JP2006234559A - Flow site meter - Google Patents

Flow site meter Download PDF

Info

Publication number
JP2006234559A
JP2006234559A JP2005049160A JP2005049160A JP2006234559A JP 2006234559 A JP2006234559 A JP 2006234559A JP 2005049160 A JP2005049160 A JP 2005049160A JP 2005049160 A JP2005049160 A JP 2005049160A JP 2006234559 A JP2006234559 A JP 2006234559A
Authority
JP
Japan
Prior art keywords
flow
fine particles
flow path
sample liquid
flow cell
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005049160A
Other languages
Japanese (ja)
Inventor
Masujiro Hisatani
益士郎 久谷
Nariyuki Nakada
成幸 中田
Hiroyoshi Hayashi
弘能 林
Akihide Ito
彰英 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Engineering and Shipbuilding Co Ltd
Original Assignee
Mitsui Engineering and Shipbuilding Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Engineering and Shipbuilding Co Ltd filed Critical Mitsui Engineering and Shipbuilding Co Ltd
Priority to JP2005049160A priority Critical patent/JP2006234559A/en
Publication of JP2006234559A publication Critical patent/JP2006234559A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress the occurrence of liquid droplets in which two particulates different in kinds are taken and to enhance accuracy of fraction collection. <P>SOLUTION: In this flow site meter equipped with a main body part for individually discriminating particulates in a process for allowing a sample liquid 14, in which a large number of particulates are floated, to flow through a flow cell 20 and the fraction collection means 28 of particulates on the discharge side of the sample liquid of the flow cell 20, a partition means 38 for throttling a flow channel 36 of the sample liquid connecting the flow cell 20 and the fraction collection means 28 is attached to the flow channel 36. A controller 40 controls the operation of the partition means 38 so as to be matched with the passing time of the particulates, which are discriminated in the main body part, through the partition means 38. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はフローサイトメータに係り、特にサンプル液の排出側に微粒子の分取手段を具備したフローサイトメータに関する。   The present invention relates to a flow cytometer, and more particularly to a flow cytometer provided with a means for collecting fine particles on the discharge side of a sample liquid.

フローサイトメータは、サンプル液を透明なフローセル内に細長く流すことによって、サンプル液中に存在する細胞、微生物、マイクロビーズなどの微粒子をその特性に応じて光学的に識別し、計数するようにした測定解析装置である。また、必要に応じてサンプル液の排出側に分取手段を取り付け、識別した微粒子を分取手段によって分取することもできる。   The flow cytometer is designed to optically identify and count microparticles such as cells, microorganisms, and microbeads that exist in the sample solution by flowing the sample solution into a transparent flow cell. It is a measurement analysis device. Further, if necessary, a sorting means can be attached to the sample liquid discharge side, and the identified fine particles can be sorted by the sorting means.

図4は一般的なフローサイトメータの概念図である。フローチャンバ10にはインサーションノズル12が奥深く挿入され、このインサーションノズル12の下端開口から微粒子を含んだサンプル液14がフローチャンバ10内に注入される。フローチャンバ10にはシース液の供給口16が接続している。供給口16から流れ込んだシース液18がサンプル液14を包むようにしてフローチャンバ10の下部に設けたフローセル20に向けて細長い押し出し流を形成する。この際シース液18とサンプル液14の流量を制御することにより、フローセル20には微粒子が1個ずつ縦に並んだ状態で流れるようにする。   FIG. 4 is a conceptual diagram of a general flow cytometer. An insertion nozzle 12 is inserted deeply into the flow chamber 10, and a sample liquid 14 containing fine particles is injected into the flow chamber 10 from the lower end opening of the insertion nozzle 12. A sheath liquid supply port 16 is connected to the flow chamber 10. The sheath liquid 18 flowing from the supply port 16 wraps the sample liquid 14 and forms an elongated extruded flow toward the flow cell 20 provided at the lower part of the flow chamber 10. At this time, the flow rates of the sheath liquid 18 and the sample liquid 14 are controlled so that the fine particles flow in the flow cell 20 one by one in a vertically aligned state.

フローセル20の位置にはレーザ光源22が配置されており、フローセル20内にレーザ光を照射している。サンプル液14中に微粒子が存在するとレーザ光が散乱する。また、微粒子に予め蛍光色素を付与しておくとレーザ光の照射によって微粒子が蛍光を発する。レーザ光源22の対向位置(又は側向位置)には発生した散乱光や蛍光を測定する検出器24が配置されている。検出器24で測定した散乱光や蛍光をデータ処理器26で解析することによってフローセル20を通過した個々の微粒子の種類を特定するとともに、所定時間当たりにフローセル20を通過した微粒子をその種類毎にカウントする。   A laser light source 22 is disposed at the position of the flow cell 20 and irradiates the flow cell 20 with laser light. When fine particles are present in the sample liquid 14, the laser light is scattered. In addition, if a fluorescent dye is previously applied to the fine particles, the fine particles emit fluorescence when irradiated with laser light. A detector 24 for measuring the generated scattered light and fluorescence is arranged at a position (or a side position) opposite to the laser light source 22. By analyzing the scattered light and fluorescence measured by the detector 24 with the data processor 26, the type of each fine particle that has passed through the flow cell 20 is specified, and the fine particle that has passed through the flow cell 20 per predetermined time is identified for each type. Count.

フローセル20のサンプル液の排出側には微粒子の分取手段28が設けられている。分取手段28は制御器29と荷電器30と一対の偏向板32a,32bと3個の採取容器34a,34b,34cとによって構成される。超音波振動などによってフローセル20の下端ノズルから連続的に滴下する液滴は例えば目的の微粒子1個を含む液滴、微粒子を含まない液滴、目的外の微粒子1個を含む液滴の3種類に区分される。したがって、分取手段28はこの3種類の液滴をそれぞれ別の採取容器34a,34b,34cに分取する目的で作動する。   Fine particle sorting means 28 is provided on the sample cell discharge side of the flow cell 20. The sorting means 28 includes a controller 29, a charger 30, a pair of deflecting plates 32a and 32b, and three collection containers 34a, 34b, and 34c. The droplets continuously dropped from the lower end nozzle of the flow cell 20 by ultrasonic vibration or the like are, for example, three types of droplets including a target fine particle, a droplet not containing a fine particle, and a droplet containing a non-target fine particle. It is divided into. Therefore, the sorting means 28 operates for the purpose of sorting the three types of droplets into separate collection containers 34a, 34b, 34c.

すなわち、制御器29はデータ処理器26からの信号に基いて、荷電器30の側方位置を落下する液滴31が上記3種類の区分のいずれであるかを判別し、液滴31が目的の微粒子1個を含む液滴である時には例えば液滴31が−帯電するように荷電器30を作動させる。また、液滴31が目的外の微粒子1個を含む液滴である時には液滴31が+帯電するように荷電器30を作動させる。また、液滴31が微粒子を含まない液滴である時には液滴31が帯電しないように荷電器30を作動させる。なお、液滴31が荷電器30によって−+に帯電しやすいように、サンプル液を包むシース液としては電解質溶液が使用される。   That is, based on the signal from the data processor 26, the controller 29 determines which of the above three types of the droplet 31 falling on the side position of the charger 30 is the target of the droplet 31. For example, the charger 30 is operated so that the droplet 31 is charged. Further, when the droplet 31 is a droplet including one undesired fine particle, the charger 30 is operated so that the droplet 31 is positively charged. Further, when the droplet 31 is a droplet not containing fine particles, the charger 30 is operated so that the droplet 31 is not charged. An electrolyte solution is used as the sheath liquid that wraps the sample liquid so that the droplet 31 is easily charged to − + by the charger 30.

荷電器30の下方には一対の偏向板32a,32bが末広がりに配置されている。偏向板32aは+極板であり、偏向板32bは−極板である。したがって、荷電器30によって−帯電した液滴31は偏向板32a,32b間の空間を落下する過程で+極板である偏向板32a側に引き寄せられ、偏向板32aの下方に配置された採取容器34aに採取される。一方、荷電器30によって+帯電した液滴31は−極板である偏向板32b側に引き寄せられ、偏向板32bの下方に配置された採取容器34cに採取される。帯電していない液滴31は中央の採取容器34bに採取される。   A pair of deflecting plates 32 a and 32 b are arranged below the charger 30 so as to spread outwardly. The deflection plate 32a is a positive electrode plate, and the deflection plate 32b is a negative electrode plate. Therefore, in the process of dropping the space between the deflecting plates 32a and 32b, the droplet 31 charged by the charger 30 is drawn toward the deflecting plate 32a that is the positive electrode plate, and the collection container disposed below the deflecting plate 32a. Taken at 34a. On the other hand, the droplet 31 positively charged by the charger 30 is drawn toward the deflecting plate 32b, which is a negative electrode, and is collected in a collecting container 34c disposed below the deflecting plate 32b. The uncharged droplet 31 is collected in the central collection container 34b.

その結果、目的の微粒子は採取容器34aに、目的外の微粒子は採取容器34cに分取される。また、上記と同様の操作によって、例えば第1目的の微粒子を採取容器34aに、第2目的の微粒子を採取容器34cに、目的外の微粒子を採取容器34bに分取することも可能である。このようにして、サンプル液中の微粒子を目的に応じて2〜3種類に分取することができる(以上、例えば非特許文献1又は特許文献1参照)。
FCMの原理入門講座、[online]、ベックマンコールター社,[平成17年1月25日検索]、インターネット<URL:http//www.bc-cytometry.com/FCM/fcmprinciple.html> 特表2003−512605号公報
As a result, target fine particles are collected in the collection container 34a, and non-target fine particles are collected in the collection container 34c. Further, by the same operation as described above, for example, it is possible to sort the first target fine particles into the collection container 34a, the second target fine particles into the collection container 34c, and the non-target fine particles into the collection container 34b. In this way, the fine particles in the sample liquid can be sorted into two or three types according to the purpose (see, for example, Non-Patent Document 1 or Patent Document 1).
FCM Principles Introduction Course, [online], Beckman Coulter, Inc. [searched on January 25, 2005], Internet <URL: http // www.bc-cytometry.com / FCM / fcmprinciple.html> Special table 2003-512605 gazette

しかしながら、上記従来技術に係るフローサイトメータではサンプル液中の微粒子相互が接近又は接触状態でフローセル20に流れ込み、そのままフローセル20の出口流路から排出される場合がある。このため、排出される1つの液滴中に2個の微粒子が取り込まれる場合がある。上記した分取手段28は1つの液滴を単位として微粒子を分取するものであるから、1つの液滴に種類の異なる2個の微粒子が取り込まれている時には、これらの微粒子を分けることが不可能である。このため、種類の異なる2個の微粒子を取り込んだ液滴が発生すると、分取精度が低下するという問題点があった。   However, in the flow cytometer according to the above prior art, the fine particles in the sample liquid may flow into the flow cell 20 in an approaching or contacting state and may be discharged as they are from the outlet channel of the flow cell 20. For this reason, two fine particles may be taken into one discharged droplet. Since the above-described sorting means 28 separates the fine particles in units of one droplet, when two different types of fine particles are taken into one droplet, these fine particles can be separated. Impossible. For this reason, when the droplet which took in two fine particles from which a kind differs was generated, there was a problem that sorting accuracy fell.

本発明の目的は上記従来技術の問題点を改善し、種類の異なる2個の微粒子を取り込んだ液滴の発生を抑制し、分取精度を向上させることが可能なフローサイトメータを提供することにある。   An object of the present invention is to provide a flow cytometer that can improve the sorting accuracy by improving the sorting problems by improving the problems of the above prior art, suppressing the generation of droplets incorporating two different types of fine particles. It is in.

上記目的を達成するために本発明に係るフローサイトメータは、複数の微粒子が浮遊するサンプル液をフローセル内に流す過程で前記微粒子を個々に識別するようにした本体部と、前記フローセルのサンプル液の排出側に微粒子の分取手段とを具備したフローサイトメータにおいて、前記フローセルと分取手段とを結ぶサンプル液の流路に当該流路を絞る仕切手段を取り付けたこと特徴とする。この構成のフローサイトメータにおいては、前記本体部で識別した微粒子が前記仕切手段を通過する時刻に合わせて仕切手段の作動を制御する制御手段を具備したことが望ましい。また、前記流路には前記仕切手段を上下方向に2段に配設することができる。前記仕切手段による流路の絞り量は流路断面の70〜80%とし、残りの20〜30%の流路断面ではサンプル液は流れるが、微粒子は通過できないようにする。   In order to achieve the above object, a flow cytometer according to the present invention includes a main body configured to individually identify the fine particles in a process of flowing a sample liquid in which a plurality of fine particles are suspended in the flow cell, and a sample liquid of the flow cell. In the flow cytometer having fine particle sorting means on the discharge side, a partition means for restricting the flow path is attached to the flow path of the sample liquid connecting the flow cell and the sorting means. In the flow cytometer having this configuration, it is preferable that the flow cytometer further includes a control unit that controls the operation of the partition unit in accordance with the time when the particulates identified by the main body pass through the partition unit. Further, the partitioning means can be arranged in two stages in the vertical direction in the flow path. The amount of restriction of the flow path by the partitioning means is 70 to 80% of the cross section of the flow path, and the sample liquid flows through the remaining flow path cross section of 20 to 30%, but the fine particles cannot pass.

本発明によれば、フローセルと分取手段とを結ぶサンプル液の流路に当該流路を絞る仕切手段を取り付けた構成とされている。このため、種類の異なる微粒子が互いに接近・接触状態で仕切手段の位置を通過する際に、仕切手段を作動させることによって微粒子同士を切り離すことができる。このため、流路の下端開口から滴下する液滴には微粒子が1個づつ取り込まれることになり、後段の分取手段での分取精度が向上する。   According to the present invention, the partition means for restricting the flow path is attached to the flow path of the sample liquid connecting the flow cell and the sorting means. For this reason, when different kinds of fine particles pass through the position of the partitioning means in the state of approaching and contacting each other, the fine particles can be separated by operating the partitioning means. For this reason, the fine particles are taken in one by one in the droplets dropped from the lower end opening of the flow path, and the sorting accuracy in the subsequent sorting means is improved.

また、本発明では本体部で識別した微粒子が仕切手段を通過する時刻に合わせて仕切手段の作動を制御する制御手段を具備しているので、微粒子同士の切り離し操作を適正、確実に行うことができる。   Further, in the present invention, since the control means for controlling the operation of the partitioning means in accordance with the time when the microparticles identified by the main body passes through the partitioning means, the operation for separating the microparticles can be performed appropriately and reliably. it can.

図1は本発明に係るフローサイトメータの実施形態を示す系統図である。図1において、図4と同一の符号を付した要素は、図4に示したものと同一の構成、機能を備えており、その説明を省略する。本実施形態に係るフローセル20のサンプル液の排出側には、フローセル20と分取手段28とを結ぶサンプル液の流路36が設けられており、この流路36に当該流路を絞る仕切手段38が取り付けられている。仕切手段38としては制御性、作動の敏速性の観点から圧電素子によって作動する仕切弁が好ましく採用される。仕切手段38は本体部であるデータ処理器26で識別した微粒子が当該仕切手段38を通過する時刻に合わせて、その作動が制御器40によって制御される。   FIG. 1 is a system diagram showing an embodiment of a flow cytometer according to the present invention. 1, elements having the same reference numerals as those in FIG. 4 have the same configurations and functions as those shown in FIG. 4, and descriptions thereof are omitted. A flow path 36 for sample liquid that connects the flow cell 20 and the sorting means 28 is provided on the sample liquid discharge side of the flow cell 20 according to the present embodiment, and partitioning means for restricting the flow path to the flow path 36. 38 is attached. As the partition means 38, a gate valve operated by a piezoelectric element is preferably employed from the viewpoint of controllability and quick operation. The operation of the partition unit 38 is controlled by the controller 40 in accordance with the time when the particulates identified by the data processor 26 as the main body pass through the partition unit 38.

図2は仕切手段38の作動状況を示した説明図である。図2(1)はフローセル20において種類の異なる微粒子Cと微粒子Dが接近又は接触状態で検出された状況を示しており、フローセル20の下流側の流路36には微粒子Aと微粒子Bが先行して流れている。このような状況でサンプル液を流し続けると微粒子Aや微粒子Bはそれぞれ一つの液滴に取り込まれて問題なく分取されるが、微粒子Cと微粒子Dは一つの液滴に取り込まれた状態で流路36の下端開口から滴下する恐れが強い。   FIG. 2 is an explanatory view showing the operating state of the partition means 38. FIG. 2 (1) shows a situation where different types of fine particles C and fine particles D are detected in the flow cell 20 in an approaching or contacting state, and the fine particles A and B are preceded in the flow path 36 on the downstream side of the flow cell 20. It is flowing. If the sample liquid continues to flow in such a situation, the fine particles A and B are each taken in one droplet and sorted without any problem, but the fine particles C and D are taken in one droplet. There is a strong risk of dripping from the lower end opening of the flow path 36.

したがって、図2(1)に示した種類の異なる微粒子Cと微粒子Dの接近・接触状態をデータ処理器26が検出すると、データ処理器26は検出信号を制御器40に送る。フローセル20内及び流路36を流れるサンプル液の流速は一定であるから、フローセル20内の所定位置で検出された微粒子Cと微粒子Dが仕切手段38の取り付け位置を通過するまでの時間は一定である。したがって、制御器40はデータ処理器26からの検出信号に基き、微粒子Cと微粒子Dが仕切手段38の取り付け位置を通過する時刻に合わせて仕切手段38が流路36を絞る方向に仕切手段38を作動させる。   Therefore, when the data processor 26 detects the approach / contact state between the different kinds of fine particles C and fine particles D shown in FIG. 2 (1), the data processor 26 sends a detection signal to the controller 40. Since the flow rate of the sample liquid flowing in the flow cell 20 and the flow path 36 is constant, the time until the fine particles C and D detected at a predetermined position in the flow cell 20 pass through the attachment position of the partition means 38 is constant. is there. Therefore, the controller 40 is based on the detection signal from the data processor 26, and the partitioning means 38 in such a direction that the partitioning means 38 narrows the flow path 36 in accordance with the time when the particulates C and D pass the attachment position of the partitioning means 38. Is activated.

図2(2)は仕切手段38が流路36を絞った直後の状況を示している。すなわち、仕切手段38をタイミングよく作動させることによって、微粒子Cと微粒子Dとを上下に切り離すようにして流路36が絞られる。仕切手段38による流路36の絞り量は流路断面積の70〜80%とし、残りの20〜30%の流路断面ではサンプル液は流れるが、微粒子Dは通過できないようにする。その結果、図2(3)に示したように、微粒子Dは仕切手段38の上方に留まるとともに、微粒子Cは絞り部から流入したサンプル液に押し流され、微粒子Dと微粒子Cとの間隔が大きくなる。   FIG. 2 (2) shows a situation immediately after the partitioning means 38 throttles the flow path 36. That is, by operating the partition means 38 with good timing, the flow path 36 is narrowed so that the fine particles C and D are separated vertically. The amount of restriction of the flow path 36 by the partitioning means 38 is 70 to 80% of the cross-sectional area of the flow path, and the sample liquid flows through the remaining 20 to 30% of the cross-section of the flow path, but the fine particles D cannot pass therethrough. As a result, as shown in FIG. 2 (3), the fine particles D remain above the partitioning means 38, and the fine particles C are pushed away by the sample liquid flowing in from the constricted portion, so that the distance between the fine particles D and the fine particles C is large. Become.

そこで、仕切手段38を開くとサンプル液の流れが回復する。微粒子Dと微粒子Cとの間隔が大きくなった結果、図2(4)に示したように、微粒子Cを含む液滴に微粒子Dが同伴することを防止できる。このため、流路36の下端開口から滴下する液滴には微粒子Cや微粒子Dが1個づつ取り込まれることになり、後段の分取手段28での分取精度が向上する。   Therefore, when the partition means 38 is opened, the flow of the sample liquid is recovered. As a result of the increase in the distance between the fine particles D and the fine particles C, it is possible to prevent the fine particles D from accompanying the droplets containing the fine particles C as shown in FIG. For this reason, the fine particles C and the fine particles D are taken in one by one in the droplets dropped from the lower end opening of the flow path 36, and the sorting accuracy in the subsequent sorting means 28 is improved.

なお、フローセル20において微粒子が適正な間隔を保持して流れているか、又は同種類の微粒子が相互に接近・接触状態である時は、分取操作上の問題が発生しないので、制御器40は仕切手段38を格別に作動させる必要はない。   Note that when the fine particles are flowing in the flow cell 20 while maintaining an appropriate interval, or when the same kind of fine particles are close to each other and in contact with each other, there is no problem in the sorting operation. There is no need to actuate the partition means 38 specially.

図3は本発明に係るフローサイトメータの他の実施形態とその作動状況を示した説明図である。本実施形態では流路36に仕切手段38A,38Bが所定の間隔で上下2段に配設されている。図3(1)はフローセル20において種類の異なる3個の微粒子F,G,Hが接近又は接触状態で検出された状況を示している。このような状況でサンプル液を流し続けると種類の異なる微粒子同士が一つの液滴に取り込まれた状態で流路36の下端開口から滴下する恐れが強い。   FIG. 3 is an explanatory view showing another embodiment of the flow cytometer according to the present invention and its operating condition. In the present embodiment, partitioning means 38A, 38B are disposed in the flow path 36 in two upper and lower stages at a predetermined interval. FIG. 3 (1) shows a situation in which three different types of fine particles F, G, H are detected in the flow cell 20 in an approaching or contacting state. If the sample liquid is kept flowing in such a situation, there is a strong possibility that different types of fine particles are dropped from the lower end opening of the flow path 36 in a state where the fine particles are taken into one droplet.

したがって、このような状態をデータ処理器26が検出すると、データ処理器26は検出信号を制御器40に送る。すると、制御器40はデータ処理器26からの検出信号に基き、微粒子F,G,Hが第1段の仕切手段38Aの取り付け位置を通過する時刻に合わせて流路36を絞る方向に仕切手段38Aを作動させる。   Therefore, when the data processor 26 detects such a state, the data processor 26 sends a detection signal to the controller 40. Then, the controller 40 is based on the detection signal from the data processor 26, and the partition means in the direction of narrowing the flow path 36 in accordance with the time when the fine particles F, G, H pass the mounting position of the first-stage partition means 38A. Activate 38A.

図3(2)は仕切手段38Aが流路36を絞った直後の状況を示している。すなわち、仕切手段38Aをタイミングよく作動させることによって、微粒子Fを微粒子G,Hから切り離すようにして流路36が絞られる。その結果、図3(3)に示したように、微粒子G,Hは仕切手段38Aの上方に留まるとともに、微粒子Fは絞り部から流入したサンプル液に押し流され、微粒子Fと微粒子G,Hとの間隔が大きくなる。   FIG. 3 (2) shows a situation immediately after the partitioning means 38 A throttles the flow path 36. That is, by operating the partitioning means 38A with good timing, the flow path 36 is narrowed so as to separate the fine particles F from the fine particles G and H. As a result, as shown in FIG. 3 (3), the fine particles G and H remain above the partitioning means 38A, and the fine particles F are pushed away by the sample liquid flowing in from the constricted portion, and the fine particles F, the fine particles G and H, and The interval of becomes larger.

そこで、仕切手段38Aを開くとサンプル液の流れが回復し、図3(4)に示したように、微粒子Fと間隔をあけた微粒子G,Hが接近・接触状態で流れる。このような状況でサンプル液を流し続けると、微粒子Fは問題ないが、種類の異なる微粒子G,H同士が一つの液滴に取り込まれた状態で流路36の下端開口から滴下する恐れが強い。したがって、制御器40は微粒子G,Hが第2段の仕切手段38Bの取り付け位置を通過する時刻に合わせて流路36を絞る方向に仕切手段38Bを作動させる。   Therefore, when the partitioning means 38A is opened, the flow of the sample liquid is restored, and as shown in FIG. 3 (4), the fine particles G and H spaced apart from each other flow in an approaching / contacting state. If the sample liquid continues to flow in such a situation, there is no problem with the fine particles F, but there is a strong possibility that the different types of fine particles G and H will be dropped from the lower end opening of the flow path 36 in a state where they are taken into one droplet. . Therefore, the controller 40 operates the partition unit 38B in the direction of narrowing the flow path 36 in accordance with the time when the fine particles G and H pass the attachment position of the second stage partition unit 38B.

図3(5)は仕切手段38Bが流路36を絞った直後の状況を示している。すなわち、仕切手段38Bをタイミングよく作動させることによって、微粒子Gを微粒子Hから切り離すようにして流路36が絞られる。その結果、図3(6)に示したように、微粒子Hは仕切手段38Bの上方に留まるとともに、微粒子Gは絞り部から流入したサンプル液に押し流され、微粒子Gと微粒子Hとの間隔が大きくなる。次に図3(7)に示したように、仕切手段38を開くとサンプル液の流れが回復し、微粒子Gと微粒子Hは適正な間隔を有して流路36を流れることになる。   FIG. 3 (5) shows a situation immediately after the partitioning means 38 </ b> B throttles the flow path 36. That is, the flow path 36 is narrowed so that the fine particles G are separated from the fine particles H by operating the partitioning means 38B with good timing. As a result, as shown in FIG. 3 (6), the fine particles H remain above the partitioning means 38B, and the fine particles G are pushed away by the sample liquid flowing in from the constricted portion, and the interval between the fine particles G and the fine particles H is large. Become. Next, as shown in FIG. 3 (7), when the partition means 38 is opened, the flow of the sample liquid is restored, and the fine particles G and H flow through the flow path 36 with an appropriate interval.

このため、流路36の下端開口から滴下する液滴にはフローセル20を通過した時点では接近・接触状態であった3個の微粒子F,G,Hがそれぞれ間隔をあけて流路36に流れることになる。したがって、流路36の出口では微粒子F,G,Hがそれぞれ1個づつ液滴に取り込まれて滴下することになり、後段の分取手段28での分取精度が向上する。   For this reason, in the liquid droplet dripping from the lower end opening of the flow path 36, the three fine particles F, G, and H that were in the approach / contact state at the time of passing through the flow cell 20 flow into the flow path 36 at intervals. It will be. Therefore, the fine particles F, G, and H are respectively taken into the droplets and dropped at the outlet of the flow path 36, and the sorting accuracy in the subsequent sorting unit 28 is improved.

本発明に係るフローサイトメータの実施形態を示す系統図である。It is a systematic diagram showing an embodiment of a flow cytometer according to the present invention. 仕切手段38の作動状況を示した説明図である。It is explanatory drawing which showed the operating condition of the partition means. 本発明に係るフローサイトメータの他の実施形態とその作動状況を示した説明図である。It is explanatory drawing which showed other embodiment of the flow cytometer which concerns on this invention, and its operating condition. 従来技術の一般的なフローサイトメータの概念図である。It is a conceptual diagram of the general flow cytometer of a prior art.

符号の説明Explanation of symbols

10………フローチャンバ、12………インサーションノズル、14………サンプル液、16………(シース液の)供給口、18………シース液、20………フローセル、22………レーザ光源、24………検出器、26………データ処理器、28………分取手段、30………荷電器、32a,32b………偏向板、34a,34b,34c………採取容器、36………流路、38,38A,38B………仕切手段、40………制御器。 10 ......... Flow chamber, 12 ......... Insertion nozzle, 14 ......... Sample liquid, 16 ......... Supply port (sheath liquid), 18 ......... Sheath liquid, 20 ......... Flow cell, 22 ... ... Laser light source, 24 ... Detector, 26 ... Data processor, 28 ... Sorting means, 30 ... Charger, 32a, 32b ......... Deflecting plates, 34a, 34b, 34c ... ... collection container, 36 ... flow path, 38, 38A, 38B ... partitioning means, 40 ... controller.

Claims (4)

複数の微粒子が浮遊するサンプル液をフローセル内に流す過程で前記微粒子を個々に識別するようにした本体部と、前記フローセルのサンプル液の排出側に微粒子の分取手段とを具備したフローサイトメータにおいて、前記フローセルと分取手段とを結ぶサンプル液の流路に当該流路を絞る仕切手段を取り付けたこと特徴とするフローサイトメータ。   A flow cytometer comprising: a main body part for individually identifying the fine particles in a process of flowing a sample liquid in which a plurality of fine particles are suspended in the flow cell; and a fine particle sorting means on the sample liquid discharge side of the flow cell The flow cytometer according to claim 1, wherein a partition means for restricting the flow path is attached to the flow path of the sample liquid connecting the flow cell and the sorting means. 前記本体部で識別した微粒子が前記仕切手段を通過する時刻に合わせて仕切手段の作動を制御する制御手段を具備したことを特徴とする請求項1に記載のフローサイトメータ。   The flow cytometer according to claim 1, further comprising a control unit that controls the operation of the partitioning unit in accordance with a time at which the particulates identified by the main body pass through the partitioning unit. 前記流路には前記仕切手段が上下方向に2段に配設されていることを特徴とする請求項1又は請求項2に記載のフローサイトメータ。   The flow cytometer according to claim 1 or 2, wherein the partitioning means is disposed in the flow path in two stages in the vertical direction. 前記仕切手段による流路を絞り量が流路断面の70〜80%であり、残りの20〜30%の流路断面ではサンプル液は流れるが、前記微粒子は通過できないようにされたことを特徴とする請求項1乃至請求項3のいずれかに記載のフローサイトメータ。   The amount of restriction in the flow path by the partitioning means is 70 to 80% of the cross section of the flow path, and the sample liquid flows in the remaining 20 to 30% of the flow path cross section, but the fine particles cannot be passed. The flow cytometer according to any one of claims 1 to 3.
JP2005049160A 2005-02-24 2005-02-24 Flow site meter Pending JP2006234559A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049160A JP2006234559A (en) 2005-02-24 2005-02-24 Flow site meter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049160A JP2006234559A (en) 2005-02-24 2005-02-24 Flow site meter

Publications (1)

Publication Number Publication Date
JP2006234559A true JP2006234559A (en) 2006-09-07

Family

ID=37042377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049160A Pending JP2006234559A (en) 2005-02-24 2005-02-24 Flow site meter

Country Status (1)

Country Link
JP (1) JP2006234559A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164580A (en) * 2006-12-08 2008-07-17 Furukawa Electric Co Ltd:The Device and method for identifying and dispensing specimen
JP2011145074A (en) * 2010-01-12 2011-07-28 Mitsui Eng & Shipbuild Co Ltd Cell sorter, flow cytometer, and cell sorting method
JP2011527751A (en) * 2008-07-08 2011-11-04 ヴァンテージ テクノロジー コーポレイション System and method for in-line monitoring of particles in opaque flow to select objects in multi-component flow
JP2012152148A (en) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp Nucleic acid analysis device
JP2018153165A (en) * 2017-03-21 2018-10-04 日本精工株式会社 Cell sorting device and cell sorting method

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228040A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Flow cell device
JPH03503808A (en) * 1989-05-01 1991-08-22 クールター コーポレーション Particle detection and classification device and method
JPH04110639A (en) * 1990-08-30 1992-04-13 Canon Inc Particle fractionating apparatus
JPH05296914A (en) * 1992-02-20 1993-11-12 Canon Inc Method and device for manipulating particle and measuring instrument utilizing them
JP2002286594A (en) * 2001-03-28 2002-10-03 Olympus Optical Co Ltd Mechanism for conveying fine particulate
JP2003512605A (en) * 1999-10-21 2003-04-02 サイトメーション, インコーポレイテッド Temporary dynamic flow cytometer analysis system
WO2004083823A1 (en) * 2003-03-19 2004-09-30 Nec Corporation Microchip, sampling method, sample separating method, sample analyzing method, and sample recovering method
JP2005000851A (en) * 2003-06-13 2005-01-06 Kanagawa Acad Of Sci & Technol Movable damming structure in micro channel

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63228040A (en) * 1987-03-18 1988-09-22 Hitachi Ltd Flow cell device
JPH03503808A (en) * 1989-05-01 1991-08-22 クールター コーポレーション Particle detection and classification device and method
JPH04110639A (en) * 1990-08-30 1992-04-13 Canon Inc Particle fractionating apparatus
JPH05296914A (en) * 1992-02-20 1993-11-12 Canon Inc Method and device for manipulating particle and measuring instrument utilizing them
JP2003512605A (en) * 1999-10-21 2003-04-02 サイトメーション, インコーポレイテッド Temporary dynamic flow cytometer analysis system
JP2002286594A (en) * 2001-03-28 2002-10-03 Olympus Optical Co Ltd Mechanism for conveying fine particulate
WO2004083823A1 (en) * 2003-03-19 2004-09-30 Nec Corporation Microchip, sampling method, sample separating method, sample analyzing method, and sample recovering method
JP2005000851A (en) * 2003-06-13 2005-01-06 Kanagawa Acad Of Sci & Technol Movable damming structure in micro channel

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008164580A (en) * 2006-12-08 2008-07-17 Furukawa Electric Co Ltd:The Device and method for identifying and dispensing specimen
JP2011527751A (en) * 2008-07-08 2011-11-04 ヴァンテージ テクノロジー コーポレイション System and method for in-line monitoring of particles in opaque flow to select objects in multi-component flow
JP2011145074A (en) * 2010-01-12 2011-07-28 Mitsui Eng & Shipbuild Co Ltd Cell sorter, flow cytometer, and cell sorting method
JP2012152148A (en) * 2011-01-27 2012-08-16 Hitachi High-Technologies Corp Nucleic acid analysis device
JP2018153165A (en) * 2017-03-21 2018-10-04 日本精工株式会社 Cell sorting device and cell sorting method

Similar Documents

Publication Publication Date Title
JP5175105B2 (en) Method and apparatus for hydraulically sorting particles
JP2022191270A (en) System and method
JP5196683B2 (en) Method and apparatus for particle trajectory variation compensation of electrostatic classifiers for flow cell cytometers
JP6420894B2 (en) Particle sorting method and apparatus
EP3090248B1 (en) Particle sorting apparatus, particle sorting method, and non-transitory computer-readable storage medium storing program
EP2951557B1 (en) Methods and systems for assessing sample behavior in a flow cytometer
US7232687B2 (en) Multiple sorter monitor and control subsystem for flow cytometer
JP5980313B2 (en) Multi-way sorter system and method
US10481069B2 (en) Method and apparatus for monitoring and optimizing microfluidic particle sorting
EP3690424B1 (en) Particle sorting device, particle sorting method, and program
JP5304434B2 (en) Fine particle measuring device
JP2010038866A (en) Microchip, particulate dispensing device, and feed flow method
MXPA01001826A (en) Instrument for selecting and depositing multicellular organisms and other large objects.
JP2014095595A (en) Fine particle fraction collector and fine particle fraction collecting method
US8969071B2 (en) Passive chip-based droplet sorting
JP2006234559A (en) Flow site meter
JP2008122396A (en) Method and apparatus for sorting particles
JPS61137062A (en) Method and device for classifying fine particle
US20090148937A1 (en) Micro-fluidic system comprising an expanded channel
JP2010216992A (en) Cell sorter, and sample sorting method
JP2015141116A (en) blood cell analyzer
CN114082457B (en) Microchip and microparticle separation device
JP2024045478A (en) Particle purification method, single particle dispensing method, cell cluster analysis method, and device used therefor
WO2020249958A1 (en) Apparatus and method for sorting particles
JPH03122548A (en) Apparatus and method of separating grain, and measuring apparatus of grain using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090303

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090309

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090806