JP2006240951A - Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME - Google Patents
Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME Download PDFInfo
- Publication number
- JP2006240951A JP2006240951A JP2005061892A JP2005061892A JP2006240951A JP 2006240951 A JP2006240951 A JP 2006240951A JP 2005061892 A JP2005061892 A JP 2005061892A JP 2005061892 A JP2005061892 A JP 2005061892A JP 2006240951 A JP2006240951 A JP 2006240951A
- Authority
- JP
- Japan
- Prior art keywords
- glass
- sio
- crystalline glass
- li2o
- al2o3
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/097—Glass compositions containing silica with 40% to 90% silica, by weight containing phosphorus, niobium or tantalum
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C10/00—Devitrified glass ceramics, i.e. glass ceramics having a crystalline phase dispersed in a glassy phase and constituting at least 50% by weight of the total composition
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C3/00—Glass compositions
- C03C3/04—Glass compositions containing silica
- C03C3/076—Glass compositions containing silica with 40% to 90% silica, by weight
- C03C3/083—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
- C03C3/085—Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Dispersion Chemistry (AREA)
- Glass Compositions (AREA)
Abstract
Description
本発明は、石油、ガス、石炭、木材等を燃料に用いた燃焼装置の前面窓または覗き窓に用いるLi2O−Al2O3−SiO2系透明結晶化ガラスと、前記結晶化ガラスを作製するために用いられるLi2O−Al2O3−SiO2系結晶性ガラスに関するものである。 The present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass used for a front window or a viewing window of a combustion apparatus using petroleum, gas, coal, wood, or the like as a fuel, and the crystallized glass. The present invention relates to a Li 2 O—Al 2 O 3 —SiO 2 based crystalline glass used for production.
暖房器具における前面窓の機能としては、燃焼する炎から発せられる熱線を外部へ透過させて暖房効果を高めることと、炎を見えるようにして視覚的に暖かさを付与することである。 The function of the front window in the heating appliance is to enhance the heating effect by transmitting heat rays emitted from the burning flame to the outside, and visually add warmth so that the flame can be seen.
また、覗き窓は、燃焼装置内の様子や燃焼状態を外部から観察するために使用される。 The observation window is used for observing the inside of the combustion device and the combustion state from the outside.
従って、燃焼装置に用いられる前面窓や覗き窓には、燃焼熱によって高温に曝されても、着火時などに熱衝撃が加わっても破損しないことや、内部を観察できるように透明であることが求められる。 Therefore, the front window and viewing window used in the combustion device must be transparent so that they will not be damaged even if they are exposed to high temperatures due to combustion heat or subjected to thermal shock during ignition, etc., and the inside can be observed. Is required.
これまで、燃焼装置の窓材としては、ホウケイ酸ガラス、石英ガラスまたは主結晶としてβ−ユークリプタイトやβ−石英固溶体が析出したLi2O−Al2O3−SiO2系透明結晶化ガラスが使用されているが、ホウケイ酸ガラスは他のガラスに比べて耐熱性や耐熱衝撃性が乏しく、石英ガラスは耐熱性や耐熱衝撃性に優れているものの大変高価な材料であるという欠点を有する。 Until now, as a window material of a combustion apparatus, borosilicate glass, quartz glass, or Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass in which β-eucryptite or β-quartz solid solution is deposited as a main crystal is used. However, borosilicate glass has poor heat resistance and thermal shock resistance compared to other glasses, and quartz glass has the disadvantage that it is a very expensive material although it has excellent heat resistance and thermal shock resistance. .
それに対して、上記したLi2O−Al2O3−SiO2系透明結晶化ガラスは熱膨張係数が小さく機械的強度が高いため、耐熱性や耐熱衝撃性に優れており、また比較的安価に製造することが可能であるため、燃焼装置の窓材として広く用いられている。 On the other hand, the above-described Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass has a low coefficient of thermal expansion and high mechanical strength, so it has excellent heat resistance and thermal shock resistance, and is relatively inexpensive. It is widely used as a window material for combustion devices.
しかし、Li2O−Al2O3−SiO2系透明結晶化ガラスは、石油、ガス、石炭、木材等を燃料に用いた燃焼雰囲気に曝されると窓材の内表面、すなわち燃焼側の表面が化学的に腐食され、微細なクラックが発生し、透明性や強度が損なわれるという問題がある。 However, when the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass is exposed to a combustion atmosphere using petroleum, gas, coal, wood, etc. as a fuel, the inner surface of the window material, that is, the combustion side There is a problem that the surface is chemically corroded, fine cracks are generated, and transparency and strength are impaired.
微細なクラックが発生するメカニズムは以下の通りである。 The mechanism for generating fine cracks is as follows.
まず、石油、石炭、ガス、木材等の燃料に含まれる硫黄分が燃焼して燃焼雰囲気中にSOxが生じ、SOxが燃焼雰囲気中のH2Oと反応してH2SO4を生成する。 First, generation petroleum, coal, gas, SO x is generated in the fuel and sulfur combustion contained combustion atmosphere such as wood, the H 2 SO 4 SO x is reacts with H 2 O in the combustion atmosphere To do.
次に、このH2SO4から生じた水素イオンと、Li2O−Al2O3−SiO2系透明結晶化ガラスの結晶中のリチウムイオンがイオン交換する。 Next, hydrogen ions generated from H 2 SO 4 and lithium ions in the crystal of the Li 2 O—Al 2 O 3 —SiO 2 based transparent crystallized glass undergo ion exchange.
リチウムイオンより水素イオンの方が小さいため結晶が収縮し、結晶化ガラスの表面にクラックが発生する。 Since hydrogen ions are smaller than lithium ions, the crystals shrink and cracks occur on the surface of the crystallized glass.
上記の問題を解決するために、Li2O−Al2O3−SiO2系透明結晶化ガラスの表面にSiO2等の被膜を設ける方法が実施されているが、製造コストが高くなるため好ましくない。 In order to solve the above problem, a method of providing a film such as SiO 2 on the surface of the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass has been implemented, but it is preferable because the manufacturing cost increases. Absent.
また、Li2O−Al2O3−SiO2系透明結晶化ガラス中のリチウムイオンの含有量を低くして、水素イオンとのイオン交換反応を抑制することも検討されているが、透明性が損なわれやすいことや、熱膨張係数が充分に小さくならず耐熱性や耐熱衝撃性が得られにくいという問題を有する。 In addition, the lithium ion content in the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass is lowered to suppress the ion exchange reaction with hydrogen ions, but the transparency Have a problem that the thermal expansion coefficient is not sufficiently reduced and heat resistance and thermal shock resistance are hardly obtained.
そこで、Li2O−Al2O3−SiO2系結晶性ガラスに含まれるβ−OH量を0.35/mm以上とすることで、熱処理によって結晶化を行なった後にガラス表面に結晶構成成分の濃度が低い層(ガラスリッチ層)が形成されて、ガラスリッチ層がバリアの役割を果たしてイオン交換を抑制し、クラックの発生を抑制する方法が提案されている(例えば、特許文献1、2参照。)。
しかし、特許文献1および2に記載のLi2O−Al2O3−SiO2系透明結晶化ガラスは、確かに従来の透明結晶化ガラスに比べると耐酸性が向上しているものの、長期間にわたって耐酸性が保持されにくく、クラックが発生する場合があるという問題を有している。 However, although the Li 2 O—Al 2 O 3 —SiO 2 based transparent crystallized glass described in Patent Documents 1 and 2 has improved acid resistance as compared with the conventional transparent crystallized glass, In other words, the acid resistance is not easily maintained, and cracks may occur.
本発明の目的は、燃焼雰囲気に長時間にわたって曝されても、クラックが発生しにくいLi2O−Al2O3−SiO2系透明結晶化ガラスと、それを生産するために用いるLi2O−Al2O3−SiO2系結晶性ガラスを提供することにある。 An object of the present invention is to provide a Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass that is less likely to crack even when exposed to a combustion atmosphere for a long time, and Li 2 O used for producing the same. and to provide a -Al 2 O 3 -SiO 2 based crystallized glass.
本発明者等は、ガラス中に含まれる水分の働きによってガラス表面に結晶構成成分の濃度が低いガラスリッチ層が形成したLi2O−Al2O3−SiO2系透明結晶化ガラスにおいて耐酸性の低下の要因を突き止めるために種々の検討を行った。 The present inventors are acid resistant in Li 2 O—Al 2 O 3 —SiO 2 based transparent crystallized glass in which a glass rich layer having a low concentration of crystal components is formed on the glass surface by the action of moisture contained in the glass. Various investigations were conducted to find out the cause of the decline.
その結果、Li2O−Al2O3−SiO2系透明結晶化ガラスにクラックが発生しやすい場所は、熱処理によって結晶化される前のLi2O−Al2O3−SiO2系結晶性ガラスの表面に結晶が特に多く存在したところであることを突き止めた。そこで、結晶性ガラスの表面に析出する結晶の数を少なくすることによって、結晶化ガラスの耐酸性を向上させることができることを見出した。 As a result, the Li 2 O—Al 2 O 3 —SiO 2 -based transparent crystallized glass where cracks are likely to occur is the Li 2 O—Al 2 O 3 —SiO 2 -based crystallinity before crystallization by heat treatment. It was found that there were particularly many crystals on the surface of the glass. Thus, it has been found that the acid resistance of the crystallized glass can be improved by reducing the number of crystals precipitated on the surface of the crystalline glass.
すなわち、本発明のLi2O−Al2O3−SiO2系結晶性ガラスは、β−OH量が0.20/mm以上であり、表面に存在する粒径0.05μm以上の結晶の数が、100個/cm2以下であることを特徴とする。 That is, the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention has a β-OH amount of 0.20 / mm or more and the number of crystals having a particle size of 0.05 μm or more present on the surface. Is 100 pieces / cm 2 or less.
また、本発明のLi2O−Al2O3−SiO2系透明結晶化ガラスは、β−OH量が0.20/mm以上であって、表面に存在する粒径0.05μm以上の結晶の数が、100個/cm2以下のLi2O−Al2O3−SiO2系結晶性ガラスを熱処理してなることを特徴とする。 In addition, the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass of the present invention has a β-OH amount of 0.20 / mm or more and a crystal having a particle size of 0.05 μm or more present on the surface. Is formed by heat-treating Li 2 O—Al 2 O 3 —SiO 2 crystalline glass having a number of 100 / cm 2 or less.
本発明のLi2O−Al2O3−SiO2系結晶性ガラスは、β−OH量が0.20/mm以上であるため、熱処理された結晶化ガラスの表面にガラスリッチ層が形成されやすく、充分な耐酸性が得られる。また、表面に存在する粒径が0.05μm以上の結晶の数がどこでも100個/cm2以下と少ないため、その結晶性ガラスを結晶化しても、Li2O−Al2O3−SiO2系結晶化ガラス表面に存在する結晶の数が少なくなる。そのため、その結晶化ガラスは、石油、石炭、ガス、木材等を燃料に用いた燃焼雰囲気に曝されても長期間にわたって表面にクラックが発生しにくい耐酸性に優れ、外観が白濁したり、強度が損なわれたりすることがない。 Since the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention has a β-OH amount of 0.20 / mm or more, a glass-rich layer is formed on the surface of the heat-treated crystallized glass. Easy and sufficient acid resistance is obtained. Further, since the number of crystals having a particle size of 0.05 μm or more present on the surface is as small as 100 / cm 2 or less everywhere, even if the crystalline glass is crystallized, Li 2 O—Al 2 O 3 —SiO 2 The number of crystals present on the surface of the system crystallized glass is reduced. Therefore, the crystallized glass is excellent in acid resistance that is hard to crack on the surface for a long period of time even when exposed to a combustion atmosphere using petroleum, coal, gas, wood, etc. Will not be damaged.
好ましいβ−OH量は0.23/mm以上、より好ましくは0.25/mm以上である。なお、β−OH量は、赤外線分光装置を用いて結晶性ガラスの赤外線吸収スペクトルを測定し、以下の式を用いて算出したものである。 A preferable β-OH amount is 0.23 / mm or more, more preferably 0.25 / mm or more. In addition, the amount of β-OH is calculated by measuring the infrared absorption spectrum of the crystalline glass using an infrared spectrometer and using the following equation.
β−OH量(/mm)={log(T3850/T3500)}/t
T3850:3850cm-1付近の透過率
T3500:3500cm-1付近の吸収帯の最低透過率
t :スペクトル測定時の結晶性ガラスの板厚(mm)
β−OH量を多くするために、含水量の高いガラス原料(例えば、水酸化アルミニウム)を選択したり、ガラスを溶融する際の燃焼ガス中に含まれる水分量を多くしたり、溶融ガラス中に水蒸気をバブリングするなどの手法が単独または組み合わせて用いられる。
β-OH amount (/ mm) = {log (T 3850 / T 3500 )} / t
T 3850 : transmittance around 3850 cm −1
T 3500 : Minimum transmittance of absorption band near 3500 cm -1
t: Thickness (mm) of crystalline glass at the time of spectrum measurement
In order to increase the amount of β-OH, a glass raw material having a high water content (for example, aluminum hydroxide) is selected, the amount of water contained in the combustion gas when the glass is melted, A method such as bubbling water vapor is used alone or in combination.
結晶性ガラスの表面に存在する結晶の粒径が0.05μm以上であると、ガラスを結晶化する際に前記結晶は、結晶の成長核として働くため、結晶化ガラスの表面に結晶が露出しやすい傾向がある。そのため、充分な耐酸性が得られにくくクラックが発生やすい。結晶の粒径が0.05μmより小さいと、結晶の成長核として働く効果は小さく、耐酸性低下要因とはなりにくい。 When the crystal grain size present on the surface of the crystalline glass is 0.05 μm or more, the crystal acts as a crystal growth nucleus when crystallizing the glass, so that the crystal is exposed on the surface of the crystallized glass. It tends to be easy. Therefore, it is difficult to obtain sufficient acid resistance and cracks are likely to occur. If the crystal grain size is smaller than 0.05 μm, the effect of acting as a crystal growth nucleus is small and it is difficult to cause a reduction in acid resistance.
また、結晶の数が100個/cm2よりも多いと、長期耐酸性を低下させる傾向にある。好ましくは70個/cm2以下である。なお、結晶の数は、倍率200倍の光学顕微鏡を用いて測定した5mm角(0.25cm2)に存在する粒径25μmより大きい結晶の数に、電子顕微鏡を用いて測定した前記5mm角に存在する粒径0.05〜25μmの結晶の数を加え、1cm2あたりに存在する結晶の数を算出したものであり、任意の10ヵ所で測定したうちで結晶の数が最も多かった値を適応する。 If the number of crystals is more than 100 / cm 2 , the long-term acid resistance tends to be lowered. Preferably, it is 70 pieces / cm 2 or less. The number of crystals is the same as the number of crystals larger than 25 μm in the 5 mm square (0.25 cm 2 ) measured using an optical microscope with a magnification of 200 times, and the 5 mm square measured using an electron microscope. The number of crystals having a particle size of 0.05 to 25 μm was added to calculate the number of crystals existing per 1 cm 2 , and the value with the largest number of crystals among the 10 measured points was calculated. To adapt.
結晶性ガラスの表面に存在するために結晶性ガラスの表面を研磨してもよいが、未研磨であると工程の増加やそれに伴うコストを排除できるため好ましい。ちなみに、表面に存在する結晶に関する知見がなかったため研磨されることはなかった。 Since it exists on the surface of the crystalline glass, the surface of the crystalline glass may be polished. However, unpolished is preferable because an increase in the number of steps and costs associated therewith can be eliminated. By the way, since there was no knowledge about the crystals present on the surface, it was not polished.
Li2O−Al2O3−SiO2系結晶性ガラスにおいて、表面に存在する結晶は、成形工程やアニール工程で結晶が析出しやすい温度域で保持されることによって析出したものであり、Li2O、Al2O3、SiO2、ZrO2およびTiO2からなる群より選択された一種または二種以上の成分を含有する。なお、Li2O、Al2O3およびSiO2は、結晶化ガラスの結晶を構成する成分であり、ZrO2およびTiO2は、結晶が均一に析出するように添加され、結晶の成長核として働く成分である。 In the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass, the crystals present on the surface are precipitated by being held in a temperature range in which crystals are likely to precipitate in the molding step and annealing step. It contains one or more components selected from the group consisting of 2 O, Al 2 O 3 , SiO 2 , ZrO 2 and TiO 2 . Note that Li 2 O, Al 2 O 3 and SiO 2 are components constituting the crystallized glass crystal, and ZrO 2 and TiO 2 are added so that the crystal precipitates uniformly, and serve as crystal growth nuclei. It is a working ingredient.
本発明のLi2O−Al2O3−SiO2系結晶性ガラスは、質量比で、Li2O/(Al2O3+SiO2)の値が0.03〜0.06であることが、好ましい。0.03よりも少ないと、結晶化度を高めることが難しいため、充分に熱膨張係数を小さくすることができず、耐熱性、耐熱衝撃性が得られにくい傾向がある。一方、0.06よりも多いと、熱処理を施して結晶化した際、結晶化度が高くなるため、ガラス表面にガラスリッチ層が形成されにくく、耐酸性が得られにくい傾向がある。 The Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention has a mass ratio, and the value of Li 2 O / (Al 2 O 3 + SiO 2 ) is 0.03 to 0.06. ,preferable. If it is less than 0.03, it is difficult to increase the degree of crystallinity, so that the thermal expansion coefficient cannot be sufficiently reduced, and heat resistance and thermal shock resistance tend to be difficult to obtain. On the other hand, if it exceeds 0.06, the degree of crystallinity becomes high when crystallized by heat treatment, so that a glass-rich layer is hardly formed on the glass surface, and acid resistance tends to be difficult to obtain.
本発明のLi2O−Al2O3−SiO2系結晶性ガラスは、ZrO2、TiO2およびP2O5の合量が、質量%表示で2〜10%であると好ましい。核形成剤として働くZrO2、TiO2およびP2O5の合量が2%よりも少ないと、析出する結晶粒子が大きくなり、可視光を散乱して透過しにくくなるため透明性が損なわれやすい。また、不均質な結晶化が起こり、部分的に熱膨張係数に差が生じるため、熱衝撃等によって破損するおそれがある。一方、核形成剤の合量が10%よりも多いと、結晶の成長核の形成が盛んに起こり過ぎるため、アニールなどの熱処理によって結晶性ガラスの表面に結晶が析出しやすく、熱処理によって結晶化を行なっても表面にガラスリッチ層が形成されにくく、耐酸性が得られにくい傾向がある。ガラス表面にガラスリッチ層が形成されにくく、耐酸性が得られにくい傾向がある。 In the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention, the total amount of ZrO 2 , TiO 2 and P 2 O 5 is preferably 2 to 10% in terms of mass%. If the total amount of ZrO 2 , TiO 2, and P 2 O 5 acting as a nucleating agent is less than 2%, the deposited crystal particles become large and the visible light is scattered and hardly transmitted, so that transparency is impaired. Cheap. In addition, inhomogeneous crystallization occurs and a difference occurs in the coefficient of thermal expansion partially, so that there is a risk of damage due to thermal shock or the like. On the other hand, if the total amount of the nucleating agent is more than 10%, the formation of crystal growth nuclei occurs too frequently, so that the crystal is likely to precipitate on the surface of the crystalline glass by heat treatment such as annealing, and crystallized by heat treatment. Even if it performs, there exists a tendency for a glass rich layer to be hard to be formed on the surface and to obtain acid resistance easily. A glass-rich layer is hardly formed on the glass surface, and acid resistance tends to be hardly obtained.
なお、本発明のLi2O−Al2O3−SiO2系結晶性ガラスの好適な組成範囲は、質量百分率表示で、SiO2 50〜75%、Al2O3 15〜30%、Li2O 2〜5%、Na2O 0〜7%、K2O 0〜7%、MgO 0〜8%、ZnO 0〜8%、BaO 0〜8%、TiO2 0.5〜10%、ZrO2 0〜7%、P2O5 0〜7%、As2O3 0〜2.5%、Sb2O3 0〜2.5%、SnO2 0〜2.5%である。 Incidentally, Li 2 O-Al 2 O 3 -SiO 2 system suitable composition range of the crystalline glass of the present invention, as represented by mass percentage, SiO 2 50~75%, Al 2 O 3 15~30%, Li 2 O 2-5%, Na 2 O 0-7%, K 2 O 0-7%, MgO 0-8%, ZnO 0-8%, BaO 0-8%, TiO 2 0.5-10%, ZrO 2 0~7%, P 2 O 5 0~7%, as 2 O 3 0~2.5%, Sb 2 O 3 0~2.5%, a SnO 2 0 to 2.5%.
次に、本発明のLi2O−Al2O3−SiO2系結晶性ガラスを製造する。 Next, the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention is produced.
結晶性ガラスの製造方法は、成形工程およびアニール工程において、Li2O−Al2O3−SiO2系結晶性ガラスが、局所的な加熱を含めて1200℃〜1300℃の温度域で保持する時間を1分以下に抑制することである。Li2O−Al2O3−SiO2系結晶性ガラスは1200〜1300℃の温度域に保持されると最も結晶が析出しやすい。そのため、この温度域で1分を越える時間保持されると、結晶性ガラスの表面に結晶が多数析出し、充分な耐酸性が得られ難くなる。 In the method for producing crystalline glass, the Li 2 O—Al 2 O 3 —SiO 2 based crystalline glass is maintained in a temperature range of 1200 ° C. to 1300 ° C. including local heating in the molding step and the annealing step. It is to suppress the time to 1 minute or less. When Li 2 O—Al 2 O 3 —SiO 2 crystalline glass is kept in a temperature range of 1200 to 1300 ° C., crystals are most likely to precipitate. Therefore, if the temperature is maintained for more than 1 minute in this temperature range, a large number of crystals are precipitated on the surface of the crystalline glass, making it difficult to obtain sufficient acid resistance.
また、成形工程において1200℃〜1300℃の温度域で1分以上保持されないように、延伸ローラーの直径を10cm以上と大きくしてローラーから放熱しやすいようにすることや、ローラーを水冷するなどして結晶性ガラスを素早く冷却することが好ましい。 Also, in the molding process, the diameter of the stretching roller is increased to 10 cm or more so as not to be held in the temperature range of 1200 ° C. to 1300 ° C. for more than 1 minute, and heat is easily released from the roller, or the roller is cooled with water. It is preferable to cool the crystalline glass quickly.
また、アニール工程において、11000kcal/m2以下のバーナーまたは電気加熱装置を用いることが好ましい。11000kcal/m2以下のバーナーまたは電気加熱装置を用いると、結晶性ガラスが局部的に熱せられにくく、ガラスが局部的に長時間に亘って想定温度範囲よりも高温に保持されにくく結晶が析出しにくくなる。その結果、充分な耐酸性が得られやすくクラックが発生しにくい。一般的には、バーナーよりも電気加熱の方が、ガラスが均一に加熱され局所的に結晶が析出しやすい温度範囲に長時間保持されにくいため、結晶が析出しにくく、充分な耐酸性を得るには有利である。 In the annealing step, it is preferable to use a burner or an electric heating device of 11000 kcal / m 2 or less. When a burner or an electric heating device of 11000 kcal / m 2 or less is used, the crystalline glass is not easily heated locally, and the glass is not easily kept at a temperature higher than the assumed temperature range for a long time locally. It becomes difficult. As a result, sufficient acid resistance is easily obtained and cracks are unlikely to occur. In general, electric heating is more difficult than glass to heat the glass uniformly and it is difficult to keep crystals in a temperature range where crystals are likely to precipitate locally for a long time. Is advantageous.
また、バーナー炎については、高濃度の水蒸気を含むことを考慮しておく必要がある。結晶性ガラスの表面に、バーナー炎が直接触れると、バーナー炎から生じた水蒸気が結晶性ガラスの表面からガラス中に拡散することがある。ガラス中に拡散した水蒸気は結晶の析出を促進する作用を有するため、バーナー炎からの熱と合わさって結晶性ガラスの表面に結晶が析出しやすくなる。 In addition, it is necessary to consider that the burner flame contains a high concentration of water vapor. When the burner flame directly touches the surface of the crystalline glass, water vapor generated from the burner flame may diffuse into the glass from the surface of the crystalline glass. Since the water vapor diffused in the glass has an action of promoting the precipitation of crystals, the crystals are likely to be deposited on the surface of the crystalline glass when combined with the heat from the burner flame.
また、成形工程およびアニール工程において、風速の変化量を4m/s以下の状態で結晶性ガラスを製造することである。風速の変化量を4m/s以下とすると、生産設計上の温度プロファイルからずれが生じにくく、また、連続的に生産される結晶性ガラスごとの温度プロファイルの差が生じにくくなるため、結晶性ガラスの品質が安定し、酸によるクラックが生じにくくなる。この場合、成形工程やアニール工程を完全に覆うことによって風速の変化量を4m/s以下とできる。また、成形装置やアニール炉の近く、例えば3m以内に外気に通じるドアや窓がないようレイアウトすることで、外気からの影響は減少し、風速の変化量を4m/s以下にすることができる。なお、風速の変化量は任意の1時間に測定した風速の最大値と最小値の差である。ちなみに、結晶性ガラスの温度差を小さくするために、または、結晶が析出しやすい温度域での保持時間を短くするために、制御された風を流してもこの条件を満たせば問題なく使用できる。 In addition, in the forming step and the annealing step, the crystalline glass is manufactured in a state in which the change in wind speed is 4 m / s or less. When the amount of change in the wind speed is 4 m / s or less, deviation from the temperature profile in production design is unlikely to occur, and a difference in temperature profile for each crystalline glass produced continuously is unlikely to occur. The quality of the water becomes stable, and acid cracks are less likely to occur. In this case, the amount of change in the wind speed can be 4 m / s or less by completely covering the molding process and the annealing process. In addition, by laying out near the molding device and annealing furnace so that there are no doors or windows leading to the outside air, for example, within 3 m, the influence from the outside air is reduced, and the amount of change in the wind speed can be reduced to 4 m / s or less. . Note that the amount of change in wind speed is the difference between the maximum value and the minimum value of the wind speed measured in any one hour. By the way, in order to reduce the temperature difference of crystalline glass, or to shorten the holding time in the temperature range where crystals are likely to precipitate, it can be used without any problem if this condition is satisfied even if controlled air is passed. .
以下、本発明のLi2O−Al2O3−SiO2系結晶性ガラスおよびLi2O−Al2O3−SiO2系透明結晶化ガラスを、実施例を用いて詳細に説明する。 Hereinafter, the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass and the Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass of the present invention will be described in detail using examples.
表1および2に実施例1〜11を示し、表3に比較例1〜3を示す。また、表4に試料A、Bを示す。 Examples 1 to 11 are shown in Tables 1 and 2, and Comparative Examples 1 to 3 are shown in Table 3. Table 4 shows Samples A and B.
実施例1〜11および比較例1〜3は、以下のようにして作製した。 Examples 1 to 11 and Comparative Examples 1 to 3 were produced as follows.
まず、表中記載の組成となるようにガラス原料を混合して白金ルツボに投入し、電気炉を用いて1550℃において8時間溶融した。なお、β−OH量は、ガラス原料に酸化物の替わりに水酸化物を用いることによって調整した。 First, glass raw materials were mixed so as to have the composition shown in the table, put into a platinum crucible, and melted at 1550 ° C. for 8 hours using an electric furnace. In addition, the amount of β-OH was adjusted by using a hydroxide instead of an oxide as a glass raw material.
次に、溶融ガラスをカーボン定盤上に流し出し、ステンレスローラーを用いて5mmの厚さに成形した後、700℃に設定したアニール炉を用いて室温まで冷却して板状の結晶性ガラスを作製した。 Next, the molten glass is poured out on a carbon surface plate, formed into a thickness of 5 mm using a stainless roller, and then cooled to room temperature using an annealing furnace set at 700 ° C. to obtain a plate-like crystalline glass. Produced.
続いて、成形工程やアニール工程において析出した結晶を完全に除去するために、結晶性ガラス表面を50μm研削し、その後光学研磨を行なった。 Subsequently, in order to completely remove crystals precipitated in the forming step and the annealing step, the surface of the crystalline glass was ground by 50 μm, and then optical polishing was performed.
次いで、研磨した結晶性ガラスを局所的に加熱できるバーナーを用いて、結晶性ガラスの表面を加熱し、析出した結晶を光学顕微鏡および電子顕微鏡を用いて上記の条件で測定し、表面に存在する粒径0.05μm以上の結晶の数を算出した。なお、実施例1〜11および比較例3は30秒間、比較例1、2は90秒間バーナーでそれぞれ加熱した。 Next, the surface of the crystalline glass is heated using a burner capable of locally heating the polished crystalline glass, and the precipitated crystals are measured under the above conditions using an optical microscope and an electron microscope, and are present on the surface. The number of crystals having a particle size of 0.05 μm or more was calculated. Examples 1 to 11 and Comparative Example 3 were heated with a burner for 30 seconds, and Comparative Examples 1 and 2 were heated with a burner for 90 seconds.
最後に、結晶性ガラスを電気炉を用いて780℃で3時間保持し、次いで870℃で1時間保持することによって、結晶化ガラスを得た。なお、何れの結晶化ガラスも主結晶はβ−石英固溶体であり、平均線熱膨張係数は−10〜10×10-7/℃の範囲であった。 Finally, crystallized glass was obtained by holding the crystalline glass at 780 ° C. for 3 hours using an electric furnace and then holding at 870 ° C. for 1 hour. In any crystallized glass, the main crystal was β-quartz solid solution, and the average linear thermal expansion coefficient was in the range of −10 to 10 × 10 −7 / ° C.
表4に記載の試料Aは、実施例1の組成の溶融ガラスを1200〜1300℃の温度域で1分以上保持されない(約30秒)ように成形、アニールして作製したものであり、試料Bは、1200〜1300℃の温度域で1分以上(約90秒)保持した以外は試料Aと同様に作製したものである。ちなみに、試料A、Bは表面研磨していない。 Sample A shown in Table 4 was prepared by molding and annealing the molten glass having the composition of Example 1 so that it was not held for 1 minute or longer in the temperature range of 1200 to 1300 ° C. (about 30 seconds). B was prepared in the same manner as Sample A except that it was held for 1 minute or longer (about 90 seconds) in a temperature range of 1200 to 1300 ° C. Incidentally, the samples A and B are not surface-polished.
耐酸性は、加速試験と実装試験の二種類の方法で評価した。 The acid resistance was evaluated by two methods, an acceleration test and a mounting test.
加速試験では、次のようにして耐酸性を評価した。 In the accelerated test, acid resistance was evaluated as follows.
容積が1Lのビーカーに濃度が6vol%の硫酸水溶液を20mL注入した。次に、ビーカー内に網を設置し、その上に25×25×5mmに加工した試料を載置し、ガラス板で蓋をして380℃で60分間保持した。続いて、試料を取り出し、外観を目視で観察した。 20 mL of a 6 vol% sulfuric acid aqueous solution was injected into a 1 L beaker. Next, a net was placed in a beaker, a sample processed to 25 × 25 × 5 mm was placed thereon, covered with a glass plate, and held at 380 ° C. for 60 minutes. Subsequently, the sample was taken out and the appearance was visually observed.
また、実装試験では、次のようにして耐酸性を評価した。 In the mounting test, acid resistance was evaluated as follows.
軽油を燃料とするストーブの前面に50×200×5mmに加工した試料を配設し、通常の燃焼条件で40日間燃焼を続けた。試料をストーブから取り外し、外観を目視で観察した。なお、耐酸性は、クラックが認められなかったものを「◎」、わずかにクラックが認められたものを「○」、クラックが顕著に認められたものを「×」とした。 A sample processed to 50 × 200 × 5 mm was placed on the front of a stove using light oil as fuel, and combustion was continued for 40 days under normal combustion conditions. The sample was removed from the stove and the appearance was visually observed. The acid resistance was evaluated as “◎” when no crack was observed, “◯” when a slight crack was observed, and “X” when a crack was significantly recognized.
表1および2から明らかなように、実施例1〜11は透明性および耐酸性において優れていた。 As is clear from Tables 1 and 2, Examples 1 to 11 were excellent in transparency and acid resistance.
一方、表3から明らかなように、比較例1〜3は、透明性が問題ないものの耐酸性が乏しかった。 On the other hand, as is clear from Table 3, Comparative Examples 1 to 3 had poor acid resistance although there was no problem with transparency.
また、表4から明らかなように、試料Aは、1200〜1300℃での保持時間が1分以下であるため、結晶の数を100個/cm2以下にすることができ、耐酸性が高かった。一方試料Bは、耐酸性が低かった。 Further, as apparent from Table 4, sample A has a holding time at 1200 to 1300 ° C. of 1 minute or less, and therefore the number of crystals can be 100 / cm 2 or less, and the acid resistance is high. It was. On the other hand, Sample B had low acid resistance.
本発明のLi2O−Al2O3−SiO2系結晶性ガラスを熱処理してなるLi2O−Al2O3−SiO2系透明結晶化ガラスは、石油ストーブ、薪ストーブ、ボイラー等の燃焼装置の前面板や覗き窓として使用できるだけでなく、カラーフィルターやイメージセンサー用基板等のハイテク製品用基板、電子部品焼成用セッター、電子レンジ用棚板、調理器用トッププレート、防火用窓ガラス等にも使用可能である。 The Li 2 O—Al 2 O 3 —SiO 2 transparent crystallized glass obtained by heat-treating the Li 2 O—Al 2 O 3 —SiO 2 crystalline glass of the present invention is a petroleum stove, wood stove, boiler, etc. Not only can it be used as a front plate or a viewing window for combustion equipment, but also high-tech product substrates such as color filters and image sensor substrates, setters for firing electronic components, shelf plates for microwave ovens, top plates for cooking appliances, fire protection window glass, etc. Can also be used.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061892A JP2006240951A (en) | 2005-03-07 | 2005-03-07 | Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2005061892A JP2006240951A (en) | 2005-03-07 | 2005-03-07 | Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2006240951A true JP2006240951A (en) | 2006-09-14 |
Family
ID=37047728
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2005061892A Pending JP2006240951A (en) | 2005-03-07 | 2005-03-07 | Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2006240951A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010084670A1 (en) * | 2009-01-21 | 2010-07-29 | 日本電気硝子株式会社 | Reinforced glass, and glass |
JP2012087040A (en) * | 2008-06-27 | 2012-05-10 | Nippon Electric Glass Co Ltd | Tempered glass and method for manufacturing the same |
JP2013071879A (en) * | 2011-09-29 | 2013-04-22 | Nippon Electric Glass Co Ltd | Heat-resistant glass for microwave oven and method of manufacturing the same |
-
2005
- 2005-03-07 JP JP2005061892A patent/JP2006240951A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012087040A (en) * | 2008-06-27 | 2012-05-10 | Nippon Electric Glass Co Ltd | Tempered glass and method for manufacturing the same |
WO2010084670A1 (en) * | 2009-01-21 | 2010-07-29 | 日本電気硝子株式会社 | Reinforced glass, and glass |
JP2010168233A (en) * | 2009-01-21 | 2010-08-05 | Nippon Electric Glass Co Ltd | Reinforced glass and glass |
US8748002B2 (en) | 2009-01-21 | 2014-06-10 | Nippon Electric Glass Co., Ltd. | Tempered glass and glass |
US9809486B2 (en) | 2009-01-21 | 2017-11-07 | Nippon Electric Glass Co., Ltd. | Tempered glass and glass |
JP2013071879A (en) * | 2011-09-29 | 2013-04-22 | Nippon Electric Glass Co Ltd | Heat-resistant glass for microwave oven and method of manufacturing the same |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5893019B2 (en) | Transparent glass-ceramic material containing lithium, method for producing the same, and use thereof | |
JP3063760B2 (en) | Li2O-Al2O3-SiO2-based transparent crystallized glass and crystalline glass | |
JP6230775B2 (en) | Method for tempering ceramics of float crystallized glass | |
US9458053B2 (en) | Li2O-Al2O3-SiO2 based crystallized glass and production method for the same | |
JP2602188B2 (en) | Transparent crystallized glass based on Li lower 2 O-A1 lower 2 O lower 3-SiO lower 2 for combustion device windows | |
US6593258B1 (en) | Li2O-Al2O3-SiO2 transparent crystallized glass and crystallizable | |
US20170247284A1 (en) | Glass plate and heater using same | |
JP2005325017A (en) | Manufacturing method of glass ceramic article | |
JP2010064900A (en) | Las-based float glass | |
JP2012533509A5 (en) | ||
WO2012066948A1 (en) | Li2o-al2o3-sio2 crystalline glass and li2o-al2o3-sio2 crystallized glass obtained by crystallizing same | |
JP2007197310A (en) | Crystallized glass, reflection mirror base material and reflection mirror using the same | |
JP3526047B2 (en) | Li2O-Al2O3-SiO2-based transparent crystallized glass | |
JP2006240951A (en) | Li2O-Al2O3-SiO2-BASED CRYSTALLINE GLASS AND Li2O-Al2O3-SiO2-BASED TRANSPARENT CRYSTALLIZED GLASS FORMED BY HEAT-TREATING THE SAME | |
JP5701500B2 (en) | Transparent glass ceramic with low density | |
JP2006044997A (en) | CRYSTALLIZED TRANSPARENT Li2O-Al2O3-SiO2 GLASS | |
JP4677742B2 (en) | Li2O-Al2O3-SiO2 crystalline glass for combustion apparatus window and Li2O-Al2O3-SiO2 crystallized glass for combustion apparatus window obtained by heat treatment thereof | |
JP5733621B2 (en) | Method for producing Li2O-Al2O3-SiO2 crystallized glass | |
JP2012041260A (en) | Li2o-al2o3-sio2 based crystallized glass and production method for the same | |
WO2012086390A1 (en) | Method for producing crystallized glass | |
JP2012001388A (en) | Crystallized glass and method for producing the same | |
JP2003300752A (en) | Fire-proof glass article | |
Nakane et al. | Li 2 O-Al 2 O 3-SiO 2 based crystallized glass and production method for the same | |
JPS5845138A (en) | Window of combustion apparatus | |
JP2011051877A (en) | Method for producing crystallized glass, and crystallized glass |