JP2010189524A - Polyimide fine particle dispersion, polyimide fine particle, and method for producing them - Google Patents

Polyimide fine particle dispersion, polyimide fine particle, and method for producing them Download PDF

Info

Publication number
JP2010189524A
JP2010189524A JP2009034636A JP2009034636A JP2010189524A JP 2010189524 A JP2010189524 A JP 2010189524A JP 2009034636 A JP2009034636 A JP 2009034636A JP 2009034636 A JP2009034636 A JP 2009034636A JP 2010189524 A JP2010189524 A JP 2010189524A
Authority
JP
Japan
Prior art keywords
polyimide
fine particle
polyimide fine
particle dispersion
fine particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2009034636A
Other languages
Japanese (ja)
Other versions
JP5283080B2 (en
Inventor
Takayuki Ishizaka
孝之 石坂
Hajime Kawanami
肇 川波
Toshishige Suzuki
敏重 鈴木
Toshiro Yokoyama
敏郎 横山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2009034636A priority Critical patent/JP5283080B2/en
Publication of JP2010189524A publication Critical patent/JP2010189524A/en
Application granted granted Critical
Publication of JP5283080B2 publication Critical patent/JP5283080B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Processes Of Treating Macromolecular Substances (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a polyimide fine particle dispersion, a polyimide fine particle, and a method for producing them. <P>SOLUTION: The method for producing the polyimide fine particle dispersion, wherein a polyimide fine particle of 10 nm to 300 nm size is dispersed in a high density, comprises dissolving a polyamic acid, that is a precursor polymer of a polyamide, into a solvent that does not dissolve polyimides but dissolves polyamic acids, introducing the solution and a cyclodehydration reagent into a pressure vessel heated at a prescribed temperature, performing conversion of polyamic acids into polyimides, and discharging carbon dioxide, thus a polyimide fine particle dispersion and a polyimide fine particle are also produced. The method makes it possible to provide polyimide fine particles without using large amount of organic solvent with low burden to environment and can provide products derived from the same. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、ナノメートルサイズのポリイミド微粒子を含むポリイミド微粒子分散液並びにポリイミド微粒子、及びそれらの製造方法に関するものであり、更に詳しくは、ナノメートルサイズのポリイミド微粒子が高濃度で分散したポリイミド微粒子分散液、粒子径がナノメートルオーダーのポリイミド微粒子、及びそれらの製造方法に関するものである。本発明は、10nmから300nmサイズのポリイミド微粒子が0.1wt%から5wt%の高濃度で分散したポリイミド微粒子分散液、粒子径が10nmから40nmのポリイミド微粒子、及び、従来法のように、有機溶媒を大量に使用することなく、環境に対して低負荷な製造法により、製造することを可能とする、これらのポリイミド微粒子の合成等に関する新技術・新製品を提供するものである。   The present invention relates to a polyimide fine particle dispersion containing nanometer-size polyimide fine particles, a polyimide fine particle, and a method for producing them, and more specifically, a polyimide fine particle dispersion in which nanometer-size polyimide fine particles are dispersed at a high concentration. Further, the present invention relates to a polyimide fine particle having a particle size on the order of nanometers and a production method thereof. The present invention relates to a polyimide fine particle dispersion in which polyimide fine particles having a size of 10 nm to 300 nm are dispersed at a high concentration of 0.1 wt% to 5 wt%, polyimide fine particles having a particle diameter of 10 nm to 40 nm, and an organic solvent as in the conventional method. The present invention provides new technologies and new products related to the synthesis and the like of these polyimide fine particles that can be produced by a production method that has a low environmental impact without using a large amount of.

一般に、ポリイミドは、耐熱性、耐溶剤性、機械的特性、電気絶縁性等が優れていて、しかも、化学的及び機械的に安定な材料であることから、多くの技術分野で利用されている。これらの各種特性を有するポリイミドは、例えば、金属、セラミックス代替材料としても利用される他、特に、過酷な条件下で用いられる電気、電子産業分野、航空宇宙産業分野等において、例えば、フイルム、ワニス、接着剤、バルク状成型材料等として利用されている。   Generally, polyimide is used in many technical fields because it has excellent heat resistance, solvent resistance, mechanical properties, electrical insulation, and the like, and is a chemically and mechanically stable material. . Polyimides having these various properties are used, for example, as substitutes for metals and ceramics, and in particular in the fields of electricity, electronics, aerospace, etc. used under harsh conditions, such as films and varnishes. , Adhesives, bulk molding materials, etc.

また、ポリイミドを微粒子化した材料は、前記ポリイミドの特性と、その形状及び構造とを組み合わせることにより、更に新しい利用の形態が広がる傾向となっている。すなわち、従来、例えば、微粒子化したポリイミドは、画像形成用の粉末トナーの添加剤として利用されている(特許文献1)。また、微粒子化したポリイミドは、ワニスに添加して、スクリーン印刷性を向上させる添加剤として利用されている(特許文献2)。更に、ポリイミドに機能性の基を導入すること及びその微粒子化を組み合わせることにより、新しいポリイミドの用途が拡大している(特許文献3)。   In addition, the material in which the polyimide is finely divided tends to spread more new usage forms by combining the characteristics of the polyimide and the shape and structure thereof. That is, conventionally, for example, finely divided polyimide has been used as an additive for powder toner for image formation (Patent Document 1). Moreover, the micronized polyimide is added to a varnish and used as an additive for improving screen printability (Patent Document 2). Furthermore, the use of a new polyimide is expanding by introducing a functional group into polyimide and combining it with fine particles (Patent Document 3).

先行技術としては、例えば、安定性に優れ、高重合度のポリイミドに変換しうるポリイミド前駆体よりなるポリイミド前駆体粉体、及びこのポリイミド前駆体粉体を多量の溶媒を用いることなく、安価に、しかも容易に得ることができる製造方法を提供するものとして、生成するポリイミド前駆体の貧溶媒中で、芳香族ジアミンと3,3’,4,4’−ビフェニルテトラカルボン酸を混合して、ポリイミド前駆体粒子が分散している懸濁液を得て、ポリイミド前駆体粒子を単離して、全芳香族ポリイミド前駆体粉体を得る方法が提案されている(特許文献1)。   As the prior art, for example, a polyimide precursor powder made of a polyimide precursor that has excellent stability and can be converted to a polyimide with a high degree of polymerization, and the polyimide precursor powder can be inexpensively used without using a large amount of solvent. In addition, in order to provide a production method that can be easily obtained, an aromatic diamine and 3,3 ′, 4,4′-biphenyltetracarboxylic acid are mixed in a poor solvent for the resulting polyimide precursor, There has been proposed a method of obtaining a wholly aromatic polyimide precursor powder by obtaining a suspension in which polyimide precursor particles are dispersed and isolating the polyimide precursor particles (Patent Document 1).

また、他の先行技術としては、簡易な工程でポリイミド粉体を製造することができ、しかも粒径の制御が容易に行えるポリイミド粉体の製造方法、及び当該製造方法により得られるポリイミド粉体を提供するものとして、芳香族テトラカルボン酸二無水物と芳香族ジアミンとを有機溶媒中で加熱重合させて、ポリイミドの溶液を得た後、その溶液の温度を降温することにより、ポリイミド粒子を析出させる工程を含むポリイミド粉体の製造方法が提案されている(特許文献4)。   In addition, as another prior art, a polyimide powder can be produced by a simple process, and the method for producing a polyimide powder capable of easily controlling the particle diameter, and the polyimide powder obtained by the production method, As an offer, aromatic tetracarboxylic dianhydride and aromatic diamine are heated and polymerized in an organic solvent to obtain a polyimide solution, and then the temperature of the solution is lowered to precipitate polyimide particles. There has been proposed a method for producing a polyimide powder including a step of causing (Patent Document 4).

しかしながら、上述の二つの先行技術文献に記載されているポリイミド粒子及びその製造方法は、いずれもマイクロメートルオーダーのポリイミド粒子の製造に関するものであり、得られるポリイミド粒子は、本発明で得られるナノメートルオーダーのものと比較して、かなり大きいものである。   However, the polyimide particles described in the above two prior art documents and the production method thereof both relate to the production of polyimide particles of micrometer order, and the obtained polyimide particles are nanometers obtained in the present invention. Compared to the order, it is quite large.

また、他の先行技術としては、無水テトラカルボン酸とジアミン化合物からポリイミドを合成する方法により、単分散性がより高いポリイミド微粒子を工業的規模で生産できる方法を提供するものとして、溶媒の溶解度を超える量の無水テトラカルボン酸を含む第一溶液と、溶媒の溶解度を超える量のジアミン化合物を含む第二溶液とを、それぞれ調製する第一工程と、撹拌下において、第一溶液と第二溶液とを混合し、混合溶液からポリアミド酸微粒子を析出させる第二工程と、ポリアミド酸微粒子をイミド化することによってポリイミド微粒子を得る第三工程とを含むことからなるポリイミド微粒子の製造方法が提案されている(特許文献5)。   In addition, as another prior art, a method for synthesizing polyimide from tetracarboxylic anhydride and a diamine compound provides a method capable of producing polyimide fine particles with higher monodispersibility on an industrial scale. A first solution containing an excess amount of tetracarboxylic anhydride and a second solution containing a diamine compound in an amount exceeding the solubility of the solvent, respectively, and under stirring, the first solution and the second solution And a second step of precipitating the polyamic acid fine particles from the mixed solution and a third step of obtaining the polyimide fine particles by imidizing the polyamic acid fine particles. (Patent Document 5).

この方法では、本発明と同程度のナノメートルオーダーのナノ粒子が15wt%の高濃度で得られているが、出発物質が、ポリイミドの前駆体ポリマーであるポリアミック酸の前駆体であるテトラカルボン酸二無水物と、ジアミンであり、前者は、空気中の水分により加水分解を受け、開環してしまい、また、後者は、空気中の酸素により酸化され、アミノ基がニトロ基へと変化してしまい、保存が難しいという問題がある。   In this method, nanometer-order nanoparticles similar to the present invention are obtained at a high concentration of 15 wt%, but the starting material is a tetracarboxylic acid which is a precursor of polyamic acid which is a precursor polymer of polyimide. A dianhydride and a diamine. The former is hydrolyzed by moisture in the air and opened, and the latter is oxidized by oxygen in the air and the amino group is changed to a nitro group. There is a problem that it is difficult to save.

また、他の先行技術としては、粒子サイズ及び粒度分布を制御してナノサイズのポリイミド微粒子を製造する方法として、ポリアミド酸を極性アミド系溶媒から選択される良溶媒に0.1重量%〜2重量%の濃度で溶解させたポリマー溶液を、パラフィン系溶剤、芳香族系溶剤、CS2から選択され、温度を5℃より高温〜50℃に制御し、激しい撹拌条件で撹拌された貧溶媒に注入して、前記貧溶媒の温度を制御して、平均粒径が44nm〜400nmであり、平均粒径が44nmの場合粒子の約80%が±10nmの範囲に入り、また、平均粒径が400nm場合、粒子の約80%が±100nmの範囲に入る範囲の粒径分散性のポリアミド酸微粒子を形成し、該ポリアミド酸粒子を化学イミド化して、前記粒径分散性を保持したポリイミド微粒子を製造する方法が提案されている(特許文献6)。   As another prior art, as a method for producing nano-sized polyimide fine particles by controlling the particle size and particle size distribution, polyamic acid is added to a good solvent selected from polar amide solvents in an amount of 0.1% by weight to 2%. A polymer solution dissolved at a concentration of% by weight is selected from paraffinic solvents, aromatic solvents, and CS2, and the temperature is controlled from 5 ° C to 50 ° C and injected into a poor solvent stirred under vigorous stirring conditions. Then, the temperature of the poor solvent is controlled so that the average particle size is 44 nm to 400 nm, and when the average particle size is 44 nm, about 80% of the particles fall within the range of ± 10 nm, and the average particle size is 400 nm. In this case, a polyamic acid fine particle having a particle size dispersibility in a range where about 80% of the particles fall within a range of ± 100 nm is formed, and the polyamic acid particle is chemically imidized to maintain the particle dispersibility. A method for producing fine particles has been proposed (Patent Document 6).

この方法では、本発明と同様に、ポリアミック酸を出発物質としており、更に、得られている粒子サイズも、ナノメートルオーダーであるが、出発物質として使用しているポリアミック酸溶液は、0.1重量%〜2重量%であり、前記溶液と貧溶媒との混合比が、0.1mL:10mLで、最終的に得られるナノ粒子分散液中のナノ粒子の量は、多くても0.02重量%程度の低濃度のものであり、非常に希薄な分散液である。   In this method, as in the present invention, polyamic acid is used as a starting material, and the obtained particle size is on the order of nanometers. However, the polyamic acid solution used as the starting material is 0.1 The mixing ratio of the solution and the poor solvent is 0.1 mL: 10 mL, and the amount of nanoparticles in the finally obtained nanoparticle dispersion is 0.02 at most. It is a very thin dispersion with a low concentration of about wt%.

更に、他の先行技術としては、ポリイミド微粒子分散液から微粒子を分離・回収が容易なポリイミド微粒子凝集体の製造する技術として、ポリアミド酸から再沈法によりポリアミド酸微粒子分散液を作製し、熱又は化学イミド化した後、有機溶媒と貧溶媒を相分離させ、液−液界面にポリイミド微粒子を凝集、生成させること、また、前記方法により生成させたポリイミド微粒子凝集体を簡便な分離操作により、高い時間効率で分離・回収して、乾燥することにより、ポリイミド微粒子凝集体を大量に高効率で製造する方法が提案されている(特許文献7)。しかし、この方法では、ポリイミド微粒子は、凝集状態でしか得られず、微粒子分散液として得る場合は、濾過、乾燥、及び再分散の多段階の過程が必要である。   Furthermore, as another prior art, as a technique for producing a polyimide fine particle aggregate that can easily separate and recover fine particles from a polyimide fine particle dispersion, a polyamic acid fine particle dispersion is prepared from polyamic acid by a reprecipitation method, and heat or After chemical imidization, the organic solvent and the poor solvent are phase-separated, and the polyimide fine particles are aggregated and formed at the liquid-liquid interface, and the polyimide fine particle aggregates produced by the above method are high by a simple separation operation. A method for producing a large amount of polyimide fine particle aggregates with high efficiency by separating and recovering them with time efficiency and drying (Patent Document 7) has been proposed. However, in this method, the polyimide fine particles can be obtained only in an aggregated state, and when obtained as a fine particle dispersion, a multi-step process of filtration, drying, and redispersion is required.

このように、従来技術として、ポリイミド前駆体並びにポリイミド微粒子、及びそれらの製造技術について、種々の提案がなされているが、従来法では、有機溶媒を大量に使用する必要があり、環境に対する負荷が大きく、また、上述のように、ポリイミドのサイズがマイクロメートルオーダーであったり、出発物質として、保存が難しいポリアミック酸前駆体であったり、ナノ粒子分散液が得られたとしても、最終的に得られるナノ粒子分散液中のナノ粒子の量が0.02重量%程度の非常に希薄な分散液である、等の問題があり、当技術分野においては、有機溶媒の使用量の低減を図ると共に、ナノサイズで、しかも高濃度のナノ粒子を含む高濃度のポリイミド微粒子分散液並びにポリイミド微粒子を製造することを可能とする新しいポリイミド微粒子分散液とその大量生産技術を開発することが強く要請されているのが実情であった。   As described above, various proposals have been made for the polyimide precursor, the polyimide fine particles, and their production techniques as conventional techniques. However, in the conventional method, it is necessary to use a large amount of an organic solvent, and there is a burden on the environment. As described above, even if the size of the polyimide is on the order of micrometers, the polyamic acid precursor is difficult to store as a starting material, or a nanoparticle dispersion is obtained, it is finally obtained. The amount of nanoparticles in the resulting nanoparticle dispersion is a very dilute dispersion of about 0.02% by weight. In this technical field, the amount of organic solvent used is reduced. , A nano-size and high-concentration polyimide fine particle dispersion containing high-concentration nanoparticles and a new The imide fine particle dispersion and to develop its mass production techniques are strongly requested was circumstances.

特開平11−140185号公報JP-A-11-140185 特開2000−178506号公報JP 2000-178506 A 特開2000−248063号公報JP 2000-248063 A 特開2002−293947号公報JP 2002-293947 A 特開2006−182845号公報JP 2006-182845 A 特開2003−252990号公報JP 2003-252990 A 特開2008−159769号公報JP 2008-159769 A

このような状況の中で、本発明者らは、上記従来技術に鑑みて、上述の従来法の問題点を確実に解消することが可能で、しかもナノメートルサイズのポリイミド微粒子が高濃度に分散したポリイミド微粒子分散液並びにポリイミド微粒子、及びそれらの製造技術を開発することを目標として鋭意研究を重ねた結果、出発物質として、保存が可能なポリイミド前駆体ポリマーであるポリアミド酸を使用し、ポリイミドを溶解させずにポリアミド酸を溶解させる溶媒に溶解させ、当該溶液と脱水環化試薬を耐圧容器に入れ、更に、二酸化炭素を常圧以上まで充てんし、ポリアミド酸をポリイミドへ転化させた後に、二酸化炭素を排出することにより、所期の目的を達成できることを見出し、本発明を完成するに至った。   In such a situation, in view of the above-mentioned prior art, the present inventors can surely solve the problems of the above-mentioned conventional method, and nanometer-sized polyimide fine particles are dispersed at a high concentration. As a result of intensive research aimed at developing polyimide fine particle dispersions and polyimide fine particles, and their manufacturing technology, polyamic acid, which is a storable polyimide precursor polymer, was used as a starting material. Dissolve it in a solvent that dissolves the polyamic acid without dissolving it, put the solution and the dehydrating cyclization reagent in a pressure-resistant container, fill with carbon dioxide to normal pressure or more, convert the polyamic acid to polyimide, It has been found that the intended purpose can be achieved by discharging carbon, and the present invention has been completed.

本発明は、10nmから300nmのサイズのポリイミド微粒子が0.1wt%から5wt%の高濃度で分散したポリイミド分解液を提供することを目的とするものである。また、本発明は、粒子径が、10nmから40nmのサイズのポリイミド微粒子を提供することを目的とするものである。更に、本発明は、これらのポリイミド微粒子が高濃度に分散したポリイミド微粒子分散液並びに該ポリイミド微粒子を二酸化炭素を利用して環境に対して低負荷で製造する方法を提供することを目的とするものである。   An object of the present invention is to provide a polyimide decomposition solution in which polyimide fine particles having a size of 10 nm to 300 nm are dispersed at a high concentration of 0.1 wt% to 5 wt%. Another object of the present invention is to provide polyimide fine particles having a particle size of 10 nm to 40 nm. Another object of the present invention is to provide a polyimide fine particle dispersion in which these polyimide fine particles are dispersed at a high concentration, and a method for producing the polyimide fine particles with low load on the environment using carbon dioxide. It is.

上記課題を解決するための本発明は、以下のような技術的手段から構成される。
(1)ポリイミドの前駆体ポリマーであるポリアミド酸を、ポリイミドを溶解させずポリアミド酸を溶解させる溶媒に溶解させ、前記溶液と脱水環化試薬を所定の温度に加熱した耐圧容器に入れ、更に、二酸化炭素を常圧以上まで充てんし、ポリアミド酸をポリイミドへ転化させた後に、二酸化炭素を排出することにより、10nmから300nmのサイズのポリイミド微粒子が高濃度で分散した分散液を製造することを特徴とするポリイミド微粒子分散液の製造方法。
(2)前記二酸化炭素の充てん圧力が、5MPaから30MPaである、前記(1)に記載のポリイミド微粒子分散液の製造方法。
(3)前記耐圧容器の加熱温度が、0℃から100℃である、前記(1)又は(2)に記載のポリイミド微粒子分散液の製造方法。
(4)前記ポリイミド微粒子分散液の濃度が、0.1wt%から5wt%である、前記(1)から(3)のいずれかに記載のポリイミド微粒子分散液の製造方法。
(5)50mL容量の耐圧容器に対して、0.5mLから5mLの比率の前記ポリアミド酸溶液を該耐圧容器に入れる、前記(1)に記載のポリイミド微粒子分散液の製造方法。
(6)ポリイミド微粒子分散液であって、10nmから40nmのサイズのポリイミド微粒子が、0.1wt%から5wt%の高濃度で分散した分散液であることを特徴とするポリイミド微粒子分散液。
(7)ポリイミド微粒子であって、10nmから40nmのサイズのポリイミド微粒子であり、単分散の形態で分散媒に再分散可能であることを特徴とするポリイミド微粒子。
The present invention for solving the above problems is constituted by the following technical means.
(1) Polyamic acid that is a polyimide precursor polymer is dissolved in a solvent that dissolves polyamic acid without dissolving polyimide, and the solution and the dehydrating cyclization reagent are placed in a pressure-resistant container heated to a predetermined temperature, It is characterized by producing a dispersion in which polyimide fine particles having a size of 10 nm to 300 nm are dispersed at a high concentration by filling carbon dioxide up to normal pressure or more, converting polyamic acid to polyimide, and then discharging carbon dioxide. A method for producing a polyimide fine particle dispersion.
(2) The method for producing a polyimide fine particle dispersion liquid according to (1), wherein a filling pressure of the carbon dioxide is 5 MPa to 30 MPa.
(3) The method for producing a polyimide fine particle dispersion liquid according to (1) or (2), wherein the heating temperature of the pressure vessel is 0 ° C to 100 ° C.
(4) The method for producing a polyimide fine particle dispersion according to any one of (1) to (3), wherein the concentration of the polyimide fine particle dispersion is 0.1 wt% to 5 wt%.
(5) The method for producing a polyimide fine particle dispersion according to (1), wherein the polyamic acid solution in a ratio of 0.5 mL to 5 mL is placed in the pressure resistant container with respect to a pressure resistant container having a capacity of 50 mL.
(6) A polyimide fine particle dispersion, wherein polyimide fine particles having a size of 10 nm to 40 nm are dispersed at a high concentration of 0.1 wt% to 5 wt%.
(7) Polyimide fine particles, which are polyimide fine particles having a size of 10 nm to 40 nm and can be redispersed in a dispersion medium in a monodispersed form.

次に、本発明について更に詳細に説明する。
本発明は、ポリイミド微粒子が高濃度に分散したポリイミド微粒子分散液を製造する方法であって、ポリイミドの前駆体ポリマーであるポリアミド酸を、ポリイミドを溶解させずポリアミド酸を溶解させる溶媒に溶解させ、前記溶液と脱水環化試薬を所定の温度に加熱した耐圧容器に入れ、更に、二酸化炭素を常圧以上まで充てんし、ポリアミド酸をポリイミドへ転化させた後に、二酸化炭素を排出することにより、10nmから300nmのサイズのポリイミド微粒子が高濃度で分散した分散液を製造することを特徴とするものである。
Next, the present invention will be described in more detail.
The present invention is a method for producing a polyimide fine particle dispersion in which polyimide fine particles are dispersed at a high concentration, wherein a polyamic acid that is a polyimide precursor polymer is dissolved in a solvent that dissolves the polyamic acid without dissolving the polyimide, The solution and the dehydrating cyclization reagent are placed in a pressure-resistant container heated to a predetermined temperature, and further filled with carbon dioxide to a normal pressure or higher to convert the polyamic acid to polyimide, and then discharge carbon dioxide to give 10 nm. To 300 nm-sized polyimide fine particles are dispersed at a high concentration to produce a dispersion.

本発明では、出発物質として、ポリイミドの前駆体ポリマーであるポリアミド酸(ポリイミック酸)が用いられる。出発物質のポリアミド酸は、冷蔵保存ができるので、例えば、空気中の水分により加水分解を受け開環してしまうテトラカルボン酸二無水物や、空気中の酸素により酸化され、アミノ基がニトロ基へと変化してしまい、保存が難しいジアミン等と比べると有利である。このポリアミド酸を、ポリイミドを溶解させず該ポリアミド酸を溶解させる溶媒に溶解させる。   In the present invention, a polyamic acid (polyamic acid) which is a precursor polymer of polyimide is used as a starting material. Since the starting polyamic acid can be stored refrigerated, it is oxidized by, for example, tetracarboxylic dianhydride that is hydrolyzed by water in the air to open the ring, or oxygen in the air, and the amino group becomes a nitro group. This is advantageous compared to diamines that are difficult to preserve. This polyamic acid is dissolved in a solvent that dissolves the polyamic acid without dissolving the polyimide.

本発明では、溶媒として、ポリイミドを溶解させず、ポリアミド酸を溶解させる溶媒が使用されるが、ポリアミド酸、すなわち、ポリアミック酸の溶媒としては、有機極性溶媒が使用される。該有機溶媒としては、例えば、アセトン、メチルエチルケトン、テトラヒドロフラン、ジオキサン、アセトニトリル、アルコール系(メタノール、エタノール、イソプロパノール等)、N,N−ジメチルアセトアミド、ジメチルホルムアミド、N−メチルピロリドン(NMP)、等が例示され、これらと同効のものであれば同様に使用することができる。   In the present invention, a solvent that does not dissolve polyimide but dissolves polyamic acid is used as a solvent, but an organic polar solvent is used as a solvent for polyamic acid, that is, polyamic acid. Examples of the organic solvent include acetone, methyl ethyl ketone, tetrahydrofuran, dioxane, acetonitrile, alcohols (methanol, ethanol, isopropanol, etc.), N, N-dimethylacetamide, dimethylformamide, N-methylpyrrolidone (NMP), and the like. If they have the same effect, they can be used similarly.

前記有機溶媒としては、これらのうち、少なくとも50%のアミド系溶媒を含む溶媒であることが好ましく、例えば、極性のアミド系溶媒であるN,N−ジメチルアセトアミド、N−メチルピロリドン、ジメチルホルムアミドを含む溶媒が好ましい。ポリアミド酸溶液の濃度は、生成する粒子サイズに影響する重要なファクターであり、特に、ポリアミド酸の分子量が大きいほど、溶液の濃度の影響が大きい。ポリアミド酸溶液の濃度は、例えば、分子量が大きい場合には、2重量%前後ないし0.5重量%前後が好ましい。   Among these, the organic solvent is preferably a solvent containing at least 50% of an amide solvent, and examples thereof include polar amide solvents N, N-dimethylacetamide, N-methylpyrrolidone, and dimethylformamide. The containing solvent is preferred. The concentration of the polyamic acid solution is an important factor that affects the size of the particles to be produced. In particular, the larger the molecular weight of the polyamic acid, the greater the influence of the concentration of the solution. For example, when the molecular weight is large, the concentration of the polyamic acid solution is preferably about 2 wt% to about 0.5 wt%.

次に、本発明では、ポリアミド酸を前記溶媒に溶解させた溶液と脱水還化試薬とを、所定の温度に加熱した高圧反応容器としての適宜の耐圧性容器に入れ、更に、二酸化炭素を常圧以上まで充てんし、ポリアミド酸をポリイミドへ転化させる。この場合、二酸化炭素の充てん圧力は、5Mpaから30MPaであり、好ましくは、5〜10MPa、あるいは5〜20MPaの範囲である。   Next, in the present invention, a solution in which polyamic acid is dissolved in the solvent and the dehydrating reagent are placed in an appropriate pressure-resistant container as a high-pressure reaction container heated to a predetermined temperature, and carbon dioxide is usually added. Fill to pressure or higher to convert polyamic acid to polyimide. In this case, the filling pressure of carbon dioxide is 5 MPa to 30 MPa, preferably 5 to 10 MPa, or 5 to 20 MPa.

また、前記耐圧容器の加熱温度は、0℃から100℃であり、約20〜60℃の範囲であることが好適であるが、加熱温度は、0℃から100℃の範囲で適宜調整することが可能である。前記加熱の温度は、所望の平均粒径のポリアミド酸微粒子を製造するために重要な条件であり、とりわけ、20〜60℃の温度が、目的とするポリアミド酸微粒子を形成させるために好ましく、単分散性を向上させるには、これらの温度範囲の±10℃が好ましい。   The heating temperature of the pressure vessel is 0 ° C. to 100 ° C. and is preferably in the range of about 20 to 60 ° C., but the heating temperature is appropriately adjusted in the range of 0 ° C. to 100 ° C. Is possible. The heating temperature is an important condition for producing polyamic acid fine particles having a desired average particle diameter. In particular, a temperature of 20 to 60 ° C. is preferable for forming the desired polyamic acid fine particles. In order to improve dispersibility, ± 10 ° C. of these temperature ranges is preferable.

溶液の撹拌条件及び二酸化炭素注入条件も、ポリアミド酸微粒子の形成に重要な条件であり、具体的には、例えば、高圧反応容器に、ポリアミド酸溶液、脱水環化試薬、及び撹拌子を入れて密閉し、例えば、500±200rpmないし1500±500rpm程度で激しく撹拌しながら二酸化炭素を1〜5mL/分ないし5〜20mL/分で充てんし、撹拌下に約1時間ないし数時間保持した後、常圧に戻し、二酸化炭素を排出させ、白濁した黄色のポリイミド微粒子分散液を得る。   The solution stirring conditions and carbon dioxide injection conditions are also important conditions for forming the polyamic acid fine particles. Specifically, for example, a polyamic acid solution, a dehydrating cyclization reagent, and a stirring bar are placed in a high-pressure reaction vessel. After sealing, for example, carbon dioxide is charged at 1 to 5 mL / min to 5 to 20 mL / min with vigorous stirring at about 500 ± 200 rpm to 1500 ± 500 rpm, and kept for about 1 to several hours under stirring. The pressure is returned to, and carbon dioxide is discharged to obtain a cloudy yellow polyimide fine particle dispersion.

本発明において、高圧反応容器としての耐圧性容器の大きさ及び種類等については、高圧反応を行うことができるものであれば特に制限されるものではなく、反応液の容量等に応じて、適宜の容量で、適宜の形状及び構造を有する高圧反応容器を使用することができる。反応溶液と高圧反応容器の容量の関係については、例えば、約50mL容量の耐圧容器に対して、0.5mLから5mLの比率のポリアミド酸溶液を用いることが好ましい。   In the present invention, the size and type of the pressure-resistant vessel as the high-pressure reaction vessel are not particularly limited as long as the high-pressure reaction can be performed, and appropriately according to the volume of the reaction solution and the like. A high pressure reaction vessel having an appropriate shape and structure can be used. Regarding the relationship between the volume of the reaction solution and the high-pressure reaction vessel, for example, it is preferable to use a polyamic acid solution in a ratio of 0.5 mL to 5 mL with respect to a pressure vessel of about 50 mL capacity.

また、高圧反応容器に二酸化炭素を常圧以上まで充てんする方法及び装置については、特に制限されるものではなく、耐圧容器に対して、二酸化炭素の充てん圧力を5MPaから30MPaに調整することができる手段であれば、適宜の方法及び装置を用いることができる。本発明では、高圧反応容器に、二酸化炭素を常圧以上で5MPaから30MPaの圧力で充てんすることが重要である。   In addition, the method and apparatus for filling the high pressure reaction vessel with carbon dioxide to normal pressure or higher are not particularly limited, and the filling pressure of carbon dioxide can be adjusted from 5 MPa to 30 MPa with respect to the pressure vessel. As long as it is a means, an appropriate method and apparatus can be used. In the present invention, it is important to fill the high-pressure reaction vessel with carbon dioxide at a pressure of 5 MPa to 30 MPa above the normal pressure.

本発明では、出発物質のポリイミドの前駆体ポリマーであるポリアミド酸としては、例えば、ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合、3,3’、4−4’−ジフェニルテトラカルボン酸二無水物と、p−フェニレンジアミンとの重合等により合成されたポリアミド酸を使用することができる。本発明で使用されるポリイミドの分子量は、基本的には、ポリイミド微粒子の用途との関連で適宜選択されるが、所望の粒径の微粒子を安定的に製造するためには、平均分子量(重量)が10000〜48000ないし48000〜123000の範囲にあることが好ましい。   In the present invention, examples of the polyamic acid which is a precursor polymer of polyimide as a starting material include polymerization of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether, 3,3 ′, 4-4′- Polyamic acid synthesized by polymerization of diphenyltetracarboxylic dianhydride and p-phenylenediamine or the like can be used. Basically, the molecular weight of the polyimide used in the present invention is appropriately selected in relation to the use of the polyimide fine particles, but in order to stably produce fine particles having a desired particle size, the average molecular weight (weight) ) Is preferably in the range of 10,000 to 48000 to 48000 to 123,000.

本発明では、脱水環化試薬として、例えば、ピリジン、無水酢酸、あるいはこれらの混合溶液を使用し、撹拌下、化学イミド化してポリイミド微粒子分散液を作製する。このイミド化工程は、熱イミド化を行うことも可能であり、化学イミド化を施した後、熱イミド化を行うことも可能である。この場合、好適には、例えば、ピリジン/無水酢酸のモル比が約1/1の混合溶液約0.1ml程度を、撹拌下に加えて、数時間保持して化学イミド化を行い、また、約250℃程で数時間保持して熱イミド化を行うことができる。   In the present invention, for example, pyridine, acetic anhydride, or a mixed solution thereof is used as a dehydrating cyclization reagent, and chemically imidized with stirring to prepare a polyimide fine particle dispersion. In this imidization step, thermal imidization can be performed, and thermal imidization can be performed after chemical imidization. In this case, for example, about 0.1 ml of a mixed solution having a molar ratio of pyridine / acetic anhydride of about 1/1 is preferably added with stirring and held for several hours to perform chemical imidization. Thermal imidization can be carried out by holding at about 250 ° C. for several hours.

次に、本発明では、ポリイミド微粒子を形成するために用いるテトラカルボン酸又はその二無水物として、例えば、3,3’−4−4’−ベンゾフェノンテトラカルボン酸(BTDA)、3,3’−4−4’−テトラカルボキシビフェニル、2,2−(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン、及びこれらの二無水物が例示される。   Next, in the present invention, as tetracarboxylic acid or dianhydride thereof used for forming polyimide fine particles, for example, 3,3′-4-4′-benzophenonetetracarboxylic acid (BTDA), 3,3′- Examples include 4-4′-tetracarboxybiphenyl, 2,2- (3,4-dicarboxyphenyl) -1,1,1,3,3,3-hexafluoropropane, and dianhydrides thereof.

また、前記テトラカルボン酸又はその二無水物と反応してポリイミド前駆体のポリアミド酸を形成し、その後のイミド化等でポリイミドを形成するために、ジアミンとして、例えば、4,4’−ジアミンジフェニルエーテル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、1,4−ジアミンベンゼン、4,4’−メチレンビス(メチルシクロヘキシルアミン)、4,4’−メチレンビス(エチルシクロヘキシルアミン)等が用いられる。   In addition, as a diamine, for example, 4,4′-diamine diphenyl ether is used to react with the tetracarboxylic acid or its dianhydride to form a polyimide precursor polyamic acid and then form a polyimide by imidization or the like. 4,4′-bis (4-aminophenoxy) biphenyl, 1,4-bis (4-aminophenoxy) benzene, 1,3-bis (4-aminophenoxy) benzene, 1,4-diaminebenzene, 4'-methylenebis (methylcyclohexylamine), 4,4'-methylenebis (ethylcyclohexylamine) and the like are used.

本発明により、上述の反応方法により、ポリイミド微粒子分散液の濃度が、0.1wt%から5wt%の高濃度であり、10nmから300nmのサイズのポリイミド微粒子が高濃度に分散した分散液を製造することができる。そして、より好適には、例えば、上記分散液より、10nmから40nmのサイズのポリイミド微粒子が0.1wt%から5wt%の高濃度で分散したポリイミド微粒子分散液並びに粒子径が10nmから40nmのサイズのポリイミド微粒子を調製し、提供することができ、しかもこれらのポリイミド微粒子は、適宜の分散媒に単分散の形態で再分散可能であるという格別の特徴を有するものである。   According to the present invention, a dispersion in which the concentration of the polyimide fine particle dispersion is as high as 0.1 wt% to 5 wt% and polyimide fine particles having a size of 10 nm to 300 nm are dispersed at a high concentration is manufactured by the above-described reaction method. be able to. More preferably, for example, a polyimide fine particle dispersion in which polyimide fine particles having a size of 10 nm to 40 nm are dispersed at a high concentration of 0.1 wt% to 5 wt% and a particle diameter of 10 nm to 40 nm from the above dispersion liquid. Polyimide fine particles can be prepared and provided, and these polyimide fine particles have a special feature that they can be redispersed in a monodisperse form in an appropriate dispersion medium.

従来、ポリアミド酸を出発物質として用いた粒子製造法において、ナノメートルサイズの粒子を製造するためには、一般的に、希薄な濃度下で行う必要があり、そのため、有機溶媒を大量に使用する必要があり、環境に大きな負荷をかけることになることが不可避であった。これに対して、本発明は、従来、大量に使用していた溶媒を、空気中より回収した二酸化炭素で代替しており、該二酸化炭素は、容易に回収、再利用が可能であり、本発明は、環境に対して低負荷な製造法である点で、高い技術的意義を有するものである。   Conventionally, in order to produce nanometer-sized particles in a particle production method using polyamic acid as a starting material, it is generally necessary to carry out under a dilute concentration. Therefore, a large amount of organic solvent is used. It was necessary and it was inevitable that it would put a heavy load on the environment. In contrast, the present invention replaces the solvent that has been used in large quantities with carbon dioxide recovered from the air, and the carbon dioxide can be easily recovered and reused. The invention has a high technical significance in that it is a manufacturing method having a low load on the environment.

本発明により、次のような効果が奏される。
(1)ナノメートルサイズのポリイミド微粒子が0.1wt%から5wt%の高濃度で分散したポリイミド微粒子分散液を提供することができる。
(2)10nmから300nmのサイズのポリイミド微粒子を提供することができる。
(3)ポリイミド微粒子分散液から、単分散の形態で分散媒に再分散可能なポリイミド微粒子を製造することができる。
(4)前記方法で作製した、単分散の形態で分散媒に再分散可能なポリイミド微粒子を提供することができる。
(5)本発明により、各種の分散媒に再分散可能なポリイミド微粒子を大量供給することが可能となる。
(6)本発明のポリイミド微粒子は、多様な種類の分散媒に単分散の形態で再分散可能であり、使用目的に応じたポリイミド微粒子製品を提供することができる。
(7)本発明により、例えば、粒径10〜300nmのサイズのポリイミド微粒子を大量供給することを可能とするポリイミド微粒子分散液並びにポリイミド微粒子の量産技術を確立することが可能である。
The present invention has the following effects.
(1) A polyimide fine particle dispersion in which nanometer-sized polyimide fine particles are dispersed at a high concentration of 0.1 wt% to 5 wt% can be provided.
(2) It is possible to provide polyimide fine particles having a size of 10 nm to 300 nm.
(3) Polyimide fine particles that can be redispersed in a dispersion medium in a monodispersed form can be produced from the polyimide fine particle dispersion.
(4) It is possible to provide polyimide fine particles that can be redispersed in a dispersion medium in the form of a monodisperse produced by the above method.
(5) According to the present invention, it is possible to supply a large amount of polyimide fine particles which can be redispersed in various dispersion media.
(6) The polyimide fine particles of the present invention can be redispersed in a monodisperse form in various types of dispersion media, and a polyimide fine particle product can be provided according to the purpose of use.
(7) According to the present invention, for example, it is possible to establish a polyimide fine particle dispersion and a mass production technique of polyimide fine particles that can supply a large amount of polyimide fine particles having a particle size of 10 to 300 nm.

実施例1で得られたポリイミド微粒子の電子顕微鏡(SEM)写真を示す。The electron microscope (SEM) photograph of the polyimide fine particle obtained in Example 1 is shown. 実施例1で得られたポリイミド微粒子の動的光散乱(DLS)測定による粒径分布を示す。The particle size distribution by the dynamic light scattering (DLS) measurement of the polyimide fine particle obtained in Example 1 is shown. 実施例2で得られたポリイミド微粒子の電子顕微鏡(SEM)写真を示す。The electron microscope (SEM) photograph of the polyimide fine particle obtained in Example 2 is shown. 実施例3で得られたポリイミド微粒子の電子顕微鏡(SEM)写真を示す。The electron microscope (SEM) photograph of the polyimide fine particle obtained in Example 3 is shown. 実施例4で得られたポリイミド微粒子の電子顕微鏡(SEM)写真を示す。The electron microscope (SEM) photograph of the polyimide microparticles | fine-particles obtained in Example 4 is shown.

次に、実施例に基づいて本発明を具体的に説明するが、本発明は、以下の実施例によって何ら限定されるものではない。   EXAMPLES Next, although this invention is demonstrated concretely based on an Example, this invention is not limited at all by the following Examples.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸250μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. 1 mL of the solution, 250 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) sufficiently heated in an oven set at 40 ° C., and a stir bar was further sealed.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、更に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、それぞれ10MPa(a)、15MPa(b)、20MPa(c)まで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、白濁した黄色のポリイミド微粒子分散液を得た。   While stirring these with a magnetic stirrer, in order to further fill the high-pressure reaction vessel with carbon dioxide to a normal pressure or higher, carbon dioxide was added at a flow rate of 2.5 mL / min at 10 MPa (a) and 15 MPa, respectively. (B) Filled up to 20 MPa (c). This was held for 2 hours under stirring, then returned to normal pressure, carbon dioxide was discharged, and a cloudy yellow polyimide fine particle dispersion was obtained.

得られたポリイミド微粒子の平均粒子サイズは、それぞれ194nm、172nm、163nmであり、標準偏差は、それぞれ46nm、24nm、70nmであり、変動係数(CV)は、それぞれ24%、14%、43%であった。得られた粒子の電子顕微鏡(SEM)写真を図1に示す。また、動的光散乱(DLS)測定による粒径分布の結果を図2に示す。   The average particle sizes of the obtained polyimide fine particles are 194 nm, 172 nm, and 163 nm, the standard deviations are 46 nm, 24 nm, and 70 nm, respectively, and the coefficient of variation (CV) is 24%, 14%, and 43%, respectively. there were. An electron microscope (SEM) photograph of the obtained particles is shown in FIG. Moreover, the result of the particle size distribution by dynamic light scattering (DLS) measurement is shown in FIG.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。60℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸250μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. 1 mL of the solution, 250 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) sufficiently heated in an oven set at 60 ° C., and a stir bar was further sealed.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、10MPaまで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、やや白濁した黄色のポリイミド微粒子分散液を得た。得られた粒子の電子顕微鏡(SEM)写真を図3に示す。粒子サイズは、10nmであった。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 10 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. This was held for 2 hours under stirring, then returned to normal pressure, carbon dioxide was discharged, and a slightly turbid yellow polyimide fine particle dispersion was obtained. An electron microscope (SEM) photograph of the obtained particles is shown in FIG. The particle size was 10 nm.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N−メチル−2−ピロリドン、又はジメチルスルホキシドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸250μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution in which polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4′-diaminodiphenyl ether is dissolved in N-methyl-2-pyrrolidone or dimethyl sulfoxide at a concentration of 1.0 mass%. Was prepared. 1 mL of the solution, 250 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) sufficiently heated in an oven set at 40 ° C., and a stir bar was further sealed.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、10MPaまで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、やや白濁した黄色のポリイミド微粒子分散液を得た。N−メチル−2−ピロリドンを使用して得られた微粒子の電子顕微鏡(SEM)写真を図4に示す。粒子サイズは、10nmであった。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 10 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. This was held for 2 hours under stirring, then returned to normal pressure, carbon dioxide was discharged, and a slightly turbid yellow polyimide fine particle dispersion was obtained. FIG. 4 shows an electron microscope (SEM) photograph of the fine particles obtained using N-methyl-2-pyrrolidone. The particle size was 10 nm.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液2.5mL又は5mL、無水酢酸250μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. In a high-pressure reaction vessel (capacity: 50 mL) sufficiently heated in an oven set at 40 ° C., 2.5 mL or 5 mL of the solution, 250 μL of acetic anhydride, and 50 μL of pyridine were added, and a stir bar was added to seal.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、10MPaまで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、やや白濁した黄色のポリイミド微粒子分散液を得た。ポリアミド酸溶液を5mL入れて得られた微粒子の電子顕微鏡(SEM)写真を図5に示す。粒子サイズは、30nmであった。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 10 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. This was kept under stirring for 2 hours, then returned to normal pressure, carbon dioxide was discharged, and a slightly turbid yellow polyimide fine particle dispersion was obtained. FIG. 5 shows an electron microscope (SEM) photograph of fine particles obtained by adding 5 mL of the polyamic acid solution. The particle size was 30 nm.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。20℃で水冷している高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸250μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. 1 mL of the solution, 250 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) that was cooled with water at 20 ° C., and a stir bar was added to seal the solution.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、10MPaまで充てんした。撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、やや白濁した黄色のポリイミド微粒子分散液を得た。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 10 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. After holding for 2 hours under stirring, the pressure was returned to normal pressure, carbon dioxide was discharged, and a slightly turbid yellow polyimide fine particle dispersion was obtained.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、及び無水酢酸250μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. 1 mL of the solution and 250 μL of acetic anhydride were placed in a high-pressure reaction vessel (capacity: 50 mL) sufficiently heated in an oven set at 40 ° C., and a stir bar was added to seal the solution.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、10MPaまで充てんした。これを、撹拌下で5時間保持した後、常圧に戻し、二酸化炭素を排出させ、白濁した黄色のポリイミド微粒子分散液を得た。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 10 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. After maintaining this for 5 hours under stirring, the pressure was returned to normal pressure, carbon dioxide was discharged, and a cloudy yellow polyimide fine particle dispersion was obtained.

ピロメリット酸二無水物と、4,4’−ジアミノジフェニルエーテルとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸150μL又は500μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   A solution was prepared by dissolving polyamic acid obtained by polymerization of pyromellitic dianhydride and 4,4'-diaminodiphenyl ether in N, N-dimethylacetamide at a concentration of 1.0% by mass. 1 mL of the solution, 150 μL or 500 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) sufficiently heated in an oven set at 40 ° C., and a stir bar was further sealed.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、15MPaまで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、白濁した黄色のポリイミド微粒子分散液を得た。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 15 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. This was held for 2 hours under stirring, then returned to normal pressure, carbon dioxide was discharged, and a cloudy yellow polyimide fine particle dispersion was obtained.

3,3’、4,4’−ビフェニルテトラカルボン酸二無水物と、p−フェニレンジアミンとの重合により得られたポリアミド酸を、N,N−ジメチルアセトアミドに1.0質量%の濃度で溶解させた溶液を調製した。40℃に設定したオーブン中で十分に加熱された高圧反応容器(容量50mL)に、前記溶液1mL、無水酢酸150μL、及びピリジン50μLを入れ、更に、撹拌子を入れて密閉した。   Polyamic acid obtained by polymerization of 3,3 ′, 4,4′-biphenyltetracarboxylic dianhydride and p-phenylenediamine is dissolved in N, N-dimethylacetamide at a concentration of 1.0 mass%. A prepared solution was prepared. 1 mL of the solution, 150 μL of acetic anhydride, and 50 μL of pyridine were placed in a high-pressure reaction vessel (capacity 50 mL) sufficiently heated in an oven set at 40 ° C., and a stir bar was further sealed.

これらを、マグネティックスターラーで撹拌しながら、前記高圧反応容器内に、二酸化炭素を常圧以上まで充てんするために、二酸化炭素を2.5mL/分の流量で、15MPaまで充てんした。これを、撹拌下で2時間保持した後、常圧に戻し、二酸化炭素を排出させ、白濁した黄色のポリイミド微粒子分散液を得た。   While stirring these with a magnetic stirrer, carbon dioxide was charged up to 15 MPa at a flow rate of 2.5 mL / min in order to fill the high-pressure reaction vessel with carbon dioxide up to normal pressure or higher. This was held for 2 hours under stirring, then returned to normal pressure, carbon dioxide was discharged, and a cloudy yellow polyimide fine particle dispersion was obtained.

以上詳述したように、本発明は、ポリイミド微粒子分散体並びにポリイミド微粒子、及びそれらの製造方法に係るものであり、本発明により、ポリイミド微粒子分散液から、分散媒に再分散可能なポリイミド微粒子を製造する方法を提供することができる。また、本発明により、前記方法で作製した、分散媒に再分散可能なポリイミド微粒子を提供することができる。本発明のポリイミド微粒子は、分散媒に単分散の形態で再分散可能であり、本発明は、ポリイミド微粒子を大量供給することが可能である。本発明のポリイミド微粒子は、多様な種類の分散媒に単分散の形態で再分散可能であり、本発明により、使用目的に応じた製品を容易に構成することができる。本発明は、環境に対して低負荷な製法でポリイミド微粒子を大量生産することを可能とすると共に、それにより、粒径10〜300nmのナノサイズのポリイミド微粒子を大量供給することを可能とするものとして有用である。   As described above in detail, the present invention relates to a polyimide fine particle dispersion, a polyimide fine particle, and a production method thereof. According to the present invention, a polyimide fine particle that can be redispersed in a dispersion medium is obtained from a polyimide fine particle dispersion. A method of manufacturing can be provided. In addition, according to the present invention, it is possible to provide polyimide fine particles which can be redispersed in a dispersion medium, which is produced by the above method. The polyimide fine particles of the present invention can be redispersed in a monodisperse form in a dispersion medium, and the present invention can supply a large amount of polyimide fine particles. The polyimide fine particles of the present invention can be redispersed in a monodisperse form in various types of dispersion media, and according to the present invention, a product corresponding to the purpose of use can be easily configured. The present invention makes it possible to mass-produce polyimide fine particles by a production method having a low load on the environment, and thereby to supply a large amount of nano-sized polyimide fine particles having a particle size of 10 to 300 nm. Useful as.

Claims (7)

ポリイミドの前駆体ポリマーであるポリアミド酸を、ポリイミドを溶解させずポリアミド酸を溶解させる溶媒に溶解させ、前記溶液と脱水環化試薬を所定の温度に加熱した耐圧容器に入れ、更に、二酸化炭素を常圧以上まで充てんし、ポリアミド酸をポリイミドへ転化させた後に、二酸化炭素を排出することにより、10nmから300nmのサイズのポリイミド微粒子が高濃度で分散した分散液を製造することを特徴とするポリイミド微粒子分散液の製造方法。   Polyamide acid, which is a polyimide precursor polymer, is dissolved in a solvent that dissolves polyamide acid without dissolving polyimide, and the solution and the dehydrating cyclization reagent are placed in a pressure-resistant container heated to a predetermined temperature, and carbon dioxide is further added. A polyimide characterized by producing a dispersion in which polyimide fine particles having a size of 10 nm to 300 nm are dispersed at a high concentration by filling up to normal pressure or higher, converting polyamic acid to polyimide, and then discharging carbon dioxide. A method for producing a fine particle dispersion. 前記二酸化炭素の充てん圧力が、5MPaから30MPaである、請求項1に記載のポリイミド微粒子分散液の製造方法。   The method for producing a polyimide fine particle dispersion according to claim 1, wherein a filling pressure of the carbon dioxide is 5 MPa to 30 MPa. 前記耐圧容器の加熱温度が、0℃から100℃である、請求項1又は2に記載のポリイミド微粒子分散液の製造方法。   The manufacturing method of the polyimide fine particle dispersion of Claim 1 or 2 whose heating temperature of the said pressure | voltage resistant container is 0 to 100 degreeC. 前記ポリイミド微粒子分散液の濃度が、0.1wt%から5wt%である、請求項1から3のいずれかに記載のポリイミド微粒子分散液の製造方法。   The manufacturing method of the polyimide fine particle dispersion in any one of Claim 1 to 3 whose density | concentration of the said polyimide fine particle dispersion is 0.1 wt% to 5 wt%. 50mL容量の耐圧容器に対して、0.5mLから5mLの比率の前記ポリアミド酸溶液を該耐圧容器に入れる、請求項1に記載のポリイミド微粒子分散液の製造方法。   The manufacturing method of the polyimide fine particle dispersion of Claim 1 which puts the said polyamic-acid solution of the ratio of 0.5 mL to 5 mL with respect to a 50 mL capacity | capacitance pressure vessel in this pressure vessel. ポリイミド微粒子分散液であって、10nmから40nmのサイズのポリイミド微粒子が、0.1wt%から5wt%の高濃度で分散した分散液であることを特徴とするポリイミド微粒子分散液。   A polyimide fine particle dispersion, which is a dispersion in which polyimide fine particles having a size of 10 nm to 40 nm are dispersed at a high concentration of 0.1 wt% to 5 wt%. ポリイミド微粒子であって、10nmから40nmのサイズのポリイミド微粒子であり、単分散の形態で分散媒に再分散可能であることを特徴とするポリイミド微粒子。   Polyimide fine particles, which are polyimide fine particles having a size of 10 nm to 40 nm and can be redispersed in a dispersion medium in a monodispersed form.
JP2009034636A 2009-02-17 2009-02-17 Polyimide fine particle dispersion, polyimide fine particles and methods for producing them Expired - Fee Related JP5283080B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009034636A JP5283080B2 (en) 2009-02-17 2009-02-17 Polyimide fine particle dispersion, polyimide fine particles and methods for producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009034636A JP5283080B2 (en) 2009-02-17 2009-02-17 Polyimide fine particle dispersion, polyimide fine particles and methods for producing them

Publications (2)

Publication Number Publication Date
JP2010189524A true JP2010189524A (en) 2010-09-02
JP5283080B2 JP5283080B2 (en) 2013-09-04

Family

ID=42815897

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009034636A Expired - Fee Related JP5283080B2 (en) 2009-02-17 2009-02-17 Polyimide fine particle dispersion, polyimide fine particles and methods for producing them

Country Status (1)

Country Link
JP (1) JP5283080B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014192665A1 (en) 2013-05-27 2014-12-04 Ricoh Company, Ltd. Method for producing polyimide precursor and method for producing polyimide
US9228118B2 (en) 2010-12-17 2016-01-05 Sekisui Chemical Co., Ltd. Production method for polyamide acid particles, production method for polyimide particles, polyimide particles and bonding material for electronic component
WO2016060340A1 (en) * 2014-10-15 2016-04-21 연세대학교 원주산학협력단 Polyimide preparation method carried out under pressurized conditions
KR20160044231A (en) * 2014-10-15 2016-04-25 연세대학교 원주산학협력단 Preparation method of polyimide under high pressure
KR101780447B1 (en) * 2015-02-02 2017-09-21 연세대학교 원주산학협력단 Preparation method of polyimide composites under high pressure
CN112111219A (en) * 2019-06-20 2020-12-22 东京应化工业株式会社 Varnish composition, precursor film of polyimide porous film, method for producing precursor film of polyimide porous film, and method for producing polyimide porous film

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350234A (en) * 1989-07-17 1991-03-04 Daicel Chem Ind Ltd Production of polyimide powder
JP2000248063A (en) * 1999-02-26 2000-09-12 Osaka Prefecture Fine particles of functional polyamic acid, functional polyimide fine particles and their production
JP2004143405A (en) * 2002-08-28 2004-05-20 Sekisui Chem Co Ltd Method for producing resin fine particle
JP2008056762A (en) * 2006-08-30 2008-03-13 Toray Ind Inc Process for producing polyimide fine particle aqueous dispersion

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0350234A (en) * 1989-07-17 1991-03-04 Daicel Chem Ind Ltd Production of polyimide powder
JP2000248063A (en) * 1999-02-26 2000-09-12 Osaka Prefecture Fine particles of functional polyamic acid, functional polyimide fine particles and their production
JP2004143405A (en) * 2002-08-28 2004-05-20 Sekisui Chem Co Ltd Method for producing resin fine particle
JP2008056762A (en) * 2006-08-30 2008-03-13 Toray Ind Inc Process for producing polyimide fine particle aqueous dispersion

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9228118B2 (en) 2010-12-17 2016-01-05 Sekisui Chemical Co., Ltd. Production method for polyamide acid particles, production method for polyimide particles, polyimide particles and bonding material for electronic component
WO2014192665A1 (en) 2013-05-27 2014-12-04 Ricoh Company, Ltd. Method for producing polyimide precursor and method for producing polyimide
JP2015007211A (en) * 2013-05-27 2015-01-15 株式会社リコー Production method of polyimide precursor and production method of polyimide
US9688815B2 (en) 2013-05-27 2017-06-27 Ricoh Company, Ltd. Method for producing polyimide precursor and method for producing polyimide
WO2016060340A1 (en) * 2014-10-15 2016-04-21 연세대학교 원주산학협력단 Polyimide preparation method carried out under pressurized conditions
KR20160044231A (en) * 2014-10-15 2016-04-25 연세대학교 원주산학협력단 Preparation method of polyimide under high pressure
KR101709378B1 (en) * 2014-10-15 2017-02-22 연세대학교 원주산학협력단 Preparation method of polyimide under high pressure
KR101780447B1 (en) * 2015-02-02 2017-09-21 연세대학교 원주산학협력단 Preparation method of polyimide composites under high pressure
CN112111219A (en) * 2019-06-20 2020-12-22 东京应化工业株式会社 Varnish composition, precursor film of polyimide porous film, method for producing precursor film of polyimide porous film, and method for producing polyimide porous film

Also Published As

Publication number Publication date
JP5283080B2 (en) 2013-09-04

Similar Documents

Publication Publication Date Title
JP5283080B2 (en) Polyimide fine particle dispersion, polyimide fine particles and methods for producing them
JP6156363B2 (en) Fine carbon dispersion composition and polyimide-fine carbon composite using the same
Yu et al. A graphene hybrid material functionalized with POSS: Synthesis and applications in low-dielectric epoxy composites
JP5019152B2 (en) Carbon nanotube-dispersed polyimide composition
JP3478977B2 (en) Polyamide acid fine particles and polyimide fine particles, and methods for producing them
JP5870720B2 (en) Carbon nanotube dispersant made of polyamic acid
EP2960274A1 (en) One pot synthesis of thermally reduced graphene oxide (TRGO)-polymer nanocomposites.
JP5120898B2 (en) Continuous production method of polyamide acid fine particles and polyimide fine particles
Lee et al. Synthesis and characterization of hybrid films of polyimide and silica hollow spheres
Yazdani et al. The chemistry concerned with the sonochemical-assisted synthesis of CeO_2/poly (amic acid) nanocomposites
JP2012167186A (en) Nanocarbon dispersion polyimide solution, and composite material manufactured by using the same
Kıvılcım et al. Porous pyridine based polyimide–silica nanocomposites with low dielectric constant
JP5369645B2 (en) Polyphenylene sulfide fine particles, dispersion thereof, and production method thereof
CN105482116A (en) Polyimide nanometer composite with carbazole structure and preparation method and application of polyimide nanometer composite
JP2010013312A (en) Carbon nanotube dispersant, carbon nanotube dispersion, and method for producing the same
JP5821213B2 (en) Method for producing polyphenylene sulfide resin fine particle dispersion
Cheng et al. Modification of multiwall carbon nanotubes via soap‐free emulsion polymerization of acrylonitrile
Wu et al. Comparison of polyimide/multiwalled carbon nanotube (MWNT) nanocomposites by in situ polymerization and blending
JP2004292682A (en) Polyimide particulate and its preparation process
JP2003252990A (en) Method for manufacturing polyimide fine particle with controlled particle size and particle size distribution
JP4125296B2 (en) Method for producing porous polyamic acid fine particles and porous polyimide fine particles
JP5429922B2 (en) Method for producing polyimide fine particle aggregate
JP5799632B2 (en) Method for producing polyimide particles and polyimide particles
JP4304434B2 (en) Polyamide fine particles and method for producing the same
Babanzadeh et al. Preparation and Characterization of Novel Polyimide/SiO 2 Nano-hybrid Films by In Situ Polymerization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110825

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130513

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130521

R150 Certificate of patent or registration of utility model

Ref document number: 5283080

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees