2-NH 2 )
The title compound 3,5-bis [3,5-bis (3,5-di (t-butyl) benzyloxy) benzyloxy] was synthesized in the same manner as in Synthesis Example 3 except that G2-NP was used instead of G0-NP. Benzylamine (G2-NH 2 ) was obtained.

収率:80%
融点:72−74℃
1H−NMR(CDCl3)δ:1.33(s,72H),2.18(s,2H),3.82(s,2H),5.00(s,12H),6.54(t,J=2.5Hz,1H),6.58(d,J=2.5Hz,2H),6.65(t,J=1.9Hz,2H),6.73(d,J=1.9Hz,4H),7.28(d,J=1.8Hz,8H),7.41(t,J=1.8Hz,4H)。
Yield: 80%
Melting point: 72-74 ° C
1 H-NMR (CDCl 3 ) δ: 1.33 (s, 72H), 2.18 (s, 2H), 3.82 (s, 2H), 5.00 (s, 12H), 6.54 ( t, J = 2.5 Hz, 1H), 6.58 (d, J = 2.5 Hz, 2H), 6.65 (t, J = 1.9 Hz, 2H), 6.73 (d, J = 1) .9 Hz, 4H), 7.28 (d, J = 1.8 Hz, 8H), 7.41 (t, J = 1.8 Hz, 4H).

合成例12(G3−OHの調製)
G0−Brに代えてG2−Brを用いる以外、合成例4と同様にして標記化合物3,5−ビス[3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルオキシ]ベンジルアルコール(G3−OH)を得た。
Synthesis Example 12 (Preparation of G3-OH)
The title compound 3,5-bis [3,5-bis [3,5-bis (3,5-di (t-butyl)] was used in the same manner as in Synthesis Example 4 except that G2-Br was used instead of G0-Br. Benzyloxy) benzyloxy] benzyloxy] benzyl alcohol (G3-OH) was obtained.

収率:56%
融点:83−85℃
1H−NMR(CDCl3)δ:1.32(s,144H),4.57(d,J=5.5Hz,2H),4.99(s,28H),6.56−6.72(m,21H),7.27(d,J=1.0Hz,16H),7.39(t,J=1.0Hz,8H)。
Yield: 56%
Melting point: 83-85 ° C
1 H-NMR (CDCl 3 ) δ: 1.32 (s, 144H), 4.57 (d, J = 5.5 Hz, 2H), 4.99 (s, 28H), 6.56-6.72. (M, 21H), 7.27 (d, J = 1.0 Hz, 16H), 7.39 (t, J = 1.0 Hz, 8H).

合成例13(G3−Brの調製)
G2−OHに代えてG3−OHを用いる以外、合成例9と同様にして標記化合物3,5−ビス[3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルオキシ]ベンジルブロマイド(G3−Br)を得た。
Synthesis Example 13 (Preparation of G3-Br)
The title compound 3,5-bis [3,5-bis [3,5-bis (3,5-di (t-butyl)] was synthesized in the same manner as in Synthesis Example 9 except that G3-OH was used instead of G2-OH. Benzyloxy) benzyloxy] benzyloxy] benzyl bromide (G3-Br) was obtained.

収率:87%
融点:73−75℃
1H−NMR(CDCl3)δ:1.33(s,144H),4.37(s,2H),5.00(s,28H),6.57−6.73(m,21H),7.27(d,J=1.6Hz,16H),7.39(t,J=1.6Hz,8H)。
Yield: 87%
Melting point: 73-75 ° C
1 H-NMR (CDCl 3 ) δ: 1.33 (s, 144H), 4.37 (s, 2H), 5.00 (s, 28H), 6.57-6.73 (m, 21H), 7.27 (d, J = 1.6 Hz, 16H), 7.39 (t, J = 1.6 Hz, 8H).

合成例14(G3−NPの調製)
G0−Brに代えてG3−Brを用いる以外、合成例2と同様にして標記化合物N−[3,5−ビス[3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルオキシ]ベンジル]フタルイミド(G3−NP)を得た。
Synthesis Example 14 (Preparation of G3-NP)
The title compound N- [3,5-bis [3,5-bis [3,5-bis (3,5-di (t]] was used in the same manner as in Synthesis Example 2 except that G3-Br was used instead of G0-Br. -Butyl) benzyloxy) benzyloxy] benzyloxy] benzyl] phthalimide (G3-NP) was obtained.

収率:75%
融点:91−93℃
1H−NMR(CDCl3)δ:1.31(s,144H),4.77(br,2H),5.00(s,28H),6.55−6.73(m,21H),7.27(d,J=1.7Hz,16H),7.39(t,J=1.7Hz,8H),7.62(dd,J=5.5及び3.2Hz,2H),7.80(dd,J=5.5及び3.2Hz,2H)。
Yield: 75%
Melting point: 91-93 ° C
1 H-NMR (CDCl 3 ) δ: 1.31 (s, 144H), 4.77 (br, 2H), 5.00 (s, 28H), 6.55-6.73 (m, 21H), 7.27 (d, J = 1.7 Hz, 16H), 7.39 (t, J = 1.7 Hz, 8H), 7.62 (dd, J = 5.5 and 3.2 Hz, 2H), 7 .80 (dd, J = 5.5 and 3.2 Hz, 2H).

合成例15(G3−NH2の調製)
G0−NPに代えてG3−NPを用いる以外、合成例3と同様にして標記化合物3,5−ビス[3,5−ビス[3,5−ビス(3,5−ジ(t−ブチル)ベンジルオキシ)ベンジルオキシ]ベンジルオキシ]ベンジルアミン(G3−NH2)を得た。
Synthesis Example 15 (Preparation of G3-NH 2 )
The title compound 3,5-bis [3,5-bis [3,5-bis (3,5-di (t-butyl)] was synthesized in the same manner as in Synthesis Example 3, except that G3-NP was used instead of G0-NP. Benzyloxy) benzyloxy] benzyloxy] benzylamine (G3-NH 2 ) was obtained.

収率:72%
融点:85−87℃
1H−NMR(CDCl3)δ:1.32(s,144H),3.80(s,2H),4.99(s,28H),6.54−6.73(m,21H),7.27(d,J=1.6Hz,16H),7.39(t,J=1.6Hz,8H)。
Yield: 72%
Melting point: 85-87 ° C
1 H-NMR (CDCl 3 ) δ: 1.32 (s, 144H), 3.80 (s, 2H), 4.99 (s, 28H), 6.54-6.73 (m, 21H), 7.27 (d, J = 1.6 Hz, 16H), 7.39 (t, J = 1.6 Hz, 8H).

上記合成例で得られたハロゲン原子を有するデンドロンと、スクアリリウム系色素を発光性化合物(コア)として含むデンドリマーの反応工程式を示す。   The reaction process formula of the dendrimer which contains the dendron which has the halogen atom obtained by the said synthesis example, and a squarylium pigment | dye as a luminescent compound (core) is shown.

Figure 2006241019
Figure 2006241019

比較例1(OH−SQの調製)
N−ブチル−5−ヒドロキシ−2−メチルベンゾチアゾリウム=ヨージド(0.349g,1mmol)、3,4−ジブトキシ−3−シクロブテン−1,2−ジオン(0.113g,0.5mmol)、及びキノリン(0.4ml)を、1−ブタノール/ベンゼン(容積比4:1)の混合溶媒20mlに加え、5時間還流を行いOH−SQを調製した。析出した固体を吸引ろ過にて分取した。反応工程式を以下に示す。
Comparative Example 1 (Preparation of OH-SQ)
N-butyl-5-hydroxy-2-methylbenzothiazolium iodide (0.349 g, 1 mmol), 3,4-dibutoxy-3-cyclobutene-1,2-dione (0.113 g, 0.5 mmol), Then, quinoline (0.4 ml) was added to 20 ml of a mixed solvent of 1-butanol / benzene (volume ratio 4: 1) and refluxed for 5 hours to prepare OH-SQ. The precipitated solid was collected by suction filtration. The reaction process formula is shown below.

Figure 2006241019
Figure 2006241019

融点:>300℃
1H−NMR(CDCl3)δ:0.94(t,J=7.5Hz,6H,Ha),1.41(sext,J=7.5Hz,4H,Hb),1.66(quint,J=7.5Hz,4H,Hc),4.15(t,J=7.5Hz,4H,Hd),5.72(s,2H,He),6.72(dd,J=8.3及び2.0Hz,2H,Hf),6.86(d,J=2.0Hz,2H,Hg),7.61(d,J=8.3Hz,2H,Hh),9.92(s,2H,Hi)。
Melting point:> 300 ° C
1 H-NMR (CDCl 3 ) δ: 0.94 (t, J = 7.5 Hz, 6H, H a ), 1.41 (sext, J = 7.5 Hz, 4H, H b ), 1.66 ( quint, J = 7.5Hz, 4H, H c), 4.15 (t, J = 7.5Hz, 4H, H d), 5.72 (s, 2H, H e), 6.72 (dd, J = 8.3 and 2.0 Hz, 2H, H f ), 6.86 (d, J = 2.0 Hz, 2H, H g ), 7.61 (d, J = 8.3 Hz, 2H, H h) ), 9.92 (s, 2H, H i ).

比較例2(G0−SQの調製)
比較例1で調製したOH−SQ(0.052g,0.1mmol)と、18−クラウン−6−エーテル(0.016g,0.06mmol)と、無水炭酸カリウム(0.124g,0.9mmol)とのDMSO溶液(70ml)を加熱し、OH−SQを完全に溶解させた後、室温まで冷やした。この溶液に、3,5−ジ(tert−ブチル)ベンジルブロミド(0.141g,0.5mmol)を加え、アルゴン雰囲気下で4日間攪拌した。反応終了後、水(50ml)で反応をクエンチし、ジクロロメタン(50ml×3)で生成物を抽出した。カラムクロマトグラフィー(SiO2,CH2Cl2:MeOH(容積比)=25:1)で目的化合物(G0−SQ)を得た。反応工程式を以下に示す。
Comparative Example 2 (Preparation of G0-SQ)
OH-SQ (0.052 g, 0.1 mmol) prepared in Comparative Example 1, 18-crown-6-ether (0.016 g, 0.06 mmol), and anhydrous potassium carbonate (0.124 g, 0.9 mmol) The DMSO solution (70 ml) was heated to completely dissolve OH-SQ, and then cooled to room temperature. To this solution, 3,5-di (tert-butyl) benzyl bromide (0.141 g, 0.5 mmol) was added and stirred for 4 days under an argon atmosphere. After completion of the reaction, the reaction was quenched with water (50 ml), and the product was extracted with dichloromethane (50 ml × 3). Column chromatography (SiO 2, CH 2 Cl 2 : MeOH ( volume ratio) = 25: 1) to give the desired compound (G0-SQ) at. The reaction process formula is shown below.

Figure 2006241019
Figure 2006241019

融点:>300℃
1H−NMR(CDCl3)δ:0.96(t,J=7.5Hz,6H,Hb),1.33(s,36H,Ha),1.40(sext,J=7.5Hz,4H,Hc),1.73(quint,J=7.5Hz,4H,Hd),3.97(t,J=7.5Hz,4H,He),5.06(s,4H, f),5.83(s,2H,Hg),6.71(d,J=1.7Hz,2H,Hh),6.87(dd,J=8.6及び1.7Hz,2H,Hi),7.26(d,J=1.7Hz,4H,Hj),7.38(d,J=8.6Hz,2H,Hk),7.42(dd,J=1.7及び1.7Hz,2H,Hl)。
Melting point:> 300 ° C
1 H-NMR (CDCl 3 ) δ: 0.96 (t, J = 7.5 Hz, 6H, H b ), 1.33 (s, 36H, H a ), 1.40 (sext, J = 7. 5Hz, 4H, H c), 1.73 (quint, J = 7.5Hz, 4H, H d), 3.97 (t, J = 7.5Hz, 4H, H e), 5.06 (s, 4H, f), 5.83 (s , 2H, H g), 6.71 (d, J = 1.7Hz, 2H, H h), 6.87 (dd, J = 8.6 and 1.7Hz , 2H, H i ), 7.26 (d, J = 1.7 Hz, 4H, H j ), 7.38 (d, J = 8.6 Hz, 2H, H k ), 7.42 (dd, J = 1.7 and 1.7Hz, 2H, H l).

実施例1(G1−SQの調製)
OH−SQ(0.052g,0.1mmol)と、18−クラウン−6−エーテル(0.016g,0.06mmol)と、無水炭酸カリウム(0.124g,0.9mmol)とのDMSO溶液(70ml)を加熱し、OH−SQを完全に溶解させた後、室温まで冷やした。この溶液に3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルブロミド(0.182g,0.3mmol)を加え、アルゴン雰囲気下で4時間攪拌した。反応終了後、水(50 ml)で反応をクエンチし、ジクロロメタン(50ml×3)で生成物を抽出した。カラムクロマトグラフィー(SiO2,CH2Cl2:CH3COCH3(容積比)=20:1)で目的化合物(G1−SQ)を得た。反応工程式を以下に示す。
Example 1 (Preparation of G1-SQ)
DMSO solution (70 ml) of OH-SQ (0.052 g, 0.1 mmol), 18-crown-6-ether (0.016 g, 0.06 mmol) and anhydrous potassium carbonate (0.124 g, 0.9 mmol) ) Was heated to completely dissolve OH-SQ, and then cooled to room temperature. To this solution was added 3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyl bromide (0.182 g, 0.3 mmol) and stirred for 4 hours under an argon atmosphere. After completion of the reaction, the reaction was quenched with water (50 ml), and the product was extracted with dichloromethane (50 ml × 3). The target compound (G1-SQ) was obtained by column chromatography (SiO 2 , CH 2 Cl 2 : CH 3 COCH 3 (volume ratio) = 20: 1). The reaction process formula is shown below.

Figure 2006241019
Figure 2006241019

融点:126−127℃
1H−NMR(CDCl3)δ:0.96(t,J=7.5Hz,6H,Hb),1.33(s,72H,Ha),1.41(sext,J=7.5Hz,4H,Hc),1.72(quint,J=7.5Hz,4H,Hd),3.96(t,J=7.5Hz,4H,He),5.00(s,8H,Hf),5.06(s,4H,Hg),5.83(s,2H,Hh),6.65(dd,J=2.3Hz,2H,Hi),6.70(d,J=2.3Hz,2H,Hj),6.71(d,J=2.3Hz,4H,Hk),6.82(dd,J=8.6及び2.3Hz,2H,Hl),7.27(d,J=1.7Hz,8H,Hm),7.35(d,J=8.6Hz,2H,Hn),7.41(dd,J=1.7及び1.7Hz,4H,Ho)。
Melting point: 126-127 ° C
1 H-NMR (CDCl 3 ) δ: 0.96 (t, J = 7.5 Hz, 6H, H b ), 1.33 (s, 72H, H a ), 1.41 (sext, J = 7. 5Hz, 4H, H c), 1.72 (quint, J = 7.5Hz, 4H, H d), 3.96 (t, J = 7.5Hz, 4H, H e), 5.00 (s, 8H, H f ), 5.06 (s, 4H, H g ), 5.83 (s, 2H, H h ), 6.65 (dd, J = 2.3 Hz, 2H, H i ), 6. 70 (d, J = 2.3 Hz, 2H, H j ), 6.71 (d, J = 2.3 Hz, 4H, H k ), 6.82 (dd, J = 8.6 and 2.3 Hz, 2H, H l ), 7.27 (d, J = 1.7 Hz, 8H, H m ), 7.35 (d, J = 8.6 Hz, 2H, H n ), 7.41 (dd, J = 1.7 and 1.7Hz, 4H, H o).

実施例2(G2−SQの調製)
OH−SQ(0.052g,0.1mmol)と、18−クラウン−6−エーテル(0.016g,0.06mmol)と、無水炭酸カリウム(0.124g,0.9mmol)とのDMSO溶液(70ml)を加熱し、OH−SQを完全に溶解させた後、室温まで冷やした。次に、この溶液に3,5−ビス{3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルオキシ}ベンジルブロミド(0.376g,0.3mmol)を加え、アルゴン雰囲気下で4時間攪拌した。反応終了後、水(50ml)で反応をクエンチし、ジクロロメタン(50ml×3)で生成物を抽出した。カラムクロマトグラフィー(SiO2,CH2Cl2:CH3COCH3(容積比)=20:1)にて目的化合物(G2−SQ)を得た。反応工程式を以下に示す。
Example 2 (Preparation of G2-SQ)
DMSO solution (70 ml) of OH-SQ (0.052 g, 0.1 mmol), 18-crown-6-ether (0.016 g, 0.06 mmol) and anhydrous potassium carbonate (0.124 g, 0.9 mmol) ) Was heated to completely dissolve OH-SQ, and then cooled to room temperature. Next, 3,5-bis {3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyloxy} benzyl bromide (0.376 g, 0.3 mmol) was added to this solution, and an argon atmosphere was added. Stir for 4 hours. After completion of the reaction, the reaction was quenched with water (50 ml), and the product was extracted with dichloromethane (50 ml × 3). Column chromatography (SiO 2, CH 2 Cl 2 : CH 3 COCH 3 ( volume ratio) = 20: 1) to give the desired compound (G2-SQ) at. The reaction process formula is shown below.

Figure 2006241019
Figure 2006241019

融点:74−75℃
1H−NMR(CDCl3)δ:0.96(t,J=7.5Hz,6H,Hb),6.81(dd,J=8.6及び2.3Hz,2H,Hn),1.31(s,144H,Ha),7.27(d,J=1.7Hz,16H,Ho),1.42(sext,J=7.5Hz,4H,Hc),7.35(d,J=8.6Hz,2H,Hp),1.76(quint,J=7.5Hz,4H,Hd),7.40(dd,J=1.7Hz,8H,Hq),3.95(t,J=7.5Hz,4H,He),5.00(s,24H,Hf,Hg),5.03(s,4H,Hh),5.83(s,2H,Hr),6.61(dd,J=2.3Hz,2H,Hi),6.65(dd,J=2.3Hz,4H,Hj),6.67(d,J=2.3Hz,2H,Hk),6.69(d,J=2.3Hz,4H,Hl),6.71(d,J=2.3Hz,8H,Hm)。
Melting point: 74-75 ° C
1 H-NMR (CDCl 3 ) δ: 0.96 (t, J = 7.5 Hz, 6H, H b ), 6.81 (dd, J = 8.6 and 2.3 Hz, 2H, H n ), 1.31 (s, 144H, H a ), 7.27 (d, J = 1.7 Hz, 16H, H o ), 1.42 (sext, J = 7.5 Hz, 4H, H c ), 7. 35 (d, J = 8.6 Hz, 2H, H p ), 1.76 (quint, J = 7.5 Hz, 4H, H d ), 7.40 (dd, J = 1.7 Hz, 8H, H q) ), 3.95 (t, J = 7.5Hz, 4H, H e), 5.00 (s, 24H, H f, H g), 5.03 (s, 4H, H h), 5.83 (s, 2H, H r) , 6.61 (dd, J = 2.3Hz, 2H, H i), 6.65 (dd, J = 2.3Hz, 4H, H j), 6.67 (d , J = 2.3 Hz, 2H, H k ), 6.69 (d, J = 2.3 Hz, 4H, H l ), 6.71 (d, J = 2.3 Hz, 8H, H m ).

実施例3(G3−SQの調製)
OH−SQ(0.052g,0.1mmol)と、18−クラウン−6−エーテル(0.016g,0.06mmol)と、無水炭酸カリウム(0.124g,0.9mmol)のDMSO溶液(70ml)を加熱し、OH−SQを完全に溶解させた後、室温まで冷やした。次に、この溶液に3,5−ビス(3,5−ビス{3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルオキシ}ベンジルオキシ)ベンジルブロミド(0.638g,0.25mmol)を加え、アルゴン雰囲気下で3時間攪拌した。水(50ml)で反応をクエンチし、ジクロロメタン(50ml×3)にて生成物を抽出した。分取用薄層クロマトグラフィー(TLC)(SiO2,CH2Cl2:Et2O(容積比)=50:1)にて目的化合物(G3−SQ)を得た。反応工程式を以下に示す。
Example 3 (Preparation of G3-SQ)
DMSO solution (70 ml) of OH-SQ (0.052 g, 0.1 mmol), 18-crown-6-ether (0.016 g, 0.06 mmol) and anhydrous potassium carbonate (0.124 g, 0.9 mmol) Was heated to completely dissolve OH-SQ, and then cooled to room temperature. Next, 3,5-bis (3,5-bis {3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyloxy} benzyloxy) benzyl bromide (0.638 g, 0.25 mmol) was added and stirred for 3 hours under an argon atmosphere. The reaction was quenched with water (50 ml) and the product was extracted with dichloromethane (50 ml × 3). The target compound (G3-SQ) was obtained by preparative thin layer chromatography (TLC) (SiO 2 , CH 2 Cl 2 : Et 2 O (volume ratio) = 50: 1). The reaction process formula is shown below.

Figure 2006241019
Figure 2006241019

融点:44−45℃
1H−NMR(CDCl3)δ:0.97(t,J=7.4Hz,6H,Hb),6.71−6.72(m,14H,Hm,Hn,Ho),1.34(s,288H,Ha),6.74−6.75(m,16H,Hp),1.40−1.44(m,4H,Hc),6.83(d,J=8.6Hz,2H,Hq),1.71−1.78(m,4H,Hd),7.28(brs,32H,Hr),3.94−3.97(m,4H,He),7.36(d,J=8.6Hz,2H,Hs),4.97−5.03(m,60H,Hf,Hg,Hh,Hi),7.41(brs,16H,Ht),5.86(s,2H,Hu),6.62−6.63(m,4H,Hj),6.65(brs,2H,Hk),6.66−6.67(m,8H,Hl)。
Melting point: 44-45 ° C
1 H-NMR (CDCl 3 ) δ: 0.97 (t, J = 7.4 Hz, 6H, H b ), 6.71-6.72 (m, 14H, H m , H n , H o ), 1.34 (s, 288H, H a ), 6.74-6.75 (m, 16H, H p), 1.40-1.44 (m, 4H, H c), 6.83 (d, J = 8.6Hz, 2H, H q ), 1.71-1.78 (m, 4H, H d), 7.28 (brs, 32H, H r), 3.94-3.97 (m, 4H, H e), 7.36 ( d, J = 8.6Hz, 2H, H s), 4.97-5.03 (m, 60H, H f, H g, H h, H i), 7 .41 (brs, 16H, H t ), 5.86 (s, 2H, H u ), 6.62-6.63 (m, 4H, H j ), 6.65 (brs, 2H, H k ) , 6.66-6.67 (m, 8H, H l).

試験例1
シクロヘキサンに対する得られたデンドリマー色素(OH−SQ、G0−SQ、G1−SQおよびG2−SQ)の溶解度(25℃)を調べたところ、OH−SQ:0mol/dm3、G0−SQ:0.00421×10-3mol/dm3、G1−SQ:20.8×10-3mol/dm3およびG2−SQ:42.6×10-3mol/dm3であり、デンドロンの世代が大きくなると、色素の溶解性が大きく向上した。
Test example 1
When the solubility (25 ° C.) of the obtained dendrimer dyes (OH-SQ, G0-SQ, G1-SQ and G2-SQ) in cyclohexane was examined, OH-SQ: 0 mol / dm 3 , G0-SQ: 0. 00421 × 10 −3 mol / dm 3 , G1-SQ: 20.8 × 10 −3 mol / dm 3 and G2-SQ: 42.6 × 10 −3 mol / dm 3 , and the generation of dendron is increased The solubility of the dye was greatly improved.

試験例2
得られたデンドリマー色素(G0−SQ、G1−SQ、G2−SQ)の濃度を変えてクロロホルム溶液を調製し、蛍光スペクトルを測定したところ、図5に示す結果を得た。図5に示すように、デンドロンの世代が大きくなると、蛍光の濃度消光が抑制される。
Test example 2
When the density | concentration of the obtained dendrimer pigment | dye (G0-SQ, G1-SQ, G2-SQ) was changed and the chloroform solution was prepared and the fluorescence spectrum was measured, the result shown in FIG. 5 was obtained. As shown in FIG. 5, as the dendron generation increases, fluorescence concentration quenching is suppressed.

試験例3
ポリビニルカルバゾール(PVK)40mg、2−(4−ビフェニル)−5−(4−tert−ブチルフェニル)−1,3,4−オキサジアゾール(PBD)40mg、および所定量の色素(G0−SQ、G1−SQ、G2−SQ、G3−SQ)を、トルエン3mlに溶解し、コーティング液を調製した。このコーティング液を、回転数1000rpm、10秒でのスピンコーティング、又は回転数2000rpm、10秒のスピンコーティング条件で、基板に形成したITO膜上に約1000Å(100nm)の厚みで製膜した。このコーティング膜上に、真空蒸着法によりアルミニウムリチウム(AlLi)を厚み1500Å(150nm)に製膜した。
Test example 3
Polyvinylcarbazole (PVK) 40 mg, 2- (4-biphenyl) -5- (4-tert-butylphenyl) -1,3,4-oxadiazole (PBD) 40 mg, and a predetermined amount of dye (G0-SQ, G1-SQ, G2-SQ, G3-SQ) were dissolved in 3 ml of toluene to prepare a coating solution. This coating solution was formed to a thickness of about 1000 mm (100 nm) on the ITO film formed on the substrate under spin coating conditions of 1000 rpm for 10 seconds or spin coating conditions for 2000 rpm for 10 seconds. On this coating film, aluminum lithium (AlLi) was formed into a thickness of 1500 mm (150 nm) by vacuum deposition.

添加する色素のモル数を一定にして色素依存性を調べた。すなわち、各色素の量を約2.5×10-7モルで、印加電圧と輝度との関係、印加電圧と電流密度との関係、印加電圧と発光効率との関係を調べた。結果を図6、図7及び図8に示す。 The dependency on the dye was examined with the number of moles of the dye added being constant. That is, the amount of each dye was about 2.5 × 10 −7 mol, and the relationship between applied voltage and luminance, the relationship between applied voltage and current density, and the relationship between applied voltage and luminous efficiency were examined. The results are shown in FIG. 6, FIG. 7 and FIG.

図6及び図7から明らかなように、デンドロンの世代が大きくなると、発光輝度が向上するとともに、小さな印加電圧で発光し、発光効率が高い。また、G3−SQは、G2−SQに比べて駆動電圧が小さくなっている。   As is clear from FIGS. 6 and 7, when the generation of dendron is increased, the luminance is improved and light is emitted with a small applied voltage, and the light emission efficiency is high. Further, the drive voltage of G3-SQ is smaller than that of G2-SQ.

合成例で調製されたアミノ基を有するデンドロンと、ペリレン系色素を発光性化合物(コア)として含むデンドリマーの反応工程式を示す。   The reaction process formula of the dendrimer which has the dendron which has the amino group prepared by the synthesis example, and a perylene pigment | dye as a luminescent compound (core) is shown.

Figure 2006241019
Figure 2006241019

実施例4(Gn−Perys)
3,4,9,10−ペリレンテトラカルボン酸ジ無水物(0.05g,0.125mmol)のキノリン分散液(5ml)に、デンドロンGn−NH2(n=0〜3、0.3mmol)と酢酸亜鉛(0.0175g,0.08mmol)とを加え、混合物を、アルゴン雰囲気下、200℃で4時間加熱した。反応終了後、反応混合物を飽和炭酸水素ナトリウム水溶液(10ml)に注入し、ジクロロメタンで抽出し、抽出物を無水硫酸ナトリウムで乾燥した。粗生成物を、カラムクロマトグラフィ(SiO2、ジクロロメタン)、次いで高速液体クロマトグラフィ(カラム:Chromatorex-SI(Fuji-Davison Chemical Ltd.),ポアサイズ70Å(7nm),粒子径5μm,10×250mm,展開溶媒:ヘキサン−イソプロピルアルコール98:2(容積比)混合溶媒(2mL/min),検出:UV254nm,装置:Jasco Gulliver series)で精製し、目的化合物(Gn−Perys:G0−Pery、G1−Pery、G2−Pery及びG3−Pery)を得た。
Example 4 (Gn-Perys)
To a quinoline dispersion (5 ml) of 3,4,9,10-perylenetetracarboxylic dianhydride (0.05 g, 0.125 mmol), Dendron Gn-NH 2 (n = 0 to 3, 0.3 mmol) and Zinc acetate (0.0175 g, 0.08 mmol) was added and the mixture was heated at 200 ° C. for 4 hours under an argon atmosphere. After completion of the reaction, the reaction mixture was poured into a saturated aqueous sodium hydrogen carbonate solution (10 ml), extracted with dichloromethane, and the extract was dried over anhydrous sodium sulfate. The crude product was subjected to column chromatography (SiO 2 , dichloromethane), followed by high performance liquid chromatography (column: Chromatorex-SI (Fuji-Davison Chemical Ltd.), pore size 70 mm (7 nm), particle size 5 μm, 10 × 250 mm, developing solvent: Purified with hexane-isopropyl alcohol 98: 2 (volume ratio) mixed solvent (2 mL / min), detection: UV254 nm, apparatus: Jasco Gulliver series), and the target compound (Gn-Perys: G0-Pery, G1-Pery, G2- Pery and G3-Pery).

(1)G0−Pery:N,N'−ビス[3,5−ジ(tert−ブチル)ベンジル}−3,4,9,10−ペリレンテトラカルボジイミド
融点:>300℃
1H−NMR(CDCl3)δ:1.32(s,36H),5.40(s,4H),7.35(d,J=1.1Hz,2H),7.49(t,J=1.1Hz,4H),8.57(d,J=8.0Hz,4H),8.68(d,J=8.0Hz,4H)
元素分析:C545424
理論値:C=81.58;H=6.85;N=3.52
実測値:C=81.89;H=6.72;N=3.38。
(1) G0-Pery: N, N′-bis [3,5-di (tert-butyl) benzyl} -3,4,9,10-perylenetetracarbodiimide Melting point:> 300 ° C.
1 H-NMR (CDCl 3 ) δ: 1.32 (s, 36H), 5.40 (s, 4H), 7.35 (d, J = 1.1 Hz, 2H), 7.49 (t, J = 1.1 Hz, 4H), 8.57 (d, J = 8.0 Hz, 4H), 8.68 (d, J = 8.0 Hz, 4H)
Elemental analysis: C 54 H 54 N 2 O 4
Theoretical value: C = 81.58; H = 6.85; N = 3.52.
Found: C = 81.89; H = 6.72; N = 3.38.

(2)G1−Pery:N,N'−ビス{3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジル}−3,4,9,10−ペリレンテトラカルボジイミド
融点:134−136℃
1H−NMR(CDCl3)δ:1.31(s,72H),4.97(s,8H),5.39(s,4H),6.60(t,J=2.3Hz,2H),6.82(d,J=2.3Hz,4H),7.25(d,J=1.8Hz,8H),7.38(t,J=1.8Hz,4H),8.63(d,J=7.8Hz,4H),8.71(d,J=7.8Hz,4H)
元素分析:C9811028
理論値:C=81.52;H=7.68;N=1.94
実測値:C=81.86;H=7.63;N=1.93。
(2) G1-Pery: N, N′-bis {3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyl} -3,4,9,10-perylenetetracarbodiimide Melting point: 134 -136 ° C
1 H-NMR (CDCl 3 ) δ: 1.31 (s, 72H), 4.97 (s, 8H), 5.39 (s, 4H), 6.60 (t, J = 2.3 Hz, 2H) ), 6.82 (d, J = 2.3 Hz, 4H), 7.25 (d, J = 1.8 Hz, 8H), 7.38 (t, J = 1.8 Hz, 4H), 8.63 (D, J = 7.8 Hz, 4H), 8.71 (d, J = 7.8 Hz, 4H)
Elemental analysis: C 98 H 110 N 2 O 8
Theoretical value: C = 81.52; H = 7.68; N = 1.94
Found: C = 81.86; H = 7.63; N = 1.93.

(3)G2−Pery:N,N'−ビス(3,5−ビス{3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルオキシ}ベンジル)−3,4,9,10−ペリレンテトラカルボジイミド
融点:87−89℃
1H−NMR(CDCl3)δ:1.32(s,144H),4.98(s,24H), 5.37(s,4H),6.56(t,J=1.8Hz,2H),6.61(t,J=1.8Hz,4H),6.71(d,J=1.8Hz,8H),6.82(d,J=1.8Hz,4H),7.28(d,J=1.5Hz,16H),7.39(t,J=1.5Hz,8H),8.56(d,J=8.1Hz,4H),8.69(d,J=8.1Hz,4H)
元素分析:C186222216
理論値:C=81.48;H=8.16;N=1.02
実測値:C=81.08;H=8.26;N=0.89。
(3) G2-Pery: N, N′-bis (3,5-bis {3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyloxy} benzyl) -3,4,9 , 10-Perylenetetracarbodiimide Melting point: 87-89 ° C
1 H-NMR (CDCl 3 ) δ: 1.32 (s, 144H), 4.98 (s, 24H), 5.37 (s, 4H), 6.56 (t, J = 1.8 Hz, 2H ), 6.61 (t, J = 1.8 Hz, 4H), 6.71 (d, J = 1.8 Hz, 8H), 6.82 (d, J = 1.8 Hz, 4H), 7.28. (D, J = 1.5 Hz, 16H), 7.39 (t, J = 1.5 Hz, 8H), 8.56 (d, J = 8.1 Hz, 4H), 8.69 (d, J = 8.1Hz, 4H)
Elemental analysis: C 186 H 222 N 2 O 16
Theoretical values: C = 81.48; H = 8.16; N = 1.02
Found: C = 81.08; H = 8.26; N = 0.89.

(4)G3−Pery:N,N'−ビス[3,5−ビス(3,5−ビス{3,5−ビス[3,5−ジ(tert−ブチル)ベンジルオキシ]ベンジルオキシ}ベンジルオキシ)ベンジル]−3,4,9,10−ペリレンテトラカルボジイミド
融点:79−81℃
1H−NMR(CDCl3)δ:1.31(s,288H),4.95−4.99(m,56H),5.32(br,4H),6.55−6.80(m,42H),7.28(d,J=1.8Hz,32H),7.39(t,J=1.8Hz,16H),8.53(d,J=8.2Hz,4H),8.64(d,J=8.2Hz,4H)
元素分析:C361444232
理論値:C=81.45;H=8.41;N=0.53
実測値:C=81.76;H=8.53;N=0.48。
(4) G3-Pery: N, N′-bis [3,5-bis (3,5-bis {3,5-bis [3,5-di (tert-butyl) benzyloxy] benzyloxy} benzyloxy ) Benzyl] -3,4,9,10-perylenetetracarbodiimide Melting point: 79-81 [deg.] C
1 H-NMR (CDCl 3 ) δ: 1.31 (s, 288H), 4.95-4.99 (m, 56H), 5.32 (br, 4H), 6.55-6.80 (m 42H), 7.28 (d, J = 1.8 Hz, 32H), 7.39 (t, J = 1.8 Hz, 16H), 8.53 (d, J = 8.2 Hz, 4H), 8 .64 (d, J = 8.2 Hz, 4H)
Elemental analysis: C 361 H 444 N 2 O 32
Theoretical value: C = 81.45; H = 8.41; N = 0.53
Found: C = 81.76; H = 8.53; N = 0.48.

試験例4
ヘキサン、ジエチルエーテルおよびジクロロメタンに対する得られたデンドリマー色素(G0−Pery、G1−Pery、G2−PeryおよびG3−Pery)の溶解度(25℃)をそれぞれ調べたところ、以下の結果を得た(単位:10-4mol/dm3)。
Test example 4
When the solubilities (25 ° C.) of the obtained dendrimer dyes (G0-Perry, G1-Perry, G2-Perry and G3-Perry) in hexane, diethyl ether and dichloromethane were examined, the following results were obtained (unit: 10 −4 mol / dm 3 ).

Figure 2006241019
Figure 2006241019

デンドロンを導入することにより、溶剤に対するペリレン系化合物の溶解性を向上できる。また、デンドロンの世代が大きくなると、色素の溶解性が大きく向上した。   By introducing dendron, the solubility of the perylene compound in the solvent can be improved. In addition, as the dendron generation increased, the solubility of the dye was greatly improved.

試験例5
得られたデンドリマー色素Gn−Pery(n=0〜3)の濃度を変えてクロロホルム溶液を調製し、蛍光スペクトルを測定したところ、図9に示す結果を得た。図9に示すように、デンドロンの世代が大きくなると、蛍光の濃度消光が抑制されるとともに、発光強度も増加する。
Test Example 5
When the concentration of the obtained dendrimer dye Gn-Pery (n = 0 to 3) was changed to prepare a chloroform solution and the fluorescence spectrum was measured, the result shown in FIG. 9 was obtained. As shown in FIG. 9, as the dendron generation increases, the fluorescence concentration quenching is suppressed and the emission intensity also increases.

試験例6
試験例3の色素に代えて、G0−Pery、G1−Pery、G2−PeryおよびG3−Peryをそれぞれ2.7×10-7モル用いた以外は試験例3と同様の操作を行うことにより、EL素子を作製した。このEL素子を用いて、25Vの電圧印加に伴う電流密度の色素依存性を評価した。結果を表2に示す。
Test Example 6
In place of the dye of Test Example 3, the same operation as in Test Example 3 was carried out except that 2.7 × 10 −7 mol of G0-Perry, G1-Perry, G2-Perry and G3-Perry were used, respectively. An EL element was produced. Using this EL element, the dye dependency of the current density accompanying application of a voltage of 25 V was evaluated. The results are shown in Table 2.

Figure 2006241019
Figure 2006241019

表2から明らかなようにデンドリマーの世代が大きくなるにつれ、電流密度は大きくなった。   As is apparent from Table 2, the current density increased as the generation of dendrimers increased.

実施例5(Gn−QA)
(i)G0−QAの合成
キナクリドン(0.312g、1mmol)と、テトラブチルアンモニウムブロミド(0.306g、0.95mmol)と、37.5重量%水酸化カリウム水溶液13.5gとをトルエン(35ml)に添加し、混合物を加熱しながら、キナクリドンを完全に溶解させ、均一溶液を得た。次いで、この溶液に、G0−Br(1.128g、4mmol)を添加し、4時間還流した後、溶媒を留去した。残渣に、水(50ml)を添加し、ジクロロメタン(50ml×3回)を用いて生成物を抽出した。得られた有機層を濃縮し、カラムクロマトグラフィー(SiO2、CH2Cl2:C614(n−ヘキサン)(容積比)=5:1)にて目的物を分取した。分取後、さらにジクロロメタンを用いて再結晶することにより、精製されたG0−QAを得た。
Example 5 (Gn-QA)
(i) Synthesis of G0-QA Quinacridone (0.312 g, 1 mmol), tetrabutylammonium bromide (0.306 g, 0.95 mmol), and 13.5 g of a 37.5 wt% aqueous potassium hydroxide solution were added to toluene (35 ml). The quinacridone was completely dissolved while heating the mixture to obtain a homogeneous solution. Next, G0-Br (1.128 g, 4 mmol) was added to this solution, and after refluxing for 4 hours, the solvent was distilled off. To the residue was added water (50 ml) and the product was extracted with dichloromethane (50 ml × 3 times). The resulting organic layer was concentrated and purified by column chromatography (SiO 2, CH 2 Cl 2 : C 6 H 14 (n- hexane) (volume ratio) = 5: 1) were separated the desired product at. After fractionation, purified G0-QA was obtained by recrystallization using dichloromethane.

(ii)G1−QA、G2−QA、およびG3−QAの合成
G0−Brに代えて、表3に示すGn−Brを用いるとともに、使用する成分の添加量及び再結晶溶媒を表3に示す添加量及び溶媒に変更する以外は、上記(i)のG0−QAの合成法に準じて、G1−QA、G2−QA、及びG3−QAをそれぞれ合成した。
(ii) Synthesis of G1-QA, G2-QA, and G3-QA In place of G0-Br, Gn-Br shown in Table 3 is used, and the amount of components used and the recrystallization solvent are shown in Table 3. Except for changing the addition amount and the solvent, G1-QA, G2-QA, and G3-QA were respectively synthesized according to the synthesis method of G0-QA in (i) above.

Figure 2006241019
Figure 2006241019

得られたキナクリドン式を含むデンドリマーの反応工程式を示す。   The reaction process formula of the dendrimer containing the obtained quinacridone formula is shown.

Figure 2006241019
Figure 2006241019

(1)G0−QA
融点:>300℃
1H−NMR(CDCl3)δ:1.21(s,36H),5.76(s,4H),7.05(s,4H),7.22(t,J=7.9Hz,2H),7.32(s,2H),7.42(d,J=7.9Hz,2H),7.63(t,J=7.9Hz,2H),8.52(d,J=7.9Hz,2H),8.73(s,2H)
元素分析:C505622
理論値:C=83.76;H=7.87;N=3.91
実測値:C=82.64;H=8.26;N=3.60。
(2)G1−QA
融点:>300℃
1H−NMR(CDCl3)δ:1.28(s,72H),4.91(s,8H),5.70(br,4H),6.53(d,J=1.8Hz,4H),6.61(t,J=1.8Hz,2H),7.21(d,J=1.7Hz,8H),7.26(t,J=8.0Hz,2H),7.36(t,J=1.7Hz,4H),7.40(d,J=8.0Hz,2H),7.65(t,J=8.0Hz,2H),8.53(d,J=8.0Hz,2H),8.71(s,2H)
元素分析:C9411226
理論値:C=82.66;H=8.26;N=2.05
実測値:C=81.76;H=8.70;N=1.85。
(3)G2−QA
融点:112−113℃
1H−NMR(CDCl3)δ:1.28(s,144H),4.90(s,8H),4.99(s,16H),5.62(br,4H),6.45(s,4H),6.55−6.57(m,6H),6.63(d,J=1.7Hz,8H),7.19(t,J=8.0Hz,2H),7.25(br s,16H),7.35(d,J=8.0Hz,2H),7.38(br s,8H),7.60(t,J=8.0Hz,2H),8.50(d,J=8.0Hz,2H),8.64(s,2H)
元素分析:C182224214
理論値:C=82.06;H=8.84;N=1.05
実測値:C=81.37;H=9.02;N=0.92。
(4)G3−QA
融点:102−103℃
1H−NMR(CDCl3)δ:1.27(s,288H),4.90(s,24H),4.97(s,32H),6.44(brs,4H),6.50(brs,4H),6.56(brs,2H),6.60(brs,8H),6.62(brs,8H),6.70(brs,16H),7.14(t,J=8.0Hz,2H),7.25(brs,32H),7.31(d,J=8.0Hz,2H),7.37(brs,16H),7.55(t,J=8.0Hz,2H),8.47(d,J=8.0Hz,2H),8.62(s,2H)
元素分析:C358448230
理論値:C=81.76;H=8.59;N=0.53
実測値:C=80.77;H=9.04;N=0.41。
(1) G0-QA
Melting point:> 300 ° C
1 H-NMR (CDCl 3 ) δ: 1.21 (s, 36H), 5.76 (s, 4H), 7.05 (s, 4H), 7.22 (t, J = 7.9 Hz, 2H ), 7.32 (s, 2H), 7.42 (d, J = 7.9 Hz, 2H), 7.63 (t, J = 7.9 Hz, 2H), 8.52 (d, J = 7) .9Hz, 2H), 8.73 (s, 2H)
Elemental analysis: C 50 H 56 N 2 O 2
Theoretical value: C = 83.76; H = 7.87; N = 3.91
Found: C = 82.64; H = 8.26; N = 3.60.
(2) G1-QA
Melting point:> 300 ° C
1 H-NMR (CDCl 3 ) δ: 1.28 (s, 72H), 4.91 (s, 8H), 5.70 (br, 4H), 6.53 (d, J = 1.8 Hz, 4H ), 6.61 (t, J = 1.8 Hz, 2H), 7.21 (d, J = 1.7 Hz, 8H), 7.26 (t, J = 8.0 Hz, 2H), 7.36. (T, J = 1.7 Hz, 4H), 7.40 (d, J = 8.0 Hz, 2H), 7.65 (t, J = 8.0 Hz, 2H), 8.53 (d, J = 8.0 Hz, 2H), 8.71 (s, 2H)
Elemental analysis: C 94 H 112 N 2 O 6
Theoretical value: C = 82.66; H = 8.26; N = 2.05
Found: C = 81.76; H = 8.70; N = 1.85.
(3) G2-QA
Melting point: 112-113 ° C
1 H-NMR (CDCl 3 ) δ: 1.28 (s, 144H), 4.90 (s, 8H), 4.99 (s, 16H), 5.62 (br, 4H), 6.45 ( s, 4H), 6.55-6.57 (m, 6H), 6.63 (d, J = 1.7 Hz, 8H), 7.19 (t, J = 8.0 Hz, 2H), 7. 25 (br s, 16H), 7.35 (d, J = 8.0 Hz, 2H), 7.38 (br s, 8H), 7.60 (t, J = 8.0 Hz, 2H), 8. 50 (d, J = 8.0 Hz, 2H), 8.64 (s, 2H)
Elemental analysis: C 182 H 224 N 2 O 14
Theoretical value: C = 82.06; H = 8.84; N = 1.05
Found: C = 81.37; H = 9.02; N = 0.92.
(4) G3-QA
Melting point: 102-103 ° C
1 H-NMR (CDCl 3 ) δ: 1.27 (s, 288H), 4.90 (s, 24H), 4.97 (s, 32H), 6.44 (brs, 4H), 6.50 ( brs, 4H), 6.56 (brs, 2H), 6.60 (brs, 8H), 6.62 (brs, 8H), 6.70 (brs, 16H), 7.14 (t, J = 8 0.0 Hz, 2H), 7.25 (brs, 32H), 7.31 (d, J = 8.0 Hz, 2H), 7.37 (brs, 16H), 7.55 (t, J = 8.0 Hz) , 2H), 8.47 (d, J = 8.0 Hz, 2H), 8.62 (s, 2H)
Elemental analysis: C 358 H 448 N 2 O 30
Theoretical value: C = 81.76; H = 8.59; N = 0.53
Found: C = 80.77; H = 9.04; N = 0.41.

試験例7
トルエンに対するキナクリドン、デンドリマー色素(G0−QA、G1−QA、G2−QAおよびG3−QA)の溶解性を調べた。トルエン3ml中にそれぞれの色素を2.7×10-7モル添加し、溶解性を比較した。G0−QA、G1−QA、G2−QAおよびG3−QAは全て溶解したが、キナクリドンは溶解しなかった。G0−QAは放置すると析出したが、G1−QA、G2−QA、G3−QAは析出しなかった。以上のように、明らかに、デンドロン導入によりキナクリドンの溶解性は向上することがわかる。
Test Example 7
The solubility of quinacridone and dendrimer dyes (G0-QA, G1-QA, G2-QA and G3-QA) in toluene was examined. Each dye was added to 2.7 × 10 −7 mol in 3 ml of toluene, and the solubility was compared. G0-QA, G1-QA, G2-QA and G3-QA all dissolved, but quinacridone did not dissolve. G0-QA precipitated when allowed to stand, but G1-QA, G2-QA, and G3-QA did not precipitate. As described above, it is apparent that the solubility of quinacridone is improved by the introduction of dendron.

試験例8
試験例3の色素に代えて、G0−QA、G1−QA、G2−QAおよびG3−QAをそれぞれ2.7×10-7モル用いた以外は試験例3と同様に操作を行うことにより、EL素子を作製した。このEL素子を用いて、25Vの電圧印加に伴う電流密度の色素依存性を評価した。結果を表4に示す。
Test Example 8
By performing the same operation as in Test Example 3 except that 2.7 × 10 −7 mol of G0-QA, G1-QA, G2-QA and G3-QA was used instead of the dye of Test Example 3, respectively. An EL element was produced. Using this EL element, the dye dependency of the current density accompanying application of a voltage of 25 V was evaluated. The results are shown in Table 4.

Figure 2006241019
Figure 2006241019

表4から明らかなようにデンドリマーの世代が大きくなるにつれ、電流密度が大きくなった。   As is clear from Table 4, the current density increased with the generation of dendrimers.

図1は本発明の有機EL素子の一例を示す概略断面図である。FIG. 1 is a schematic cross-sectional view showing an example of the organic EL element of the present invention. 図2は本発明の有機EL素子の他の例を示す概略断面図である。FIG. 2 is a schematic sectional view showing another example of the organic EL element of the present invention. 図3は本発明の有機EL素子のさらに他の例を示す概略断面図である。FIG. 3 is a schematic sectional view showing still another example of the organic EL element of the present invention. 図4は本発明の有機EL素子の別の例を示す概略断面図である。FIG. 4 is a schematic cross-sectional view showing another example of the organic EL element of the present invention. 図5は比較例及び実施例1〜2で得られたデンドリマー色素(G0−SQ、G1−SQ、G2−SQ)の濃度による蛍光スペクトル強度の変化を示すグラフである。FIG. 5 is a graph showing changes in fluorescence spectrum intensity depending on the concentrations of the dendrimer dyes (G0-SQ, G1-SQ, G2-SQ) obtained in the comparative example and Examples 1-2. 図6は比較例及び実施例1〜3で得られたデンドリマー色素(G0−SQ、G1−SQ、G2−SQおよびG3−SQ)での印加電圧と輝度との関係を示すグラフである。FIG. 6 is a graph showing the relationship between applied voltage and luminance in the dendrimer dyes (G0-SQ, G1-SQ, G2-SQ, and G3-SQ) obtained in the comparative example and Examples 1-3. 図7は比較例及び実施例1〜3で得られたデンドリマー色素(G0−SQ、G1−SQ、G2−SQおよびG3−SQ)での印加電圧と電流密度との関係を示すグラフである。FIG. 7 is a graph showing the relationship between applied voltage and current density in the dendrimer dyes (G0-SQ, G1-SQ, G2-SQ, and G3-SQ) obtained in the comparative example and Examples 1-3. 図8は比較例及び実施例1〜3で得られたデンドリマー色素(G0−SQ、G1−SQ、G2−SQおよびG3−SQ)での印加電圧と発光効率との関係を示すグラフである。FIG. 8 is a graph showing the relationship between the applied voltage and the luminous efficiency in the dendrimer dyes (G0-SQ, G1-SQ, G2-SQ and G3-SQ) obtained in the comparative example and Examples 1-3. 図9は実施例4で得られたデンドリマー色素Gn−Pery(n=0〜3)の濃度による蛍光スペクトル強度の変化を示すグラフである。FIG. 9 is a graph showing changes in fluorescence spectrum intensity depending on the concentration of the dendrimer dye Gn-Pery (n = 0 to 3) obtained in Example 4.

符号の説明Explanation of symbols

1…ガラス基板
2…陽極
3…陰極
4…発光層
5…正孔輸送層
6…電子輸送層
7…陽極バッファ層
8…発光性電子輸送層
DESCRIPTION OF SYMBOLS 1 ... Glass substrate 2 ... Anode 3 ... Cathode 4 ... Light emitting layer 5 ... Hole transport layer 6 ... Electron transport layer 7 ... Anode buffer layer 8 ... Luminescent electron transport layer

Claims (9)

反応性基を有する発光性化合物と、この発光性化合物の反応性基に結合したデンドロンとで構成されている新規デンドリマー。   A novel dendrimer composed of a luminescent compound having a reactive group and a dendron bonded to the reactive group of the luminescent compound. デンドロンが、下記式(1)で表される少なくとも1つの繰り返し単位と、下記式(2)で表され、かつ末端を構成する単位とで構成された第n世代(n=1〜5)のデンドロンである請求項1記載のデンドリマー。
Figure 2006241019
(式中、X1及びX2はそれぞれ連結基、pは0又は1、R1及びR2は、同一又は異なって、水素原子、ハロゲン原子、アルキル基、アルコキシ基、又は炭化水素環基を示す)
The nth generation (n = 1 to 5) in which the dendron is composed of at least one repeating unit represented by the following formula (1) and a unit represented by the following formula (2) and constituting a terminal. The dendrimer according to claim 1, which is a dendron.
Figure 2006241019
Wherein X 1 and X 2 are each a linking group, p is 0 or 1, and R 1 and R 2 are the same or different and each represents a hydrogen atom, a halogen atom, an alkyl group, an alkoxy group, or a hydrocarbon ring group. Show)
発光性化合物からのデンドロンの分岐数mが1〜3であり、デンドロンが第n世代(n=1〜4)のデンドロンである請求項1記載のデンドリマー。   The dendrimer according to claim 1, wherein the dendron branch number m from the luminescent compound is 1 to 3, and the dendron is an nth generation (n = 1 to 4) dendron. 発光性化合物が、発光性色素、電荷輸送剤、電子輸送剤及びホール輸送剤から選択された少なくとも一種の化合物である請求項1記載のデンドリマー。   The dendrimer according to claim 1, wherein the luminescent compound is at least one compound selected from a luminescent dye, a charge transport agent, an electron transport agent and a hole transport agent. 発光性化合物が、ペリレン系化合物、スクアリリウム系化合物、クマリン系化合物、ピラジン系化合物、キナクリドン系化合物、ナフタルイミド系化合物、ピロメテン系化合物、オキサジアゾール系化合物、フルオレン系化合物、スチリルベンゼン系化合物、シアニン系化合物、及びメロシアニン系化合物から選択された少なくとも一種である請求項1記載のデンドリマー。   Luminescent compounds are perylene compounds, squarylium compounds, coumarin compounds, pyrazine compounds, quinacridone compounds, naphthalimide compounds, pyromethene compounds, oxadiazole compounds, fluorene compounds, styrylbenzene compounds, cyanine The dendrimer according to claim 1, wherein the dendrimer is at least one selected from the group compounds and merocyanine compounds. 1及びR2が、t−ブチル基である請求項2記載のデンドリマー。 The dendrimer according to claim 2, wherein R 1 and R 2 are t-butyl groups. 電極間に有機層を備えた発光素子であり、前記有機層に請求項1記載のデンドリマーが含有されている発光素子。   A light-emitting device comprising an organic layer between electrodes, wherein the organic layer contains the dendrimer according to claim 1. 有機層が、デンドリマーを含む発光層である請求項7記載の発光素子。   The light emitting device according to claim 7, wherein the organic layer is a light emitting layer containing a dendrimer. 発光層が、デンドリマーと少なくとも一種の高分子とで構成されている請求項8記載の発光素子。   The light emitting device according to claim 8, wherein the light emitting layer comprises a dendrimer and at least one polymer.
JP2005056036A 2005-03-01 2005-03-01 New dendrimer and light-emitting element given by using the same Pending JP2006241019A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005056036A JP2006241019A (en) 2005-03-01 2005-03-01 New dendrimer and light-emitting element given by using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005056036A JP2006241019A (en) 2005-03-01 2005-03-01 New dendrimer and light-emitting element given by using the same

Publications (1)

Publication Number Publication Date
JP2006241019A true JP2006241019A (en) 2006-09-14

Family

ID=37047788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005056036A Pending JP2006241019A (en) 2005-03-01 2005-03-01 New dendrimer and light-emitting element given by using the same

Country Status (1)

Country Link
JP (1) JP2006241019A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106084A (en) * 2008-10-28 2010-05-13 Univ Of Tokyo Liquid crystal material, compound, piezochromic light-emitting material, liquid crystal material film, coating material, and method for producing liquid crystal material film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106084A (en) * 2008-10-28 2010-05-13 Univ Of Tokyo Liquid crystal material, compound, piezochromic light-emitting material, liquid crystal material film, coating material, and method for producing liquid crystal material film

Similar Documents

Publication Publication Date Title
TWI655196B (en) Amine derivatives, organic light-emitting material and organic electroluminescent device using the same
JP4693420B2 (en) Quinoxaline derivative and organic semiconductor element, electroluminescent element and electronic device using the same
KR101600127B1 (en) Aromatic amine derivative, and organic electroluminescent element
KR100204220B1 (en) Light-emitting material for organic electroluminescence device, and organic electroluminescence device
KR101401639B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2019533721A (en) Ionic compound, coating composition containing the same, and organic light-emitting device
KR101807644B1 (en) Luminescent element material and luminescent element
WO2007004364A1 (en) Pyrene derivative and organic electroluminescence device making use of the same
CN101331111A (en) Novel anthracene derivatives, process for preparation thereof, and organic electronic light emitting device using the same
WO2007129702A1 (en) Silicon-containing compound and organic electroluminescent device utilizing the same
JP4652234B2 (en) Quinoxaline derivatives, organic semiconductor elements, light emitting elements, light emitting devices, and electronic devices
KR20090128382A (en) Light-emitting device material and light-emitting device
JP5343044B2 (en) Heteroarylamine compound and organic light emitting device using the same
KR20120112672A (en) Compound with triphenylamine structure, and organic electroluminescent element
JP5773638B2 (en) Fused polycyclic compound and organic light emitting device using the same
JP2007070282A (en) Novel triarylboron derivative and organic electroluminescent device containing the same
KR101401633B1 (en) Novel compound for organic electroluminescent device and organic electroluminescent device comprising the same
JP2021517923A (en) Polymers, coating compositions containing them, and organic light emitting devices using them.
JP2008159843A (en) Light-emitting element material and light-emitting element
JP2006241019A (en) New dendrimer and light-emitting element given by using the same
WO2022244822A1 (en) High molecular weight triarylamine compounds, and organic electroluminescent elements containing these high molecular weight compounds
JP4200152B2 (en) Organic EL device
JP4259845B2 (en) Novel methine compound and functional thin film using the same
JP4578175B2 (en) Material for organic electroluminescence device comprising methine compound, organic electroluminescence device using the same, and novel methine compound
TW202222897A (en) Thermally-crosslinkable low molecular weight compound-containing composition for light emitting diode