JP2006233253A - Electrolytic processing machine and processing method - Google Patents

Electrolytic processing machine and processing method Download PDF

Info

Publication number
JP2006233253A
JP2006233253A JP2005047546A JP2005047546A JP2006233253A JP 2006233253 A JP2006233253 A JP 2006233253A JP 2005047546 A JP2005047546 A JP 2005047546A JP 2005047546 A JP2005047546 A JP 2005047546A JP 2006233253 A JP2006233253 A JP 2006233253A
Authority
JP
Japan
Prior art keywords
workpiece
electrode
electrolytic
wafer
electrolytic processing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005047546A
Other languages
Japanese (ja)
Other versions
JP4582409B2 (en
Inventor
Takashi Fujita
隆 藤田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Seimitsu Co Ltd
Original Assignee
Tokyo Seimitsu Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Seimitsu Co Ltd filed Critical Tokyo Seimitsu Co Ltd
Priority to JP2005047546A priority Critical patent/JP4582409B2/en
Publication of JP2006233253A publication Critical patent/JP2006233253A/en
Application granted granted Critical
Publication of JP4582409B2 publication Critical patent/JP4582409B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Electrical Discharge Machining, Electrochemical Machining, And Combined Machining (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic processing machine and a method therefor where, at the time when the processing of fine projecting and recessed parts in an electrically conductive film formed on the surface of a workpiece is performed, the whole of the workpiece is flattened without generating damage such as scratching. <P>SOLUTION: The electrolytic processing machine is provided with: an electrode 31 supported in such a manner that the spacing with the surface of a wafer (workpiece) W placed on a surface plate 12 and rotating is held to a prescribed value by the stress of an electrolytic substance 33 for electrolytic processing made to flow into the space with the wafer W; and a feeding nozzle 32 of feeding the electrolytic substance 33 to the space between the electrode 31 and the wafer W, thus a stable fine gap G is held between the electrode 31 and the wafer W, and, in fine projecting and recessed parts in an electrolytically conductive film formed on the surface of the wafer W, the projecting parts are selectively processed in a non-contact state. In this way, the whole of the workpiece can be flattened without generating damages such as scratching. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、ワーク表面に形成された導電性膜を電解加工により平坦化する電界加工装置及び加工方法に関するものである。   The present invention relates to an electric field machining apparatus and a machining method for flattening a conductive film formed on a workpiece surface by electrolytic machining.

近年、半導体技術の発展により、デザインルールの微細化、多層配線化が進み、信号の伝搬遅延を抑制する為、従来から配線材料として用いられていたアルミニウム(Al)よりも電気抵抗が低く、エレクトロマイグレーション耐性の良い銅(Cu)を用いた配線プロセスの開発が盛んに行なわれている。   In recent years, with the development of semiconductor technology, design rules have been miniaturized and multilayer wiring has been progressed, and in order to suppress signal propagation delay, the electrical resistance is lower than that of aluminum (Al), which has been conventionally used as a wiring material. Development of a wiring process using copper (Cu) having good migration resistance has been actively performed.

Cuを用いた配線プロセスでは、プラズマエッチングによる揮発除去が出来ない為、あらかじめ層間絶縁膜に形成した溝状の配線パターンへ、スパッタ工程、メッキ工程などによりCuを埋め込みながら導電性膜を形成し、その後、化学的機械研磨(CMP:Chemical Mechanical Polishing)により不要なCu部分を除去して配線を形成するダマシン(damascene)法が広く用いられる。   In the wiring process using Cu, since volatilization removal by plasma etching cannot be performed, a conductive film is formed while embedding Cu by a sputtering process, a plating process, etc. into a groove-shaped wiring pattern formed in advance in an interlayer insulating film, Thereafter, a damascene method is widely used in which unnecessary Cu portions are removed by chemical mechanical polishing (CMP) to form wiring.

しかし、このCMPで使用されるスラリ内にはワーク表面を改質させる化学液の他に、機械的に除去を行なう研磨粒子が含まれている。研磨粒子内には場合により粗大粒子が存在する為、ワーク表面に形成されたCu配線にスクラッチなどのダメージが生じる問題が発生していた。また、配線間容量の増大を防ぐ為に低誘電率のLow−K材料によって形成された絶縁膜が、研磨粒子の機械的なせん断力により剥離するダメージが発生するなど、歩留まり向上の大きな問題となっていた。   However, the slurry used in CMP contains abrasive particles that are mechanically removed in addition to a chemical solution that modifies the workpiece surface. In some cases, coarse particles exist in the abrasive particles, which causes a problem such as scratches on the Cu wiring formed on the workpiece surface. In addition, the insulating film formed of the low-k low-K material to prevent the increase in inter-wiring capacitance is damaged due to peeling due to the mechanical shearing force of the abrasive particles. It was.

このような問題に対応する為、例えば、先に金属膜表面に不導体膜を形成し、研磨の機械的な作用により不動態膜の除去を行い金属膜の凸部を表面に露出させ、電解溶出により金属膜の凸部を選択的に除去するダメージの少ない半導体装置の製造方法、研磨装置及び研磨方法が提案されている(例えば、特許文献1参照。)。
特開2001−77117号公報
In order to deal with such problems, for example, a non-conductive film is first formed on the surface of the metal film, the passive film is removed by the mechanical action of polishing, and the convex portion of the metal film is exposed on the surface, A manufacturing method, a polishing apparatus, and a polishing method for a semiconductor device with less damage that selectively removes convex portions of a metal film by elution have been proposed (see, for example, Patent Document 1).
JP 2001-77117 A

しかし、特許文献1に記載された方法では研磨の機械的な作用を利用する為、研磨粒子内に粗大粒子が混入していた場合、スクラッチ等のダメージが発生する可能性が多大に残る。また、電解溶出による研磨量の安定性を確保する為には電極とワーク間の抵抗が常に安定していることが重要である。しかし、面内均一性を保った不動態膜の形成や、凸部における不動態膜の除去過程における電流のコントロールが困難である為、均一な研磨量を保つことは困難となる。   However, since the method described in Patent Document 1 uses the mechanical action of polishing, if coarse particles are mixed in the abrasive particles, there is a great possibility that damage such as scratches will occur. Also, in order to ensure the stability of the polishing amount due to electrolytic elution, it is important that the resistance between the electrode and the workpiece is always stable. However, it is difficult to maintain a uniform polishing amount because it is difficult to control the current in the process of removing the passive film from the convex portion and the formation of the passive film with in-plane uniformity.

本発明では、このような問題に鑑みてなされたもので、電極とワーク表面との微小な間隔を維持することにより、ワーク表面に形成された導電性膜の凸部を選択的に非接触で加工し、スクラッチ等のダメージを発生させずにワーク全体を平坦化する電解加工装置及び加工方法を提供することを目的としている。   The present invention has been made in view of such a problem. By maintaining a minute gap between the electrode and the workpiece surface, the convex portions of the conductive film formed on the workpiece surface can be selectively contacted. An object of the present invention is to provide an electrolytic processing apparatus and a processing method for processing and flattening the entire workpiece without causing damage such as scratches.

本発明は前記目的を達成するために、請求項1に記載の発明は、表面に微小な凹凸が形成された導電性材料からなるワークの表面との間隔を、前記ワークとの間に流入する電解加工用の電解物質の応力によって所定の値に維持するように支持された電極と、前記電極と前記ワークとの間へ前記電解物質を供給する供給手段とを有することを特徴としている。   In order to achieve the above-mentioned object, the invention according to claim 1 is configured such that an interval between the surface of a workpiece made of a conductive material having minute irregularities formed on the surface flows into the workpiece. It has an electrode supported so as to be maintained at a predetermined value by the stress of the electrolytic substance for electrolytic processing, and supply means for supplying the electrolytic substance between the electrode and the workpiece.

請求項1の発明によれば、電極と回転するワークとの間に流入する電解物質の応力により、電極とワーク表面とを微小な間隔で維持しながら電解加工することが出来る。これにより、凸部に電界集中を発生させて凸部を選択的に非接触で加工し、ワーク全体を平坦化することが可能となる。   According to the first aspect of the present invention, electrolytic processing can be performed while maintaining the electrode and the workpiece surface at a minute interval by the stress of the electrolytic substance flowing between the electrode and the rotating workpiece. As a result, electric field concentration is generated in the convex portion, the convex portion is selectively processed in a non-contact manner, and the entire workpiece can be flattened.

ここで、前記電解物質の応力について概説する。本発明における電解物質(流体)の応力の一つは一般的な潤滑理論から得られる。例えば、ワークによる平面と、これに対向した電極による滑動面との間の流体膜による、動圧状態下の流体の応力を取り上げる。   Here, the stress of the electrolytic substance will be outlined. One of the stresses of the electrolytic substance (fluid) in the present invention is obtained from a general lubrication theory. For example, the stress of the fluid under the dynamic pressure state due to the fluid film between the plane due to the workpiece and the sliding surface due to the electrode facing the workpiece is taken up.

図7に示すように、電極60による滑動面61が、ワークWによる平面62に対して傾いている場合、潤滑理論から滑動面61に働く圧力は次式(1)によって表される。   As shown in FIG. 7, when the sliding surface 61 by the electrode 60 is inclined with respect to the plane 62 by the workpiece W, the pressure acting on the sliding surface 61 is expressed by the following equation (1) from the theory of lubrication.

Figure 2006233253
Figure 2006233253

ただし、k=h1 /h2 である。この圧力Pが電極60にかかる研磨荷重と釣り合うことになる。一定の粘性を持つ流体下で、平面62が滑動面61に対して一定速度Uで運動している場合には、圧力Pに対して各部の間隔h1 、h2 は一意に形成される。 However, k = h 1 / h 2 . This pressure P is balanced with the polishing load applied to the electrode 60. When the flat surface 62 moves at a constant speed U with respect to the sliding surface 61 under a fluid having a constant viscosity, the intervals h 1 and h 2 between the respective parts are uniquely formed with respect to the pressure P.

この潤滑理論に基づく原理により、ワークWと電極60との間の間隔は、非常に微小な距離でありながら、常に一定に保つことが可能となる。ワークWと電極60との間の間隔が保たれることで、ワークWと電極60との間の抵抗の変動が極めて小さくなり、絶えず一定の電流が流れる。これにより、ワークW表面では、厳密に制御された電流により、安定して電解溶出される。   According to the principle based on this lubrication theory, the distance between the workpiece W and the electrode 60 can be kept constant at all times while being a very small distance. By maintaining the distance between the workpiece W and the electrode 60, the variation in resistance between the workpiece W and the electrode 60 becomes extremely small, and a constant current flows constantly. As a result, the surface of the workpiece W is stably electrolyzed by a strictly controlled current.

次に、静圧状態下の流体の応力について説明する。図8に示すように供給口73からワークWの平面72へ供給された電解物質(流体)は矢印F4のように流れる。この時、流体の流量Qは電極71と平面72との間隔h3 を用いて次式(2)によって表される。cは流量係数、dは供給口73の直径、pc は供給口内圧力、p0 は大気の圧力、γは流体の単位体積重量を表す。 Next, the stress of the fluid under a static pressure state will be described. As shown in FIG. 8, the electrolytic substance (fluid) supplied from the supply port 73 to the plane 72 of the workpiece W flows as indicated by an arrow F4. At this time, the flow rate Q of the fluid is expressed by the following equation (2) using the distance h 3 between the electrode 71 and the plane 72. c is the flow coefficient, d is the diameter of the supply port 73, p c supply mouth pressure, p 0 is the pressure of the atmosphere, gamma represents a unit weight of the fluid.

Figure 2006233253
Figure 2006233253

この式より、電解物質(流体)を一定の圧力で円筒形の供給口73よりワークWに当てることにより、電極71と平面72との間隔h3 は絶えず一定の値になることが示される。よって、電極71とワークWの間には一定の電流が流れ、安定した電解溶出が行なわれる。以上が電解物質の応力についての説明である。 From this equation, it is shown that the distance h 3 between the electrode 71 and the plane 72 is constantly a constant value when the electrolytic substance (fluid) is applied to the workpiece W from the cylindrical supply port 73 at a constant pressure. Therefore, a constant current flows between the electrode 71 and the workpiece W, and stable electrolytic elution is performed. The above is an explanation of the stress of the electrolytic substance.

次に、請求項2に記載の発明は、請求項1の発明において、前記電極は、前記ワークの径より小さいリング状であり、リング中央部に前記電解物質を供給する供給口が形成されたことを特徴としている。   Next, according to a second aspect of the present invention, in the first aspect of the present invention, the electrode has a ring shape smaller than the diameter of the workpiece, and a supply port for supplying the electrolytic substance is formed at the center of the ring. It is characterized by that.

請求項2の発明によれば、リング中央部から電解物質が供給されることにより、電極とワーク表面との間へ均一に電解物質が流入し、電極とワーク表面との間隔を微小に保ちながらワーク全面を加工することが可能となる。   According to the invention of claim 2, by supplying the electrolytic substance from the center part of the ring, the electrolytic substance flows uniformly between the electrode and the workpiece surface, while keeping the distance between the electrode and the workpiece surface minute. It is possible to machine the entire surface of the workpiece.

請求項3に記載の発明は、請求項1の発明において、前記電極は、JIS−K6253で規定する硬度90以下の弾性体、又はバネ機構で支持され、前記ワークの表面に対して接離可能であることを特徴としている。   According to a third aspect of the present invention, in the first aspect of the invention, the electrode is supported by an elastic body having a hardness of 90 or less as defined in JIS-K6253, or a spring mechanism, and can be brought into contact with or separated from the surface of the workpiece. It is characterized by being.

請求項3の発明によれば、電極とワーク表面との間に流入する電界物質の応力によって、弾性体で支持された電極はワーク表面から僅かに浮上し、電極とワーク表面との間隔を微小に保ちながらワーク全面を加工することが可能となる。   According to the invention of claim 3, the electrode supported by the elastic body slightly floats from the work surface due to the stress of the electric field substance flowing between the electrode and the work surface, and the distance between the electrode and the work surface is very small. It is possible to machine the entire workpiece while keeping

請求項4に記載の発明は、請求項1、2、又は3の発明において、前記電極の前記ワークと対向する面は、中心から放射状に溝が形成されたことを特徴としている。   According to a fourth aspect of the present invention, in the first, second, or third aspect of the present invention, the surface of the electrode facing the workpiece is formed with grooves radially from the center.

請求項4の発明によれば、電極とワーク表面の間に一様に電解物質が広がるため、電極とワーク表面との間隔を微小に保ち、ワーク表面の凸部を選択的に非接触で加工してワーク全体を平坦化することが可能となる。   According to the invention of claim 4, since the electrolytic substance spreads uniformly between the electrode and the workpiece surface, the distance between the electrode and the workpiece surface is kept minute, and the convex portion of the workpiece surface is selectively processed without contact. As a result, the entire workpiece can be flattened.

請求項5に記載の発明は、請求項1、2、又は3の発明において、前記電極の表面はカーボン、もしくは導電性の金属で形成され、前記ワークの表面に形成された凹凸よりも平滑であることを特徴としている。   According to a fifth aspect of the present invention, in the first, second, or third aspect of the invention, the surface of the electrode is made of carbon or a conductive metal, and is smoother than the irregularities formed on the surface of the workpiece. It is characterized by being.

請求項5の発明によれば、ワーク表面の導電性膜の凸部を電解加工することが可能になり、電極の表面がワーク表面よりも平滑であるためワーク表面の凸部を選択的に非接触で加工してワーク全体を平坦化することが可能となる。   According to the fifth aspect of the present invention, the convex portion of the conductive film on the workpiece surface can be electrolytically processed, and the surface of the electrode is smoother than the workpiece surface, so that the convex portion on the workpiece surface is not selectively removed. It becomes possible to flatten the entire workpiece by processing in contact.

請求項6に記載の発明は、微小な凹凸を有した導電性材料からなるワークの凸部を除去する電解加工方法において、前記ワークと電極間に存在する流体の応力によって、前記ワークと前記電極間の微小ギャップを所定の値に維持することを特徴としている。   According to a sixth aspect of the present invention, in the electrolytic processing method for removing a convex portion of a workpiece made of a conductive material having minute irregularities, the workpiece and the electrode are caused by a stress of a fluid existing between the workpiece and the electrode. It is characterized by maintaining a minute gap between them at a predetermined value.

請求項6の発明によれば、流体状の電解物質の応力により電極とワークの間に流体潤滑状態が形成される。これにより、電極とワーク表面とが触れることなく微小な間隔で維持される。よって、導電性材料からなる膜が形成されたワーク表面の微小な凹凸の凸部に電界集中を発生させ、凸部を選択的に非接触で加工してワーク全体を平坦化することが可能となる。   According to the invention of claim 6, a fluid lubrication state is formed between the electrode and the workpiece by the stress of the fluid electrolyte. As a result, the electrode and the workpiece surface are maintained at a minute interval without touching. Therefore, it is possible to generate electric field concentration on the minute uneven projections on the workpiece surface on which a film made of a conductive material is formed, and to selectively process the projections in a non-contact manner to flatten the entire workpiece. Become.

請求項7に記載の発明は、請求項6の発明において、前記電極が前記ワーク寸法より小さいリング状であり、リング中央から強制的に電解物質を供給することにより、前記ワークと前記電極間へ一様に前記電解物質を供給し、該ワークと該電極間の微小ギャップを所定の値に保つことを特徴としている。   According to a seventh aspect of the present invention, in the sixth aspect of the present invention, the electrode has a ring shape smaller than the workpiece size, and the electrolytic substance is forcibly supplied from the center of the ring to the gap between the workpiece and the electrode. The electrolytic substance is supplied uniformly, and a minute gap between the workpiece and the electrode is maintained at a predetermined value.

請求項7の発明によれば、リング中央部から電解物質が供給されることにより、電極とワーク表面との間へ均一に電解物質が流入し、電極とワーク表面との間隔を微小に保つことが可能となる。これにより、凸部に電界集中を発生させ、凸部を選択的に非接触で電解加工してワーク全体を平坦化することが可能となる。   According to the seventh aspect of the present invention, by supplying the electrolytic substance from the center of the ring, the electrolytic substance flows uniformly between the electrode and the workpiece surface, and the distance between the electrode and the workpiece surface is kept minute. Is possible. As a result, electric field concentration is generated in the convex portion, and the entire workpiece can be flattened by selectively performing non-contact electrolytic processing on the convex portion.

請求項8に記載の発明は、請求項6の発明において、前記電極が前記ワーク寸法より小さく、回転する前記ワークの表面上に供給された電解物質が、前記ワークの回転により該ワークに連れ回って移動することによって、該ワークと該電極間に所定の微小ギャップが形成されることを特徴としている。   According to an eighth aspect of the present invention, in the sixth aspect of the invention, the electrode is smaller than the workpiece size, and the electrolytic substance supplied on the surface of the rotating workpiece is rotated around the workpiece by the rotation of the workpiece. By moving in this manner, a predetermined minute gap is formed between the workpiece and the electrode.

請求項8の発明によれば、ワークの回転によりワークと連れ回って移動する電解物質の応力により、電極はワーク表面から僅かに浮上する。これにより、電極とワーク表面との間隔が微小に保たれるので、凸部に電界集中を発生させ、凸部を選択的に非接触で電解加工してワーク全体を平坦化することが可能となる。   According to the invention of claim 8, the electrode slightly floats from the surface of the work due to the stress of the electrolytic substance that moves along with the work by the rotation of the work. As a result, the distance between the electrode and the workpiece surface is kept minute, so that electric field concentration can be generated in the convex portion, and the convex portion can be selectively non-contact electrolytically processed to flatten the entire workpiece. Become.

請求項9に記載の発明は、請求項1、2、3、4、又は5の発明において、前記電極と前記ワークとの間に流れる電流の積算総量と前記ワークの積算加工量とから該ワークの単位電流量あたりの加工量を算出し、その結果に基づき、希望する加工量に達するまでの時間を算出する、又は希望する加工量に達した時点で加工を終了することを特徴としている。   According to a ninth aspect of the present invention, in the first, second, third, fourth, or fifth aspect of the invention, the workpiece is calculated from the total accumulated amount of current flowing between the electrode and the workpiece and the integrated machining amount of the workpiece. The machining amount per unit current amount is calculated, and based on the result, the time required to reach the desired machining amount is calculated, or the machining is terminated when the desired machining amount is reached.

請求項9の発明によれば、非接触状態で加工が進行する為、加工状態が安定している。また、電極とワークとの間隔が一定の微小な間隔で保たれ、電極とワークとの間の電流値が安定している。これらにより、加工された加工量の積算と、電流量の積算とから単位電流量当たりの加工量が算出可能であり、その結果に基づき加工終了予定時間の算出、又は希望加工量に達した時点で加工終了させることが出来る。   According to invention of Claim 9, since a process advances in a non-contact state, the process state is stable. In addition, the distance between the electrode and the work is kept at a constant minute distance, and the current value between the electrode and the work is stable. With these, it is possible to calculate the machining amount per unit current amount from the accumulated machining amount and the accumulated current amount, and based on the result, calculate the scheduled machining end time or when the desired machining amount is reached The processing can be completed with.

請求項10に記載の発明は、請求項9の発明において、前記電極と前記ワークとの間に流れる電流の値が所定の範囲を超えた場合は、加工を停止する、又は警報を発することを特徴としている。   The invention according to claim 10 is that, in the invention according to claim 9, when the value of the current flowing between the electrode and the workpiece exceeds a predetermined range, the processing is stopped or an alarm is issued. It is a feature.

請求項10の発明によれば、通常は電極とワークとの間隔が一定の微小な間隔で保たれ、電極とワークとの間の電流値が安定しているので、電流値が所定の範囲を超えた場合には異常状態と判定し、加工の停止、又は異常を警報により知らせることが可能となる。   According to the invention of claim 10, the distance between the electrode and the workpiece is usually kept at a constant minute distance, and the current value between the electrode and the workpiece is stable, so that the current value falls within a predetermined range. If it exceeds, it is determined as an abnormal state, and it is possible to notify the processing stoppage or abnormality by an alarm.

請求項11に記載の発明は、請求項1、2、3、4、又は5の発明において、加工中の前記電極と前記ワーク表面との間隔を、該電極の変位量より算出することを特徴としている。   According to an eleventh aspect of the present invention, in the first, second, third, fourth, or fifth aspect of the invention, the distance between the electrode being processed and the workpiece surface is calculated from the amount of displacement of the electrode. It is said.

請求項11の発明によれば、電極とワークとは加工中一定の微小な間隔で保たれており、ワークは定盤上に固定されているので、電極の変位量から電極とワークとの間隔を算出することが可能となる。   According to the eleventh aspect of the present invention, the electrode and the workpiece are kept at a constant minute interval during processing, and the workpiece is fixed on the surface plate, so that the distance between the electrode and the workpiece is determined from the amount of displacement of the electrode. Can be calculated.

請求項12に記載の発明は、請求項11の発明において、加工中の前記電極と前記ワーク表面との間隔が所定の範囲を超えた場合は、加工を停止する、又は警報を発することを
請求項12の発明によれば、通常は電極とワークとの間隔が一定の微小な間隔で保たれているので、間隔が所定の範囲を超えた場合には異常状態と判定し、加工の停止、又は異常を警報により知らせることが可能となる。
According to a twelfth aspect of the present invention, in the invention of the eleventh aspect, when the distance between the electrode being processed and the work surface exceeds a predetermined range, the processing is stopped or a warning is issued. According to the invention of item 12, since the interval between the electrode and the workpiece is normally kept at a constant minute interval, when the interval exceeds a predetermined range, it is determined as an abnormal state, and machining is stopped. Or it becomes possible to notify abnormality by an alarm.

以上説明したように、本発明の電解加工装置及び加工方法によれば、電極とワーク面上との微小ギャップを維持して電解加工が行なわれるので、ワーク表面に形成された導電性膜の凸部を選択的に非接触で加工して、スクラッチ等のダメージを発生させずにワーク全体を平坦化することが可能となる。   As described above, according to the electrolytic processing apparatus and processing method of the present invention, electrolytic processing is performed while maintaining a minute gap between the electrode and the work surface, so that the conductive film formed on the work surface is convex. The part can be selectively processed in a non-contact manner, and the entire workpiece can be flattened without causing damage such as scratches.

以下添付図面に従って本発明に係る電解加工装置及び加工方法の好ましい実施の形態について詳説する。図1は、 本発明に係る電解加工装置の全体構成を示す斜視図。図2は加工ヘッド部の構成を表した平面及び側面図。図3は電極のワークと対面する面の形状を表した図である。   Hereinafter, preferred embodiments of an electrolytic processing apparatus and a processing method according to the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a perspective view showing the overall configuration of an electrolytic processing apparatus according to the present invention. FIG. 2 is a plan view and a side view showing the configuration of the machining head portion. FIG. 3 is a diagram showing the shape of the surface of the electrode facing the workpiece.

先ず初めに本発明に係る電解加工装置の構成を説明する。図1に示すように、電解加工装置10は、表面にCu等の導電性膜が形成されたウェーハ(ワーク)Wを載置する定盤12と加工ヘッド部30とを備えている。定盤12は円盤状に形成されており、その上面にウェーハWを載置して固定する。定盤12の下部には、スピンドル18が連結されており、スピンドル18はモータ20の図示しない出力軸に連結されている。定盤12は、モータ20を駆動することにより矢印A方向に回転する。加工ヘッド部30は図示しない駆動装置により矢印X、Y、及びZ方向へ移動し、ウェーハWの着脱や定盤12の清掃を容易にする。   First, the configuration of the electrolytic processing apparatus according to the present invention will be described. As shown in FIG. 1, the electrolytic processing apparatus 10 includes a surface plate 12 and a processing head unit 30 on which a wafer (work) W having a conductive film such as Cu formed thereon is placed. The surface plate 12 is formed in a disk shape, and the wafer W is placed on the upper surface thereof and fixed. A spindle 18 is connected to the lower portion of the surface plate 12, and the spindle 18 is connected to an output shaft (not shown) of the motor 20. The surface plate 12 rotates in the direction of arrow A by driving the motor 20. The processing head unit 30 is moved in the directions of arrows X, Y, and Z by a driving device (not shown) to facilitate attachment / detachment of the wafer W and cleaning of the surface plate 12.

次に、加工ヘッド部30の構成を説明する。図2に示すように加工ヘッド部30には、電極31、電解物質33の供給手段としての供給ノズル32、及び電極31の微小移動量を測定する測定器36が設けられている。加工ヘッド部30は、図示しない駆動装置により矢印B方向に回転される。更に、加工中はX方向又はY方向へ往復運動する。   Next, the configuration of the machining head unit 30 will be described. As shown in FIG. 2, the processing head unit 30 is provided with an electrode 31, a supply nozzle 32 as a supply means for the electrolytic substance 33, and a measuring device 36 that measures a minute movement amount of the electrode 31. The machining head unit 30 is rotated in the direction of arrow B by a driving device (not shown). Furthermore, during the machining, it reciprocates in the X direction or the Y direction.

電極31と定盤12との間には直流電源34が備わっており、これにより定盤12上に載置されたウェーハWと電極31の間へ電圧を印加する。ウェーハWと電極31の間に流れる電流値が、電解加工装置10の図示されない制御部に設定されている電流値の範囲を超えた場合、加工ヘッド部30を上昇退避させ加工を停止する、又は図示されない警報装置により警報を発する。   A DC power supply 34 is provided between the electrode 31 and the surface plate 12, and thereby a voltage is applied between the wafer W placed on the surface plate 12 and the electrode 31. When the value of the current flowing between the wafer W and the electrode 31 exceeds the range of the current value set in the control unit (not shown) of the electrolytic processing apparatus 10, the processing head unit 30 is raised and retracted to stop processing, or An alarm is issued by an alarm device (not shown).

電極31上部中央には錘34が載置され、電極31は錘34と共に、錘34上部に設けられた蛇腹バネ35によりZ方向に微小移動可能に支持されている。加工中の電極31の微小移動量は、レーザー干渉を用いた測定器36により計測される。   A weight 34 is placed at the upper center of the electrode 31, and the electrode 31 is supported together with the weight 34 so as to be movable in the Z direction by a bellows spring 35 provided on the weight 34. The minute movement amount of the electrode 31 being processed is measured by a measuring device 36 using laser interference.

電極31は、表面がカーボン、タングステン又はその他の導電性の金属で形成されるとともに、電解加工を行なう前のウェーハWの表面に形成された導電性膜の微小な凹凸よりも平滑に形成されており、ウェーハWと対向する面には図3のa、又はbに示すように中心より放射状に溝が形成されている。   The electrode 31 has a surface formed of carbon, tungsten, or other conductive metal, and is formed more smoothly than the minute irregularities of the conductive film formed on the surface of the wafer W before electrolytic processing. On the surface facing the wafer W, grooves are formed radially from the center as shown in FIG.

電極31、錘34、及び蛇腹バネ35の中央部には液体、又はガス状の電解物質33(例えばKOH、NaOH、CaOH、又はHCl等の水溶液、もしくはミストガス)が供給される供給口31Aが設けられている。供給ノズル32より供給口31Aへ一定の圧力を加えて供給された電解物質33は供給口31Aを通り矢印F1のように流れ、ウェーハWと電極31の間へ流入する。   A supply port 31A for supplying a liquid or gaseous electrolytic substance 33 (for example, an aqueous solution such as KOH, NaOH, CaOH, or HCl, or mist gas) is provided at the center of the electrode 31, the weight 34, and the bellows spring 35. It has been. The electrolyte 33 supplied by applying a certain pressure from the supply nozzle 32 to the supply port 31 </ b> A flows through the supply port 31 </ b> A as indicated by an arrow F <b> 1 and flows between the wafer W and the electrode 31.

電極31は、ウェーハWとの間に流入した電解物質33の静圧状態下の応力によりウェーハWの面上から僅かに浮上し、ウェーハWと電極31の間には一定の微小ギャップGが発生し維持される。この微小ギャップGはウェーハW表面に形成される凹凸に対して同等か、もしくは一桁大きい程度である。   The electrode 31 floats slightly from the surface of the wafer W due to the stress under the static pressure state of the electrolyte 33 flowing between the electrode W and the wafer W, and a certain small gap G is generated between the wafer W and the electrode 31. And maintained. The minute gap G is equal to or larger than the unevenness formed on the surface of the wafer W by one digit.

ギャップGの値は、ウェーハWの位置が固定されているので、測定器36により測定される電極31の微小移動量より測定可能である。ギャップGの値が、電解加工装置10の図示されない制御部に設定されているギャップGの許容範囲を超えた場合、加工ヘッド部30を上昇退避させ加工を停止する、又は図示されない警報装置により警報を発する。   Since the position of the wafer W is fixed, the value of the gap G can be measured from the minute movement amount of the electrode 31 measured by the measuring device 36. When the value of the gap G exceeds the allowable range of the gap G set in the control unit (not shown) of the electrolytic processing apparatus 10, the machining head unit 30 is raised and retracted to stop the processing, or an alarm device (not shown) gives an alarm. To emit.

次に、本発明に係る電解加工装置の2つ目の構成を説明する。図4は弾性体を利用した加工ヘッド部の構成を表した側面図と平面図である。   Next, the second configuration of the electrolytic processing apparatus according to the present invention will be described. 4A and 4B are a side view and a plan view showing a configuration of a machining head portion using an elastic body.

加工ヘッド部40には、電極41、電極41を支持する弾性体42、弾性体42を取り付けるベース43、及び電解物質33をウェーハWの表面へ供給する供給ノズル44が設けられている。   The processing head unit 40 is provided with an electrode 41, an elastic body 42 that supports the electrode 41, a base 43 to which the elastic body 42 is attached, and a supply nozzle 44 that supplies the electrolytic substance 33 to the surface of the wafer W.

電極41と定盤12との間にはウェーハWと電極41との間に電圧を印加する直流電源34が備わっている。ウェーハWと電極41の間に流れる電流値が、設定されている電流値の範囲を超えた場合、加工ヘッド部30を上昇退避させ加工を停止する、又は図示されない警報装置により警報を発する。   A DC power supply 34 for applying a voltage between the wafer W and the electrode 41 is provided between the electrode 41 and the surface plate 12. When the value of the current flowing between the wafer W and the electrode 41 exceeds the set current value range, the machining head unit 30 is raised and retracted to stop the machining, or an alarm is issued by an alarm device (not shown).

電極41は、ウェーハWと対向する面の形状が平面又は曲面であり、平面の場合はウェーハWの回転方向に対向するように面取り部が設けてある。電極41の表面はカーボン、タングステン又はその他の導電性の金属で形成され、電解加工を行なう前のウェーハWの表面に形成された導電性膜の凹凸よりも平滑に形成されている。   The electrode 41 has a flat surface or a curved surface facing the wafer W, and a chamfered portion is provided so as to face the rotation direction of the wafer W in the case of a flat surface. The surface of the electrode 41 is made of carbon, tungsten, or other conductive metal, and is smoother than the unevenness of the conductive film formed on the surface of the wafer W before the electrolytic processing.

ベース43に取り付けられた弾性体42はJIS−K6253で規定する硬度90以下のゴム等の弾性体、又はバネ機構を有した金属等で構成され、電極41をウェーハW表面から接離可能に支持している。ベース43は、加工中Y方向に往復運動し、電極41もそれに伴ってウェーハW上を往復運動する。   The elastic body 42 attached to the base 43 is made of an elastic body such as rubber having a hardness of 90 or less as defined in JIS-K6253, or a metal having a spring mechanism, and supports the electrode 41 so as to be able to contact and separate from the surface of the wafer W. is doing. The base 43 reciprocates in the Y direction during processing, and the electrode 41 reciprocates on the wafer W accordingly.

供給ノズル44からウェーハW上に供給された電解物質33は、ウェーハWの回転に連れ回ってウェーハWの表面へ矢印F2のように均一に移動していく。そのため、電極41は電解物質33の動圧状態下の応力によりウェーハWの面上から僅かに浮上し、ウェーハWと電極41の間には一定の微小ギャップGが発生する。   The electrolyte 33 supplied onto the wafer W from the supply nozzle 44 moves uniformly as indicated by an arrow F2 to the surface of the wafer W as the wafer W rotates. Therefore, the electrode 41 slightly floats from the surface of the wafer W due to the stress under the dynamic pressure state of the electrolytic substance 33, and a certain minute gap G is generated between the wafer W and the electrode 41.

次に、本発明に係る電解加工装置の3つ目の構成を説明する。図5は多数のノズルを利用した加工ヘッド部の構成を表した側面図。図6は図5に示すノズルの一つを拡大した側面図である。   Next, a third configuration of the electrolytic processing apparatus according to the present invention will be described. FIG. 5 is a side view showing a configuration of a machining head portion using a large number of nozzles. 6 is an enlarged side view of one of the nozzles shown in FIG.

図5に示すように、加工ヘッド部50は、複数のノズル51、51・・・が、それぞれ個別にZ方向へ微小移動可能に設けられ、加工中はウェーハW上のX方向又はY方向へ往復運動する。個々のノズル51の直径は2〜10mm程度を好適とする。   As shown in FIG. 5, the processing head unit 50 is provided with a plurality of nozzles 51, 51... Individually movable in the Z direction, and in the X direction or Y direction on the wafer W during processing. Reciprocate. The diameter of each nozzle 51 is preferably about 2 to 10 mm.

ノズル51は図6に示すように、ノズル本体部54の先端に電極52が設けられ、電極52のZ方向の微小移動量をレーザー干渉により測定する測定器53が備えられている。   As shown in FIG. 6, the nozzle 51 is provided with an electrode 52 at the tip of the nozzle body 54, and a measuring device 53 that measures the minute movement amount of the electrode 52 in the Z direction by laser interference.

電極52と定盤12との間にはウェーハWと電極52との間に電圧を印加する直流電源34が備わっている。ウェーハWと電極52の間に流れる電流値が、設定されている電流値の範囲を超えた場合、加工ヘッド部50を上昇退避させ加工を停止する、又は図示されない警報装置により警報を発する。   A DC power supply 34 for applying a voltage between the wafer W and the electrode 52 is provided between the electrode 52 and the surface plate 12. When the value of the current flowing between the wafer W and the electrode 52 exceeds the set current value range, the processing head unit 50 is raised and retracted to stop processing, or an alarm is issued by an alarm device (not shown).

ノズル本体54と電極52との中央部には電解物質33を供給する供給口55が設けられている。供給口55へ一定の圧力を加えて供給された電解物質33は、供給口55を通り矢印F3のように流れ、ウェーハWと電極52の間へ流入する。   A supply port 55 for supplying the electrolytic substance 33 is provided at the center of the nozzle body 54 and the electrode 52. The electrolyte 33 supplied by applying a certain pressure to the supply port 55 flows through the supply port 55 as indicated by an arrow F 3 and flows between the wafer W and the electrode 52.

各ノズル51は、電極52とウェーハWとの間に流入した電解物質33の静圧状態下の応力によりウェーハWの面上から僅かに浮上する。これにより、各ノズル51の電極52とウェーハWとの間には、各ノズル51で同等な一定の微小ギャップGが発生し維持される。   Each nozzle 51 slightly floats from the surface of the wafer W due to the stress under the static pressure state of the electrolyte 33 flowing between the electrode 52 and the wafer W. As a result, an equal constant gap G is generated and maintained at each nozzle 51 between the electrode 52 of each nozzle 51 and the wafer W.

ギャップGの値は測定器53により測定される。測定されたギャップGの値が、設定されているギャップGの許容範囲を超えた場合、加工ヘッド部50を上昇退避させ加工を停止する、又は図示されない警報装置により警報を発する。   The value of the gap G is measured by the measuring device 53. When the measured value of the gap G exceeds the set allowable range of the gap G, the machining head unit 50 is raised and retracted to stop the machining, or an alarm device (not shown) issues an alarm.

これらの構成により、本発明に係る電解加工装置は、電解物質33の応力により、電極31、電極41、又は電極52とウェーハWの間に流体潤滑状態が形成される。これにより、電極31、電極41、又は電極52とウェーハW表面とが一定の微少ギャップGの間隔に保たれる。この状態で電極31、電極41、又は電極52とウェーハWとの間へ電圧を印加することにより、ウェーハW表面の凹凸の凸部に電界集中が発生し、凸部が選択的に非接触で電解加工されるので、スクラッチ等のダメージを発生させずにウェーハ表面全体を平坦化することが可能となる。   With these configurations, in the electrolytic processing apparatus according to the present invention, a fluid lubrication state is formed between the electrode 31, the electrode 41, or the electrode 52 and the wafer W due to the stress of the electrolytic substance 33. As a result, the electrode 31, the electrode 41, or the electrode 52 and the surface of the wafer W are kept at a constant gap G. In this state, by applying a voltage between the electrode 31, the electrode 41 or the electrode 52 and the wafer W, electric field concentration occurs on the uneven portion of the surface of the wafer W, and the convex portion is selectively non-contacting. Since it is electrolytically processed, the entire wafer surface can be flattened without causing damage such as scratches.

次に、本発明に係る電解加工装置の作用及び加工方法について説明する。図2に示すように本発明に係る電解加工装置では、定盤12上に載置され回転するウェーハW(例えば50〜150rpm程度)と、図示しない駆動装置により回転する加工ヘッド部30の電極31(例えば50〜150rpm程度)との間へ、電解物質33を供給口31Aから一定の圧力を加えて供給する。   Next, the operation and processing method of the electrolytic processing apparatus according to the present invention will be described. As shown in FIG. 2, in the electrolytic processing apparatus according to the present invention, a wafer W (for example, about 50 to 150 rpm) which is placed on the surface plate 12 and rotates, and an electrode 31 of the processing head unit 30 which is rotated by a driving device (not shown). (For example, about 50 to 150 rpm), the electrolyte 33 is supplied from the supply port 31 </ b> A by applying a certain pressure.

供給された電解物質33は、ウェーハWと電極31の間に流入し、ウェーハWの表面上に広がる。このとき、電極31は電解物質33の静圧状態下の応力によりウェーハW上から浮上し、ウェーハWとの間に微小なギャップGが作られる。   The supplied electrolytic substance 33 flows between the wafer W and the electrode 31 and spreads on the surface of the wafer W. At this time, the electrode 31 floats from the wafer W due to the stress of the electrolytic substance 33 under the static pressure state, and a minute gap G is formed between the electrode 31 and the wafer W.

ギャップGは、電解物質33の応力により、電極31とウェーハWとの間に流体潤滑状態が形成されている為、電解物質33の種類、状態、及び供給する圧力や温度等の条件、又は電極31にかける荷重や電極31の種類等によって決まる所定の値で保たれる。   In the gap G, a fluid lubrication state is formed between the electrode 31 and the wafer W due to the stress of the electrolytic substance 33. Therefore, the type and state of the electrolytic substance 33, conditions such as supplied pressure and temperature, or the electrode It is maintained at a predetermined value determined by the load applied to 31 and the type of electrode 31.

この状態でウェーハWと電極31の間へ電圧を印加することにより、ウェーハW表面の凹凸の凸部には電界集中が発生する。電界集中が発生した凸部は溶出するため、凸部を選択的に電解加工される。   When a voltage is applied between the wafer W and the electrode 31 in this state, electric field concentration occurs on the uneven protrusions on the surface of the wafer W. Since the convex portion where the electric field concentration occurs is eluted, the convex portion is selectively electrolytically processed.

電極31は加工ヘッド30と共にX方向、又はY方向へ往復移動するため、ウェーハWの表面全体に形成されている凸部が、すべて選択的に加工されることとなる。   Since the electrode 31 reciprocates in the X direction or the Y direction together with the processing head 30, all the convex portions formed on the entire surface of the wafer W are selectively processed.

加工中に直流電源34より流れた電流量は、解加工装置10の図示されてない制御部で積算される。積算された電流量と、測定器36により測定された電極31の微小移動量より算出されるウェーハWの加工量から単位電流量あたりの加工量を算出する。これにより、加工量が希望する加工量まで達する予定時間が算出可能となり、加工量に達した時点で加工を終了する。   The amount of current flowing from the DC power source 34 during machining is integrated by a control unit (not shown) of the solution processing apparatus 10. The processing amount per unit current amount is calculated from the integrated current amount and the processing amount of the wafer W calculated from the minute movement amount of the electrode 31 measured by the measuring device 36. As a result, it is possible to calculate the scheduled time until the machining amount reaches the desired machining amount, and the machining is terminated when the machining amount is reached.

次に、本発明に係る2つ目の電解加工装置の作用及び加工方法について説明する。図4に示すように本発明に係る2つ目の電解加工装置では、定盤12上に載置され回転するウェーハW(例えば500rpm程度)へ電解物質33を供給する。   Next, the operation and processing method of the second electrolytic processing apparatus according to the present invention will be described. As shown in FIG. 4, in the second electrolytic processing apparatus according to the present invention, the electrolytic substance 33 is supplied to a wafer W (for example, about 500 rpm) mounted on the surface plate 12 and rotating.

電解物質33はウェーハWの回転によりウェーハWに連れ回って移動し均一に広がる。この時、前述した通り、電極41は電解物質33の動圧状態下の応力によりウェーハW上から浮上し、ウェーハWとの間には所定の微小なギャップGが作られる。ギャップGはウェーハWの回転数、電解物質33の種類、状態、及び圧力や温度等の条件、又は弾性体42の弾性力等によって決まる所定の値で保たれる。   The electrolytic substance 33 moves with the wafer W by the rotation of the wafer W and spreads uniformly. At this time, as described above, the electrode 41 floats from the wafer W due to the stress under the dynamic pressure state of the electrolytic substance 33, and a predetermined minute gap G is created between the electrode 41 and the wafer W. The gap G is maintained at a predetermined value determined by the number of rotations of the wafer W, the type and state of the electrolytic substance 33, conditions such as pressure and temperature, or the elastic force of the elastic body 42.

この状態でウェーハWと電極41の間へ電圧を印加することにより、凸部が選択的に電解加工される。電極41は加工中Y方向へ往復運動しているので、ウェーハWの表面全体に形成されている凸部が、すべて選択的に加工されることとなる。   By applying a voltage between the wafer W and the electrode 41 in this state, the convex portion is selectively electrolytically processed. Since the electrode 41 reciprocates in the Y direction during processing, all the convex portions formed on the entire surface of the wafer W are selectively processed.

加工中に直流電源34より流れた電流量は積算され、積算された電流量とウェーハWの加工量から単位電流量あたりの加工量を算出する。これにより、加工量が希望する加工量まで達する予定時間を算出可能となり、加工量に達した時点で加工を終了する。   The amount of current flowing from the DC power supply 34 during processing is integrated, and the processing amount per unit current amount is calculated from the integrated current amount and the processing amount of the wafer W. As a result, it is possible to calculate a scheduled time for the machining amount to reach the desired machining amount, and the machining is terminated when the machining amount is reached.

次に、本発明に係る3つ目の電解加工装置の作用及び加工方法について説明する。図5に示すように本発明に係る3つ目の電解加工装置では、先端に電極52が設けられた複数のノズル51、51・・・が、それぞれ個別にZ方向へ微小移動可能に設けられている。   Next, the operation and processing method of the third electrolytic processing apparatus according to the present invention will be described. As shown in FIG. 5, in the third electrolytic processing apparatus according to the present invention, a plurality of nozzles 51, 51.. ing.

各ノズル51の供給口55に供給された電解物質33は電極52とウェーハWの間へ流入する。各ノズル51は、電解物質33の静圧状態下の応力によりウェーハW上から僅かに浮上し、ウェーハWとの間に微小なギャップGが作られる。この状態でウェーハWと電極52の間へ電圧を印加することにより、凸部が選択的に電解加工される。   The electrolyte 33 supplied to the supply port 55 of each nozzle 51 flows between the electrode 52 and the wafer W. Each nozzle 51 floats slightly from above the wafer W due to the stress of the electrolytic substance 33 under the static pressure state, and a minute gap G is created between the nozzle 51 and the wafer W. By applying a voltage between the wafer W and the electrode 52 in this state, the convex portion is selectively electrolytically processed.

ギャップGはウェーハWの回転数、電解物質33の種類、状態、及び圧力や温度等の条件によって決まる所定の値で保たれ、各ノズル51で同等となる。これにより、ウェーハWに大きな反り等が発生していても、各ノズル51はそれに合わせて上下し、ウェーハW表面に形成された微小な凹凸を選択的に電解加工する。   The gap G is maintained at a predetermined value determined by the number of rotations of the wafer W, the type and state of the electrolytic substance 33, and conditions such as pressure and temperature, and is equal for each nozzle 51. As a result, even if a large warp or the like occurs in the wafer W, each nozzle 51 moves up and down in accordance therewith, and selectively performs minute electrolytic processing on minute irregularities formed on the surface of the wafer W.

加工中に各ノズル51の電極52とウェーハWとの間に流れた電流量は積算され、積算された電流量とウェーハWの加工量から単位電流量あたりの加工量を算出する。これにより、加工量が希望する加工量まで達する予定時間を算出可能となり、加工量に達した時点で加工を終了する。   The amount of current flowing between the electrode 52 of each nozzle 51 and the wafer W during processing is integrated, and a processing amount per unit current amount is calculated from the integrated current amount and the processing amount of the wafer W. As a result, it is possible to calculate a scheduled time for the machining amount to reach the desired machining amount, and the machining is terminated when the machining amount is reached.

これらの作用により、本発明に係る加工方法では、流体状の電解物質33の応力により電極31、電極41、又はノズル51と、ワークW表面とが非接触となり、安定した微小なギャップGが加工中に常時保たれる。これにより、ウェーハW表面の凹凸の凸部に電界集中が発生し、凸部が選択的に非接触で電解加工されるので、スクラッチ等のダメージを発生させずにウェーハ表面全体を平坦化することが可能となる。   Due to these actions, in the machining method according to the present invention, the electrode 31, the electrode 41, or the nozzle 51 and the surface of the workpiece W are not in contact with each other due to the stress of the fluid electrolyte 33, and a stable minute gap G is machined. Always kept inside. As a result, the electric field concentration occurs on the convex and concave portions on the surface of the wafer W, and the convex portions are selectively non-contact electrolytically processed, so that the entire wafer surface is flattened without causing damage such as scratches. Is possible.

本発明に係る電解加工装置の全体構成図。The whole block diagram of the electrolytic processing apparatus which concerns on this invention. 加工ヘッド部の構成を表した平面図及び側面図。The top view and side view showing the structure of the process head part. 電極のワークと対面する面の形状を表した平面図。The top view showing the shape of the surface which faces the workpiece | work of an electrode. 弾性体を利用した加工ヘッド部の構成を表した側面図と平面図。The side view and top view showing the structure of the process head part using an elastic body. 多数のノズルを利用した加工ヘッド部の構成を表した側面図。The side view showing the composition of the processing head part using many nozzles. 図5に示すノズルの一つを拡大した側面図The side view which expanded one of the nozzles shown in FIG. 動圧状態下の流体の応力を説明する図。The figure explaining the stress of the fluid under a dynamic pressure state. 静圧状態下の流体の応力を説明する図。The figure explaining the stress of the fluid under a static pressure state.

符号の説明Explanation of symbols

10…電解加工装置,12…定盤,18…スピンドル,20…モータ,30、40、50…加工ヘッド部,31、41、52、60、71…電極,31A、55、73…供給口,32、44…供給ノズル,33…電解物質,34…直流電源,36、53…測定器,42…弾性体,43…ベース,51…ノズル,G…ギャップ,W…ウェーハ(ワーク) DESCRIPTION OF SYMBOLS 10 ... Electrolytic processing apparatus, 12 ... Surface plate, 18 ... Spindle, 20 ... Motor, 30, 40, 50 ... Processing head part, 31, 41, 52, 60, 71 ... Electrode, 31A, 55, 73 ... Supply port, 32, 44 ... Supply nozzle, 33 ... Electrolytic substance, 34 ... DC power supply, 36, 53 ... Measuring instrument, 42 ... Elastic body, 43 ... Base, 51 ... Nozzle, G ... Gap, W ... Wafer (workpiece)

Claims (12)

表面に微小な凹凸が形成された導電性材料からなるワークの表面との間隔を、前記ワークとの間に流入する電解加工用の電解物質の応力によって所定の値に維持するように支持された電極と、
前記電極と前記ワークとの間へ前記電解物質を供給する供給手段とを有することを特徴とする電解加工装置。
The distance from the surface of the workpiece made of a conductive material having minute irregularities formed on the surface was supported so as to be maintained at a predetermined value by the stress of the electrolytic processing electrolytic substance flowing between the workpiece and the workpiece. Electrodes,
An electrolytic processing apparatus comprising supply means for supplying the electrolytic substance between the electrode and the workpiece.
前記電極は、前記ワークの径より小さいリング状であり、リング中央部に前記電解物質を供給する供給口が形成されたことを特徴とする、請求項1に記載の電解加工装置。   2. The electrolytic processing apparatus according to claim 1, wherein the electrode has a ring shape smaller than the diameter of the workpiece, and a supply port for supplying the electrolytic substance is formed in a center portion of the ring. 前記電極は、JIS−K6253で規定する硬度90以下の弾性体、又はバネ機構で支持され、前記ワークの表面に対して接離可能であることを特徴とする請求項1に記載の電解加工装置。   2. The electrolytic processing apparatus according to claim 1, wherein the electrode is supported by an elastic body having a hardness of 90 or less as defined in JIS-K6253, or a spring mechanism, and can be brought into contact with or separated from the surface of the workpiece. . 前記電極の前記ワークと対向する面は、中心から放射状に溝が形成されたことを特徴とする請求項1、2、又は3のうちいずれか1項に記載の電解加工装置。   4. The electrolytic processing apparatus according to claim 1, wherein the surface of the electrode facing the workpiece is formed with grooves radially from the center. 5. 前記電極の表面はカーボン、もしくは導電性の金属で形成され、前記ワークの表面に形成された凹凸よりも平滑であることを特徴とする請求項1、2、又は3のうちいずれか1項に記載の電解加工装置。   The surface of the electrode is formed of carbon or a conductive metal, and is smoother than the unevenness formed on the surface of the workpiece. The electrolytic processing apparatus as described. 微小な凹凸を有した導電性材料からなるワークの凸部を除去する電解加工方法において、
前記ワークと電極間に存在する流体の応力によって、前記ワークと前記電極間の微小ギャップを所定の値に維持することを特徴とする電解加工方法。
In the electrolytic processing method for removing the convex portion of the workpiece made of a conductive material having minute irregularities,
An electrolytic processing method, wherein a minute gap between the workpiece and the electrode is maintained at a predetermined value by a stress of a fluid existing between the workpiece and the electrode.
前記電極が前記ワーク寸法より小さいリング状であり、リング中央から強制的に電解物質を供給することにより、前記ワークと前記電極間へ一様に前記電解物質を供給し、該ワークと該電極間の微小ギャップを所定の値に保つことを特徴とする請求項6に記載の電解加工方法。   The electrode is in a ring shape smaller than the workpiece size, and the electrolyte is uniformly supplied from the center of the ring to uniformly supply the electrolyte between the workpiece and the electrode. The electrolytic machining method according to claim 6, wherein the minute gap is maintained at a predetermined value. 前記電極が前記ワーク寸法より小さく、回転する前記ワークの表面上に供給された電解物質が、前記ワークの回転により該ワークに連れ回って移動することによって、該ワークと該電極間に所定の微小ギャップが形成されることを特徴とする請求項6に記載の電解加工方法。   When the electrode is smaller than the workpiece size and the electrolytic substance supplied on the surface of the rotating workpiece moves along with the workpiece by the rotation of the workpiece, a predetermined minute amount is formed between the workpiece and the electrode. The electrolytic processing method according to claim 6, wherein a gap is formed. 前記電極と前記ワークとの間に流れる電流の積算総量と前記ワークの積算加工量とから該ワークの単位電流量あたりの加工量を算出し、その結果に基づき、希望する加工量に達するまでの時間を算出する、又は希望する加工量に達した時点で加工を終了することを特徴とする請求項1、2、3、4、又は5のうちいずれか1項に記載の電解加工装置。   A machining amount per unit current amount of the workpiece is calculated from an accumulated total amount of current flowing between the electrode and the workpiece and an accumulated machining amount of the workpiece, and based on the result, a desired machining amount is reached. 6. The electrolytic processing apparatus according to claim 1, wherein the processing is terminated when a time is calculated or when a desired processing amount is reached. 前記電極と前記ワークとの間に流れる電流の値が所定の範囲を超えた場合は、加工を停止する、又は警報を発することを特徴とする請求項9に記載の電解加工装置。   The electrolytic processing apparatus according to claim 9, wherein when the value of a current flowing between the electrode and the workpiece exceeds a predetermined range, the processing is stopped or an alarm is issued. 加工中の前記電極と前記ワーク表面との間隔を、該電極の変位量より算出することを特徴とする請求項1、2、3、4、又は5のうちいずれか1項に記載の電解加工装置。   The electrolytic machining according to any one of claims 1, 2, 3, 4, or 5, wherein a distance between the electrode being worked and the workpiece surface is calculated from a displacement amount of the electrode. apparatus. 加工中の前記電極と前記ワーク表面との間隔が所定の範囲を超えた場合は、加工を停止する、又は警報を発することを特徴とする請求項11に記載の電解加工装置。   The electrolytic processing apparatus according to claim 11, wherein when the distance between the electrode being processed and the workpiece surface exceeds a predetermined range, the processing is stopped or an alarm is issued.
JP2005047546A 2005-02-23 2005-02-23 Electrolytic processing apparatus and processing method Expired - Fee Related JP4582409B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047546A JP4582409B2 (en) 2005-02-23 2005-02-23 Electrolytic processing apparatus and processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005047546A JP4582409B2 (en) 2005-02-23 2005-02-23 Electrolytic processing apparatus and processing method

Publications (2)

Publication Number Publication Date
JP2006233253A true JP2006233253A (en) 2006-09-07
JP4582409B2 JP4582409B2 (en) 2010-11-17

Family

ID=37041244

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047546A Expired - Fee Related JP4582409B2 (en) 2005-02-23 2005-02-23 Electrolytic processing apparatus and processing method

Country Status (1)

Country Link
JP (1) JP4582409B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240037A (en) * 2007-03-26 2008-10-09 Tokyo Seimitsu Co Ltd Electrolytic machining unit device, and electrolytic machining, washing and drying method
JP2009034802A (en) * 2007-08-03 2009-02-19 Tokyo Seimitsu Co Ltd Electrochemical machining method and electrochemical machining device
JP2009052061A (en) * 2007-08-23 2009-03-12 Tokyo Seimitsu Co Ltd Electro-chemical machining method and electro-chemical machining apparatus

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063391A (en) * 1983-09-19 1985-04-11 Hitachi Ltd Surface treating device for strip
JPS63109375A (en) * 1986-10-28 1988-05-14 Takeo Oki Apparatus for measuring current density of liquid contact surface of conductor
JPH029532A (en) * 1988-06-29 1990-01-12 Kawasaki Steel Corp Rotary electrode type electrolytic polishing device
JPH04311600A (en) * 1991-04-09 1992-11-04 Kawasaki Steel Corp Electrolytic polishing apparatus for steel plate
JP2001077117A (en) * 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
JP2003266245A (en) * 2002-03-12 2003-09-24 Ebara Corp Electrolytic machining device and method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6063391A (en) * 1983-09-19 1985-04-11 Hitachi Ltd Surface treating device for strip
JPS63109375A (en) * 1986-10-28 1988-05-14 Takeo Oki Apparatus for measuring current density of liquid contact surface of conductor
JPH029532A (en) * 1988-06-29 1990-01-12 Kawasaki Steel Corp Rotary electrode type electrolytic polishing device
JPH04311600A (en) * 1991-04-09 1992-11-04 Kawasaki Steel Corp Electrolytic polishing apparatus for steel plate
JP2001077117A (en) * 1999-09-07 2001-03-23 Sony Corp Manufacture of semiconductor device, and method and device for polishing
JP2003266245A (en) * 2002-03-12 2003-09-24 Ebara Corp Electrolytic machining device and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008240037A (en) * 2007-03-26 2008-10-09 Tokyo Seimitsu Co Ltd Electrolytic machining unit device, and electrolytic machining, washing and drying method
JP2009034802A (en) * 2007-08-03 2009-02-19 Tokyo Seimitsu Co Ltd Electrochemical machining method and electrochemical machining device
JP2009052061A (en) * 2007-08-23 2009-03-12 Tokyo Seimitsu Co Ltd Electro-chemical machining method and electro-chemical machining apparatus

Also Published As

Publication number Publication date
JP4582409B2 (en) 2010-11-17

Similar Documents

Publication Publication Date Title
TWI275452B (en) Electropolishing assembly and methods for electropolishing conductive layers
CN111584354B (en) Etching method
JP4575729B2 (en) Polishing pad for electrochemical mechanical polishing
JP5513509B2 (en) Apparatus and method for processing a workpiece by micro-EDM
JP5481472B2 (en) CMP pad thickness and profile monitoring system
US10272540B2 (en) System and method for polishing substrate
JP2011067939A (en) Systems and apparatus related to electrochemical machining
JP4582409B2 (en) Electrolytic processing apparatus and processing method
JP6818614B2 (en) Substrate processing equipment and substrate processing system including substrate processing equipment
JP2007050506A (en) Apparatus for electrochemical machining
US6447376B1 (en) Plasma discharge truing apparatus and fine-machining methods using the apparatus
TWI632010B (en) Portable micro-deburring system using micro-electrical discharge machining process and the deburring method using the same
JP5148206B2 (en) Electrolytic processing method and electrolytic processing apparatus
US7807036B2 (en) Method and system for pad conditioning in an ECMP process
JP6253206B2 (en) Blade processing apparatus and blade processing method
JP2007051374A (en) Electroprocessing method and substrate treatment method
JP5082066B2 (en) Electrolytic processing method and electrolytic processing apparatus
CN102398193A (en) Grinding auxiliary electrochemical discharge machining tool and method
JP4446271B2 (en) Method and apparatus for electrically, mechanically and / or chemically removing a conductive material from a microelectronic substrate
JP2018047551A (en) Workpiece processing device and workpiece processing method
JP2008266693A (en) Method for removing electroconductive film by electrochemical machining, and electrochemical machining apparatus
JP5252271B2 (en) Polishing equipment
US6927177B2 (en) Chemical mechanical electropolishing system
TW201811473A (en) Electrochemical electric discharge machining device capable of improving efficiency and solving the problem of poor machining precision in the prior art
US20050087450A1 (en) Electropolishing pad

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080313

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100518

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100716

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100805

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100818

R150 Certificate of patent or registration of utility model

Ref document number: 4582409

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130910

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees