JP2006233023A - Method for producing porous polyamic acid fine particle and porous polyimide fine particle - Google Patents

Method for producing porous polyamic acid fine particle and porous polyimide fine particle Download PDF

Info

Publication number
JP2006233023A
JP2006233023A JP2005049910A JP2005049910A JP2006233023A JP 2006233023 A JP2006233023 A JP 2006233023A JP 2005049910 A JP2005049910 A JP 2005049910A JP 2005049910 A JP2005049910 A JP 2005049910A JP 2006233023 A JP2006233023 A JP 2006233023A
Authority
JP
Japan
Prior art keywords
polyamic acid
fine particles
porous
polymer
fine particle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005049910A
Other languages
Japanese (ja)
Other versions
JP4125296B2 (en
Inventor
Hachiro Nakanishi
八郎 中西
Hitoshi Kasai
均 笠井
Takayuki Ishizaka
孝之 石坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Science and Technology Agency
Original Assignee
Japan Science and Technology Agency
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Science and Technology Agency filed Critical Japan Science and Technology Agency
Priority to JP2005049910A priority Critical patent/JP4125296B2/en
Publication of JP2006233023A publication Critical patent/JP2006233023A/en
Application granted granted Critical
Publication of JP4125296B2 publication Critical patent/JP4125296B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a size-controlled and high quality porous polyimide fine particle and a porous polyamic acid fine particle to be a raw material for it. <P>SOLUTION: A polyamic acid and a polymer which is miscible with the polyamic acid and soluble in an organic solvent in an amount of 0.5-100 mass% to the polyamic acid are dissolved in the organic solvent to obtain a mixed solution of the polyamic acid and the polymer. The mixed solution is poured into a poor solvent of the polyamic acid miscible with the organic solvent. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、粒径や孔径が制御された、孔質性ポリアミド酸微粒子および孔質性ポリイミド微粒子の製造方法に関する。   The present invention relates to a method for producing porous polyamic acid fine particles and porous polyimide fine particles having a controlled particle size and pore size.

ポリイミドは、耐熱性、耐溶剤性、電気絶縁性等、様々な優れた特性を有することから、多く分野で利用されている。例えば、金属、セラミックス代替材料として利用される他、過酷な条件下で用いられる電気電子産業分野や航空宇宙産業分野において、フイルム、ワニス、接着剤、バルク状成型材料などとしても利用されている。   Polyimide is used in many fields because it has various excellent properties such as heat resistance, solvent resistance, and electrical insulation. For example, in addition to being used as an alternative material for metals and ceramics, it is also used as a film, varnish, adhesive, bulk molding material, etc. in the electric and electronic industry fields and aerospace industry fields used under severe conditions.

このようなポリイミドを微粒化した材料は、ポリイミドの自体の特性とその微細な構造との組み合わせによる相乗効果により、様々な用途が期待されている。例えば、画像形成用の粉末トナーの添加剤、スクリーン印刷用の添加剤等が提案されているが、中でも、ポリイミド系微粒子表面に細孔を持たせた孔質性ポリイミド微粒子は、低誘電材料や、種々のナノデバイスの鋳型として非常に有用である。   Such a material obtained by atomizing polyimide is expected to be used in various applications due to a synergistic effect due to the combination of the characteristics of the polyimide itself and its fine structure. For example, powder toner additives for image formation, additives for screen printing, etc. have been proposed. Among them, porous polyimide fine particles having pores on the surface of polyimide fine particles are low dielectric materials and It is very useful as a template for various nanodevices.

従来、孔質性のポリマー微粒子は、ポリマー溶液を噴霧して瞬間的に乾燥させるスプレードライ法で作成するのが一般的であった。しかし、スプレードライ法は製造条件の制御、溶媒選択などが難しいという問題点があった。   Conventionally, porous polymer fine particles have been generally prepared by a spray drying method in which a polymer solution is sprayed and dried instantaneously. However, the spray drying method has problems that it is difficult to control production conditions and select a solvent.

これに対し、本発明者らは、以前、スプレードライ法とは異なる全く新しい孔質性ポリイミド微粒子の作製方法を開発した。これは、ポリアミド酸溶液を貧溶媒に注入することによって、粒径が制御されたポリアミド酸微粒子を作製する再沈法(特許文献1)において、注入するポリアミド酸溶液にアルカリ金属のハロゲン化物塩を添加することで、多孔性ポリアミド酸微粒子を形成し、次いでイミド化処理を施すものである(特許文献2)。
特開2003−252990号広報 特開2004−196869号広報
In contrast, the present inventors have previously developed a completely new method for producing porous polyimide fine particles different from the spray drying method. This is because, in a reprecipitation method (Patent Document 1) for producing polyamic acid fine particles having a controlled particle size by pouring a polyamic acid solution into a poor solvent, an alkali metal halide salt is added to the polyamic acid solution to be poured. By adding, porous polyamic acid fine particles are formed, and then imidization treatment is performed (Patent Document 2).
Japanese Laid-Open Patent Publication No. 2003-252990 Japanese Laid-Open Patent Publication No. 2004-196869

特許文献1の製造方法によれば、簡易に、かつ再現性よく孔質性ポリイミド微粒子を製造することができる。しかしながら、より粒径や孔径が小さく、かつ孔率の高い微粒子を製造できる方法が求められていた。すなわち、用途に応じて自由にポリイミド微粒子の粒径、孔径、孔率を変化させることができ、かつ、より粒径、孔径、孔率の分布が狭くて均質なポリイミド微粒子を製造することができる方法が求められていた。   According to the production method of Patent Document 1, porous polyimide fine particles can be produced easily and with good reproducibility. However, there has been a demand for a method capable of producing fine particles having a smaller particle size and pore size and a high porosity. That is, the particle size, pore size, and porosity of the polyimide fine particles can be freely changed according to the application, and more uniform polyimide particles can be produced with a narrower particle size, pore size, and porosity distribution. A method was sought.

そこで本発明は、サイズ制御された、高品質な孔質性ポリイミド微粒子およびその原料となる孔質性ポリアミド酸微粒子の製造方法を提供することを課題とする。   Therefore, an object of the present invention is to provide a size-controlled high-quality porous polyimide fine particle and a method for producing porous polyamic acid fine particles as a raw material thereof.

本発明者らは、鋭意検討を行った結果、再沈法において、良溶媒中にポリアミド酸と共に特定のポリマーを溶解させることで、そのポリマーがポリアミド酸微粒子の空孔源となり、高品質な孔質性ポリアミド酸微粒子を再現性よく作製できることを見出した。また、これをイミド化することで、孔質性ポリアミド酸微粒子の粒径や空孔の形状的な性質を保ったまま、孔質性ポリイミド微粒子に変換できることも見出した。   As a result of intensive studies, the present inventors dissolved a specific polymer together with polyamic acid in a good solvent in the reprecipitation method, so that the polymer became a pore source of the polyamic acid fine particles, and high-quality pores were obtained. It has been found that fine polyamic acid fine particles can be produced with good reproducibility. It has also been found that by imidizing this, it can be converted into porous polyimide fine particles while maintaining the particle size of the porous polyamic acid fine particles and the shape properties of the pores.

すなわち、本発明は、有機溶媒に、ポリアミド酸と、前記ポリアミド酸に対して0.5〜100質量%の、前記ポリアミド酸と相溶性かつ前記有機溶媒に可溶性であるポリマーとを溶解させた、ポリアミド酸/ポリマー混合溶液を、前記有機溶媒と相溶性である前記ポリアミド酸の貧溶媒に注入することを特徴とする、孔質性ポリアミド酸微粒子の製造方法を提供して前記課題を解決するものである。   That is, in the present invention, polyamic acid and 0.5 to 100% by mass of the polyamic acid, which is compatible with the polyamic acid and soluble in the organic solvent, are dissolved in the organic solvent. A method for producing porous polyamic acid fine particles, which solves the above problems by injecting a polyamic acid / polymer mixed solution into a poor solvent of the polyamic acid that is compatible with the organic solvent. It is.

この発明において、前記有機溶媒は、極性アミド系溶媒であることが好ましく、また、前記ポリマーは、前記ポリマーの繰り返し単位が、カルボキシル基、カルボニル基、エステル基、アミノ基、ヒドロキシル基から選択される置換基を有するものであることが好ましい。   In this invention, the organic solvent is preferably a polar amide solvent, and in the polymer, the polymer repeating unit is selected from a carboxyl group, a carbonyl group, an ester group, an amino group, and a hydroxyl group. It preferably has a substituent.

この発明によれば、孔質性ポリアミド酸微粒子の粒径、孔径、孔率が制御された、高品質な孔質性ポリアミド酸微粒子の製造方法を提供することができる。ここで、孔率とは、微粒子の表面積に対する空孔の総面積の割合(パーセント)のことをいう。   According to the present invention, it is possible to provide a method for producing high-quality porous polyamic acid fine particles in which the particle size, pore diameter, and porosity of the porous polyamic acid fine particles are controlled. Here, the porosity means the ratio (percentage) of the total area of the pores to the surface area of the fine particles.

また、上記のようにして得られた孔質性ポリアミド酸微粒子をイミド化処理することにより、作製した孔質性ポリアミド酸微粒子の粒径や孔径、孔率等の形状的な性質を保ったまま孔質性ポリイミド微粒子に変換することができるので、容易に高品質な孔質性ポリイミド微粒子を作製することができる。   Further, by imidizing the porous polyamic acid fine particles obtained as described above, the produced porous polyamic acid fine particles maintain the shape properties such as the particle diameter, the pore diameter, and the porosity. Since it can be converted into porous polyimide fine particles, high-quality porous polyimide fine particles can be easily produced.

本発明によれば、ポリマー微粒子を製造する技術として確立された再沈法を利用することにより、容易に孔質性ポリイミド粒子およびその前駆体となる孔質性ポリアミド酸を製造することができる。また、ポリアミドと一緒に溶解させるポリマーの種類や濃度などの製造条件を変化させることにより、ポリイミド微粒子の粒径、孔径、孔率を変化させることができるので、粒径、孔径、孔率の分布が狭くて均質なポリイミド微粒子を再現性よく製造することができる。   According to the present invention, by using a reprecipitation method established as a technique for producing polymer fine particles, it is possible to easily produce porous polyimide particles and a porous polyamic acid serving as a precursor thereof. In addition, the particle size, pore size, and porosity of the polyimide fine particles can be changed by changing the production conditions such as the type and concentration of the polymer that is dissolved together with the polyamide. Narrow and homogeneous polyimide fine particles can be produced with good reproducibility.

本発明のこのような作用および利得は、次に説明する発明を実施するための最良の形態から明らかにされる。   Such an operation and a gain of the present invention will be clarified from the best mode for carrying out the invention described below.

本発明は、再沈法によるポリアミド酸の微粒子の製造方法において、空孔を持たせるために、空孔形成源としてポリマーを利用するものである。以下本発明について詳細に説明するが、再沈法による基本的なポリアミド微粒子の製造方法は、上述した特許文献1に開示されており、それを参考にすることができる。   The present invention utilizes a polymer as a pore-forming source in order to provide pores in a method for producing polyamic acid fine particles by a reprecipitation method. Hereinafter, the present invention will be described in detail. A basic method for producing polyamide fine particles by a reprecipitation method is disclosed in Patent Document 1 described above, and can be referred to.

本発明で微粒子化されるポリアミド酸(ポリアミック酸ともいう)は、下記一般式(1)に示される構造を有する化合物である。   The polyamic acid (also referred to as polyamic acid) to be microparticulated in the present invention is a compound having a structure represented by the following general formula (1).

Figure 2006233023
Figure 2006233023

Xは4価の置換基、Yは2価の置換基である。X、Yは特に限定はされず、用途によって適宜置換基を選択することができるが、通常は芳香族系の置換基が用いられる。ポリアミド酸の分子量も、基本的には使用用途との関連で適宜選択できるが、所望の粒径の微粒子を安定的に製造するためには、重量平均分子量が8000〜220000の範囲にあることが好ましい。   X is a tetravalent substituent, and Y is a divalent substituent. X and Y are not particularly limited, and a substituent can be appropriately selected depending on the use, but usually an aromatic substituent is used. The molecular weight of the polyamic acid can also be appropriately selected basically in relation to the intended use, but in order to stably produce fine particles having a desired particle size, the weight average molecular weight may be in the range of 8000 to 220,000. preferable.

本発明においては、まず、ポリアミド酸が、後述するポリマーと共に有機溶媒に溶解され、ポリアミド酸/ポリマー混合溶液がつくられるが、ポリアミド酸を溶解する有機溶媒としては、ポリアミド酸を溶解することのできる有機溶媒ならば使用できる。通常、極性の有機溶媒が用いられ、これらのものとして、具体的には、アセトン、メチルエチルケトン等のケトン系溶媒;テトラヒドロフラン、ジオキサン等の環状エーテル系溶媒;アセトニトリル等のニトリル系溶媒;メタノール、エタノール、イソプロパノール等のアルコール系溶媒;N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチルピロリドン等の極性アミド系溶媒;ジメチルスルホキシド、ジエチルスルホキシド等のスルホキシド系溶媒;フェノール、o−,m−,またはp−クレゾール、キシレノール、ハロゲン化フェノール、カテコール等のフェノール系溶媒;ヘキサメチルホスホルアミド、γ−ブチロラクトン等の非プロトン性極性溶媒などを例示することができる。これらを単独であるいは混合して用いることができるが、溶解性の点からは、極性アミド系溶媒が好ましく、中でもN,N−ジメチルアセトアミドやN−メチルピロリドンが特に好ましい。   In the present invention, the polyamic acid is first dissolved in an organic solvent together with the polymer described below to form a polyamic acid / polymer mixed solution. As the organic solvent for dissolving the polyamic acid, the polyamic acid can be dissolved. Any organic solvent can be used. Usually, a polar organic solvent is used. Specific examples thereof include ketone solvents such as acetone and methyl ethyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxane; nitrile solvents such as acetonitrile; methanol, ethanol, Alcohol solvents such as isopropanol; polar amide solvents such as N, N-dimethylacetamide, N, N-dimethylformamide and N-methylpyrrolidone; sulfoxide solvents such as dimethyl sulfoxide and diethyl sulfoxide; phenol, o-, m- Or phenolic solvents such as p-cresol, xylenol, halogenated phenol, and catechol; and aprotic polar solvents such as hexamethylphosphoramide and γ-butyrolactone. These can be used alone or in combination, but from the viewpoint of solubility, polar amide solvents are preferred, and N, N-dimethylacetamide and N-methylpyrrolidone are particularly preferred.

ポリアミド酸の有機溶媒への溶解濃度は、生成するポリアミド酸微粒子の粒径に影響を与える大きな要因であるため、その濃度は所望の粒径に応じて適宜変更される。特にポリアミド酸の分子量が大きいほど溶液濃度の影響が大きい。溶液濃度は、通常0.1〜15質量%程度で調整されるが、分子量が大きい場合は、0.5質量%前後の溶液が好ましくは調整される。   Since the concentration of the polyamic acid dissolved in the organic solvent is a large factor that affects the particle size of the polyamic acid fine particles to be produced, the concentration is appropriately changed according to the desired particle size. In particular, the greater the molecular weight of the polyamic acid, the greater the effect of the solution concentration. The solution concentration is usually adjusted to about 0.1 to 15% by mass, but when the molecular weight is large, a solution of about 0.5% by mass is preferably adjusted.

ポリアミド酸と共に溶解されるポリマーは、微粒子となるポリアミド酸の表面に空孔を形成する役割を有するものである。ポリアミド酸と相溶性であり、かつ前述の有機溶媒に溶解するポリマーであれば使用でき、ポリスチレン、ポリアクリル酸、ポリメタクリル酸、ポリプロピレングリコール、ポリビニルアルコール、ポリビニルピロリドン、ポリメタクリル酸エステル、ポリアクリル酸エステル、ポリエチレンなど一般的なポリマーを例示でき、これらはホモポリマーでもコポリマーでもよい。中でも、カルボキシル基、カルボニル基、エステル基、アミノ基、ヒドロキシル基から選択される置換基を有するポリマーが好ましく、特にはポリアクリル酸、ポリアルキレングリコール、ポリビニルアルコールが好ましい。その添加量は、所望の孔径、孔率によるが、ポリアミド酸に対し、ポリアミド酸基準で、0.5〜100質量%、好ましく0.5〜80質量%である。   The polymer dissolved together with the polyamic acid has a role of forming vacancies on the surface of the polyamic acid to be fine particles. Any polymer that is compatible with the polyamic acid and is soluble in the organic solvent can be used. Polystyrene, polyacrylic acid, polymethacrylic acid, polypropylene glycol, polyvinyl alcohol, polyvinylpyrrolidone, polymethacrylic acid ester, polyacrylic acid Common polymers such as esters and polyethylene can be exemplified, and these may be homopolymers or copolymers. Among them, a polymer having a substituent selected from a carboxyl group, a carbonyl group, an ester group, an amino group, and a hydroxyl group is preferable, and polyacrylic acid, polyalkylene glycol, and polyvinyl alcohol are particularly preferable. The amount added depends on the desired pore diameter and porosity, but is 0.5 to 100% by mass, preferably 0.5 to 80% by mass, based on the polyamic acid, based on the polyamic acid.

上記ポリアミド酸/ポリマー混合溶液は、ポリアミド酸の貧溶媒に注入されることによって、貧溶媒に分散した状態のポリアミド酸微粒子が形成される。貧溶媒とは、上記ポリアミド酸/ポリマー混合溶液を添加した際にポリアミド酸が析出し得る溶媒である。貧溶媒としては、へキサン、ヘプタン等の脂肪族系炭化水素;デカリン、シクロヘキサン等の脂環式炭化水素;ベンゼン、トルエン、キシレン等の芳香族系炭化水素;二硫化炭素、又はこれらの2種以上の混合溶媒が挙げられるが、中でも脂環式炭化水素およびこれと二硫化炭素との混合溶媒が好ましい。   The polyamic acid / polymer mixed solution is injected into a poor solvent for polyamic acid to form polyamic acid fine particles dispersed in the poor solvent. The poor solvent is a solvent in which the polyamic acid can be precipitated when the polyamic acid / polymer mixed solution is added. Examples of the poor solvent include aliphatic hydrocarbons such as hexane and heptane; alicyclic hydrocarbons such as decalin and cyclohexane; aromatic hydrocarbons such as benzene, toluene and xylene; carbon disulfide, or two of these Although the above mixed solvent is mentioned, an alicyclic hydrocarbon and the mixed solvent of this and carbon disulfide are especially preferable.

貧溶媒には、孔質性ポリアミド酸微粒子の分散安定性を向上させるために界面活性剤を入れておくこともできる。界面活性剤としては、通常、中性の界面活性剤が用いられるが、中でも、ポリアクリル酸エステル系の中の高分子界面活性剤が好ましい。例えば、アクリディック(大日本インキ化学工業社製、ポリアクリル酸エステル系の顔料表面処理剤。「アクリディック」は大日本インキ化学工業社製の登録商標(以下同様))等が、市販品として入手できる。界面活性剤を使用する場合、その量に特に制限はないが、あまり多すぎると空孔形成に悪影響を及ぼすため、通常0.1質量%程度使用される。   In the poor solvent, a surfactant may be added in order to improve the dispersion stability of the porous polyamic acid fine particles. As the surfactant, a neutral surfactant is usually used, and among them, a polymer surfactant in a polyacrylate ester type is preferable. For example, ACRICID (Dainippon Ink Chemical Co., Ltd., polyacrylic acid ester pigment surface treatment agent. “Acridic” is a registered trademark of Dainippon Ink & Chemicals, Inc.) Available. When a surfactant is used, the amount thereof is not particularly limited, but if it is too large, the formation of pores is adversely affected.

ポリアミド酸/ポリマー混合溶液が注入される貧溶媒の量は、通常、ポリアミド酸/ポリマー混合溶液の体積基準で、10倍以上である。上限は特にないが、微粒子回収の作業性や経済性の点からは、多すぎない方が好ましい。微粒子の析出性や作業性の観点から、100倍程度用いるのが一般的である。   The amount of the poor solvent into which the polyamic acid / polymer mixed solution is injected is usually 10 times or more based on the volume of the polyamic acid / polymer mixed solution. Although there is no particular upper limit, it is preferable that the upper limit is not too large from the viewpoint of workability and economical efficiency of fine particle recovery. From the viewpoint of fine particle precipitation and workability, it is generally used about 100 times.

注入時、貧溶媒は、生成する孔質性ポリアミド酸微粒子を均一化するために、攪拌しておくことが好ましい。攪拌速度は特に制限はないが、好ましくは100〜3000rpmである。   At the time of injection, the poor solvent is preferably stirred in order to make the generated porous polyamic acid fine particles uniform. The stirring speed is not particularly limited, but is preferably 100 to 3000 rpm.

注入時の貧溶媒の温度は、溶媒が液体状態を保っている限り特に制限はないが、貧溶媒の温度を変化させると粒径も変化するので、貧溶媒の温度を一定に保つことで、得られる孔質性ポリアミド酸微粒子の粒径を制御することができる。例えば、30℃より低い温度の貧溶媒を用いると、孔質性ポリアミド酸微粒子の粒径が大きくなる傾向がある。通常、−20℃〜60℃の範囲で、所望の粒径に応じて温度が制御される。   The temperature of the poor solvent at the time of injection is not particularly limited as long as the solvent remains in a liquid state, but the particle size also changes when the temperature of the poor solvent is changed, so by keeping the temperature of the poor solvent constant, The particle size of the resulting porous polyamic acid fine particles can be controlled. For example, when a poor solvent having a temperature lower than 30 ° C. is used, the particle size of the porous polyamic acid fine particles tends to increase. Usually, the temperature is controlled in the range of −20 ° C. to 60 ° C. according to the desired particle size.

注入は、粒子の形質のばらつきを防ぐため、一気に短時間に行うことが好ましい。実験室的には、通常シリンジが用いられる。   The injection is preferably performed in a short time at a stretch in order to prevent variation in particle characteristics. In the laboratory, a syringe is usually used.

こうして得られた孔質性ポリアミド酸微粒子は、貧溶媒の温度や、ポリアミド酸と共に溶解させるポリマーの種類、添加量等を制御することにより、通常、粒径が50〜10000nmであり、孔径10〜500nm、0.1〜30%の孔率を有する孔質性のポリアミド酸微粒子となる。   The porous polyamic acid fine particles thus obtained usually have a particle diameter of 50 to 10,000 nm by controlling the temperature of the poor solvent, the type of polymer dissolved with the polyamic acid, the amount added, etc. It becomes a porous polyamic acid fine particle having a porosity of 500 nm and 0.1 to 30%.

上記のように作製された孔質性ポリアミド酸微粒子は、イミド化処理することによって、孔質性ポリイミド微粒子となる。イミド化は、公知のいかなる方法によっても行うことができる。イミド化は、一般的には、その方法として熱的に脱水する熱イミド化と、脱水剤を用いる化学イミド化の二種類があり、いずれの方法を用いてもよく、熱イミド化と化学イミド化とを併用してもよい。例えば、定量的にポリアミド酸をポリイミドに変換するために、化学イミド化を行った後熱イミド化を行うことも好ましい。熱イミド化は通常80℃〜300℃程度に加熱することによって行われる。加熱する時間は加熱温度にもよるが、通常は数分〜数十時間程度である。化学イミド化は、通常常温から150℃程度の温度範囲で、反応溶液に、無水酢酸、トリフルオロ酢酸無水物などの脱水剤や、ピリジン、ピコリン、イミダゾール、イソキノリン、トリエチルアミンなどの化学イミド化を促進する効果を有する化合物を添加して行われるが、中でも無水酢酸/ピリジン混合溶媒、あるいは無水酢酸/トリエチルアミン混合溶媒を用いて行うことが好ましい。イミド化は、貧溶媒中に分散された状態のまま行っても、孔質性ポリアミド酸微粒子を単離してから行ってもよいが、作業の簡易性から、通常は貧溶媒中に分散された状態のまま行われる。   The porous polyamic acid fine particles produced as described above become porous polyimide fine particles by imidization treatment. The imidization can be performed by any known method. In general, there are two types of imidization: thermal imidation that thermally dehydrates and chemical imidization using a dehydrating agent. Either method may be used, thermal imidization or chemical imidization. You may use together. For example, in order to quantitatively convert polyamic acid into polyimide, it is also preferable to perform thermal imidization after chemical imidization. Thermal imidization is usually performed by heating to about 80 ° C to 300 ° C. Although the heating time depends on the heating temperature, it is usually about several minutes to several tens of hours. Chemical imidation usually promotes chemical imidization of pyridine, picoline, imidazole, isoquinoline, triethylamine, and other dehydrating agents such as acetic anhydride and trifluoroacetic anhydride in the reaction solution in a temperature range from room temperature to about 150 ° C. It is preferably carried out using an acetic anhydride / pyridine mixed solvent or an acetic anhydride / triethylamine mixed solvent. The imidization may be carried out in a state of being dispersed in a poor solvent or may be carried out after isolating the porous polyamic acid fine particles. It is done in the state.

このように、再沈法によって得られた孔質性ポリアミド酸微粒子をイミド化すると、ポリアミド酸微粒子の粒径やその分散、あるいは孔径、孔率等の、ポリアミド酸微粒子の形状的な性質を保持したままポリイミド微粒子へと変換されるので、高品質なポリイミド微粒子を製造することができる。   As described above, when the porous polyamic acid fine particles obtained by the reprecipitation method are imidized, the shape properties of the polyamic acid fine particles such as the particle size of the polyamic acid fine particles, the dispersion thereof, the pore size and the porosity are retained. Since it is converted into polyimide fine particles as it is, high-quality polyimide fine particles can be produced.

以下実施例を示すが、本発明はこれに限定されるものではない。
(実施例1)
2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸(分子量:68650)を、N−メチルピロリドンに1.5質量%の濃度で溶解した。これに、ポリビニルアルコール(分子量:500)を、ポリアミド酸に対し、それぞれ配合量が(a)20質量%、(b)50質量%および(c)70質量%となるように添加して3種の溶液を調整した。これらの溶液各0.1mlを、室温下、1500rpmの撹拌条件下で、マイクロシリンジを用いて、中性高分子界面活性剤(アクリディック、大日本インキ化学工業社製)を0.1質量%含有する10mlのシクロヘキサンに注入した。すると、各粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた各孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化を完了させ、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得た。
孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図1に示す。
Examples will be shown below, but the present invention is not limited thereto.
Example 1
Polyamic acid obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4′-diaminodiphenyl ether ( (Molecular weight: 68650) was dissolved in N-methylpyrrolidone at a concentration of 1.5% by mass. Polyvinyl alcohol (molecular weight: 500) was added to the polyamic acid so that the blending amounts were (a) 20% by mass, (b) 50% by mass, and (c) 70% by mass, respectively. The solution of was prepared. Each 0.1 ml of these solutions was 0.1% by mass of a neutral polymer surfactant (Acridic, manufactured by Dainippon Ink & Chemicals, Inc.) using a microsyringe at room temperature under a stirring condition of 1500 rpm. Poured into 10 ml of contained cyclohexane. Then, a dispersion of polyamic acid fine particles having pores formed on the surface of each particle could be obtained.
To each of the porous polyamic acid fine particle dispersions thus obtained, 0.1 ml of a mixed solution having a pyridine / acetic anhydride molar ratio of 1/1 was added with stirring, and the chemical imidation was completed by holding for about 2 hours. As a result, porous polyimide fine particles maintaining the porosity of the porous polyamic acid fine particles were obtained.
The porosity (pore diameter, particle size, porosity) of the porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(実施例2)
2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸(分子量:68650)を、N−メチルピロリドンに1.5質量%の濃度で溶解した。これに、ポリアクリル酸(分子量:2000)を、ポリアミド酸に対し、それぞれ配合量が(a)20質量%、(b)40質量%および(c)60質量%となるように添加して3種の溶液を調整した。これらの溶液各0.1mlを、室温下、1000rpmの撹拌条件下で、マイクロシリンジを用いて、中性高分子界面活性剤(アクリディック、大日本インキ化学工業社製)を0.1質量%含有する10mlのシクロヘキサンにそれぞれ注入した。すると、各粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた各孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化をした後、270℃で3時間保持することにより熱イミド化を行って、イミド化を定量的に進行させた。これにより、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得ることができた。
得られた孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図2に示す。
(Example 2)
Polyamic acid obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4′-diaminodiphenyl ether ( (Molecular weight: 68650) was dissolved in N-methylpyrrolidone at a concentration of 1.5% by mass. To this, polyacrylic acid (molecular weight: 2000) was added to the polyamic acid so that the blending amounts were (a) 20 mass%, (b) 40 mass%, and (c) 60 mass%, respectively. A seed solution was prepared. Each 0.1 ml of these solutions was 0.1% by mass of a neutral polymer surfactant (Acridic, manufactured by Dainippon Ink & Chemicals, Inc.) using a microsyringe under stirring conditions of 1000 rpm at room temperature. Each was poured into 10 ml of cyclohexane. Then, a dispersion of polyamic acid fine particles having pores formed on the surface of each particle could be obtained.
To each of the porous polyamic acid fine particle dispersions thus obtained, 0.1 ml of a mixed solution having a pyridine / acetic anhydride molar ratio of 1/1 was added with stirring, and chemical imidization was carried out by holding for about 2 hours. Then, thermal imidation was performed by holding at 270 ° C. for 3 hours to allow the imidization to proceed quantitatively. Thereby, the porous polyimide fine particle which maintained the porosity of the porous polyamic-acid fine particle was able to be obtained.
The porosity (pore size, particle size, porosity) of the obtained porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(実施例3)
1,4−bis(3,4−ジカルボキシトリフルオロフェノキシ)テトラフルオロベンゼン二無水物とテトラフルオロ−m−フェニレンジアミンとの重合により得られたポリアミド酸(分子量:40000)を、中性高分子界面活性剤(アクリディック、大日本インキ化学工業社製)を0.1質量%含有するN,N−ジメチルアセトアミドに1.5質量%の濃度で溶解した。これに、ポリアクリル酸(分子量:2000)を、ポリアミド酸に対し、それぞれ配合量が(a)20質量%、(b)40質量%および(c)60質量%となるように添加して3種の溶液を調整した。これらの溶液各0.1mlを、室温下、1500rpmの撹拌条件下で、マイクロシリンジを用いて10mlのシクロヘキサンに注入した。すると、各粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた各孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化を完了させ、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得た。
孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図3に示す。
(Example 3)
A polyamic acid (molecular weight: 40000) obtained by polymerization of 1,4-bis (3,4-dicarboxytrifluorophenoxy) tetrafluorobenzene dianhydride and tetrafluoro-m-phenylenediamine is used as a neutral polymer. A surfactant (Acridic, manufactured by Dainippon Ink & Chemicals, Inc.) was dissolved in N, N-dimethylacetamide containing 0.1% by mass at a concentration of 1.5% by mass. To this, polyacrylic acid (molecular weight: 2000) was added to the polyamic acid so that the blending amounts were (a) 20 mass%, (b) 40 mass%, and (c) 60 mass%, respectively. A seed solution was prepared. 0.1 ml of each of these solutions was injected into 10 ml of cyclohexane using a microsyringe at room temperature under a stirring condition of 1500 rpm. Then, a dispersion of polyamic acid fine particles having pores formed on the surface of each particle could be obtained.
To each of the porous polyamic acid fine particle dispersions thus obtained, 0.1 ml of a mixed solution having a pyridine / acetic anhydride molar ratio of 1/1 was added with stirring, and the chemical imidation was completed by holding for about 2 hours. As a result, porous polyimide fine particles maintaining the porosity of the porous polyamic acid fine particles were obtained.
The porosity (pore diameter, particle size, porosity) of the porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(実施例4)
3,3’、4,4’−ビフェニルテトラカルボン酸二無水物とp−フェニレンジアミンの重合により得られたポリアミド酸(分子量:90000)を、N−メチルピロリドンに1.5質量%の濃度で溶解した。これに、ポリアクリル酸(分子量:450000)を、ポリアミド酸に対し、それぞれ配合量が(a)10質量%、(b)20質量%および(c)30質量%となるように添加して3種の溶液を調整した。これらの溶液各0.1mlを、室温下、1500rpmの撹拌条件下で、マイクロシリンジを用いて、中性高分子界面活性剤(アクリディック、大日本インキ化学工業社製)を0.1質量%含有する10mlのシクロヘキサンに注入した。すると、各粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた各孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化を完了させ、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得た。
孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図4に示す。
Example 4
Polyamic acid (molecular weight: 90000) obtained by polymerization of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine was added to N-methylpyrrolidone at a concentration of 1.5% by mass. Dissolved. Polyacrylic acid (molecular weight: 450,000) was added to the polyamic acid so that the blending amounts were (a) 10 mass%, (b) 20 mass% and (c) 30 mass%, respectively. A seed solution was prepared. Each 0.1 ml of these solutions was 0.1% by mass of a neutral polymer surfactant (Acridic, manufactured by Dainippon Ink & Chemicals, Inc.) using a microsyringe at room temperature under a stirring condition of 1500 rpm. Poured into 10 ml of contained cyclohexane. Then, a dispersion of polyamic acid fine particles having pores formed on the surface of each particle could be obtained.
To each of the porous polyamic acid fine particle dispersions thus obtained, 0.1 ml of a mixed solution having a pyridine / acetic anhydride molar ratio of 1/1 was added with stirring, and the chemical imidation was completed by holding for about 2 hours. As a result, porous polyimide fine particles maintaining the porosity of the porous polyamic acid fine particles were obtained.
The porosity (pore diameter, particle size, porosity) of the porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(実施例5)
2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸(分子量:68650)を、N−メチルピロリドンに1.5質量%の濃度で溶解し、さらに、ポリアミド酸に対して40質量%のポリアクリル酸(分子量:2000)を添加した。この溶液0.1mlを、室温下、1000rpmの撹拌条件下で、マイクロシリンジを用いて、10mlのシクロヘキサンに(a)10容積%、(b)20容積%のCSを加えた、2種のシクロヘキサン/CS混合液にそれぞれ注入した。すると、各粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた各孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化をした後、270℃で3時間保持することにより熱イミド化を行って、イミド化を定量的に進行させた。これにより、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得ることができた。
得られた孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図5に示す。
(Example 5)
Polyamic acid obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4′-diaminodiphenyl ether ( (Molecular weight: 68650) was dissolved in N-methylpyrrolidone at a concentration of 1.5% by mass, and 40% by mass of polyacrylic acid (molecular weight: 2000) was added to the polyamic acid. Using 0.1 ml of this solution under stirring conditions of 1000 rpm at room temperature, 10 ml of cyclohexane and (b) 20 vol% of CS 2 were added to 10 ml of cyclohexane. Each was injected into a cyclohexane / CS 2 mixture. Then, a dispersion of polyamic acid fine particles having pores formed on the surface of each particle could be obtained.
To each of the porous polyamic acid fine particle dispersions thus obtained, 0.1 ml of a mixed solution having a molar ratio of pyridine / acetic anhydride of 1/1 was added with stirring, and chemical imidization was carried out by maintaining for about 2 hours. Then, thermal imidization was performed by holding at 270 ° C. for 3 hours, and imidization was quantitatively advanced. Thereby, the porous polyimide fine particle which maintained the porosity of the porous polyamic acid fine particle was able to be obtained.
The porosity (pore diameter, particle size, porosity) of the obtained porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(実施例6)
2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物と4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸(分子量:68650)を、N−メチルピロリドンに1.5質量%の濃度で溶解し、さらに、ポリアミド酸に対して20質量%のポリプロピレングリコール−2,4−ジイソシアン酸トリレン(分子量:4000)を添加した。この溶液0.1mlを、室温下、1000rpmの撹拌条件下で、マイクロシリンジを用いて、中性高分子界面活性剤(アクリディック、大日本インキ化学工業社製)を0.1質量%含有する10mlのシクロヘキサンに注入した。すると、粒子表面に空孔が形成されたポリアミド酸微粒子の分散液を得ることができた。
こうして得られた孔質性ポリアミド酸微粒子分散液に、ピリジン/無水酢酸のモル比が1/1の混合溶液0.1mlを撹拌下加えて、約2時間保持することによって化学イミド化をした後、270℃で3時間保持することにより熱イミド化を行って、イミド化を定量的に進行させた。これにより、孔質性ポリアミド酸微粒子の孔質性を保った孔質性ポリイミド微粒子を得ることができた。
得られた孔質性ポリイミド微粒子の孔質性(孔径、粒径、孔率)は、走査電子顕微鏡(SEM)観察した。結果を図6に示す。
(Example 6)
Polyamic acid obtained by polymerization of 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane dianhydride and 4,4′-diaminodiphenyl ether ( (Molecular weight: 68650) is dissolved in N-methylpyrrolidone at a concentration of 1.5% by mass, and 20% by mass of polypropylene glycol-2,4-diisocyanate (molecular weight: 4000) is added to polyamic acid. did. 0.1 ml of this solution contains 0.1% by mass of a neutral polymer surfactant (Acridic, manufactured by Dainippon Ink & Chemicals, Inc.) using a microsyringe under stirring conditions of 1000 rpm at room temperature. Pour into 10 ml cyclohexane. Then, a dispersion of polyamic acid fine particles having pores formed on the particle surface could be obtained.
To the porous polyamic acid fine particle dispersion thus obtained, 0.1 ml of a mixed solution having a molar ratio of pyridine / acetic anhydride of 1/1 was added with stirring, followed by chemical imidization by holding for about 2 hours. Thermal imidization was carried out by holding at 270 ° C. for 3 hours to allow the imidization to proceed quantitatively. Thereby, the porous polyimide fine particle which maintained the porosity of the porous polyamic acid fine particle was able to be obtained.
The porosity (pore diameter, particle size, porosity) of the obtained porous polyimide fine particles was observed with a scanning electron microscope (SEM). The results are shown in FIG.

(結果)
実施例1〜6の走査電子顕微鏡の写真より、実験条件によってサイズは異なるが、各約50nm〜1000nm程度の粒径の、粒径、孔径、孔率の分布が狭くて均質な孔質性ポリイミド微粒子が得られていることが分かる。ポリアミド酸とともに添加するポリマーの量を変化させた実施例1〜4では、形成される孔質性ポリアミド酸微粒子の孔率や孔径は、ポリマーの配合量の増大に伴って大きくなっていった。さらに、貧溶媒の配合を変化させた実施例5では、形成される孔質性ポリアミド酸微粒子の粒径や孔率は、CSの配合が多い方が小さい結果となった。これらのことから、貧溶媒やポリマーの種類、ポリマーの配合量を変更することにより、様々な粒径、孔径、孔率の孔質性ポリイミド酸微粒子が作成できることが分かる。
(result)
From the photographs of the scanning electron microscopes of Examples 1 to 6, although the size varies depending on the experimental conditions, the porous polyimide is homogeneous with a narrow particle size, pore size, and porosity distribution each having a particle size of about 50 nm to 1000 nm. It can be seen that fine particles are obtained. In Examples 1 to 4 in which the amount of the polymer added together with the polyamic acid was changed, the porosity and pore diameter of the formed porous polyamic acid fine particles were increased as the blending amount of the polymer was increased. Further, in Example 5 in which the blending of the poor solvent was changed, the particle size and the porosity of the formed porous polyamic acid fine particles were smaller as the blending amount of CS 2 was larger. From these facts, it is understood that porous polyimide acid fine particles having various particle diameters, pore diameters, and porosity can be prepared by changing the poor solvent, the kind of polymer, and the blending amount of the polymer.

以上、現時点において、もっとも、実践的であり、かつ、好ましいと思われる実施形態に関連して本発明を説明したが、本発明は、本願明細書中に開示された実施形態に限定されるものではなく、請求の範囲および明細書全体から読み取れる発明の要旨あるいは思想に反しない範囲で適宜変更可能であり、そのような変更を伴う製造方法もまた本発明の技術的範囲に包含されるものとして理解されなければならない。   While the present invention has been described in connection with embodiments that are presently the most practical and preferred, the present invention is not limited to the embodiments disclosed herein. However, the invention can be appropriately changed without departing from the scope or spirit of the invention that can be read from the claims and the entire specification, and a manufacturing method involving such a change is also included in the technical scope of the present invention. Must be understood.

実施例1で得られた孔質性ポリイミド微粒子のSEM写真である。2 is a SEM photograph of porous polyimide fine particles obtained in Example 1. 実施例2で得られた孔質性ポリイミド微粒子のSEM写真である。2 is a SEM photograph of porous polyimide fine particles obtained in Example 2. 実施例3で得られた孔質性ポリイミド微粒子のSEM写真である。4 is a SEM photograph of porous polyimide fine particles obtained in Example 3. 実施例4で得られた孔質性ポリイミド微粒子のSEM写真である。4 is a SEM photograph of porous polyimide fine particles obtained in Example 4. 実施例5で得られた孔質性ポリイミド微粒子のSEM写真である。4 is a SEM photograph of porous polyimide fine particles obtained in Example 5. 実施例6で得られた孔質性ポリイミド微粒子のSEM写真である。4 is a SEM photograph of porous polyimide fine particles obtained in Example 6.

Claims (4)

有機溶媒に、ポリアミド酸と、前記ポリアミド酸に対して0.5〜100質量%の、前記ポリアミド酸と相溶性かつ前記有機溶媒に可溶性であるポリマーとを溶解させた、ポリアミド酸/ポリマー混合溶液を、前記有機溶媒と相溶性である前記ポリアミド酸の貧溶媒に注入することを特徴とする、孔質性ポリアミド酸微粒子の製造方法。 A polyamic acid / polymer mixed solution in which a polyamic acid and 0.5 to 100% by mass of the polyamic acid and a polymer compatible with the polyamic acid and soluble in the organic solvent are dissolved in an organic solvent. Is injected into a poor solvent of the polyamic acid that is compatible with the organic solvent. 前記有機溶媒が、極性アミド系溶媒であることを特徴とする、請求項1又は2に記載の孔質性ポリアミド酸微粒子の製造方法。 The method for producing porous polyamic acid fine particles according to claim 1, wherein the organic solvent is a polar amide solvent. 前記ポリマーは、前記ポリマーの繰り返し単位が、カルボキシル基、カルボニル基、エステル基、アミノ基、ヒドロキシル基から選択される置換基を有するものであることを特徴とする請求項1に記載の孔質性ポリアミド酸微粒子の製造方法。 2. The porous property according to claim 1, wherein the polymer has a repeating unit selected from a carboxyl group, a carbonyl group, an ester group, an amino group, and a hydroxyl group. A method for producing polyamic acid fine particles. 請求項1〜3のいずれか1項に記載の製造方法により作成された孔質性ポリアミド酸微粒子を、さらにイミド化処理することを特徴とする孔質性ポリイミド微粒子の製造方法。
A method for producing porous polyimide fine particles, wherein the porous polyamic acid fine particles prepared by the production method according to any one of claims 1 to 3 are further subjected to imidization treatment.
JP2005049910A 2005-02-25 2005-02-25 Method for producing porous polyamic acid fine particles and porous polyimide fine particles Expired - Fee Related JP4125296B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005049910A JP4125296B2 (en) 2005-02-25 2005-02-25 Method for producing porous polyamic acid fine particles and porous polyimide fine particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005049910A JP4125296B2 (en) 2005-02-25 2005-02-25 Method for producing porous polyamic acid fine particles and porous polyimide fine particles

Publications (2)

Publication Number Publication Date
JP2006233023A true JP2006233023A (en) 2006-09-07
JP4125296B2 JP4125296B2 (en) 2008-07-30

Family

ID=37041031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005049910A Expired - Fee Related JP4125296B2 (en) 2005-02-25 2005-02-25 Method for producing porous polyamic acid fine particles and porous polyimide fine particles

Country Status (1)

Country Link
JP (1) JP4125296B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245239A1 (en) * 2011-03-25 2012-09-27 Viswanathan Kalyanaraman Fast dissolving polyimide powders
EP2868685A1 (en) 2013-11-05 2015-05-06 Evonik Fibres GmbH Process for preparing polymer powder
CN107151833A (en) * 2017-06-29 2017-09-12 长春高琦聚酰亚胺材料有限公司 A kind of polyimide fine denier fiber and preparation method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120245239A1 (en) * 2011-03-25 2012-09-27 Viswanathan Kalyanaraman Fast dissolving polyimide powders
US9469734B2 (en) * 2011-03-25 2016-10-18 Sabic Global Technologies B.V. Fast dissolving polyimide powders
EP2868685A1 (en) 2013-11-05 2015-05-06 Evonik Fibres GmbH Process for preparing polymer powder
CN107151833A (en) * 2017-06-29 2017-09-12 长春高琦聚酰亚胺材料有限公司 A kind of polyimide fine denier fiber and preparation method thereof
CN107151833B (en) * 2017-06-29 2019-06-07 长春高琦聚酰亚胺材料有限公司 A kind of polyimide fine denier fiber and preparation method thereof

Also Published As

Publication number Publication date
JP4125296B2 (en) 2008-07-30

Similar Documents

Publication Publication Date Title
TWI593726B (en) Method for preparation of polyimide film using porous particles and polyimide film having low permittivity
JP4947989B2 (en) Polyimide precursor solution, polyimide porous film, and production method thereof
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
JP2016519694A (en) Manufacturing process of water-dispersed polyetherimide micronized particles, coating and forming process of these particles, and products manufactured therefrom
JPWO2011062006A1 (en) Method for producing polyamideimide resin fine particles, polyamideimide resin fine particles
JP4125296B2 (en) Method for producing porous polyamic acid fine particles and porous polyimide fine particles
JP5120898B2 (en) Continuous production method of polyamide acid fine particles and polyimide fine particles
Ji et al. Fabrication of porous polyimide hollow microspheres through O/W/O multiple emulsion
JP6577182B2 (en) Imide polymer solution, porous imide polymer film, and production method thereof
JP6636760B2 (en) Polyphenylene sulfide fine particles
JP2010189524A (en) Polyimide fine particle dispersion, polyimide fine particle, and method for producing them
JP5821213B2 (en) Method for producing polyphenylene sulfide resin fine particle dispersion
JP4030419B2 (en) Method for producing porous polyimide fine particles
Zhao et al. Using a polyelectrolyte to fabricate porous polyimide nanoparticles with crater‐like pores
KR100963647B1 (en) Polyimide particle and its process for producing
JP2017197665A (en) Method for producing polyether sulfone resin particle and polyether sulfone resin particle
Ma et al. In situ preparation and characterization of polyimide/silica composite hemispheres by inverse aqueous emulsion technique and sol-gel method
Wei et al. Study on glass transition and physical aging of polystyrene nanowires by differential scanning calorimetry
Guo et al. Excellent oil/water separation performance of poly (styrene‐alt‐maleic anhydride)/fluorocarbon surfactant membrane filter with functionalized multiwalled carbon nanotubes
JPH08120077A (en) Production of polyimide precursor powder
JP2009067880A (en) Production method of polyamide imide fine particle
JP2003252990A (en) Method for manufacturing polyimide fine particle with controlled particle size and particle size distribution
JP5429922B2 (en) Method for producing polyimide fine particle aggregate
JP5799632B2 (en) Method for producing polyimide particles and polyimide particles
Bibi et al. Effect of methanol on surfactants and surfactant–PEO mixtures

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080229

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080422

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080507

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110516

Year of fee payment: 3

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120516

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130516

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140516

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

LAPS Cancellation because of no payment of annual fees
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350