JP2006240448A - Method for arranging reinforcing member of panel structure - Google Patents

Method for arranging reinforcing member of panel structure Download PDF

Info

Publication number
JP2006240448A
JP2006240448A JP2005057751A JP2005057751A JP2006240448A JP 2006240448 A JP2006240448 A JP 2006240448A JP 2005057751 A JP2005057751 A JP 2005057751A JP 2005057751 A JP2005057751 A JP 2005057751A JP 2006240448 A JP2006240448 A JP 2006240448A
Authority
JP
Japan
Prior art keywords
load
panel
reinforcing material
panel structure
load sharing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005057751A
Other languages
Japanese (ja)
Inventor
Jutaro Hachiman
重太郎 八幡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Fuso Truck and Bus Corp
Original Assignee
Mitsubishi Fuso Truck and Bus Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Fuso Truck and Bus Corp filed Critical Mitsubishi Fuso Truck and Bus Corp
Priority to JP2005057751A priority Critical patent/JP2006240448A/en
Publication of JP2006240448A publication Critical patent/JP2006240448A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for arranging a reinforcing member of a panel structure capable of eliminating dispersion of the panel structure after changing the structure, and reducing the number of calculation when compatibly materializing the tensile rigidity and the minimum weight. <P>SOLUTION: The method includes a step of obtaining the load distribution factor of a main member and a reinforcing member from the displacement in the working direction of the strain energy accumulated in a panel structure (2) and the load applied to the panel structure, a step of preparing an approximation formula of the load-displacement curve according to the load distribution factor of the main member (4) and the reinforcing member (12), and a step of performing the non-linear optimization to compatibly minimize the tensile rigidity and the weight of the panel structure based on the approximation formula and the standard of evaluation of the tensile rigidity of the panel structure. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、パネル構造体の補強材配設方法に係り、詳しくは、パネル構造体の張り剛性及び重量最適化を両立させる技術に関する。   The present invention relates to a method for arranging a reinforcing member for a panel structure, and more particularly, to a technique for achieving both the rigidity and weight optimization of the panel structure.

この種のパネル構造体、例えばトラックのドアパネルには張り剛性が要求される。張り剛性はドアパネルのべこつき感で認識され、大きなべこつき感は商品性を落とす要因となる。一方、この張り剛性を確保できても、ドアの重量が大幅に増加するのではやはり商品性を落とす要因となる。そこで、ドアパネルの如く曲率の十分に取り難いシェル構造物が張り剛性と重量最小化とを満たすためには、アウタパネル(主部材)に補強材(補強部材)を取り付けることが効果的である。   This type of panel structure, for example, a truck door panel, is required to have high rigidity. Tension rigidity is recognized by the feeling of stickiness of the door panel, and a large feeling of stickiness is a factor that reduces the product quality. On the other hand, even if this tension rigidity can be ensured, if the weight of the door increases significantly, it will still be a factor in reducing the merchantability. Therefore, in order to satisfy the rigidity and weight minimization of a shell structure that is difficult to obtain a curvature like a door panel, it is effective to attach a reinforcing material (reinforcing member) to the outer panel (main member).

ここで、上記張り剛性と重量最小化との両立を図るべく、張り剛性を確保した後に重量を最小化させるとの段階的な方法によって構造最適化を行う技術が本出願人から提案されている(例えば、特許文献1参照)。この技術によれば、構造変更後の張り剛性が予め確保されているので、変更後の張り剛性を過去の蓄積データから予測的に評価する必要がなくなる。つまり、この変更後のパネル構造体の良否を熟練した技術者の経験に基づいてその都度判断しなくて済むことになる。
特開2001−171349号公報
Here, in order to achieve both the above-mentioned tension rigidity and weight minimization, the present applicant has proposed a technique for optimizing the structure by a stepwise method of minimizing the weight after securing the tension rigidity. (For example, refer to Patent Document 1). According to this technique, since the tension stiffness after the structure change is secured in advance, it is not necessary to predictively evaluate the tension stiffness after the change from past accumulated data. That is, it is not necessary to judge the quality of the panel structure after the change based on the experience of a skilled engineer.
JP 2001-171349 A

ところで、前記従来の技術では、パネル構造体の変形初期における張り剛性はアウタパネルの剛性及び補強材の配設位置に影響されるのに対し、以降の変形領域における張り剛性はアウタパネル及び補強材の双方の剛性に影響される点を鑑みたものである。そして、有限要素法(FEM)等の解析によって、変形初期では張り剛性を求め、変形初期以降の変形領域ではアウタパネルや補強材のひずみエネルギから荷重分担を求めて張り剛性の確保を図り、次いで、この荷重分担が大きく重量が小さい部材を増加させ(例えば板厚の増加)、荷重分担が小さく重量が大きい部材を減少させる(例えば板厚の減少)との重量最小化を図る。   By the way, in the prior art, the tension stiffness in the initial stage of deformation of the panel structure is affected by the rigidity of the outer panel and the arrangement position of the reinforcing material, whereas the tension stiffness in the subsequent deformation region depends on both the outer panel and the reinforcing material. This is in consideration of the point affected by the rigidity of the steel. Then, by analysis such as finite element method (FEM), the tension rigidity is obtained in the initial stage of deformation, and in the deformation area after the initial stage of deformation, the load sharing is obtained from the strain energy of the outer panel and the reinforcing material to secure the tension rigidity, A member having a large load sharing and a small weight is increased (for example, an increase in plate thickness), and a member having a small load sharing and a large weight is decreased (for example, a decrease in plate thickness) to minimize the weight.

しかし、この段階的な構造最適化の手法では、変更後のパネル構造体のバラツキ等をなくすためには、熟練した技術者の経験が未だ必要になるとの懸念がある。板厚の変更を行う部材の選定等が依然として技術者の経験に大きく左右される要因として残されているからである。
また、上述の張り剛性と重量最小化との両立を図る問題は、非線形の構造最適化問題と考えることができる。パネル構造体の張り剛性は荷重−変位曲線によって記述され、この荷重−変位曲線は非線形挙動を示すからである。そして、この非線形の構造最適化には設計感度解析や応答曲面法等の各種の推定手法によることも考えられるが、これらの手法では計算回数が多くなるとの問題がある。
However, with this stepwise structure optimization method, there is a concern that the experience of a skilled engineer is still necessary in order to eliminate variations in the panel structure after the change. This is because the selection of the member for changing the plate thickness is still a factor that greatly depends on the experience of the engineer.
The problem of achieving both the above-described tension rigidity and weight minimization can be considered as a nonlinear structure optimization problem. This is because the tension stiffness of the panel structure is described by a load-displacement curve, and this load-displacement curve exhibits non-linear behavior. The nonlinear structure optimization may be performed by various estimation methods such as design sensitivity analysis and response surface method, but there is a problem that the number of calculations increases with these methods.

本発明は、このような課題に鑑みてなされたもので、張り剛性と重量最小化との両立を図るにあたり、構造変更後のパネル構造体のバラツキをなくし、計算回数を少なくすることができるパネル構造体の補強材配設方法を提供することを目的とする。   The present invention has been made in view of such problems, and in order to achieve both rigidity and weight minimization, a panel that can eliminate variations in the panel structure after the structure change and reduce the number of calculations. It is an object of the present invention to provide a method for arranging a reinforcing material for a structure.

上記の目的を達成するべく、請求項1記載のパネル構造体の補強材配設方法は、主部材と補強材とを有するパネル構造体であって、パネル構造体に作用する荷重から非線形FEM解析に基づいてパネル構造体に蓄えられたひずみエネルギを求め、ひずみエネルギ及び荷重の作用方向の変位から主部材及び補強材の荷重に対する荷重分担の割合を求めて荷重分担率として定量化する工程と、荷重分担率による荷重−変位曲線の近似式を作成する工程と、近似式とパネル構造体の張り剛性の評価基準とに基づいてパネル構造体の張り剛性及び重量最小化を両立させる非線形の構造最適化を行う工程とを具備したことを特徴としている。   In order to achieve the above object, a reinforcing material disposing method for a panel structure according to claim 1 is a panel structure having a main member and a reinforcing material, and a nonlinear FEM analysis from a load acting on the panel structure. Determining the strain energy stored in the panel structure based on the above, determining the ratio of the load sharing with respect to the load of the main member and the reinforcing material from the displacement of the strain energy and the acting direction of the load, and quantifying as a load sharing rate; Nonlinear structural optimization that balances the stiffness and weight minimization of the panel structure based on the process of creating an approximate expression of the load-displacement curve based on the load sharing ratio and the evaluation formula of the approximate expression and the tension stiffness of the panel structure And a step of performing the conversion.

また、請求項2記載の発明では、荷重−変位曲線の近似式は、荷重分担率の他、主部材及び補強材の各板厚をパラメータとして含むことを特徴としている。
更に、請求項3記載の発明では、パネル構造体はトラックのドアパネルであり、主部材はアウタパネルであって、補強材はアウタパネル内面に取り付けられた補強材であることを特徴としている。
In addition, the invention according to claim 2 is characterized in that the approximate expression of the load-displacement curve includes, in addition to the load sharing ratio, the plate thicknesses of the main member and the reinforcing material as parameters.
Further, the invention according to claim 3 is characterized in that the panel structure is a door panel of a truck, the main member is an outer panel, and the reinforcing material is a reinforcing material attached to the inner surface of the outer panel.

従って、請求項1記載の本発明のパネル構造体の補強材配設方法によれば、パネル構造体の張り剛性が荷重分担率を用いた近似式で予測され、この近似式と評価基準とに基づいて非線形の構造最適化が図られている。つまり、従来の如く、主部材及び補強材の重量比と板厚との関係やこれらの荷重分担率と板厚との関係を求め、パネル構造体の張り剛性を確保した後に重量最小化を行うとの段階的な補強材配設方法に比して、技術者の経験に依存する要因がより一層少なくなる。この結果、パネル構造体のバラツキが少なくなるし、開発時間も短縮される。   Therefore, according to the reinforcing material disposing method of the panel structure of the present invention described in claim 1, the tension rigidity of the panel structure is predicted by an approximate expression using the load sharing ratio. Based on this, non-linear structural optimization is attempted. That is, as in the past, the relationship between the weight ratio of the main member and the reinforcing material and the plate thickness and the relationship between the load sharing ratio and the plate thickness are obtained, and the weight is minimized after securing the rigidity of the panel structure. Compared with the stepwise reinforcing material disposing method, the factors depending on the experience of the engineer are further reduced. As a result, the variation in the panel structure is reduced and the development time is shortened.

また、パネル構造体の張り剛性の確保のために、複数回の非線形FEM解析の結果をプロットして荷重−変位曲線を求めるのではなく、1回のみの非線形FEM解析の結果から上記荷重分担率を用いた近似式が導出可能となるので、この点もパネル構造体の開発時間の短縮化に寄与する。
更に、設計感度解析や応答曲面法等のような非線形の構造最適化に基づく推定手法に比して計算回数が少なくて済む。
In addition, in order to secure the tension rigidity of the panel structure, the load sharing rate is calculated from the result of the non-linear FEM analysis only once instead of plotting the result of the non-linear FEM analysis multiple times to obtain the load-displacement curve. This makes it possible to derive an approximate expression using, so this also contributes to shortening the development time of the panel structure.
Furthermore, the number of calculations can be reduced compared with an estimation method based on nonlinear structure optimization such as design sensitivity analysis or response surface method.

また、請求項2記載の発明によれば、上記近似式のパラメータが、主部材及び補強材の荷重分担率を含むことによってパネル構造体の剛性確保のための張り剛性が正確、且つ、容易に設定され、更に、主部材及び補強材の各板厚を含むことにより、パネル構造体の重量最適化のための各板厚が正確、且つ、容易に設定される。
更に、請求項3記載の発明によれば、トラックのドアパネルの如く、高い剛性とともに十分な軽量化が特に求められるパネル構造体に適用されると、トラックの商品性がより一層向上する。
According to the invention of claim 2, the parameter of the approximate expression includes the load sharing ratio of the main member and the reinforcing material, so that the tension rigidity for securing the rigidity of the panel structure is accurate and easy. In addition, by including the plate thicknesses of the main member and the reinforcing material, the plate thicknesses for optimizing the weight of the panel structure can be set accurately and easily.
Furthermore, according to the third aspect of the present invention, when applied to a panel structure that requires a high rigidity and a sufficient weight reduction, such as a truck door panel, the merchantability of the truck is further improved.

以下、図面により本発明に係るパネル構造体の補強材配設方法について説明する。
まず、単純なパネル構造体を用いて荷重分担率による荷重−変位曲線の近似式を求め、この近似式による構造最適化手法について説明する。
図1に示されるように、このパネル構造体は矩形平板状の主部材4を備えており、その短辺と長辺との長さの比(縦横比)は約1:2に設定されている。また、この主部材4の各端部分は単純支持され、主部材4の略中央位置には補強材(補強部材)12が主部材4の長手方向に沿って取り付けられている。
Hereinafter, the reinforcing material disposing method of the panel structure according to the present invention will be described with reference to the drawings.
First, an approximate expression of a load-displacement curve based on a load sharing ratio is obtained using a simple panel structure, and a structure optimization method using this approximate expression will be described.
As shown in FIG. 1, the panel structure includes a rectangular flat plate-shaped main member 4, and the ratio of the length of the short side to the long side (aspect ratio) is set to about 1: 2. Yes. Each end portion of the main member 4 is simply supported, and a reinforcing member (reinforcing member) 12 is attached along the longitudinal direction of the main member 4 at a substantially central position of the main member 4.

当該パネル構造体に作用する荷重Pとし、この荷重Pの作用方向の変位uとすると、この荷重−変位曲線は非線形FEM解析に基づいて演算される。この演算方法には、作用点(評価点)uの荷重を0からPまで微少増分ずつ逐次増加させ、評価点uにおける荷重(応力)及び変位(ひずみ)の各逐次増分を求める増分法が適用される。これら荷重P、変位u、及びパネル構造体に蓄えられたひずみエネルギUはカスティリアノの定理から次式(1)の関係にある。   When the load P acting on the panel structure is assumed to be a displacement u in the acting direction of the load P, the load-displacement curve is calculated based on nonlinear FEM analysis. In this calculation method, an incremental method is used in which the load at the application point (evaluation point) u is sequentially increased from 0 to P in increments of small increments and the respective increments of load (stress) and displacement (strain) at the evaluation point u are obtained. Is done. The load P, the displacement u, and the strain energy U stored in the panel structure are in the relationship of the following expression (1) from Castiriano's theorem.

まず、主部材4や補強材12を初めとする複数個の部材が存在すると仮定する。そのうちの所定の部材i(=1〜n、以下同じ)に蓄えられたひずみエネルギUiとすると、次式(2)のように示され、この式(2)を式(1)に代入すると、次式(3)が得られる。当該式(3)のPiを部材iの荷重分担と定義する。具体的にはひずみエネルギUiが変位uで偏微分された次式(4)のように示される。 First, it is assumed that there are a plurality of members including the main member 4 and the reinforcing material 12. Assuming that the strain energy U i stored in a predetermined member i (= 1 to n, the same shall apply hereinafter), the following equation (2) is obtained. When this equation (2) is substituted into equation (1), The following formula (3) is obtained. The formula (3) P i is defined as the load distribution member i of. Specifically, the strain energy U i is expressed as the following equation (4) obtained by partial differentiation with respect to the displacement u.

Figure 2006240448
Figure 2006240448

また、部材iの荷重分担率yiを荷重Pに対する荷重分担Piの割合として定義する。詳しくは次式(5)のように示される。
i=Pi/P・・・(5)
ここで、上記部材iの比重γi、板厚ti、及び表面積Aiとすると、パネル構造体の総重量Wは次式(6)のように示されるものとする。
Also, define the load distribution rate y i of the member i as a percentage of the load distribution P i with respect to the load P. The details are shown as the following equation (5).
y i = P i / P (5)
Here, assuming that the specific gravity γ i of the member i, the plate thickness t i , and the surface area A i , the total weight W of the panel structure is represented by the following equation (6).

Figure 2006240448
Figure 2006240448

次に、この板厚tiを設計変数とし、その上限tiuと下限tilとをそれぞれ設定すると、次式(7)のように示される。
il<ti<tiu・・・(7)
次に、評価点uにおける張り剛性の評価基準Pc(u)とおくと、この評価点uの張り剛性P(u)が当該評価基準を満たすための条件は次式(8)となる。なお、この評価基準Pc(u)が市場実績等から決定される張り剛性の評価基準に相当する。
P(u)−Pc(u)≧0・・・(8)
ここで、構造変更前の状態には添字0を付す一方、構造変更後の状態には上記添字を付さないとすると、部材iの構造変更前の荷重分担Pi0は次式(9)、構造変更後の荷重分担Piは次式(10)のようにそれぞれ示される。
Next, when the plate thickness t i is set as a design variable, and an upper limit t iu and a lower limit t il are respectively set, the following equation (7) is obtained.
t il <t i <t iu (7)
Next, if the evaluation criterion P c (u) of the tension stiffness at the evaluation point u is set, the condition for the tension stiffness P (u) of the evaluation point u to satisfy the evaluation criterion is expressed by the following equation (8). Note that this evaluation criterion P c (u) corresponds to an evaluation criterion for tension stiffness determined from market performance or the like.
P (u) −P c (u) ≧ 0 (8)
Here, if the subscript 0 is attached to the state before the structural change, and the subscript is not attached to the state after the structural change, the load sharing P i0 before the structural change of the member i is expressed by the following equation (9), load distribution P i after structural changes are shown respectively by the following equation (10).

Figure 2006240448
Figure 2006240448

ところで、部材iの構造変更後の荷重分担Piは、構造変更前の荷重分担Pi0、この部材iの構造変更前後の板厚ti0、ti、及び、部材特性を表すパラメータmiによって記述できるものと仮定する。これは、パネル構造体の張り剛性が板厚のmi乗に比例することを想定したものである。この仮定については既に述べた特許文献1にて公知であり、具体的には次式(11)のように示される。よって、上記式(10)及び式(11)から次式(12)が得られる。当該式(12)が荷重分担率を用いた荷重−変位曲線の近似式(予測モデル)である。
i=Pi0(ti/ti0mi=yi00(ti/ti0mi
=yi00i mi・・・(11)
By the way, the load sharing P i after the structural change of the member i is described by the load sharing P i0 before the structural change, the plate thicknesses t i0 and t i before and after the structural change of the member i , and the parameter mi representing the member characteristics. Assume that you can. This assumes that the tension rigidity of the panel structure is proportional to the mi thickness of the plate thickness. This assumption is known in Patent Document 1 already described, and is specifically expressed by the following equation (11). Therefore, the following equation (12) is obtained from the above equations (10) and (11). The formula (12) is an approximate formula (prediction model) of a load-displacement curve using the load sharing ratio.
P i = P i0 (t i / t i0 ) mi = y i0 P 0 (t i / t i0 ) mi
= Y i0 P 0 Z i mi (11)

Figure 2006240448
Figure 2006240448

このyi0は構造変更前の荷重分担率であり、Ziは構造変更前後の板厚比である。つまり、これら荷重分担率yi0は上記式(5)から次式(13)、板厚比Ziは次式(14)のようにそれぞれ示される。
i0=Pi0/P0・・・(13)
i=ti/ti0・・・(14)
上記式(8)及び式(12)から次式(15)が得られる。ここで、当該式(15)において、上記増分法を適用した場合の増分ステップの総数qとおくと、次式(16)の不等式が得られる(j=1〜q)。つまり、当該式(16)のように、上記式(12)の予測モデルP(uj)/P0(uj)と市場実績等から決定される評価基準Pc(uj)とが与えられると、パネル構造体の最適形状が自動的に計算される。
Y i0 is a load sharing ratio before the structure change, and Z i is a thickness ratio before and after the structure change. That is, the load sharing ratio y i0 is expressed by the following equation (5) to the following equation (13), and the plate thickness ratio Z i is expressed by the following equation (14).
y i0 = P i0 / P 0 (13)
Z i = t i / t i0 (14)
The following equation (15) is obtained from the above equations (8) and (12). Here, in the equation (15), if the total number q of incremental steps when the above incremental method is applied, the inequality of the following equation (16) is obtained (j = 1 to q). That is, as in the equation (16), the prediction model P (u j ) / P 0 (u j ) in the equation (12) and the evaluation criterion P c (u j ) determined from the market performance are given. If so, the optimum shape of the panel structure is automatically calculated.

Figure 2006240448
Figure 2006240448

このように、本発明のパネル構造体の補強材配設方法は、上記式(6)が目的関数(objective function)、式(7)及び式(14)が上下限制約条件(constraints)、及び、式(16)が不等式制約条件(constraints)との線形計画法(linear programming)の問題に帰着することが分かる。そして、当該構造最適化手法は、n個の部材を有するパネル構造体全般に適用可能であるが、ここではトラックのドアパネルを供試した例を挙げて説明する。   As described above, in the method for disposing the reinforcing member of the panel structure according to the present invention, the above equation (6) is an objective function, equations (7) and (14) are upper and lower limit constraints (constraints), It can be seen that equation (16) results in a problem of linear programming with inequality constraints. The structure optimization method can be applied to all panel structures having n members. Here, an example in which a truck door panel is used will be described.

図2に示されるように、このドアパネル2はアウタパネル4とインナパネル6とを互いに張り合わせた状態で構成されている。アウタパネル4の外周はその上半分が窓枠8として成形され、その下半分はドアパネル下部10として成形されている。また、このドアパネル下部10はサイドウインドウの下端に沿って追加され、この追加部分はアウタパネル4を横断する方向に延びている。   As shown in FIG. 2, the door panel 2 is configured in a state where the outer panel 4 and the inner panel 6 are bonded to each other. The outer half of the outer panel 4 is formed as a window frame 8 in the upper half, and the lower half is formed as a door panel lower part 10. The lower portion 10 of the door panel is added along the lower end of the side window, and the additional portion extends in a direction crossing the outer panel 4.

更に、アウタパネル4には、窓枠8及びドアパネル下部10に囲まれた部位の張り剛性を確保すべく、その内面に補強材12が取り付けられている。例えば、本実施例ではアウタパネル4に補強材12が接着されている。この補強材12は梁状をなし、その構造は断面ハット状に成形され、補強材12に必要な剛性は確保されている。
このアウタパネル4には所定の評価点uに0から逐次増大する荷重Pが加えられる。このとき、窓枠8は張り剛性に対する影響が小さい故、アウタパネル4は縦横比が約1:2に設定された矩形平板状のモデルにて近似できる(図1)。補強材12はアウタパネル4の長手方向に沿ってその略中央位置に配置される(横補強材の配置プラン)。また、上記荷重Pは、図1に示されるように、この補強材12で区画されたアウタパネル4の上側部位の略中央位置に作用するものとする。
Further, a reinforcing material 12 is attached to the inner surface of the outer panel 4 in order to ensure the tension rigidity of the portion surrounded by the window frame 8 and the door panel lower part 10. For example, in this embodiment, the reinforcing material 12 is bonded to the outer panel 4. The reinforcing member 12 has a beam shape, and the structure thereof is formed into a cross-sectional hat shape, and the necessary rigidity of the reinforcing member 12 is ensured.
A load P that sequentially increases from 0 is applied to the outer panel 4 at a predetermined evaluation point u. At this time, since the window frame 8 has little influence on the tension rigidity, the outer panel 4 can be approximated by a rectangular flat plate model in which the aspect ratio is set to about 1: 2 (FIG. 1). The reinforcing member 12 is disposed at a substantially central position along the longitudinal direction of the outer panel 4 (arrangement plan of the lateral reinforcing member). Moreover, the said load P shall act on the approximate center position of the upper side part of the outer panel 4 divided by this reinforcing material 12, as FIG. 1 shows.

次に、前記の如く構成されたドアパネル2に対する補強材12の配設方法について説明する。なお、本発明による補強材配設方法は、当該横補強材の配置プランの他、縦補強材の配置プラン、縦及び横補強材の配置プランにも適用可能である。
具体的には、ドアパネル2における荷重分担率による荷重−変位曲線の近似式は、上記式(12)を用いると、次式(17)のように示される。
Next, a method for arranging the reinforcing member 12 on the door panel 2 configured as described above will be described. The reinforcing material arranging method according to the present invention can be applied to a vertical reinforcing material arrangement plan and a vertical and horizontal reinforcing material arrangement plan in addition to the horizontal reinforcing material arrangement plan.
Specifically, the approximate expression of the load-displacement curve based on the load sharing ratio in the door panel 2 is expressed as the following expression (17) when the above expression (12) is used.

Figure 2006240448
Figure 2006240448

この式(17)の添字1はアウタパネル4、添字2は補強材12、そして、添字3はアウタパネル4及び補強材12以外の総ての構成部材(例えば、インナパネル6や接着剤等)を示している。
また、構造変更前における各構成部材の部材特性と制約条件を述べておく。
In the formula (17), the subscript 1 indicates the outer panel 4, the subscript 2 indicates the reinforcing material 12, and the subscript 3 indicates all components (for example, the inner panel 6 and the adhesive) other than the outer panel 4 and the reinforcing material 12. ing.
In addition, the member characteristics and constraint conditions of each constituent member before the structure change will be described.

Figure 2006240448
Figure 2006240448

つまり、表1に示されるように、アウタパネル4については、板厚t10は0.78mm、部材特性を表すパラメータm1は2.3、上記式(7)及び式(14)の上下限制約条件は0.68≦t1≦0.88、0.872≦Z1≦1.13である。補強材12については、板厚t20は基準値tS0、パラメータm2は1.2、上下限制約条件は0.5tS0≦t2≦2tS0、0.5≦Z2≦2である。 That is, as shown in Table 1, for the outer panel 4, the thickness t 10 is 0.78 mm, the parameter m1 is 2.3 representing the member properties, the equation (7) and the lower limit constraints on the equation (14) Are 0.68 ≦ t 1 ≦ 0.88 and 0.872 ≦ Z 1 ≦ 1.13. For reinforcing material 12, the thickness t 20 is the reference value t S0, parameter m2 is 1.2, the upper limit constraints 0.5t S0 ≦ t 2 ≦ 2t S0 , is 0.5 ≦ Z 22.

このパラメータmiは、最大荷重Pm付近の荷重−変位曲線から最小自乗法で設定される。この最大荷重Pmとはトラックの実用上を鑑みてアウタパネル4に加わると想定される荷重の最大値である(自動車技術会論文集Vol.31,No.1等参照)。なお、アウタパネル4及び補強材12以外の総ての構成部材(添字3)については、荷重分担が殆どなく構造変更も行われない。つまり、板厚t30のままであり、板厚比Z3=1となるので、パラメータm3は任意の値で良いし、重量比も考慮しない。 This parameter mi is set by the method of least squares from a load-displacement curve near the maximum load Pm. This maximum load Pm is the maximum value of the load assumed to be applied to the outer panel 4 in view of the practical use of the truck (refer to Vol.31, No. 1, etc. of the Automobile Technical Society Proceedings). In addition, about all the structural members (subscript 3) other than the outer panel 4 and the reinforcing material 12, there is almost no load sharing and a structural change is not performed. That is, the plate thickness t 30 remains unchanged, and the plate thickness ratio Z 3 = 1. Therefore, the parameter m3 may be an arbitrary value, and the weight ratio is not considered.

そして、目標関数である構造変更後のドアパネル2の総重量Wを設定する。詳しくは、この総重量Wは上記式(6)及び式(14)から次式(18)のように示される。また、アウタパネル4の重量を1とすると、補強材12の重量は0.05となる関係にあるものとする。なお、比重γiは次式(19)に、表面積Aiは次式(20)にそれぞれ示される(i=1〜3)。 And the total weight W of the door panel 2 after the structure change which is a target function is set. Specifically, the total weight W is expressed by the following equation (18) from the above equations (6) and (14). Further, assuming that the weight of the outer panel 4 is 1, the weight of the reinforcing member 12 is 0.05. The specific gravity γ i is represented by the following equation (19), and the surface area A i is represented by the following equation (20) (i = 1 to 3).

W=γ1010101+γ2020202+γ303030・・・(18)
γi=γi0・・・(19)
i=Ai0・・・(20)
ここで、次式(21)のように、式(18)のγ101010をW10とおくと、上記表1の如くのアウタパネル4と補強材12との重量の関係(1:0.05)から、次式(22)が得られる。そして、計算の簡略化のために、式(18)においてW−γ303030を新たにWとおき、上記式(21)及び式(22)を式(18)に代入すると、次式(23)のように示される。
W = γ 10 t 10 A 10 Z 1 + γ 20 t 20 A 20 Z 2 + γ 30 t 30 A 30 (18)
γ i = γ i0 (19)
A i = A i0 (20)
Here, as shown in the following equation (21), when γ 10 t 10 A 10 in the equation (18) is set to W 10 , the relationship between the weights of the outer panel 4 and the reinforcing member 12 as shown in Table 1 (1: 0.05), the following formula (22) is obtained. For simplification of calculation, when W−γ 30 t 30 A 30 is newly set as W in equation (18) and the above equations (21) and (22) are substituted into equation (18), It is shown as equation (23).

10=γ101010・・・(21)
γ202020/W10=0.05・・・(22)
W/W10=Z1+0.05Z2・・・(23)
次に、評価基準と構造最適化について述べる。まず、当該実施例における構造最適化は、アウタパネル4の荷重分担率と、補強材12の荷重分担率と、これらアウタパネル4及び補強材12以外の総ての構成部材の荷重分担率との和が1となるとの仮定の下で行われている。ただし、図3に示されるように、所定の評価点u1とu2との間においては、アウタパネル4及び補強材12以外の総ての構成部材については荷重分担率の影響が小さいと擬制できることから、実際にはアウタパネル4の荷重分担率と、補強材12の荷重分担率との和が1となるとの仮定の下で構造最適化が行われている。
W 10 = γ 10 t 10 A 10 (21)
γ 20 t 20 A 20 / W 10 = 0.05 (22)
W / W 10 = Z 1 + 0.05Z 2 (23)
Next, evaluation criteria and structural optimization will be described. First, the structure optimization in the embodiment is the sum of the load sharing rate of the outer panel 4, the load sharing rate of the reinforcing material 12, and the load sharing rates of all the constituent members other than the outer panel 4 and the reinforcing material 12. This is done under the assumption that it is 1. However, as shown in FIG. 3, between the predetermined evaluation points u 1 and u 2 , all the components other than the outer panel 4 and the reinforcing material 12 can be assumed to be small if the influence of the load sharing ratio is small. Therefore, the structure optimization is actually performed under the assumption that the sum of the load sharing rate of the outer panel 4 and the load sharing rate of the reinforcing member 12 is 1.

続いて、上述の式(17)の荷重分担率による荷重−変位曲線の近似式は、次式(24)ように示される。
P(u)/P0(u)=y101 2.3+y202 1.2+y30・・・(24)
この式(24)の右辺第3項y30については、上述のように、アウタパネル4及び補強材12以外の総ての構成部材は荷重分担が殆どないので省略できる。よって、次式(25)及び式(26)が得られる。
Subsequently, an approximate expression of a load-displacement curve based on the load sharing ratio of the above-described expression (17) is expressed as the following expression (24).
P (u) / P 0 (u) = y 10 Z 1 2.3 + y 20 Z 2 1.2 + y 30 (24)
As described above, the third term y 30 on the right side of the equation (24) can be omitted because all the constituent members other than the outer panel 4 and the reinforcing member 12 have almost no load sharing. Therefore, the following equations (25) and (26) are obtained.

P(u)/P0(u)≒(1−y20)Z1 2.3+y202 1.2
=(1−y)Z1 2.3+yZ2 1.2・・・(25)
y=y20・・・(26)
従って、この式(25)から、上述の式(16)は次式(27)のように示される(i=1〜q)。
P (u) / P 0 (u) ≈ (1−y 20 ) Z 1 2.3 + y 20 Z 2 1.2
= (1-y) Z 1 2.3 + yZ 2 1.2 (25)
y = y 20 (26)
Therefore, from the equation (25), the above equation (16) is expressed as the following equation (27) (i = 1 to q).

0(ui)((1−y(ui))Z1 2.3+y(ui)Z2 1.2)−Pc(ui)≧0・・・(27)
そして、上記各変形段階u=uiにおいて上式(27)を満たすアウタパネル4の板厚比Z1及び補強材12の板厚比Z2の範囲を求める。より具体的には、図4に示されるように、上記増分法によるステップ毎に上式(27)を満たすアウタパネル4の板厚比Z1及び補強材12の板厚比Z2を計算してプロットする。そして、各板厚比の基準値をZ1c(=0.851)及びZ2c(=1.62)とすると、本実施例ではu1=2.21mm、u2=6.69mmを評価点にすれば、0≦Z2≦Z2cにて上記u2による評価ライン2(図4の一点鎖線)よりもZ1を大きくする領域が市場実績等の評価基準を満たし、Z2c≦Z2にて上記u1による評価ライン1(図4の実線)よりもZ1を大きくする領域が市場実績等の評価基準を満たす。当該評価点u1及びu2は上記各変形の小さい領域と大きい領域のうち、余裕量((P0(u)−Pc(u))/Pc(u))の最も小さな点が選択されており、変形が小さくアウタパネル4の影響が大きい領域を評価点u1、変形が大きく補強材12の影響が大きい領域を評価点u2として選択されている。
これら各評価点u1及びu2における構造最適化に必要なデータを表2に示す。
P 0 (u i ) ((1−y (u i )) Z 1 2.3 + y (u i ) Z 2 1.2 ) −P c (u i ) ≧ 0 (27)
Then, a range above equation (27) to meet the outer panel 4 of the plate thickness ratio Z 1 and the reinforcing member 12 of the plate thickness ratio Z 2 in the above modification step u = u i. More specifically, as shown in FIG. 4, to calculate the thickness ratio Z 2 of the outer panel 4 of the plate thickness ratio Z 1 and the reinforcing member 12 that satisfies the above equation (27) for each step by the incremental method Plot. When the reference values of the respective plate thickness ratios are Z 1c (= 0.851) and Z 2c (= 1.62), in this example, u 1 = 2.21 mm and u 2 = 6.69 mm are evaluated points. In this case, the region where Z 1 is larger than the evaluation line 2 (the one-dot chain line in FIG. 4) based on u 2 when 0 ≦ Z 2 ≦ Z 2c satisfies the evaluation criteria such as market performance, and Z 2c ≦ Z 2 The region where Z 1 is larger than the evaluation line 1 (solid line in FIG. 4) based on u 1 satisfies the evaluation criteria such as market performance. As the evaluation points u 1 and u 2, the point having the smallest margin ((P 0 (u) −P c (u)) / P c (u)) is selected from the small and large regions of the above deformations. The region where the deformation is small and the influence of the outer panel 4 is large is selected as the evaluation point u 1 , and the region where the deformation is large and the influence of the reinforcing member 12 is large is selected as the evaluation point u 2 .
Table 2 shows data necessary for structure optimization at each of these evaluation points u 1 and u 2 .

Figure 2006240448
Figure 2006240448

従って、これら表2と上式(27)とから次式(28.1)及び式(28.2)の連立不等式が得られる。なお、これら式(28.1)及び式(28.2)の等号は上記u1による評価ライン1及び上記u2による評価ライン2の値であることをそれぞれ示す。 Accordingly, simultaneous inequalities of the following equations (28.1) and (28.2) are obtained from these Table 2 and the above equation (27). It should be noted that the equal signs in these equations (28.1) and (28.2) indicate the values of the evaluation line 1 based on u 1 and the evaluation line 2 based on u 2 , respectively.

(1−0.0459)Z1 2.3+0.0459Z2 1.2≧0.184/0.249・・・(28.1)
(1−0.220)Z1 2.3+0.220Z2 1.2≧0.931/0.999・・・(28.2)
これら連立不等式の解は、0≦Z2≦Z2cでは次式(29.1)、Z2c≦Z2では次式(29.2)となる。
1 2.3+0.282Z2 1.2≧1.19・・・(29.1)
1 2.3+0.0481Z2 1.2≧0.776・・・(29.2)
よって、Z2とW/W10との関係は、当該式(29)と上記式(23)とからZ1を消去すると、0≦Z2≦Z2cでは次式(30.1)、Z2c≦Z2では次式(30.2)となる。
(1−0.0459) Z 1 2.3 + 0.0459Z 2 1.2 ≧ 0.184 / 0.249 (28.1)
(1-0.220) Z 1 2.3 + 0.220Z 2 1.2 ≧ 0.931 / 0.999 (28.2)
The solution of these simultaneous inequalities is the following equation (29.1) when 0 ≦ Z 2 ≦ Z 2c , and the following equation (29.2) when Z 2c ≦ Z 2 .
Z 1 2.3 + 0.282Z 2 1.2 ≧ 1.19 (29.1)
Z 1 2.3 +0.0481 Z 2 1.2 ≧ 0.776 (29.2)
Therefore, the relationship between Z 2 and W / W 10 is as follows. When Z 1 is eliminated from the equation (29) and the equation (23), the following equation (30.1) and Z are satisfied when 0 ≦ Z 2 ≦ Z 2c : When 2c ≦ Z 2 , the following expression (30.2) is obtained.

W/W10≧(1.19−0.282Z2 1.21/2.3+0.05Z2・・・(30.1)
W/W10≧(0.776−0.0481Z2 1.21/2.3+0.05Z2・・・(30.2)
そして、Z2と上記式(30.1)及び式(30.2)との関係を示すと、図5のように表され、これら各式よりもW/W10を大きくする領域が構造変更後の重量比を満足する。更に、Z2c=1.62が各式の交点(図5の○印)となり、W/W10が最も小さい値をとる。すなわち、図4及び図5からZ1cについても述べると、W/W10は、Z1c=0.851、Z2c=1.62にて最小値0.932となることが分かる。
W / W 10 ≧ (1.19−0.282Z 2 1.2 ) 1 / 2.3 + 0.05Z 2 (30.1)
W / W 10 ≧ (0.776−0.0481Z 2 1.2 ) 1 / 2.3 + 0.05Z 2 (30.2)
Then, the relationship between Z 2 and the above formulas (30.1) and (30.2) is shown in FIG. 5, and the region where W / W 10 is larger than these formulas is structurally changed. The latter weight ratio is satisfied. Further, Z 2c = 1.62 is the intersection of the equations (circles in FIG. 5), and W / W 10 takes the smallest value. That is, when we describe Z 1c from FIGS. 4 and 5, W / W 10 is, Z 1c = 0.851, it can be seen that the minimum value 0.932 at Z 2c = 1.62.

しかしながら、上述のように、アウタパネル4の上下限制約条件は0.872≦Z1≦1.13である。そこで、Z1cについてはZ1c=0.872とし、Z2c=1.62との組み合わせを選択すると、W/W10は最小値0.953となる(図5の●印)。すなわち、構造変更前の重量比W0/W10が1.05であったのに対し、構造変更後の重量比W/W10は0.953となり、上式(23)からドアパネル2全体の重量比でみて約9.2%の軽量化が達成される。 However, as described above, the upper and lower limit constraints of the outer panel 4 are 0.872 ≦ Z 1 ≦ 1.13. Therefore, when Z 1c is set to Z 1c = 0.872 and a combination of Z 2c = 1.62 is selected, W / W 10 becomes the minimum value 0.953 (marked with ● in FIG. 5). That is, while the weight ratio W 0 / W 10 before the structure change was 1.05, the weight ratio W / W 10 after the structure change was 0.953, and the entire door panel 2 was calculated from the above equation (23). A weight reduction of about 9.2% is achieved in terms of weight ratio.

一方、補強材12の板厚比Z2を上記Z2c=1.62よりも安全側に選択し、Z1c=0.872、Z2=2の組み合わせを選択すると、W/W10は最小値0.972となる(図5の◆印)。すなわち、構造変更前の重量比W0/W10が1.05であったのに対し、構造変更後の重量比W/W10は0.972となり、ドアパネル2全体の重量比でみて約7.4%の軽量化が達成される。 On the other hand, when the plate thickness ratio Z 2 of the reinforcing member 12 is selected to be safer than Z 2c = 1.62, and the combination of Z 1c = 0.872 and Z 2 = 2 is selected, W / W 10 is the minimum. The value is 0.972 (♦ mark in FIG. 5). That is, while the weight ratio W 0 / W 10 before the structure change was 1.05, the weight ratio W / W 10 after the structure change was 0.972, which is about 7 in terms of the weight ratio of the door panel 2 as a whole. 4% weight reduction is achieved.

このように、上記式(27)の如く、上記式(24)の予測モデルと評価基準とからドアパネル2の最適形状が計算可能になる。
更に図6を参照して、上述した実施例の構造的な変更に伴う荷重−変位曲線での張り剛性確保の確認を行う。なお、同図の荷重は上記最大荷重Pmに対する割合にて表記されている。
As described above, the optimum shape of the door panel 2 can be calculated from the prediction model of the above equation (24) and the evaluation criteria as in the above equation (27).
Furthermore, with reference to FIG. 6, confirmation of the tension rigidity in the load-displacement curve accompanying the structural change of the Example mentioned above is confirmed. In addition, the load of the figure is described by the ratio with respect to the said maximum load Pm.

図中に一点鎖線で示される荷重−変位曲線は評価基準Pc/Pmであり、図中の●印は構造変更後の板厚を直接に代入して構造解析を行ったものである(P(FEM)/Pmにて表記する)。
これに対し、図中に実線で示される荷重−変位曲線は、上記構造変更を行った場合のうち、Z1c=0.872、Z2=2の組み合わせを選択し、ドアパネル2の重量比が約7.4%の軽量化を達成し、最適値に近似させた荷重−変位曲線P(近似)/Pmである。このP(近似)/PmとP(FEM)/Pmとは約1.8%程度の違いであり、ほぼ一致していることが分かる。すなわち、P(近似)/Pmは十分な予測精度を有するものと推定される。
The load-displacement curve indicated by the alternate long and short dash line in the figure is the evaluation standard P c / Pm, and the ● mark in the figure is the result of structural analysis by directly substituting the plate thickness after the structural change (P (Indicated in (FEM) / Pm).
On the other hand, the load-displacement curve indicated by the solid line in the figure shows a case where the combination of Z 1c = 0.872 and Z 2 = 2 is selected among the cases where the above structural change is made, and the weight ratio of the door panel 2 is A load-displacement curve P (approximate) / Pm that achieves a weight reduction of about 7.4% and approximates an optimum value. The difference between P (approximate) / Pm and P (FEM) / Pm is about 1.8%, which is almost the same. That is, it is estimated that P (approximate) / Pm has sufficient prediction accuracy.

更に、図中に破線で示される荷重−変位曲線は、上記構造変更を行った場合のうち、Z1c=0.872、Z2=1.62の組み合わせを選択し、ドアパネル2の重量比が約9.2%の軽量化を達成した最適な荷重−変位曲線P(最適)/Pmである。このP(最適)/Pmは、荷重の小さい場合には評価基準Pc/Pmにほぼ重なっており、しかも、荷重の大きい場合にも評価基準Pc/Pmに近づいている。すなわち、この評価基準Pc/Pmに対する余裕量が他の荷重−変位曲線よりも小さくなり、高精度の構造最適化が行われたことが分かる。 Furthermore, the load-displacement curve indicated by a broken line in the figure is a combination of Z 1c = 0.872 and Z 2 = 1.62 among the cases where the above structural change is made, and the weight ratio of the door panel 2 is The optimum load-displacement curve P (optimum) / Pm that achieves a weight reduction of about 9.2%. This P (optimum) / Pm substantially overlaps the evaluation criterion P c / Pm when the load is small, and also approaches the evaluation criterion P c / Pm when the load is large. That is, it can be seen that the margin with respect to this evaluation criterion P c / Pm is smaller than the other load-displacement curves, and that highly accurate structural optimization has been performed.

以上のように、本実施例のドアパネル2の補強材配設方法によれば、まず、ドアパネル2に作用する荷重Pから非線形FEM解析により荷重−変位曲線を求める工程と、この荷重−変位曲線からドアパネル2に蓄えられたひずみエネルギUiを求める工程と、ひずみエネルギUi及び荷重Pの作用方向の変位uからアウタパネル4及び補強材12の荷重P0に対する荷重分担Pi0の割合を求める工程と、この割合をアウタパネル4及び補強材12の荷重分担率yi0として定量化する工程とを経る(以上、手順1)。 As described above, according to the reinforcing member arranging method of the door panel 2 of the present embodiment, first, a load-displacement curve is obtained from the load P acting on the door panel 2 by non-linear FEM analysis, and from this load-displacement curve. A step of obtaining the strain energy U i stored in the door panel 2, and a step of obtaining a ratio of the load sharing P i0 to the load P 0 of the outer panel 4 and the reinforcing material 12 from the strain energy U i and the displacement u in the acting direction of the load P; Then, the ratio is quantified as the load sharing ratio y i0 of the outer panel 4 and the reinforcing material 12 (procedure 1 above).

次に、この荷重分担率yi0による荷重−変位曲線、つまり、アウタパネル4及び補強材12の荷重分担率yi0及び板厚比ti/ti0をパラメータとする張り剛性の近似式P/P0を作成する工程を経る(以上、手順2)。
そして、この近似式にドアパネル2の張り剛性の評価基準Pcを与えれば自動的に最適形状が計算されるという、張り剛性及び重量最小化を両立させる非線形の構造最適化を行う工程を経る(以上、手順3)。
Next, a load-displacement curve based on the load sharing ratio y i0 , that is, an approximate expression of tension stiffness P / P using the load sharing ratio y i0 of the outer panel 4 and the reinforcing member 12 and the plate thickness ratio t i / t i0 as parameters. The process of creating 0 is performed (procedure 2 above).
Then, if an evaluation standard P c for the tension stiffness of the door panel 2 is given to this approximate expression, an optimal shape is automatically calculated, and a non-linear structure optimization process that achieves both tension stiffness and weight minimization is performed ( The procedure 3).

従って、従来の如く、アウタパネル4及び補強材12の重量比と板厚との関係やこれらの荷重分担率と板厚との関係を求め、ドアパネル2の張り剛性を確保した後に重量最小化を行うとの段階的な補強材配設方法に比して、例えば、板厚を変更するアウタパネル4及び補強材12を熟練した技術者の経験に基づいて選定する作業が不要になり、技術者の経験に依存する要因がより一層少なくなる。この結果、ドアパネル2のバラツキが少なくなるし、開発時間も短縮される。   Therefore, as in the prior art, the relationship between the weight ratio of the outer panel 4 and the reinforcing material 12 and the plate thickness and the relationship between the load sharing ratio and the plate thickness are obtained, and the weight is minimized after securing the rigidity of the door panel 2. For example, the work of selecting the outer panel 4 and the reinforcing material 12 for changing the plate thickness based on the experience of a skilled engineer becomes unnecessary, as compared to the stepwise reinforcing material disposing method. There are even fewer factors that depend on As a result, the variation of the door panel 2 is reduced and the development time is shortened.

また、ドアパネル2の張り剛性の確保のために、複数回の非線形FEM解析の結果をプロットして荷重−変位曲線を求めるのではなく、1回のみの非線形FEM解析の結果から上記荷重分担率yi0を用いた張り剛性の近似式P/P0が導出可能となるので、この点もドアパネル2の開発時間の短縮化に寄与する。更に、設計感度解析や応答曲面法等のような非線形の構造最適化に基づく推定手法に比して計算回数が少なくて済む。 In addition, in order to secure the tension rigidity of the door panel 2, the load sharing rate y is not obtained from the result of the nonlinear FEM analysis only once, rather than by plotting the result of the nonlinear FEM analysis a plurality of times to obtain the load-displacement curve. Since the approximate expression P / P 0 of the tension stiffness using i 0 can be derived, this point also contributes to shortening the development time of the door panel 2. Furthermore, the number of calculations can be reduced compared with an estimation method based on nonlinear structure optimization such as design sensitivity analysis or response surface method.

更にまた、上記張り剛性の近似式P/P0のパラメータが、上記荷重分担率yi0を含むことによってドアパネル2の剛性確保のための張り剛性が正確、且つ、容易に設定され、また、アウタパネル4及び補強材12の各板厚tiを含むことにより、ドアパネル2の重量最適化のための各板厚が正確、且つ、容易に設定される。
しかも、当該構造最適化手法は、アウタパネル4及び補強材12の各板厚ti、構造変更前後の板厚比Ziや、近似式と評価基準との差を正とする如くの、複数の等号或いは不等号式で表された線形式の制約条件の下において、目的関数であるドアパネル2の総重量Wの最適化を図ることになって線形計画法の問題に帰着できる。すなわち、上記設計感度解析や応答曲面法等のような非線形の構造最適化に基づく推定手法に比して非常に早い推定が可能となる。
Furthermore, when the parameter of the approximate expression P / P 0 of the tension stiffness includes the load sharing ratio y i0 , the tension stiffness for ensuring the rigidity of the door panel 2 can be accurately and easily set, and the outer panel 4 and the respective plate thicknesses t i of the reinforcing members 12 make it possible to accurately and easily set the respective plate thicknesses for optimizing the weight of the door panel 2.
In addition, the structure optimization method includes a plurality of plate thicknesses t i of the outer panel 4 and the reinforcing member 12, plate thickness ratios Z i before and after the structure change, and a plurality of differences such that the difference between the approximate expression and the evaluation standard is positive. Under the constraint of the linear form expressed by the equal sign or the inequality formula, the total weight W of the door panel 2 as the objective function is optimized, resulting in a linear programming problem. That is, it is possible to estimate much faster than an estimation method based on nonlinear structure optimization such as the design sensitivity analysis or response surface method.

そして、ドアパネル2の如く、高い剛性とともに十分な軽量化が特に求められるパネル構造体に適用されると、トラックの商品性がより一層向上する。
以上で本発明の一実施形態についての説明を終えるが、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲で種々の変更ができるものである。
例えば、上記実施形態では、トラックのドアパネル2を供試した例が示されているが、この例に限定されるものではなく、例えば、バスのエンジンドアや乗用車のトランクリッドやエンジンフード等のパネル構造体にも適用可能であり、この場合にも上記と同様に張り剛性と重量最小化との両立を図るにあたり、構造変更後のパネル構造体のバラツキをなくし、計算回数を少なくすることができるとの効果を奏する。
When applied to a panel structure that requires a particularly high weight as well as high rigidity, such as the door panel 2, the merchantability of the truck is further improved.
The description of one embodiment of the present invention is finished above, but the present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in the above-described embodiment, an example in which the truck door panel 2 is used is shown. However, the present invention is not limited to this example. For example, a panel of a bus engine door, a passenger car trunk lid, an engine hood, or the like. It can also be applied to structures, and in this case as well, it is possible to eliminate variations in the panel structure after changing the structure and reduce the number of calculations in order to achieve both rigidity and weight minimization as described above. And has the effect.

本発明の荷重分担率による荷重−変位曲線の近似式を説明する模式図である。It is a schematic diagram explaining the approximate expression of the load-displacement curve by the load sharing rate of this invention. 本発明の実施例に供試されるトラックのドアパネルの斜視図である。It is a perspective view of the door panel of the truck used for the Example of this invention. 構造変更前の荷重−変位曲線及び荷重分担率、評価基準を示す図である。It is a figure which shows the load-displacement curve before structure change, a load share rate, and evaluation criteria. 当該実施例のアウタパネル及び補強材の各板厚比の範囲を示す図である。It is a figure which shows the range of each plate | board thickness ratio of the outer panel of the said Example, and a reinforcing material. 当該実施例の構造最適化における構造変更後の重量比を説明する図である。It is a figure explaining the weight ratio after the structure change in the structure optimization of the said Example. 当該実施例において構造最適化の結果を示す荷重−変位曲線である。It is a load-displacement curve which shows the result of structure optimization in the said Example.

符号の説明Explanation of symbols

2 ドアパネル(パネル構造体)
4 アウタパネル(主部材)
12 補強材(補強部材)
2 Door panel (panel structure)
4 Outer panel (main member)
12 Reinforcement material (reinforcement member)

Claims (3)

主部材と補強材とを有するパネル構造体において、
該パネル構造体に作用する荷重から非線形FEM解析に基づいて前記パネル構造体に蓄えられたひずみエネルギを求め、該ひずみエネルギ及び前記荷重の作用方向の変位から前記主部材及び前記補強材の前記荷重に対する荷重分担の割合を求めて荷重分担率として定量化する工程と、
該荷重分担率による荷重−変位曲線の近似式を作成する工程と、
該近似式と前記パネル構造体の張り剛性の評価基準とに基づいて前記パネル構造体の張り剛性及び重量最小化を両立させる非線形の構造最適化を行う工程と
を具備したことを特徴とするパネル構造体の補強材配設方法。
In a panel structure having a main member and a reinforcing material,
The strain energy stored in the panel structure is obtained from the load acting on the panel structure based on a non-linear FEM analysis, and the load of the main member and the reinforcing material is determined from the displacement in the acting direction of the strain energy and the load. A step of determining a load sharing ratio with respect to and quantifying the load sharing ratio;
Creating an approximate expression of a load-displacement curve based on the load sharing rate;
And a non-linear structural optimization step that achieves both the rigidity and weight minimization of the panel structure based on the approximate expression and the evaluation criteria for the tension rigidity of the panel structure. A method of arranging a reinforcing material for a structure.
前記荷重−変位曲線の近似式は、前記荷重分担率の他、前記主部材及び前記補強材の各板厚をパラメータとして含むことを特徴とする請求項1に記載のパネル構造体の補強材配設方法。   The approximate expression of the load-displacement curve includes the thickness of each of the main member and the reinforcing material as parameters in addition to the load sharing ratio. Installation method. 前記パネル構造体はトラックのドアパネルであり、前記主部材はアウタパネルであって、前記補強材は前記アウタパネルの内面に取り付けられた補強材であることを特徴とする請求項1又は2に記載のパネル構造体の補強材配設方法。   The panel according to claim 1, wherein the panel structure is a door panel of a truck, the main member is an outer panel, and the reinforcing material is a reinforcing material attached to an inner surface of the outer panel. A method of arranging a reinforcing material for a structure.
JP2005057751A 2005-03-02 2005-03-02 Method for arranging reinforcing member of panel structure Pending JP2006240448A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005057751A JP2006240448A (en) 2005-03-02 2005-03-02 Method for arranging reinforcing member of panel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005057751A JP2006240448A (en) 2005-03-02 2005-03-02 Method for arranging reinforcing member of panel structure

Publications (1)

Publication Number Publication Date
JP2006240448A true JP2006240448A (en) 2006-09-14

Family

ID=37047277

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005057751A Pending JP2006240448A (en) 2005-03-02 2005-03-02 Method for arranging reinforcing member of panel structure

Country Status (1)

Country Link
JP (1) JP2006240448A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008041381A1 (en) * 2006-10-03 2010-02-04 ダイハツ工業株式会社 Structural member design method and structural member
JP2010250483A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Stiffening method for structure
WO2013094176A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Panel evaluation method
JP2017148851A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 Steel plate shape correcting method and steel plate manufacturing method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733048A (en) * 1993-07-23 1995-02-03 Mitsubishi Motors Corp Reinforcing member disposing method for panel structure body
JP2001171349A (en) * 1999-12-16 2001-06-26 Mitsubishi Automob Eng Co Ltd Reinforcement arrangement method for panel structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0733048A (en) * 1993-07-23 1995-02-03 Mitsubishi Motors Corp Reinforcing member disposing method for panel structure body
JP2001171349A (en) * 1999-12-16 2001-06-26 Mitsubishi Automob Eng Co Ltd Reinforcement arrangement method for panel structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008041381A1 (en) * 2006-10-03 2010-02-04 ダイハツ工業株式会社 Structural member design method and structural member
JP5087003B2 (en) * 2006-10-03 2012-11-28 ダイハツ工業株式会社 Structural member design method and structural member
JP2010250483A (en) * 2009-04-14 2010-11-04 Nippon Steel Corp Stiffening method for structure
WO2013094176A1 (en) * 2011-12-20 2013-06-27 Jfeスチール株式会社 Panel evaluation method
JP2013130429A (en) * 2011-12-20 2013-07-04 Jfe Steel Corp Panel evaluation method
TWI505955B (en) * 2011-12-20 2015-11-01 Jfe Steel Corp Evaluation method for panel
JP2017148851A (en) * 2016-02-26 2017-08-31 Jfeスチール株式会社 Steel plate shape correcting method and steel plate manufacturing method

Similar Documents

Publication Publication Date Title
JP6414374B1 (en) Analysis method, design method, manufacturing method, and program
Luo et al. Shear lag in box girder bridges
KR20190085126A (en) Shape optimizing method and shape optimizing device for reinforcing member of vehicle body
JP2006240448A (en) Method for arranging reinforcing member of panel structure
US10150519B2 (en) Apparatus and method for designing deck sill and rear post
CN114502451B (en) Method and device for analyzing reduction of vibration noise of plate member of automobile
KR20130037492A (en) Method for predicting development of curved plates
Zelickman et al. Layout optimization of post-tensioned cables in concrete slabs
JP5302909B2 (en) Dent stiffness prediction method
JP4166888B2 (en) Elastic buckling strength evaluation method using linear finite element analysis
JP3786171B2 (en) Method for arranging reinforcing material for panel structure
Moon et al. Flexural behavior of member with unbonded tendons. I: Theory
JP2021082152A (en) Evaluation method of continuous beam and evaluation program of continuous beam
JP2962107B2 (en) Reinforcement arrangement method of panel structure
JP6292173B2 (en) Method for determining vehicle center pillar structure
JP6977817B1 (en) Vibration noise reduction analysis device and analysis method for automobile panel parts
KR101634880B1 (en) Method of optimizing car deck structure of two-way car ferry
Ashraf et al. Sway of semi-rigid steel frames: Part 1: Regular frames
JP2020021234A (en) Plate frame structure design system, plate frame structure design method, and plate frame structure design program
JP6677219B2 (en) Body roof reinforcement structure
Žanić et al. Mathematical models for analysis and optimization in concept and preliminary ship structural design
JP6586842B2 (en) Fatigue strength evaluation method for metal materials
JP2005222178A (en) Optimum design device for structure, and program
Belenkiy et al. Effective plating in elastic–plastic range of primary support members in double-skin ship structures
JP7401769B2 (en) Structural property analysis method, structural property analysis device and computer program

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Effective date: 20060928

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A621 Written request for application examination

Effective date: 20080222

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100729

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100901

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110406