JP2006233279A - Surface-treated steel sheet having excellent seam weldability - Google Patents

Surface-treated steel sheet having excellent seam weldability Download PDF

Info

Publication number
JP2006233279A
JP2006233279A JP2005049937A JP2005049937A JP2006233279A JP 2006233279 A JP2006233279 A JP 2006233279A JP 2005049937 A JP2005049937 A JP 2005049937A JP 2005049937 A JP2005049937 A JP 2005049937A JP 2006233279 A JP2006233279 A JP 2006233279A
Authority
JP
Japan
Prior art keywords
steel sheet
treated steel
island
tin
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049937A
Other languages
Japanese (ja)
Other versions
JP4452198B2 (en
Inventor
Hiromitsu Date
博充 伊達
Masato Nakazawa
眞人 仲澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005049937A priority Critical patent/JP4452198B2/en
Publication of JP2006233279A publication Critical patent/JP2006233279A/en
Application granted granted Critical
Publication of JP4452198B2 publication Critical patent/JP4452198B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface-treated steel sheet whose weldability is stable and satisfactory. <P>SOLUTION: Regarding the surface-treated steel sheet having excellent seam weldability, in a surface-treated steel sheet comprising insular tin in a metallic state, regarding the exposed parts in a substrate layer of the insular tin, the number of the parts whose linear length in the optional direction of the steel sheet surface is ≥20 μm is ≤20 pieces/mm<SP>2</SP>. Alternatively, in a surface-treated steel sheet comprising insular tin in a metallic state, the substrate layer of the insular tin is an Fe-Ni alloy layer or an Fe-Ni-Sn alloy layer of 2 to 100 mg/m<SP>2</SP>in terms of an Ni content. Further, the alloy layer comprises one or more selected from Mo, Mo compounds, W and W compounds, in total, by 1 to 20 mg/m<SP>2</SP>expressed in terms of metal. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、飲料缶、食缶等に使用する溶接缶用の表面処理鋼板に関する。   The present invention relates to a surface-treated steel sheet for welding cans used for beverage cans, food cans and the like.

食品、飲料等に用いられる溶接缶には、ブリキや薄錫(Sn)めっき鋼板(LTS、TNS)が用いられ、缶胴を銅ワイヤーを介してシーム溶接する、”スードロニック法”として知られる溶接法により製缶される。良好なワイヤーシーム溶接性を得るためには、金属Snが一定量以上必要であるとされている。   Welding cans used for foods, beverages, etc. use tinplate or thin tin (Sn) plated steel plates (LTS, TNS), and welds known as “Sudronic”, where the can body is seam welded via copper wire. Canned by law. In order to obtain good wire seam weldability, it is said that a certain amount or more of metal Sn is necessary.

溶接缶用のSnめっき系表面処理鋼板は、通常、Snめっき後にリフロー処理を施すことで表面の金属光沢を得ているが、Snの付着量が少ない薄Snめっき鋼板(LTS、TNS)では、下地層との合金化の割合が高くなり、溶接性の確保に必要な金属Snを十分に残存させることが難しくなる。そこで、従来、Snの下地層として、合金化を抑制するバリア性の高い皮膜を設けたり、Snが溶融する際に凝集させて島状Snを形成させることで合金化を抑える工夫がなされてきた。   The Sn-plated surface-treated steel sheet for welding cans usually has a metallic luster on the surface by performing a reflow treatment after Sn plating, but in a thin Sn-plated steel sheet (LTS, TNS) with a small amount of Sn adhesion, The ratio of alloying with the underlayer increases, and it becomes difficult to sufficiently leave the metal Sn necessary for ensuring weldability. Therefore, conventionally, as a Sn underlayer, a film having a high barrier property that suppresses alloying has been provided, or when Sn melts, it has been devised to suppress alloying by forming an island-shaped Sn. .

特開昭60−184688号公報(特許文献1)では、Sn−Fe−Ni3元合金層上に、被覆面積率20〜70%の島状Snを有する鋼板が開示されている。特開昭60−208494号公報(特許文献2)では、凸部を有する金属Sn層を、各凸部の面積が1〜800000μm2、面積百分率20〜80%、厚さ0.007〜0.7μmとなるように形成した鋼板が開示されている。特開昭62−103390号公報(特許文献3)では、島状Snの径を30μm、0.1mm2当りの数を100個以上と規定することで、Snの厚みの効果で合金化を抑制する方法を提供している。 Japanese Patent Application Laid-Open No. 60-184688 (Patent Document 1) discloses a steel sheet having island-shaped Sn with a covering area ratio of 20 to 70% on a Sn—Fe—Ni ternary alloy layer. In Japanese Patent Application Laid-Open No. 60-208494 (Patent Document 2), a metal Sn layer having convex portions is formed such that each convex portion has an area of 1-800000 μm 2 , an area percentage of 20-80%, and a thickness of 0.007-0. A steel sheet formed to be 7 μm is disclosed. In Japanese Patent Application Laid-Open No. Sho 62-103390 (Patent Document 3), by defining the diameter of island-shaped Sn as 30 μm and the number per 0.1 mm 2 as 100 or more, alloying is suppressed by the effect of Sn thickness. Provides a way to do that.

また、特開昭61−3886号公報(特許文献4)には、Fe−P、Fe−Mo、Fe−P−Mo合金層により、FeSn2の生成を抑制する方法が開示されている。特開昭61−264196号公報(特許文献5)には、鋼板をめっき前にpH10以上の水溶液で陽極処理することで、Snめっきのリフロー処理で島状Snを得る方法、さらに、特開平1−136993号公報(特許文献6)には、Ni系下地処理被覆層を酸化剤溶液中で陽極電解して不動態皮膜を形成することで、リフロー時の合金化を抑制する方法が提供されている。 Japanese Laid-Open Patent Publication No. 61-3886 (Patent Document 4) discloses a method of suppressing the formation of FeSn 2 by using an Fe—P, Fe—Mo, or Fe—P—Mo alloy layer. Japanese Patent Application Laid-Open No. 61-264196 (Patent Document 5) discloses a method for obtaining island-shaped Sn by reflow treatment of Sn plating by anodizing a steel sheet with an aqueous solution having a pH of 10 or more before plating. JP-A-136993 (Patent Document 6) provides a method of suppressing alloying during reflow by forming a passive film by anodic electrolysis of a Ni-based base treatment coating layer in an oxidizing agent solution. Yes.

特開昭60−184688号公報JP 60-184688 A 特開昭60−208494号公報JP 60-208494 A 特開昭62−103390号公報JP-A-62-103390 特開昭61−3886号公報Japanese Patent Laid-Open No. 61-3886 特開昭61−264196号公報JP-A 61-264196 特開平1−136993号公報Japanese Patent Laid-Open No. 1-136993

しかしながら、前記特許文献に記された手段によって形成された鋼板表面の島状Snは、粗大であったり疎らであったりして、平均的には溶接性を向上させるものの、チリ発生による不良は散発し、コイルの全長・全幅にわたって安定して良好な溶接性を得ることは稀である。それが、製缶ラインにおける生産効率を低下させる要因となっている。
そこで、本発明は、上記従来技術の問題点を解決し、溶接性が安定して良好な表面処理鋼板を提供することを目的とする。
However, the island-shaped Sn on the surface of the steel sheet formed by the means described in the above-mentioned patent document is coarse or sparse and improves the weldability on average, but defects due to the generation of dust are sporadic. However, it is rare to obtain good weldability stably over the entire length and width of the coil. This is a factor that reduces the production efficiency in the can manufacturing line.
Accordingly, an object of the present invention is to solve the above-mentioned problems of the prior art and to provide a surface-treated steel sheet having stable weldability and good quality.

本発明者らは、上記の課題に対して鋭意検討し、Snめっき鋼板の溶接性が金属Sn量や島状Snの面積率、面積当りの数のみに支配されるのではなく、島状Snの分布の緻密さや均一性の影響も大きいことを見出した。さらに、良好な島状Snの分布は、下地に適当なめっきを施すことで実現できることを見出し、本発明に至ったものである。
即ち、本発明の主旨とするところは、
(1)金属状態の島状錫を有する表面処理鋼板であって、島状錫の下地層の露出部が、鋼板表面の任意の方向の直線長さで20μm以上である部分が20個/mm2以下であることを特徴とするシーム溶接性に優れた表面処理鋼板。
The present inventors diligently studied the above problems, and the weldability of the Sn-plated steel sheet is not controlled only by the amount of metal Sn, the area ratio of island-shaped Sn, or the number per area, but island-shaped Sn. It has been found that the influence of the denseness and uniformity of the distribution is large. Furthermore, it has been found that a good distribution of island-shaped Sn can be realized by applying appropriate plating to the base, and the present invention has been achieved.
That is, the main point of the present invention is that
(1) A surface-treated steel sheet having island-shaped tin in a metallic state, wherein the exposed portion of the underlayer of island-shaped tin is 20 pieces / mm where the linear length in any direction on the steel sheet surface is 20 μm or more. A surface-treated steel sheet excellent in seam weldability, characterized by being 2 or less.

(2)金属状態の島状錫を有する表面処理鋼板であって、島状錫の下地層が、Ni量として2〜100mg/m2のFe−Ni合金層又はFe−Ni−Sn合金層であって、該合金層が、さらにMo、Mo化合物、W、W化合物の中から選ばれる1種又は2種以上を金属換算で合計1〜20mg/m2含有することを特徴とするシーム溶接性に優れた表面処理鋼板。 (2) A surface-treated steel sheet having metal-like island-shaped tin, wherein the underlayer of island-shaped tin is an Fe—Ni alloy layer or Fe—Ni—Sn alloy layer having a Ni content of 2 to 100 mg / m 2. The alloy layer further contains one or two or more selected from Mo, Mo compound, W, and W compound in terms of metal in total of 1 to 20 mg / m 2, and the seam weldability Excellent surface-treated steel sheet.

(3)島状錫の下地層の露出部が、鋼板表面の任意の方向で測定した直線長さで20μm以上である部分が20個/mm2以下であることを特徴とする前記(2)記載のシーム溶接性に優れた表面処理鋼板、
(4)島状錫による被覆面積率が60〜90%であることを特徴とする前記(1)〜(3)のいずれかに記載のシーム溶接性に優れた表面処理鋼板、
(5)全Sn付着量が、金属錫換算で300〜1500mg/m2であることを特徴とする前記(1)〜(4)のいずれかに記載のシーム溶接性に優れた表面処理鋼板。
(3) The above-mentioned (2), wherein the exposed portion of the underlayer of island-shaped tin is 20 pieces / mm 2 or less where the linear length measured in an arbitrary direction on the surface of the steel sheet is 20 μm or more. Surface-treated steel sheet with excellent seam weldability,
(4) The surface-treated steel sheet having excellent seam weldability according to any one of (1) to (3), wherein the coverage area ratio with island-shaped tin is 60 to 90%,
(5) The surface-treated steel sheet excellent in seam weldability according to any one of (1) to (4), wherein the total Sn adhesion amount is 300 to 1500 mg / m 2 in terms of metallic tin.

(6)最表層に化成処理皮膜を有することを特徴とする前記(1)〜(5)のいずれかに記載のシーム溶接性に優れた表面処理鋼板、
(7)化成処理皮膜が、金属Cr換算で2〜40mg/m2のCr(III)水和酸化物又は金属Cr層の一方又は両方であることを特徴とする前記(6)記載のシーム溶接性に優れた表面処理鋼板である。
(6) A surface-treated steel sheet having excellent seam weldability according to any one of (1) to (5), which has a chemical conversion coating on the outermost layer,
(7) The seam welding according to (6) above, wherein the chemical conversion coating is one or both of Cr (III) hydrated oxide or metal Cr layer of 2 to 40 mg / m 2 in terms of metal Cr. It is a surface-treated steel sheet with excellent properties.

本発明の表面処理鋼板とすることで、従来の薄Snめっき鋼板と比べ、ワイヤーシーム溶接における溶接可能電流範囲を広くし、製造チャンス間のばらつき、単体毎のばらつきを少なくして、製缶メーカーにおける溶接トラブルによる生産効率の低下を最小限に抑えることに寄与するものである。   By using the surface-treated steel sheet according to the present invention, compared with the conventional thin Sn-plated steel sheet, the welding current range in wire seam welding is widened, and the variation between manufacturing chances and individual unit variations are reduced. This contributes to minimizing the decrease in production efficiency due to welding troubles.

以下に、本発明を詳細に説明する。
本発明で使用する鋼板の材質には、特に制限を設ける必要はない。従来から缶用鋼板に使用されているアルミキルド鋼や低炭素鋼等の成分系の鋼板でよい。また、鋼板の厚みや硬度は、ユーザーが使用目的によって指定するものであって、それに従えばよい。近年、飲料缶用鋼板は、一般に薄くなる傾向があり、溶接缶では0.18mm程度の厚みのものが多く使用されている。また、薄手化に伴って、調質度T−5CA、あるいはDR−8やDR−9と言った硬質材が一般的になっている。
The present invention is described in detail below.
The material of the steel plate used in the present invention need not be particularly limited. Component steel plates such as aluminum killed steel and low carbon steel conventionally used for steel plates for cans may be used. The thickness and hardness of the steel sheet are specified by the user according to the purpose of use, and may be followed. In recent years, steel plates for beverage cans generally tend to be thin, and welding cans having a thickness of about 0.18 mm are often used. Further, along with thinning, hard materials such as tempering degree T-5CA, DR-8 and DR-9 are becoming common.

本発明者らの検討の結果、鋼板表面に微細な島状Snが緻密に分布していて、鋼板面の任意の方向の直線長さで20μm以上の下地層表面の露出部が少ないほど、良好なワイヤーシーム溶接性が得られることが判明した。直線長さで20μm以上の下地層の露出部は、1mm2当り0〜20個であることが必要であり、より好ましくは0〜10個、さらに好ましくは0〜5個である。20個を超えると、溶接中にチリと呼ばれる溶融金属の飛散が頻発するようになる。 As a result of the study by the present inventors, fine island-shaped Sn is densely distributed on the surface of the steel sheet, and the smaller the exposed portion of the surface of the underlayer of 20 μm or more in a straight line length in any direction of the steel sheet surface, the better Wire seam weldability was found to be obtained. The number of exposed portions of the base layer having a linear length of 20 μm or more is required to be 0 to 20 per 1 mm 2 , more preferably 0 to 10 and even more preferably 0 to 5. If the number exceeds 20, scattering of molten metal called dust will frequently occur during welding.

ここで、島状Snとは、不連続な島のような形態をとっている金属Snのことを意味し、SEM(走査型電子顕微鏡)による像で丸みを帯びた明るい部分として確認することが容易である。例えば、加速電圧10kV、倍率1000倍のSEMで、鋼板表面を1試料につき無作為に100視野選んで観察し、直線長さ20μm以上の下地露出部を計数するとよい。   Here, island-like Sn means metal Sn taking the form of discontinuous islands, and it can be confirmed as a rounded bright part by an image by SEM (scanning electron microscope). Easy. For example, with a SEM having an acceleration voltage of 10 kV and a magnification of 1000, the surface of the steel plate may be selected and observed at random for 100 views per sample, and the number of exposed ground portions having a linear length of 20 μm or more may be counted.

前述のように、直線長さで20μm以上の下地層の露出部が多くなると、溶接時にチリが発生し易いことが判明したが、その理由は、以下のように考えられる。缶胴のワイヤーシーム溶接が行われる際、ごく初期の溶接電流は金属Snに流れるが、軟らかいため、電極輪による加圧で変形し、十分な通電路を確保できる。温度の上昇と共に金属Snは溶融し、また、加圧されて溶接部から大部分が排除されて、鋼板−鋼板間の接合が形成される。しかし、Snに被覆されていなかった下地層である鋼板面又は下地めっき面の露出部が長ければ、初期の溶接電流がその部分にも流れることになる。   As described above, it has been found that when the exposed portion of the base layer having a linear length of 20 μm or more increases, dust is likely to be generated during welding. The reason is considered as follows. When wire seam welding of a can body is performed, a very early welding current flows through the metal Sn, but since it is soft, it can be deformed by pressurization with an electrode ring and a sufficient current path can be secured. As the temperature rises, the metal Sn melts and is pressurized to remove most of the welded portion, thereby forming a joint between the steel plate and the steel plate. However, if the exposed portion of the steel plate surface or the base plating surface, which is the base layer not covered with Sn, is long, the initial welding current flows through that portion.

この下地層は、金属Snとは異なり、硬い合金層であるため、変形し難く、また、電気抵抗も高いため、十分な通電路が確保されず、狭い領域に溶接電流が流れて、局部的に異常発熱する。これが、チリの原因であると考えられる。下地層表面の露出部が、鋼板面の任意の方向での直線長さで20μm以上である場合にこの現象が発生し、20μm未満の露出部からは、チリは発生しない。   Unlike the metal Sn, this underlayer is a hard alloy layer, so it is difficult to be deformed and has a high electric resistance, so that a sufficient current path cannot be secured, and a welding current flows in a narrow area, resulting in local Abnormally fever. This is thought to be the cause of dust. This phenomenon occurs when the exposed portion of the surface of the underlayer is 20 μm or more in a linear length in an arbitrary direction of the steel plate surface, and no dust is generated from the exposed portion of less than 20 μm.

鋼板面の任意の方向で測定した下地層表面の露出部が、直線長さで50μm以上である部分は、1個/mm2でもあると、溶接性の低下が著しくなる。島状Snは、EPMA(エレクトロンプローブ・マイクロアナリシス)を用いて定義することも可能である。加速電圧15kVで鋼板表面のSnをマッピングし、Snの濃度が30%以上である丸みを帯びた部分を島状Snとする。Snの濃度が0%を超え、30%未満の部分は厚みのある金属Snではなく、殆どが下地層と合金化したSnと判断される。 When the exposed portion of the underlayer surface measured in an arbitrary direction on the steel sheet surface is 1 piece / mm 2 in terms of a linear length of 50 μm or more, the weldability deteriorates remarkably. Island-shaped Sn can also be defined using EPMA (electron probe microanalysis). Sn on the surface of the steel plate is mapped with an acceleration voltage of 15 kV, and a rounded portion having a Sn concentration of 30% or more is defined as island-shaped Sn. The portion where the Sn concentration exceeds 0% and is less than 30% is determined not to be thick metallic Sn, but mostly Sn alloyed with the underlayer.

金属Sn層の下地層として、Ni量で2〜100mg/m2のFe−Ni合金層又はFe−Ni−Sn合金層を有することが必要である。合金層を付与せずに鋼板表面に島状Snを形成すると、島状Snはさまざまな形状を取ってしまい、前記の特徴を持った島状Snの分布を得るのが困難である。また、リフロー処理前の下地層が合金層でなく、金属Ni層である場合、リフロー処理時にNi−Sn合金化が著しく進行し、通常のリフロー処理条件では前記の金属Sn量を残留させることが困難である。 It is necessary to have an Fe—Ni alloy layer or an Fe—Ni—Sn alloy layer having a Ni amount of 2 to 100 mg / m 2 as an underlayer of the metal Sn layer. If island-shaped Sn is formed on the surface of the steel sheet without providing an alloy layer, the island-shaped Sn takes various shapes, and it is difficult to obtain the distribution of island-shaped Sn having the above characteristics. In addition, when the base layer before the reflow process is not an alloy layer but a metal Ni layer, Ni—Sn alloying remarkably proceeds during the reflow process, and the amount of the metal Sn may remain under normal reflow process conditions. Have difficulty.

合金層量をNi量で2〜100mg/m2に限定したのは、2mg/m2未満では、Snのリフローで形成する島状Snの形状に対する効果が認められないためであり、一方、100mg/m2を超えても、島状Snの形状・分布に対する効果が飽和することに加え、コスト的にも不利になるためである。Fe−Ni合金層又はFe−Ni−Sn合金層には、Mo、Mo化合物、W、W化合物の1種又は2種以上を金属換算で合計1〜20mg/m2含有することが必要である。Mo化合物として、酸化モリブデン(VI)、モリブデン(VI)酸ニッケル等、W化合物として、酸化タングステン(VI)、タングステン酸(VI)ニッケル等を挙げることができる。 The reason why the amount of the alloy layer is limited to 2 to 100 mg / m 2 in terms of Ni is that if it is less than 2 mg / m 2 , the effect on the shape of the island-shaped Sn formed by Sn reflow is not observed, whereas 100 mg This is because, even if exceeding / m 2 , the effect on the shape and distribution of the island-shaped Sn is saturated and the cost is disadvantageous. The Fe—Ni alloy layer or the Fe—Ni—Sn alloy layer must contain a total of 1 to 20 mg / m 2 of one or more of Mo, Mo compound, W, and W compound in terms of metal. . Examples of the Mo compound include molybdenum (VI) oxide and nickel molybdenum (VI) acid, and examples of the W compound include tungsten oxide (VI) and tungstic acid (VI) nickel.

これらMo、Mo化合物、W、W化合物の1種又は2種以上を含有するFe−Ni合金層は、後述する電解液中で、1〜5A/dm2以下の電流密度で電解処理することで得られるが、この範囲で電流密度の高い方から順に、モリブデンの場合、金属Mo、酸化モリブデン(VI)、モリブデン(VI)酸ニッケルの含有率が高く、タングステンの場合、金属W、酸化タングステン(VI)、タングステン(VI)酸ニッケルの含有率が高くなる。 The Fe—Ni alloy layer containing one or more of these Mo, Mo compound, W, and W compound is subjected to electrolytic treatment at a current density of 1 to 5 A / dm 2 or less in an electrolyte solution described later. In this range, in order of increasing current density, in the case of molybdenum, the content of metal Mo, molybdenum oxide (VI), nickel molybdenum (VI) nickel is high, and in the case of tungsten, metal W, tungsten oxide ( VI), the content of nickel tungsten (VI) acid is increased.

このようにして得られる下地層によって、リフロー時にSnが適当にはじかれて凝集し、細かい島状Snとなり、また、島状Snの分布が均一になって、直線長さが20μm以上である下地露出部が生じ難くなる。但し、1mg/m2未満のMo、Mo化合物、W、W化合物の1種又は2種以上の含有量では、島状Snの形態・分布に対するこれらの添加の効果が明確に現われない。一方、Mo、Mo化合物、W、W化合物の1種又は2種以上の含有量が20mg/m2を超えると、Snがリフロー処理で島状になり難く、密着性が不十分なまま広がってしまう。なお、Mo、Mo化合物、W、W化合物の1種又は2種以上を含有するFe−Ni−Sn合金層は、リフロー処理でSnと下地層とが合金化することによって生じる層である。 The base layer obtained in this manner is appropriately repelled and aggregated during reflow to form fine island-shaped Sn, and the distribution of island-shaped Sn is uniform, and the linear length is 20 μm or more. The exposed part is less likely to occur. However, when the content of one or more of Mo, Mo compound, W, and W compound is less than 1 mg / m 2 , the effect of these additions on the form and distribution of island-shaped Sn does not appear clearly. On the other hand, when the content of one or more of Mo, Mo compound, W, and W compound exceeds 20 mg / m 2 , Sn is hardly formed into an island shape by reflow treatment and spreads with insufficient adhesion. End up. Note that the Fe—Ni—Sn alloy layer containing one or more of Mo, Mo compound, W, and W compound is a layer formed by alloying Sn and the underlayer by reflow treatment.

Mo、Mo化合物、W、W化合物の1種又は2種以上を含有したFe−Ni合金層又はFe−Ni−Sn合金層によって、Snが細かい島状となり、また、島状Snの分布が均一になる理由の詳細は不明であるが、Mo、Mo化合物、W、W化合物とSnとの濡れ性が低いためであると推定される。鋼板表面に、Mo、Mo化合物、W、W化合物の1種又は2種以上を含有したFe−Ni合金層を形成する方法は限定しないが、簡便さ、経済性、また、既存の製造ラインの構造上、電気めっきによる方法を採るのが好ましく、以下の例を挙げることができる。   The Fe—Ni alloy layer or Fe—Ni—Sn alloy layer containing one or more of Mo, Mo compound, W, W compound makes Sn fine islands, and the distribution of island Sn is uniform. Although the details of the reason for this are unknown, it is presumed that the wettability of Mo, Mo compound, W, W compound and Sn is low. The method of forming the Fe—Ni alloy layer containing one or more of Mo, Mo compound, W, and W compound on the steel sheet surface is not limited, but simplicity, economy, and the existing production line In view of structure, it is preferable to adopt a method by electroplating, and the following examples can be given.

Niイオンを5〜50g/L、鉄(II)イオンを2〜20g/L、モリブデン(VI)酸イオンを0.05〜4g/L、クエン酸イオンを20〜100g/L、支持電解質として硫酸ナトリウムを20〜150g/L含有するpH4〜6の水溶液を20〜60℃に保ち、この浴に脱脂・酸先した鋼板を浸漬して電流密度1〜5A/dm2で陰極電解処理する。 Ni ion 5-50 g / L, iron (II) ion 2-20 g / L, molybdenum (VI) acid ion 0.05-4 g / L, citrate ion 20-100 g / L, sulfuric acid as supporting electrolyte An aqueous solution having a pH of 4 to 6 containing 20 to 150 g / L of sodium is kept at 20 to 60 ° C., and a degreased and acidified steel plate is immersed in this bath and subjected to cathodic electrolytic treatment at a current density of 1 to 5 A / dm 2 .

この方法によって、Mo、Mo化合物の一方又は両方を含有するFe−Ni合金層が形成される。同様に、Niイオンを5〜50g/L、鉄(II)イオンを2〜20g/L、タングステン(VI)酸イオンを0.05〜4g/L、クエン酸イオンを20〜100g/L、支持電解質として硫酸ナトリウムを20〜150g/L含有するpH4〜6の水溶液を20〜60℃に保ち、この浴に脱脂・酸洗した鋼板を浸漬して、電流密度1〜5A/dm2で陰極電解処理する。この方法によって、W、W化合物の一方又は両方を含有するFe−Ni合金層が形成される。さらに、この上層にSnめっき後、リフロー処理を施すことで、Mo、Mo化合物、W、W化合物の1種又は2種以上を含有するFe−Ni−Sn合金層も形成される。 By this method, an Fe—Ni alloy layer containing one or both of Mo and Mo compound is formed. Similarly, 5 to 50 g / L of Ni ions, 2 to 20 g / L of iron (II) ions, 0.05 to 4 g / L of tungsten (VI) ion, and 20 to 100 g / L of citrate ion are supported. Cathodic electrolysis at a current density of 1 to 5 A / dm 2 is performed by keeping an aqueous solution of pH 4 to 6 containing 20 to 150 g / L of sodium sulfate as an electrolyte at 20 to 60 ° C. and immersing the degreased and pickled steel plate in this bath. Process. By this method, an Fe—Ni alloy layer containing one or both of W and W compounds is formed. Furthermore, an Fe—Ni—Sn alloy layer containing one or more of Mo, Mo compound, W, and W compound is also formed by performing reflow treatment after Sn plating on the upper layer.

Mo、Mo化合物、W、W化合物の1種又は2種以上を含有するFe−Ni−Sn合金層中には、不純物として微量のカルシウム、マグネシウム、ナトリウム、カリウム、亜鉛、銅、マンガン、コバルト等の金属又は金属塩、硫酸塩、リン酸塩、硝酸塩、塩化物、シリカ等を含有してもよい。島状Snによる被覆面積率は、60〜90%であることが望ましい。60%未満では、下地層の露出部分が多くなり、直線長さが20μm以上である露出部をなくすことが困難である。一方、90%を超えると、塗料や樹脂フィルム等、有機皮膜の密着性不良の原因となる。よく知られているように、Snの酸化物層は凝集破壊し易いため、下地層でそれらの密着性を確保する必要があるためである。   In the Fe—Ni—Sn alloy layer containing one or more of Mo, Mo compound, W, W compound, trace amounts of calcium, magnesium, sodium, potassium, zinc, copper, manganese, cobalt, etc. as impurities Or a metal salt, sulfate, phosphate, nitrate, chloride, silica or the like. The coverage area ratio by island-shaped Sn is desirably 60 to 90%. If it is less than 60%, the exposed portion of the underlying layer increases, and it is difficult to eliminate the exposed portion having a linear length of 20 μm or more. On the other hand, if it exceeds 90%, it may cause poor adhesion of organic films such as paints and resin films. This is because, as is well known, the Sn oxide layer is likely to cohesively break, so that it is necessary to ensure the adhesiveness of the underlayer.

鋼板表面には、全Sn付着量として、300〜1500mg/m2のSnを有することが好ましい。300mg/m2より少ないと、Snをどのような形態にしても初期溶接電流は十分に安定にはならず、スプラッシュが発生し易くなって、望ましい高速ワイヤーシーム溶接性が得られない。一方、1500mg/m2を超えても、溶接性の向上が殆どなくなるばかりでなく、鋼板表面がほぼSnに覆われてしまうため、塗料や樹脂フィルムの密着性不良の原因となる。性能上のメリットがない高付着量のSnめっきは、経済的な理由からも避けるべきである。 The steel sheet surface preferably has 300 to 1500 mg / m 2 of Sn as the total Sn adhesion amount. If it is less than 300 mg / m 2, the initial welding current will not be sufficiently stable regardless of the form of Sn, and splash will easily occur, and the desired high-speed wire seam weldability will not be obtained. On the other hand, even if it exceeds 1500 mg / m 2 , not only the weldability is almost improved, but also the steel plate surface is almost covered with Sn, which causes poor adhesion of the paint and the resin film. High adhesion amounts of Sn plating without performance merit should be avoided for economic reasons.

露出した下地Fe−Ni合金層や島状Sn層上の最表層には、化成処理皮膜を有することが好ましい。化成処理皮膜がないと、塗料、樹脂フィルム等の有機化合物層の密着力を確保するのが難しい。
前記化成処理皮膜として、金属Cr換算で2〜40mg/m2のCr(III)水和酸化物又は金属Cr層の一方又は両方が適当である。2mg/m2未満では、化成処理付与による塗膜密着性向上の効果が見られない。一方、40mg/m2を超えても、塗膜密着性向上効果は飽和してしまうばかりでなく、接触電気抵抗が高くなり、シーム溶接性を低下させてしまう。
It is preferable to have a chemical conversion treatment film on the outermost layer on the exposed base Fe—Ni alloy layer or island-like Sn layer. Without a chemical conversion coating, it is difficult to ensure the adhesion of organic compound layers such as paints and resin films.
As the chemical conversion film, one or both of 2 to 40 mg / m 2 of Cr (III) hydrated oxide or metal Cr layer in terms of metal Cr is suitable. Is less than 2 mg / m 2, not seen the effect of coating adhesion improvement by chemical treatment applied. On the other hand, even if it exceeds 40 mg / m 2 , the coating film adhesion improving effect is not only saturated, but also the contact electrical resistance is increased and the seam weldability is lowered.

化成処理皮膜を積層させる方法は限定しないが、例として、無水クロム酸50〜150g/L、硫酸イオン0.01〜0.2g/L、ケイフッ化ナトリウム1〜5g/L、フッ化アンモニウム0.1〜2g/Lを含有する。40〜60℃の浴で、電流密度30〜60A/dm2で陰極電解するとよい。前記の島状Snは、Snめっき後、リフロー処理を施すことで形成させるものである。また、フラックス作用のあるSnめっき浴の有機化合物成分を十分に水洗してから、リフロー処理することによって、Snを島状に分布させることができる。 The method of laminating the chemical conversion film is not limited, but as an example, chromic anhydride 50 to 150 g / L, sulfate ion 0.01 to 0.2 g / L, sodium silicofluoride 1 to 5 g / L, ammonium fluoride 0. Contains 1-2 g / L. Cathodic electrolysis may be performed at a current density of 30 to 60 A / dm 2 in a 40 to 60 ° C. bath. The island-shaped Sn is formed by performing a reflow process after Sn plating. In addition, Sn can be distributed in islands by sufficiently washing the organic compound component of the Sn plating bath having a flux effect and then performing a reflow treatment.

リフロー処理の方法は、特に限定しないが、電気抵抗加熱や高周波誘導加熱により、又は、それらを組み合わせて行うのが、昇温速度と到達板温の安定性、また、経済性の点から好ましい。これらの方法によって鋼板をSnの融点232℃以上に加熱した後、水でクエンチする。水の温度は、常温から80℃くらいまでが扱い易い。クエンチを行わないと、錫の合金化が進行してしまい、Fe−Sn合金層又はFe−Ni−Sn合金層が厚くなって、脆い皮膜となってしまうし、シーム溶接性の確保するのに必要な金属Snを残存させるのが困難になる。また、溶融したSnがロールと接触してロールにビルドアップしたり、製品外観を損なったりと、好ましくない事態が生じてしまう。   The method for the reflow treatment is not particularly limited, but it is preferable to carry out by electrical resistance heating, high-frequency induction heating, or a combination thereof from the viewpoint of the stability of the heating rate and the ultimate plate temperature, and economical efficiency. The steel sheet is heated to a melting point of Sn of 232 ° C. or higher by these methods and then quenched with water. The temperature of water is easy to handle from room temperature to about 80 ° C. Without quenching, tin alloying proceeds, the Fe—Sn alloy layer or the Fe—Ni—Sn alloy layer becomes thicker, resulting in a brittle film, and ensuring seam weldability. It becomes difficult to leave the necessary metal Sn. Moreover, when the melted Sn comes into contact with the roll and builds up on the roll, or the appearance of the product is impaired, an undesirable situation occurs.

以下、実施例によって、本発明をさらに詳細に説明する。
低炭素冷延鋼帯を連続焼鈍、次いで調質圧延して得た板厚0.18mm、調質度T−5CAの鋼帯を使用した。めっき前処理として、5mass%水酸化ナトリウム溶液中で電解脱脂した後、希硫酸中で酸洗した。前処理した鋼帯を、下記組成のFe−Ni−Mo合金めっき浴中で陰極電解処理した。浴温度を40℃とし、電流密度3A/dm2で電解時間を振って電解処理し、Mo及び酸化モリブデン(VI)を含有するFe−Ni合金めっき層を得た。
Hereinafter, the present invention will be described in more detail by way of examples.
A steel strip having a sheet thickness of 0.18 mm and a tempering degree of T-5CA obtained by continuous annealing and then temper rolling of a low carbon cold rolled steel strip was used. As a pretreatment for plating, electrolytic degreasing was carried out in a 5 mass% sodium hydroxide solution, followed by pickling in dilute sulfuric acid. The pretreated steel strip was subjected to cathodic electrolytic treatment in an Fe—Ni—Mo alloy plating bath having the following composition. The bath temperature was set to 40 ° C., and electrolysis was performed at a current density of 3 A / dm 2 while varying the electrolysis time to obtain an Fe—Ni alloy plating layer containing Mo and molybdenum oxide (VI).

Fe−Ni−Mo合金めっき浴組成
硫酸ニッケル・6水和物 : 50g/L
硫酸鉄(II)・7水和物 : 20g/L
クエン酸三ナトリウム : 75g/L
モリブデン酸ナトリウム・2水和物 : 0〜2g/L
硫酸ナトリウム : 70g/L
pH5
Fe-Ni-Mo alloy plating bath composition Nickel sulfate hexahydrate: 50 g / L
Iron (II) sulfate heptahydrate: 20g / L
Trisodium citrate: 75 g / L
Sodium molybdate dihydrate: 0 to 2 g / L
Sodium sulfate: 70 g / L
pH 5

同様に、前処理した鋼帯を、下記組成のFe−Ni−W合金めっき浴中で陰極電解処理した。浴温度を40℃とし、電流密度3A/dm2で電解時間を振って電解処理し、W及び酸化タングステン(VI)を含有するFe−Ni合金めっき層を得た。
Fe−Ni−W合金めっき浴組成
硫酸ニッケル・6水和物 : 50g/L
硫酸鉄(II)・7水和物 : 20g/L
クエン酸三ナトリウム : 75g/L
タングステン酸ナトリウム・2水和物 : 0〜2g/L
硫酸ナトリウム : 70g/L
pH5
Similarly, the pretreated steel strip was subjected to cathodic electrolytic treatment in an Fe—Ni—W alloy plating bath having the following composition. The bath temperature was set to 40 ° C., and electrolysis was performed at a current density of 3 A / dm 2 while varying the electrolysis time to obtain an Fe—Ni alloy plating layer containing W and tungsten oxide (VI).
Fe-Ni-W alloy plating bath composition Nickel sulfate hexahydrate: 50 g / L
Iron (II) sulfate heptahydrate: 20g / L
Trisodium citrate: 75 g / L
Sodium tungstate dihydrate: 0 to 2 g / L
Sodium sulfate: 70 g / L
pH 5

同様に、前処理した鋼帯を、下記組成のFe−Ni−Mo−W合金めっき浴中で陰極電解処理した。浴温度を40℃とし、電流密度3A/dm2で電解時間を振って電解処理し、Mo、酸化モリブデン(VI)、W、酸化タングステン(VI)を含有するFe−Ni合金めっき層を得た。
Fe−Ni−Mo−W合金めっき浴組成
硫酸ニッケル・6水和物 : 50g/L
硫酸鉄(II)・7水和物 : 20g/L
クエン酸三ナトリウム : 75g/L
モリブデン酸ナトリウム・2水和物 : 0.3〜1.5g/L
タングステン酸ナトリウム・2水和物 : 0.3〜1.5g/L
硫酸ナトリウム : 70g/L
pH5
Similarly, the pretreated steel strip was subjected to cathodic electrolytic treatment in a Fe—Ni—Mo—W alloy plating bath having the following composition. The bath temperature was set to 40 ° C., and the electrolysis was performed at a current density of 3 A / dm 2 while varying the electrolysis time to obtain an Fe—Ni alloy plating layer containing Mo, molybdenum oxide (VI), W, and tungsten oxide (VI). .
Fe-Ni-Mo-W alloy plating bath composition Nickel sulfate hexahydrate: 50 g / L
Iron (II) sulfate heptahydrate: 20g / L
Trisodium citrate: 75 g / L
Sodium molybdate dihydrate: 0.3 to 1.5 g / L
Sodium tungstate dihydrate: 0.3 to 1.5 g / L
Sodium sulfate: 70 g / L
pH 5

次いで、フェロスタン浴を用いて電気Snめっきを施した。めっき浴組成は、Snイオン:20g/L、フェノールスルホン酸イオン:75g/L、界面活性剤:5g/L、浴温度を43℃とし、電流密度20A/dm2で電解した。所定のSnめっき量となるよう、電解時間を調節した。Snめっき後は水洗し、ローラーで水切りをした後、冷風乾燥し、通電加熱によって10秒で250℃まで昇温させ、直ちに水冷した。この処理によって、Snが溶融、凝集して島状Snが形成されると共に、Snの一部は下地層と合金化して、Mo、Mo化合物又はW、W化合物を含有するFe−Ni−Sn層が形成された。リフロー処理後、化成処理としてクロム酸処理を施した。浴組成は無水クロム酸:80g/L、硫酸イオン:0.05g/L、ケイフッ化ナトリウム:2.5g/L、フッ化アンモニウム:0.5g/L、浴温度を50℃とし、電流密度30A/dm2で陰極電解した。 Subsequently, electro Sn plating was performed using a ferrostan bath. The plating bath composition was Sn ion: 20 g / L, phenol sulfonate ion: 75 g / L, surfactant: 5 g / L, bath temperature was 43 ° C., and electrolysis was performed at a current density of 20 A / dm 2 . The electrolysis time was adjusted so that a predetermined Sn plating amount was obtained. After Sn plating, the plate was washed with water, drained with a roller, dried with cold air, heated to 250 ° C. in 10 seconds by electric heating, and immediately cooled with water. By this treatment, Sn melts and aggregates to form island-shaped Sn, and a part of Sn is alloyed with the underlayer, and an Fe—Ni—Sn layer containing Mo, Mo compound or W, W compound Formed. After the reflow treatment, chromic acid treatment was performed as a chemical conversion treatment. Bath composition is chromic anhydride: 80 g / L, sulfate ion: 0.05 g / L, sodium silicofluoride: 2.5 g / L, ammonium fluoride: 0.5 g / L, bath temperature is 50 ° C., current density is 30 A Cathodic electrolysis at / dm 2 .

上記処理材について、以下に示す(A)〜(D)の各項目について評価試験を実施した。
(A)島状Sn分布:加速電圧10kV、倍率1000倍で鋼板表面のSEM観察を行った。1試料につき、無作為に選んだ100視野を観察し、直線長さ20μm以上の下地露出部を計数した。なお、1視野のサイズは、87μm×115μm(10000μm2)であり、100視野は1mm2に相当する。島状Snによる表面の被覆率は、上記SEM像の内5視野を用いてコンピューターで画像解析して求めた。即ち、画像を明度によって二値化処理し、鋼板表面の疵や粗度等の凸部によって明度が高くなっている部分を除いた白色部分を、錫で被覆された部分として面積率を算出した。
About the said processing material, the evaluation test was implemented about each item of (A)-(D) shown below.
(A) Island-like Sn distribution: SEM observation of the steel sheet surface was performed at an acceleration voltage of 10 kV and a magnification of 1000 times. For each sample, 100 randomly selected visual fields were observed, and the number of ground exposed portions having a linear length of 20 μm or more was counted. The size of one visual field is 87 μm × 115 μm (10000 μm 2 ), and 100 visual fields correspond to 1 mm 2 . The coverage of the surface with island-shaped Sn was obtained by image analysis with a computer using five of the SEM images. In other words, the image was binarized by brightness, and the area ratio was calculated with the white part excluding the part where the brightness was high due to the protrusions such as wrinkles and roughness on the steel sheet surface as the part covered with tin .

(B)ワイヤーシーム溶接性:溶接予定部を除いてエポキシ・フェノール塗料を乾燥質量で50mg/m2塗布し、280℃で15秒焼付けを施した評価材(n=10)に、以下の溶接条件でワイヤーシーム溶接を行い、評価した。ラップ代0.4mm、溶接ワイヤースピード80m/分で溶接し、十分な溶接強度が得られる最小電流値と、チリ等の溶接欠陥が目立ち始める最大電流値とからなる適正電流範囲(ACR)の広さを評価した。また、このようにして求めた適性電流範囲の中央値に溶接電流を設定して、千缶溶接し、溶接不良(チリ発生)を生じた缶を計数した。不良缶は0が最も望ましいが、5缶未満を合格レベルとした。 (B) Wire seam weldability: The following welding was performed on an evaluation material (n = 10) obtained by applying 50 mg / m 2 of an epoxy / phenol paint in a dry mass and baking at 280 ° C. for 15 seconds except for a portion to be welded. Wire seam welding was performed under the conditions and evaluated. Wide appropriate current range (ACR) consisting of a minimum current value at which sufficient welding strength can be obtained and a maximum current value at which welding defects such as dust start to stand out, with a lapping margin of 0.4 mm and welding wire speed of 80 m / min. Was evaluated. In addition, the welding current was set to the median value of the appropriate current range obtained in this way, 1000 cans were welded, and the cans that produced poor welding (occurrence of dust) were counted. The number of defective cans is most preferably 0, but less than 5 cans are considered acceptable levels.

(C)フィルム密着性:評価材に、予めエポキシ接着剤を2μm塗布した厚さ15μmのPET(ポリエチレンテレフタレート)系フィルムを、230℃でラミネートした後、地鉄に達するまでクロスカットを入れ、速やかに240℃に加熱し、クロスカット中央部に5kg/cm2の空気ガスを垂直に吹きつけ、フィルムの剥離状況を評価した。全く剥離が認められなかったものを◎(非常に良好)、カット部から0.5mm以下の剥離が認められたものを○(良好)、カット部から0.5mmを超える剥離が認められたものを×(不良)とした。なお、○以上をフィルム密着性の合格レベルと判断した。 (C) Film adhesion: After laminating a PET (polyethylene terephthalate) film having a thickness of 15 μm, to which an epoxy adhesive has been applied in advance to 2 μm, at 230 ° C., a cross-cut is made until the base iron is reached. The film was heated to 240 ° C., and 5 kg / cm 2 of air gas was blown vertically to the center of the crosscut to evaluate the peeling state of the film. ◎ (very good) where no peeling was observed, ○ (good) where peeling of 0.5 mm or less from the cut part was recognized, and peeling exceeding 0.5 mm from the cut part X (defect). In addition, (circle) or more was judged as the pass level of film adhesiveness.

(D)耐食性:評価材の缶内面に相当する面の耐食性を評価するため、UCC(アンダーカッティング・コロージョン)試験を行った。缶内面側に相当する面に厚さ15μmのPET(ポリエチレンテレフタレート)系フィルムをラミネートし、地鉄に達するまでクロスカットを入れた後、1.5%クエン酸と1.5%塩化ナトリウムからなる55℃の試験液中に、大気開放下で96時間浸漬した。水洗・乾燥後、速やかにスクラッチ部及び平面部をテープで剥離して、スクラッチ部近傍の腐食状況、スクラッチ部のピッティング腐食及び平面部のフィルム剥離状況を観察して、耐食性を評価した。テープ剥離も腐食も認められないものを◎(非常に良好)、スクラッチ部から0.4mm未満のテープ剥離又は目視で認められない僅かな腐食の一方又は両方が認められたものを○(良好)、スクラッチ部から0.4mm以上、1mm以下のテープ剥離又は目視で認められる小さい腐食の一方又は両方が認められたものを△(やや不良)とした。
以上の性能評価結果から、総合評価を◎(非常に良好)、○(良好)、△(やや不良)、×(不良)の4段階に分類し、◎、○を合格レベルとした。上記評価結果を表1に示す。
(D) Corrosion resistance: In order to evaluate the corrosion resistance of the surface corresponding to the inner surface of the can of the evaluation material, a UCC (under cutting corrosion) test was conducted. After laminating a PET (polyethylene terephthalate) film with a thickness of 15 μm on the surface corresponding to the inner surface of the can and making a crosscut until it reaches the ground iron, it consists of 1.5% citric acid and 1.5% sodium chloride. The sample was immersed in a test solution at 55 ° C. for 96 hours under the atmosphere. After washing with water and drying, the scratched part and the flat part were quickly peeled off with a tape, and the corrosion state in the vicinity of the scratch part, the pitting corrosion of the scratch part and the film peeling state of the flat part were observed to evaluate the corrosion resistance. ◎ (very good) where no tape peeling or corrosion is observed, ○ (good) where one or both of tape peeling less than 0.4 mm from scratch or slight corrosion not visually recognized is observed The case where one or both of tape peeling of 0.4 mm or more and 1 mm or less from the scratch part or small corrosion visually observed was recognized as Δ (somewhat poor).
From the above performance evaluation results, the overall evaluation was classified into four stages: ◎ (very good), ◯ (good), △ (slightly bad), and x (bad), and ◎ and ◯ were regarded as acceptable levels. The evaluation results are shown in Table 1.

Figure 2006233279
Figure 2006233279

表1に示した本発明例No.1〜20は、いずれも上記(A)〜(D)の評価項目を満足し、安定して良好な性能が得られた。
比較例No.21は、Snめっき下地のFe−Ni合金めっき層にMo、Wのいずれも含有せず、島状Snの分布が疎であって、直線長さで20μm以上の下地露出部が非常に多い例である。10缶の溶接評価から得られたACRの中央値での千缶溶接試験では、チリの発生頻度が高かった。
Invention Example No. 1 shown in Table 1. Nos. 1 to 20 satisfied the evaluation items (A) to (D) above, and good performance was stably obtained.
Comparative Example No. No. 21 does not contain any of Mo and W in the Fe-Ni alloy plating layer of the Sn plating base, and the distribution of island-like Sn is sparse, and the base exposed portion having a linear length of 20 μm or more is very large. It is. In the 1000-can welding test at the median ACR obtained from the welding evaluation of 10 cans, the occurrence frequency of dust was high.

比較例No.22は、Snめっき下地のFe−Ni合金めっき層にMo、Wのいずれも含有せず、Ni量も少なく、実質的に島状Snができていない例である。Snによる被覆面積率が高いが、下地層露出部の直線長さは長い部分が多かった。ACRは400Aあるが、ACRの中央値での千缶溶接試験では、チリの発生頻度が高かった。また、Snによる被覆面積率が高く、十分なフィルム密着性も得られなかった。   Comparative Example No. No. 22 is an example in which neither Fe nor Ni is contained in the Fe—Ni alloy plating layer of the Sn plating base, the amount of Ni is small, and island Sn is not substantially formed. Although the coverage area ratio by Sn was high, the linear length of the exposed portion of the base layer was often long. Although the ACR is 400A, the occurrence frequency of dust was high in the 1000-can welding test at the median ACR. Moreover, the coverage area ratio by Sn was high, and sufficient film adhesiveness was not obtained.

比較例No.23は、下地合金めっき層にMoを含有し、微細な島状Snが得られているが、Mo含有量が適切でなく、直線長さで20μm以上の下地露出部が散見された例である。ACRの中央値での千缶溶接試験で、チリの発生が散発した。
比較例No.24は、下地合金めっき層に含有されるMo量が過剰であり、Snがリフロー時に下地層との密着性が不十分なまま広がってしまい、微細な島状にならなかった例である。ACRが狭く、フィルム密着性、耐食性も劣っていた。
Comparative Example No. No. 23 is an example in which Mo is contained in the base alloy plating layer and fine island-shaped Sn is obtained, but the Mo content is not appropriate, and the base exposed portion having a linear length of 20 μm or more is scattered. . In the 1000-can welding test at the median value of ACR, generation of dust occurred sporadically.
Comparative Example No. No. 24 is an example in which the amount of Mo contained in the base alloy plating layer is excessive, and Sn spreads with insufficient adhesion to the base layer at the time of reflow and does not become a fine island. ACR was narrow, and film adhesion and corrosion resistance were inferior.

比較例No.25は、Mo量が過剰で、Sn付着量が少なく、直線長さで20μm以上の下地露出部が多い例である。ACRが不足で、ACRの中央値での千缶溶接試験で、チリの発生が散発した。耐食性も劣っていた。
比較例No.26は、下地合金めっき層にMoとWを含有するが、量が過剰であり、Snがリフロー時に下地層との密着性が不十分なまま広がってしまい、微細な島状にならなかった例である。ACRが狭く、フィルム密着性、耐食性も劣っていた。
Comparative Example No. No. 25 is an example in which the Mo amount is excessive, the Sn adhesion amount is small, and the base exposed portion having a linear length of 20 μm or more is large. Due to the lack of ACR, generation of dust occurred sporadically in the 1000-can welding test at the median value of ACR. Corrosion resistance was also poor.
Comparative Example No. No. 26 contains Mo and W in the base alloy plating layer, but the amount is excessive, and Sn spreads with insufficient adhesion to the base layer at the time of reflow, and does not become a fine island shape It is. ACR was narrow, and film adhesion and corrosion resistance were inferior.

比較例No.27は、下地合金めっき層にWを含有し、微細な島状Snが得られているが、W含有量が適切でなく、直線長さで20μm以上の下地露出部が散見された例である。ACRの中央値での千缶溶接試験で、チリの発生が散発した。
比較例No.28は、下地合金めっき層に含有されるW量が過剰であり、Snがリフロー時に下地層との密着性が不十分なまま広がってしまい、微細な島状にならなかった例である。ACRが狭く、フィルム密着性、耐食性も劣っていた。
Comparative Example No. No. 27 is an example in which W is contained in the base alloy plating layer and fine island-shaped Sn is obtained, but the W content is not appropriate, and the base exposed portion having a linear length of 20 μm or more is scattered. . In the 1000-can welding test at the median value of ACR, generation of dust occurred sporadically.
Comparative Example No. No. 28 is an example in which the amount of W contained in the base alloy plating layer is excessive, and Sn spreads with insufficient adhesion to the base layer at the time of reflow and does not become a fine island shape. ACR was narrow, and film adhesion and corrosion resistance were inferior.

比較例No.29は、W量が過剰で、Sn付着量が少なく、直線長さで20μm以上の下地露出部が多い例である。ACRが不足で、ACRの中央値での千缶溶接試験で、チリの発生が散発した。耐食性も劣っていた。
なお、本発明例No.1〜20のいずれのサンプルも、鋼板面の任意の方向で測定した下地層表面の露出部が、直線長さで50μm以上である部分は見当たらなかった。しかし、比較例No.21、22、25、26、29のサンプルでは、直線長さで50μm以上である部分が散見された。


特許出願人 新日本製鐵株式会社
代理人 弁理士 椎 名 彊 他1
Comparative Example No. No. 29 is an example in which the amount of W is excessive, the amount of deposited Sn is small, and there are many ground exposed portions having a linear length of 20 μm or more. Due to the lack of ACR, generation of dust occurred sporadically in the 1000-can welding test at the median value of ACR. Corrosion resistance was also poor.
In addition, this invention example No. None of the samples 1 to 20 were found to have a portion where the exposed portion of the surface of the base layer measured in an arbitrary direction on the steel plate surface was 50 μm or more in linear length. However, Comparative Example No. In the samples 21, 22, 25, 26, and 29, there were some portions where the linear length was 50 μm or more.


Patent applicant: Nippon Steel Corporation
Attorney Attorney Shiina and others 1

Claims (7)

金属状態の島状錫を有する表面処理鋼板であって、島状錫の下地層の露出部が、鋼板表面の任意の方向の直線長さで20μm以上である部分が20個/mm2以下であることを特徴とするシーム溶接性に優れた表面処理鋼板。 A surface-treated steel sheet having island-shaped tin in a metal state, wherein the exposed portion of the underlayer of island-shaped tin is 20 pieces / mm 2 or less where the linear length in an arbitrary direction on the steel sheet surface is 20 μm or more. A surface-treated steel sheet with excellent seam weldability. 金属状態の島状錫を有する表面処理鋼板であって、島状錫の下地層が、Ni量として2〜100mg/m2のFe−Ni合金層又はFe−Ni−Sn合金層であって、該合金層が、さらにMo、Mo化合物、W、W化合物の中から選ばれる1種又は2種以上を金属換算で合計1〜20mg/m2含有することを特徴とするシーム溶接性に優れた表面処理鋼板。 A surface-treated steel sheet having island-shaped tin in a metal state, wherein the underlayer of island-shaped tin is an Fe-Ni alloy layer or Fe-Ni-Sn alloy layer having a Ni amount of 2 to 100 mg / m2, The alloy layer further contains one or two or more selected from Mo, Mo compound, W, and W compound in terms of metal, and has excellent seam weldability, characterized in that it contains 1 to 20 mg / m 2 in total. Surface treated steel sheet. 島状錫の下地層の露出部が、鋼板表面の任意の方向で測定した直線長さで20μm以上である部分が20個/mm2以下であることを特徴とする請求項2記載のシーム溶接性に優れた表面処理鋼板。 3. The seam welding according to claim 2, wherein the exposed portion of the underlayer of the island-shaped tin is 20 pieces / mm < 2 > or less where the linear length measured in an arbitrary direction on the steel sheet surface is 20 [mu] m or more. Surface treated steel plate with excellent properties. 島状錫による被覆面積率が60〜90%であることを特徴とする請求項1〜3のいずれかに記載のシーム溶接性に優れた表面処理鋼板。 The surface-treated steel sheet excellent in seam weldability according to any one of claims 1 to 3, wherein a covering area ratio of island-shaped tin is 60 to 90%. 全錫付着量が、金属錫換算で300〜1500mg/m2であることを特徴とする請求項1〜4のいずれかに記載のシーム溶接性に優れた表面処理鋼板。 The surface-treated steel sheet excellent in seam weldability according to any one of claims 1 to 4, wherein the total tin adhesion amount is 300 to 1500 mg / m 2 in terms of metallic tin. 最表層に化成処理皮膜を有することを特徴とする請求項1〜5のいずれかに記載のシーム溶接性に優れた表面処理鋼板。 The surface-treated steel sheet excellent in seam weldability according to any one of claims 1 to 5, which has a chemical conversion coating on the outermost layer. 化成処理皮膜が、金属Cr換算で2〜40mg/m2のCr(III)水和酸化物又は金属Cr層の一方又は両方であることを特徴とする請求項6記載のシーム溶接性に優れた表面処理鋼板。 7. The seam weldability according to claim 6, wherein the chemical conversion treatment film is one or both of Cr (III) hydrated oxide or metal Cr layer of 2 to 40 mg / m 2 in terms of metal Cr. Surface treated steel sheet.
JP2005049937A 2005-02-25 2005-02-25 Surface-treated steel sheet with excellent seam weldability Expired - Fee Related JP4452198B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049937A JP4452198B2 (en) 2005-02-25 2005-02-25 Surface-treated steel sheet with excellent seam weldability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049937A JP4452198B2 (en) 2005-02-25 2005-02-25 Surface-treated steel sheet with excellent seam weldability

Publications (2)

Publication Number Publication Date
JP2006233279A true JP2006233279A (en) 2006-09-07
JP4452198B2 JP4452198B2 (en) 2010-04-21

Family

ID=37041264

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049937A Expired - Fee Related JP4452198B2 (en) 2005-02-25 2005-02-25 Surface-treated steel sheet with excellent seam weldability

Country Status (1)

Country Link
JP (1) JP4452198B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135197A1 (en) * 2017-01-18 2018-07-26 株式会社Jcu Plating solution for coloring, and coloring method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018135197A1 (en) * 2017-01-18 2018-07-26 株式会社Jcu Plating solution for coloring, and coloring method
JP2018115371A (en) * 2017-01-18 2018-07-26 株式会社Jcu Plating solution for coloring, and coloring method
CN110191977A (en) * 2017-01-18 2019-08-30 株式会社杰希优 Coloring plating solution and color method
US11214883B2 (en) 2017-01-18 2022-01-04 Jcu Corporation Plating solution for coloring, and coloring method
CN110191977B (en) * 2017-01-18 2022-04-26 株式会社杰希优 Plating solution for coloring and coloring method

Also Published As

Publication number Publication date
JP4452198B2 (en) 2010-04-21

Similar Documents

Publication Publication Date Title
JP6669321B2 (en) Surface-treated steel sheet for battery container and method for producing surface-treated steel sheet for battery container
JP2010013728A (en) Steel sheet for container which has excellent organic coating film performance, and method of manufacturing the same
JP2007231394A (en) Steel sheet for welded can
US6129995A (en) Zinciferous coated steel sheet and method for producing the same
JPWO2016076073A1 (en) Plated steel sheet and manufacturing method thereof
JP4452198B2 (en) Surface-treated steel sheet with excellent seam weldability
JPS61223197A (en) Surface-treated steel plate
JP6168826B2 (en) Steel with Mn layer
TWI840140B (en) Surface treated steel plate and manufacturing method thereof
JP6540800B2 (en) Container steel plate and method of manufacturing container steel plate
JP4102326B2 (en) Thin tin-plated steel sheet for welding cans
JP2583297B2 (en) Ultra-thin welding can material with excellent seam weldability, paint adhesion and post-paint corrosion resistance
JP2005256014A (en) Steel plate for welded can having excellent weldability, adhesiveness and corrosion resistance
JP3124233B2 (en) Surface-treated steel sheet for welded cans having excellent rust resistance and corrosion resistance under coating film, and method for producing the same
JPH0431039B2 (en)
JPH06293996A (en) Stock for welded can excellent in high speed seam weldability, corrosion resistance, heat resistance and adhesion of paint
JP3270318B2 (en) Steel plate for welded cans with excellent weldability, corrosion resistance, appearance and adhesion
JPH11106952A (en) Steel sheet for welded can excellent in waldability, corrosion resistance and film adhesion
JP3745457B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH0665789A (en) Material for welded can excellent in high-speed seam weldability, resistance to corrosion and heat and coating adhesion
JP3224457B2 (en) Material for welding cans with excellent high-speed seam weldability, corrosion resistance, heat resistance and paint adhesion
JP3822704B2 (en) Manufacturing method of steel sheet for welding can excellent in weldability, corrosion resistance, appearance and adhesion
JPH03287784A (en) Zinc plated steel sheet having superior press formability, chemical convertibility and weldability
JPH05106091A (en) Material for welded can excellent in seam weldability and adhesive strength of paint
JPH11106953A (en) Steel sheet for welded can excellent in weldability, corrosion resistance and film adhesion

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100126

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100129

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130205

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140205

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees