JP2006232949A - Method for treating phosphor particle, light emitting device, and phosphor particle - Google Patents

Method for treating phosphor particle, light emitting device, and phosphor particle Download PDF

Info

Publication number
JP2006232949A
JP2006232949A JP2005048001A JP2005048001A JP2006232949A JP 2006232949 A JP2006232949 A JP 2006232949A JP 2005048001 A JP2005048001 A JP 2005048001A JP 2005048001 A JP2005048001 A JP 2005048001A JP 2006232949 A JP2006232949 A JP 2006232949A
Authority
JP
Japan
Prior art keywords
phosphor particles
metal oxide
phosphor
metal
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005048001A
Other languages
Japanese (ja)
Inventor
Naoko Doi
尚子 土井
Takao Hayashi
隆夫 林
Keiichi Yamazaki
圭一 山崎
Keiji Shibata
圭史 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2005048001A priority Critical patent/JP2006232949A/en
Publication of JP2006232949A publication Critical patent/JP2006232949A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Led Device Packages (AREA)
  • Luminescent Compositions (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for treating phosphor particles capable of enhancing not only dispersibility in a resin but also fluorescence characteristics. <P>SOLUTION: When the surface of a phosphor particle is coated with a metal oxide, the phosphor particle is brought into contact with a treatment solution containing a metal complex ion which comprises a metal composing the metal oxide as a central metal and fluorine as a ligand and water. A fluoride ion produced by the reaction of the metal complex ion with water can etch the surface of the phosphor particle to remove defective parts on the surface of the phosphor particle and disintegrate phosphor particles forming aggregates by necking. Subsequently, the surface of the phosphor particle can be coated with the metal oxide produced by the reaction of the metal complex ion with water on the surface of the phosphor particle. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、蛍光体粒子の表面を金属酸化物で被覆する蛍光体粒子の処理方法、金属酸化物を被覆処理した蛍光体粒子を用いた発光装置、及び金属酸化物を被覆した蛍光体粒子に関するものである。   The present invention relates to a method for treating phosphor particles in which the surface of phosphor particles is coated with a metal oxide, a light emitting device using phosphor particles coated with a metal oxide, and a phosphor particle coated with a metal oxide. Is.

種々の波長の光を発する光源を集めて配列することによって、カラー画像表示装置、電飾、信号灯、照明装置などを構成することが従来から行なわれている。この光源としては発光ダイオード(LED)や半導体レーザ(LD)などの半導体発光素子を単独で用いる他に、この発光素子と蛍光体とを組み合わせたものが用いられている。蛍光体を発光素子と組み合わせて用いる場合、蛍光体は発光素子からの光で励起され、種々の波長の蛍光を発するものが選択して使用されている。このように蛍光体を発光素子と組み合わせて形成される発光装置にあって、蛍光体の発光色の選択によって、白色光を出力するいわゆる白色LEDを形成することができ、この白色LEDは照明器具等としての利用が期待されている。   2. Description of the Related Art Conventionally, a color image display device, an electrical decoration, a signal lamp, a lighting device, and the like are configured by collecting and arranging light sources that emit light of various wavelengths. As the light source, a semiconductor light emitting element such as a light emitting diode (LED) or a semiconductor laser (LD) is used alone, or a combination of the light emitting element and a phosphor is used. When a phosphor is used in combination with a light-emitting element, a phosphor that is excited by light from the light-emitting element and emits fluorescence of various wavelengths is selected and used. Thus, in the light-emitting device formed by combining the phosphor with the light-emitting element, a so-called white LED that outputs white light can be formed by selecting the emission color of the phosphor. Etc. are expected to be used.

そしてこのように蛍光体を発光素子と組み合わせて使用する場合、蛍光体の粉末を透明樹脂に混合して、透明樹脂中に分散させた状態で用いるのが一般的である。このように蛍光体の粉末を樹脂に分散させる場合、蛍光体の粒子の粒径が大きいと、その自重により樹脂の硬化中に沈降するなど、分散性が悪く、発色に色ムラが生じる等の問題があった。   When the phosphor is used in combination with the light emitting element as described above, the phosphor powder is generally mixed with the transparent resin and dispersed in the transparent resin. In this way, when the phosphor powder is dispersed in the resin, if the particle size of the phosphor particles is large, it will settle during curing of the resin due to its own weight. There was a problem.

そこで、粒径を300nm以下の微粒子に調製した蛍光体粒子を透明樹脂に分散させることによって、分散性を向上させることが検討されている。このような粒径300nm以下の蛍光体粒子を調製する方法としては、共沈法、アルコキシド法などがあるが、これらの方法で蛍光体粒子を調製するにあたって、蛍光体の性能を発揮させるために1000℃以上の温度で焼結処理することが必要である場合があり、このように焼結すると小粒子同士のネッキングが生じ、蛍光体粒子が凝集して粒径が1μm以上になり、分散性を向上することが難しくなるという問題があった。しかもネッキングの結果、蛍光体粒子の粒径が不均一になって、樹脂への高充填に限界が生じるという問題もあった。また、蛍光体粒子を300nm以下の粒径に調製すると、その表面積の増加から、表面欠陥による発光効率の低下が顕著になるという問題もあった。   Therefore, it has been studied to improve dispersibility by dispersing phosphor particles prepared in fine particles having a particle size of 300 nm or less in a transparent resin. As a method for preparing such phosphor particles having a particle size of 300 nm or less, there are a coprecipitation method, an alkoxide method, and the like. In preparing the phosphor particles by these methods, in order to exhibit the performance of the phosphor. Sintering at a temperature of 1000 ° C. or higher may be necessary. When sintering is performed in this manner, necking of small particles occurs, phosphor particles aggregate to a particle size of 1 μm or more, dispersibility There was a problem that it was difficult to improve. In addition, as a result of necking, the particle size of the phosphor particles becomes non-uniform, and there is a problem that the high filling of the resin is limited. In addition, when the phosphor particles are prepared to have a particle size of 300 nm or less, there is a problem that a decrease in luminous efficiency due to surface defects becomes remarkable due to an increase in the surface area.

これらの問題を解決する方法として、上記のように共沈法やアルコキシド法などで調製した蛍光体粒子を焼結処理した後、蛍光体粒子にエッチング処理を施すことによって、小粒子同士のネッキング部分をエッチングし、粒径300nm以下の蛍光体粒子を製造する方法が検討されている。さらに、蛍光体粒子の表面の欠陥を低減させる方法として、蛍光体粒子の表面をエッチングし、表面の欠陥部分を除去した後、金属アルコキシドなどを利用した方法で、蛍光体粒子の表面をSiO等の金属酸化物で被覆する方法が提案されている(非特許文献1等参照)。
磯部徹彦、黒川清、藤本啓二「IIB−VIB族ナノクリスタル蛍光体に関する研究開発の進展」、応用物理、物理学会、2003年、第72巻、第12号、p1516−1521
As a method for solving these problems, the phosphor particles prepared by the coprecipitation method or the alkoxide method as described above are sintered, and then the phosphor particles are etched to form a necking portion between small particles. A method for producing phosphor particles having a particle size of 300 nm or less has been studied. Furthermore, as a method of reducing defects on the surface of the phosphor particles, the surface of the phosphor particles is etched by SiO 2 after etching the surface of the phosphor particles and removing a defective portion on the surface, and then using a metal alkoxide or the like. A method of coating with a metal oxide such as non-patent document 1 has been proposed.
Tetsuhiko Isobe, Kiyoshi Kurokawa, Keiji Fujimoto “Progress of Research and Development on IIB-VIB Group Nanocrystal Phosphors”, Applied Physics, Physics Society, 2003, Vol. 72, No. 12, p1516-1521

しかし、上記のように金属アルコキシドを用いて蛍光体粒子の表面に金属酸化物を被覆するにあたっては、蛍光体粒子をエッチング処理して取出した後に、金属酸化物の被膜を形成する処理を行なう必要があり、蛍光体粒子を取出した際に蛍光体粒子の表面に再度欠陥が生じ易く、従って、蛍光体粒子の表面を金属酸化物の被膜で被覆しても、蛍光特性は低下してしまう傾向があった。また金属酸化物の被膜は蛍光体粒子の表面にムラに形成される傾向があり、蛍光体粒子の表面を完全に金属酸化物で被覆することはできず、未被覆表面に再度欠陥が生じ易く、同様に蛍光特性は低下してしまう傾向があった。蛍光体粒子の表面を金属酸化物で完全に被覆するには、金属酸化物の被膜の厚みを厚く形成する必要があるが、このときには蛍光体粒子への光の入出の度合いが低減し、蛍光特性が低下するという問題が生じるものであった。   However, when the metal oxide is coated on the surface of the phosphor particles using the metal alkoxide as described above, it is necessary to perform a process of forming a metal oxide film after the phosphor particles are removed by etching. When the phosphor particles are taken out, defects tend to occur again on the surface of the phosphor particles. Therefore, even if the surface of the phosphor particles is coated with a metal oxide film, the fluorescence characteristics tend to deteriorate. was there. Also, the metal oxide film tends to be unevenly formed on the surface of the phosphor particles, and the surface of the phosphor particles cannot be completely covered with the metal oxide, and defects are easily generated again on the uncoated surface. Similarly, there was a tendency that the fluorescence characteristics deteriorated. In order to completely cover the surface of the phosphor particles with the metal oxide, it is necessary to increase the thickness of the metal oxide film. At this time, however, the degree of light entering and exiting the phosphor particles is reduced, and the fluorescence is reduced. There was a problem that the characteristics deteriorated.

本発明は上記の点に鑑みてなされたものであり、樹脂への分散性を高めることができると共に、蛍光特性を高めることができる蛍光体粒子の処理方法を提供することを目的とし、またこの処理を施した蛍光体粒子を用いた発光装置を提供することを目的とするものである。   The present invention has been made in view of the above points, and an object of the present invention is to provide a method for treating phosphor particles capable of enhancing the dispersibility in a resin and enhancing the fluorescence characteristics. An object of the present invention is to provide a light emitting device using the treated phosphor particles.

本発明の請求項1に係る蛍光体粒子の処理方法は、金属酸化物で蛍光体粒子の表面を被覆するにあたって、金属酸化物を構成する金属を中心原子としフッ素を配位子とする金属錯イオンと水を含有する処理溶液を、蛍光体粒子に接触させることを特徴とするものである。   In the method for treating phosphor particles according to claim 1 of the present invention, when the surface of the phosphor particles is coated with a metal oxide, the metal complex having a metal constituting the metal oxide as a central atom and fluorine as a ligand. A treatment solution containing ions and water is brought into contact with phosphor particles.

また請求項2の発明は、請求項1において、蛍光体粒子は金属酸化物で形成されていることを特徴とするものである。   According to a second aspect of the present invention, in the first aspect, the phosphor particles are formed of a metal oxide.

また請求項3の発明は、請求項1又は2において、上記金属錯イオンはSiF 2−であることを特徴とするものである。 According to a third aspect of the present invention, in the first or second aspect, the metal complex ion is SiF 6 2− .

また請求項4の発明は、請求項1乃至3のいずれかにおいて、上記処理溶液には、フッ素を配位子とするSi錯イオンと、フッ素を配位子とするTi錯イオンと、フッ素を配位子とするY錯イオンと、フッ素を配位子とするZr錯イオンから選ばれた少なくとも2種以上の金属錯イオンを含有することを特徴とするものである。   According to a fourth aspect of the present invention, in any one of the first to third aspects, the treatment solution contains a Si complex ion having fluorine as a ligand, a Ti complex ion having fluorine as a ligand, and fluorine. It contains at least two or more metal complex ions selected from a Y complex ion as a ligand and a Zr complex ion having fluorine as a ligand.

また請求項5の発明は、請求項1乃至4のいずれかにおいて、蛍光体粒子の表面を被覆する金属酸化物を2〜5nmの厚みで形成することを特徴とするものである。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the metal oxide covering the surface of the phosphor particles is formed with a thickness of 2 to 5 nm.

また請求項6の発明は、請求項1乃至5のいずれかにおいて、上記処理溶液の金属錯イオン濃度は、0.01〜0.2mol/Lであることを特徴とするものである。   The invention of claim 6 is characterized in that, in any one of claims 1 to 5, the concentration of metal complex ions in the treatment solution is 0.01 to 0.2 mol / L.

また本発明の請求項7に係る発光装置は、発光波長が300nm〜480nmに発光ピークを有する発光素子と、発光素子の光を吸収して発光する請求項1乃至6のいずれかの方法で処理された蛍光体粒子を樹脂に分散させた蛍光発光体とを具備して成ることを特徴とするものである。   A light-emitting device according to claim 7 of the present invention is processed by the light-emitting element having an emission peak at an emission wavelength of 300 nm to 480 nm and the method according to any one of claims 1 to 6 that emits light by absorbing light from the light-emitting element. And a fluorescent material in which the phosphor particles are dispersed in a resin.

また本発明の請求項8に係る蛍光体粒子は、請求項1乃至6のいずれかの方法で表面が金属酸化物で被覆されて成ることを特徴とするものである。   A phosphor particle according to an eighth aspect of the present invention is characterized in that the surface is coated with a metal oxide by the method of any one of the first to sixth aspects.

本発明によれば、蛍光体粒子に、金属酸化物を構成する金属を中心原子としフッ素を配位子とする金属錯イオンと水を含有する処理溶液を接触させることによって、金属錯イオンが水と反応して生成されるフッ化物イオンが蛍光体粒子の表面にエッチング作用し、蛍光体粒子の表面の欠陥部分を除去することができると共に、ネッキングして凝集体となっている蛍光体粒子を解離させることができ、引き続いて蛍光体粒子の表面で金属錯イオンが水と反応して生成される金属酸化物で蛍光体粒子の表面を被覆することができる。この結果、蛍光体粒子の表面に再度欠陥が生じることなく、金属酸化物で蛍光体粒子の表面を被覆することができ、蛍光体粒子の蛍光特性を高めることができると共に、蛍光体粒子の樹脂への分散性を高めることができるものである。   According to the present invention, a metal complex ion is brought into contact with phosphor particles by bringing a metal complex ion having a metal constituting the metal oxide as a central atom and fluorine as a ligand into contact with a treatment solution containing water. Fluoride ions produced by reaction with the phosphor particles can be etched on the surface of the phosphor particles to remove defective portions on the surface of the phosphor particles. The surface of the phosphor particles can be coated with a metal oxide generated by the reaction of metal complex ions with water on the surface of the phosphor particles. As a result, the surface of the phosphor particles can be coated with the metal oxide without causing defects again on the surface of the phosphor particles, and the fluorescence characteristics of the phosphor particles can be enhanced. Dispersibility can be improved.

以下、本発明を実施するための最良の形態を説明する。   Hereinafter, the best mode for carrying out the present invention will be described.

本発明において、蛍光体粒子の表面を金属酸化物の被膜で被覆するにあたって、この金属酸化物としては、波長250nm以上の光の透過率が85%以上のものであることが望ましい。具体的には、SiO、TiO、Al、Sc、GeO、Y、ZrO、SnOなどの中から選ばれる金属酸化物、あるいはこれらの金属酸化物の2種以上から構成される複合金属酸化物を挙げることができる。 In the present invention, when the surface of the phosphor particles is coated with a metal oxide film, the metal oxide preferably has a light transmittance of 85% or more at a wavelength of 250 nm or more. Specifically, a metal oxide selected from SiO 2 , TiO 2 , Al 2 O 3 , Sc 2 O 3 , GeO 2 , Y 2 O 3 , ZrO 2 , SnO 2 , or the like, or these metal oxides The composite metal oxide comprised from 2 or more types of these can be mentioned.

また蛍光体粒子の組成は、その励起波長、発光波長に応じて任意に設定されるが、LED発光素子との組み合わせで白色発光装置を形成する場合には、青色光励起黄色蛍光体、紫外光励起青色蛍光体、紫外光励起緑色蛍光体、紫外光励起赤色蛍光体などを用いることができる。具体的には、青色光励起黄色蛍光体としてYAG:Ce、紫外光励起青色蛍光体としてBaMgAl1017:Euや、(Sr,Ca,Ba,Mg)10(POCl:Eu、紫外光励起緑色蛍光体として(Zn,Cd)S:Cu,AlやBaMgAl1017:Eu,Mn、紫外光励起赤色蛍光体としてLnS:Eu(Ln=Y,La,Gd,Lu,Sc)やYVO:Eu等を挙げることができる。 The composition of the phosphor particles is arbitrarily set according to the excitation wavelength and emission wavelength. When a white light emitting device is formed in combination with an LED light emitting element, blue light excitation yellow phosphor, ultraviolet light excitation blue A phosphor, an ultraviolet light-excited green phosphor, an ultraviolet light-excited red phosphor, or the like can be used. Specifically, YAG: Ce is used as a blue light-excited yellow phosphor, BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, and ultraviolet light are used as an ultraviolet light-excited blue phosphor. as photoexcitation green phosphor (Zn, Cd) S: Cu , Al and BaMgAl 10 O 17: Eu, Mn , ultraviolet excitation red phosphor as Ln 2 O 2 S: Eu ( Ln = Y, La, Gd, Lu, Sc ) And YVO 4 : Eu.

蛍光体粒子の粒径は、樹脂への分散性を考慮すると、5〜300nmの範囲が好ましい。粒径が大きすぎると、樹脂中での沈降がみられ、分散性が悪くなる傾向がある。逆に粒径が小さすぎると、蛍光体粒子の表面の欠陥の除去が難しく、蛍光特性の低下が顕著になる傾向がある。蛍光体は一般に固相法より製造されるが、粒径が5〜300nmの蛍光体粒子は共沈法、アルコキシド法などの方法で得ることができる。   The particle diameter of the phosphor particles is preferably in the range of 5 to 300 nm in consideration of dispersibility in the resin. If the particle size is too large, sedimentation in the resin is observed, and the dispersibility tends to deteriorate. On the other hand, if the particle size is too small, it is difficult to remove defects on the surface of the phosphor particles, and there is a tendency for the fluorescence characteristics to deteriorate significantly. Phosphors are generally manufactured by a solid phase method, but phosphor particles having a particle size of 5 to 300 nm can be obtained by a method such as a coprecipitation method or an alkoxide method.

蛍光体粒子の表面に上記のような金属酸化物の被膜を被覆する処理をするにあたって、本発明では、この金属酸化物を構成する金属イオンを中心原子とし、フッ素を配位子とする金属錯イオンと、水とを含有する処理溶液を用い、この処理溶液を蛍光体粒子の表面に接触させることによって行なうことができる。このような金属錯イオンとしては、具体的には例えば、フッ素を配位子とするSi錯イオン、フッ素を配位子とするTi錯イオン、フッ素を配位子とするSc錯イオン、フッ素を配位子とするGe錯イオン、フッ素を配位子とするY錯イオン、フッ素を配位子とするZr錯イオン、フッ素を配位子とするSn錯イオンなどを挙げることができる。   When the surface of the phosphor particles is coated with the metal oxide film as described above, in the present invention, a metal complex having a metal ion constituting the metal oxide as a central atom and fluorine as a ligand. The treatment can be performed by using a treatment solution containing ions and water and bringing the treatment solution into contact with the surface of the phosphor particles. Specific examples of such metal complex ions include Si complex ions having fluorine as a ligand, Ti complex ions having fluorine as a ligand, Sc complex ions having fluorine as a ligand, and fluorine. Examples thereof include a Ge complex ion having a ligand, a Y complex ion having fluorine as a ligand, a Zr complex ion having fluorine as a ligand, and an Sn complex ion having fluorine as a ligand.

ここで、金属錯イオンと水とを含有する処理溶液中で、フッ素を配位子とする金属錯イオンと水は次のように反応する。   Here, in a treatment solution containing a metal complex ion and water, the metal complex ion having fluorine as a ligand and water react as follows.

MF (x−2n)−+nHO⇔MO+nF+2nH
(ただし、Mは金属イオン、xは金属イオンに対するフッ素の配位数、n=(金属イオンの価数/2))
この反応式の右辺への反応を進行させるために、金属錯イオンと水とを含有する処理溶液にほう酸を添加することができる。
MF x (x-2n) − + nH 2 O⇔MO n + nF +2 nH +
(Where M is a metal ion, x is the coordination number of fluorine to the metal ion, n = (valence of metal ion / 2))
In order to advance the reaction to the right side of this reaction formula, boric acid can be added to the treatment solution containing metal complex ions and water.

そしてフッ素を配位子とする金属錯イオンと水を含有する処理溶液で蛍光体粒子を処理すると、まず、上記のように金属錯イオンが水と反応して生成されるフッ化物イオン(F)が蛍光体粒子の表面にエッチング作用し、蛍光体粒子の表面の欠陥がエッチング除去される。このとき、共沈法やアルコキシド法などの方法で粒径5〜300nmの蛍光体粒子を調製するにあたって、十分な蛍光特性を得るために1000℃以上の温度で焼成処理を施す場合があり、蛍光体粒子はネッキングして径が1〜100μm程度の凝集体となっているが、フッ化物イオンの作用でネッキング部分がエッチングされ、粒径5〜300nmの蛍光体粒子に解離させることができるものである。エッチングの程度は、蛍光体粒子の基材の組成、処理溶液中の金属錯イオンの濃度、処理溶液の温度、処理時間等により異なるが、通常表面から1〜10nm程度である。 When phosphor particles are treated with a treatment solution containing metal complex ions having fluorine as a ligand and water, first, fluoride ions (F −) generated by the reaction of metal complex ions with water as described above. ) Acts on the surface of the phosphor particles, and defects on the surface of the phosphor particles are removed by etching. At this time, when preparing phosphor particles having a particle size of 5 to 300 nm by a method such as a coprecipitation method or an alkoxide method, a firing treatment may be performed at a temperature of 1000 ° C. or higher in order to obtain sufficient fluorescence characteristics. The body particles are necked to form aggregates having a diameter of about 1 to 100 μm, but the necking part is etched by the action of fluoride ions and can be dissociated into phosphor particles having a particle diameter of 5 to 300 nm. is there. The degree of etching varies depending on the composition of the phosphor particle base material, the concentration of metal complex ions in the treatment solution, the temperature of the treatment solution, the treatment time, and the like, but is usually about 1 to 10 nm from the surface.

次に、このようにエッチングされた蛍光体粒子の表面に、上記のように金属錯イオンが水と反応して生成される金属酸化物(MO)の被膜が形成される。この金属酸化物の被膜が形成される反応は、蛍光体粒子と処理溶液の界面で生じ易く、蛍光体粒子の表面を均一に覆うように金属酸化物が析出し、蛍光体粒子の表面に均一な金属酸化物の被膜を形成することができるものである。金属酸化物の被膜の厚みは、蛍光体粒子と処理溶液との接触時間により制御することが可能であり、2〜50nm程度の範囲で均一な厚みの金属酸化物被膜を形成することが可能である。 Next, a metal oxide (MO n ) film formed by reacting the metal complex ions with water as described above is formed on the surface of the phosphor particles thus etched. The reaction for forming the metal oxide film is likely to occur at the interface between the phosphor particles and the treatment solution, and the metal oxide is deposited so as to uniformly cover the surface of the phosphor particles, and is uniform on the surface of the phosphor particles. A metal oxide film can be formed. The thickness of the metal oxide film can be controlled by the contact time between the phosphor particles and the treatment solution, and a metal oxide film having a uniform thickness can be formed in the range of about 2 to 50 nm. is there.

ここで、上記のエッチング反応と、金属酸化物被膜の形成の反応は、処理溶液中において一連の反応で行なわれるので、エッチングで欠陥が除去された蛍光体粒子の表面に、金属酸化物の被膜を形成することができるものである。そしてこのように蛍光体粒子の表面を金属酸化物の被膜で被覆することによって、蛍光体粒子の表面に欠陥が再度生じることを抑制することができ、蛍光体粒子の蛍光特性を高めた状態に保持することができるものである。   Here, the etching reaction and the reaction for forming the metal oxide film are performed in a series of reactions in the treatment solution. Therefore, the metal oxide film is formed on the surface of the phosphor particles from which defects have been removed by etching. Can be formed. And by covering the surface of the phosphor particles with the metal oxide coating in this way, it is possible to suppress the occurrence of defects again on the surface of the phosphor particles, and to improve the fluorescence characteristics of the phosphor particles. It can be held.

上記のようにフッ素を配位子とする金属錯イオンと水を含有する処理溶液で蛍光体粒子を処理するにあたって、フッ素を配位子とする金属錯イオンの処理溶液中の濃度は0.01〜0.2mol/Lの範囲が好ましく、0.04〜0.1mol/Lの範囲がより好ましい。金属錯イオンの濃度が低いと、フッ素を配位子とする金属錯イオンと水が反応して生成されるフッ化物イオン濃度が低いため、蛍光体粒子の表面のエッチング能力が低下し、蛍光体粒子の表面の欠陥の除去を十分に行なうことができず、蛍光特性が低下するおそれがあり、また蛍光体粒子がネッキングにより連なった凝集体を解離するまでに至らず、樹脂への蛍光体粒子の分散性が低下するおそれがある。逆に金属錯イオンの濃度が高いと、フッ素を配位子とする金属錯イオンと水との反応が急激に進行するため、金属酸化物の被膜が蛍光体粒子の表面に局所的に形成され易く、均一な金属酸化物被膜を形成することが困難になり、蛍光体粒子の表面に局所的に欠陥が生成されて蛍光特性が低下するおそれがある。このために、本発明ではフッ素を配位子とする金属錯イオンの濃度は上記の範囲が好ましいものである。   As described above, when the phosphor particles are treated with a treatment solution containing a metal complex ion having fluorine as a ligand and water, the concentration of the metal complex ion having fluorine as a ligand in the treatment solution is 0.01. The range of -0.2 mol / L is preferable, and the range of 0.04-0.1 mol / L is more preferable. When the concentration of metal complex ions is low, the fluoride ion concentration produced by the reaction of metal complex ions with fluorine as a ligand and water is low, so the etching ability of the surface of the phosphor particles decreases, and the phosphor Defects on the surface of the particles cannot be sufficiently removed, there is a possibility that the fluorescence characteristics may be deteriorated, and the phosphor particles do not reach dissociation of aggregates linked by necking, and the phosphor particles to the resin There is a possibility that the dispersibility of the resin may decrease. Conversely, when the concentration of the metal complex ion is high, the reaction between the metal complex ion having fluorine as a ligand and water proceeds rapidly, so that a metal oxide film is locally formed on the surface of the phosphor particles. It is easy to form a uniform metal oxide film, and there is a possibility that defects are locally generated on the surface of the phosphor particles and the fluorescence characteristics are deteriorated. Therefore, in the present invention, the concentration of the metal complex ion having fluorine as a ligand is preferably within the above range.

また、金属酸化物被膜の膜厚は上記の範囲で形成することができるが、蛍光体粒子の表面に形成される金属酸化物被膜の厚みが大きくなると、後述のように発光素子の光を蛍光体粒子に照射して蛍光を発生させるにあたって、発光素子からの光は金属酸化物被膜に遮られて蛍光体粒子の内部にまで侵入することができなくなり、蛍光特性が低下するおそれがある。このため、蛍光体粒子の表面に形成される金属酸化物被膜の厚みは可能な限り薄いほうが好ましい。そして本発明のように、金属錯イオンと水を含有する処理溶液で蛍光体粒子を処理して金属酸化物被膜を形成する場合、金属酸化物被膜を5nm以下の厚みで薄く形成することが可能であり、光が蛍光体粒子の内部に侵入することを金属酸化物被膜で遮られることを低減して、蛍光特性が低下することを防ぐことが可能になるものである。しかし、金属酸化物被膜の厚みが薄すぎると、蛍光体粒子の表面を金属酸化物被膜で完全に被覆することができなくなり、蛍光体粒子の表面に欠陥が再度生じて蛍光特性が低下するおそれがあり、金属酸化物被膜を均一に形成するためには、金属酸化物被膜の厚みは2nm以上であることが必要である。このため本発明では、金属酸化物被膜の厚みは2〜5nmの範囲が特に好ましい。   In addition, the metal oxide film can be formed in the above range. However, as the thickness of the metal oxide film formed on the surface of the phosphor particles increases, the light of the light emitting element is fluorescent as described later. When fluorescent light is generated by irradiating the body particles, light from the light emitting element is blocked by the metal oxide film and cannot enter the interior of the phosphor particles, which may deteriorate the fluorescence characteristics. For this reason, the thickness of the metal oxide film formed on the surface of the phosphor particles is preferably as thin as possible. And like this invention, when processing a fluorescent substance particle with the process solution containing a metal complex ion and water and forming a metal oxide film, it is possible to form a metal oxide film thinly with a thickness of 5 nm or less Thus, it is possible to prevent the light from entering the inside of the phosphor particles from being blocked by the metal oxide film, and to prevent the fluorescence characteristics from deteriorating. However, if the thickness of the metal oxide film is too thin, the surface of the phosphor particles cannot be completely covered with the metal oxide film, and defects may occur again on the surface of the phosphor particles, which may reduce the fluorescence characteristics. In order to form the metal oxide film uniformly, the thickness of the metal oxide film needs to be 2 nm or more. Therefore, in the present invention, the thickness of the metal oxide film is particularly preferably in the range of 2 to 5 nm.

蛍光体粒子としては、上記に例示した種々のものを用いることができるが、なかでも金属酸化物で形成された蛍光体粒子を用いるのが好ましい。金属酸化物の蛍光体粒子として、具体的には、YAG:Ce、BaMgAl1017:Eu、(Sr,Ca,Ba,Mg)10(POCl:Eu、BaMgAl1017:Eu,Mn、LnS:Eu(Ln=Y,La,Gd,Lu,Sc)、YVO:Eu等を挙げることができる。 Various phosphors exemplified above can be used as the phosphor particles, and among these, phosphor particles formed of a metal oxide are preferably used. Specifically, as phosphor particles of metal oxide, YAG: Ce, BaMgAl 10 O 17 : Eu, (Sr, Ca, Ba, Mg) 10 (PO 4 ) 6 Cl 2 : Eu, BaMgAl 10 O 17 : Eu, Mn, Ln 2 O 2 S: Eu (Ln = Y, La, Gd, Lu, Sc), YVO 4 : Eu, and the like can be given.

フッ素を配位子とする金属錯イオンと水が反応して生成されるフッ素化物イオンによるエッチング作用は、金属酸化物に対してより有効に作用する性質を有する。従って、蛍光体粒子がこのように金属酸化物で構成されている場合、蛍光体粒子にエッチングが有効に作用し、蛍光体粒子がネッキングにより連なった凝集体を解離することが容易になると共に、蛍光体粒子の表面の欠陥の除去も容易になるものである。また、フッ素を配位子とする金属錯イオンと水が反応して形成される金属酸化物被膜は、金属酸化物の表面に対してより均一で緻密に形成される性質を有する。従って、蛍光体粒子が金属酸化物で構成されている場合、蛍光体粒子の表面に均一で緻密な金属酸化物被膜を形成することができるものであり、蛍光体粒子の表面の未被覆部分が減少し、蛍光体粒子の表面に欠陥が再度生じることをより有効に防止することができるものである。   The etching action by the fluoride ion generated by the reaction of the metal complex ion having fluorine as a ligand and water has a property of acting more effectively on the metal oxide. Therefore, when the phosphor particles are composed of the metal oxide in this way, the etching effectively acts on the phosphor particles, and it becomes easy to dissociate the aggregate in which the phosphor particles are connected by necking, It is also easy to remove defects on the surface of the phosphor particles. In addition, a metal oxide film formed by the reaction of metal complex ions having fluorine as a ligand with water has a property of being more uniformly and densely formed on the surface of the metal oxide. Therefore, when the phosphor particles are composed of a metal oxide, a uniform and dense metal oxide film can be formed on the surface of the phosphor particles, and the uncoated portion on the surface of the phosphor particles It is possible to more effectively prevent the occurrence of defects again on the surface of the phosphor particles.

また、金属酸化物を構成する金属を中心原子としフッ素を配位子とする金属錯イオンとしては、上記に例示した種々のものを用いることができるが、なかでもSiF 2−であることが好ましい。金属錯イオンSiF 2−と水とを含有する処理溶液では、SiF 2−と水は次のように反応する。 In addition, as the metal complex ions having the metal constituting the metal oxide as a central atom and fluorine as a ligand, various types exemplified above can be used, and among them, SiF 6 2− is particularly preferable. preferable. In the treatment solution containing the metal complex ion SiF 6 2− and water, SiF 6 2− and water react as follows.

SiF 2−+2HO⇔SiO+6F+4H
そしてSiF 2−と水とを含有する処理溶液で蛍光体粒子の表面を処理すると、蛍光体粒子の表面にはエッチングの後に酸化物被膜としてSiO被膜が形成されるが、SiO被膜は緻密性が高いため、蛍光体粒子の表面の未被覆部分が減少し、蛍光体粒子の表面に欠陥が再度生じることをより有効に防止することができるものである。
SiF 6 2− + 2H 2 O⇔SiO 2 + 6F + 4H +
When the treating the surface of the phosphor particles in the processing solution containing SiF 6 2-and water, although the surface of the phosphor particles SiO 2 film is formed as the oxide film after the etching, SiO 2 coating Since the denseness is high, it is possible to more effectively prevent the surface of the phosphor particles from being reduced and the defects on the surface of the phosphor particles being reduced.

さらに、金属酸化物を構成する金属を中心原子としフッ素を配位子とする金属錯イオンとしては、複数種の金属錯イオンを任意の配合比で混合して使用することもできる。このように処理溶液中に複数種の金属錯イオンを含有すると、蛍光体粒子の表面に形成される金属酸化物被膜は複合金属酸化物の被膜であり、複合金属酸化物の構成金属元素比は処理溶液中の金属錯イオンの含有比率によって決定することができるので、任意の組成の複合金属酸化物被膜を容易に形成することができるものである。このように金属錯イオンとして複数種の金属錯イオンを併用する場合、フッ素を配位子とするSi錯イオンと、フッ素を配位子とするTi錯イオンと、フッ素を配位子とするY錯イオンと、フッ素を配位子とするZr錯イオンから選ばれる2種以上の金属錯イオンを用いることが好ましい。これらの金属錯イオンを用いることよって、均一で緻密な複合金属酸化物を形成することができるものである。   Furthermore, as a metal complex ion having a metal constituting the metal oxide as a central atom and fluorine as a ligand, a plurality of types of metal complex ions can be mixed and used at an arbitrary blending ratio. Thus, when multiple kinds of metal complex ions are contained in the treatment solution, the metal oxide film formed on the surface of the phosphor particles is a composite metal oxide film, and the constituent metal element ratio of the composite metal oxide is Since it can be determined by the content ratio of the metal complex ions in the treatment solution, a composite metal oxide film having an arbitrary composition can be easily formed. Thus, when using multiple types of metal complex ions as metal complex ions, Si complex ions having fluorine as a ligand, Ti complex ions having fluorine as a ligand, and Y having fluorine as a ligand. It is preferable to use two or more metal complex ions selected from complex ions and Zr complex ions having fluorine as a ligand. By using these metal complex ions, a uniform and dense complex metal oxide can be formed.

ここで、後述のように樹脂に蛍光体粒子を分散させて調製される蛍光発光体に、発光素子からの光を照射する場合、樹脂と蛍光体粒子との界面での屈折率差のために反射光が大きくなり、蛍光体粒子の内部にまで侵入する光が減少し、蛍光特性が低下する傾向があるが、樹脂と蛍光体粒子との界面に、樹脂の屈折率と蛍光体粒子の屈折率の中間の屈折率を有する層を形成すると、反射光が減少して、蛍光特性を向上させることができる。従って、上記のように複数種の金属錯イオンと水を含有する処理溶液を用いて蛍光体粒子の表面に複合金属酸化物の被膜を形成するにあたって、金属錯イオンの種類と配合比率を調整して、蛍光体粒子の表面に形成される複合金属酸化物被膜の屈折率を、樹脂の屈折率と蛍光体粒子の屈折率の中間に形成することによって、反射光を減少することができ、蛍光特性を向上させることができるものである。   Here, when the light emitted from the light emitting element is irradiated to the fluorescent light-emitting material prepared by dispersing the fluorescent material particles in the resin as will be described later, due to the difference in the refractive index at the interface between the resin and the fluorescent material particles. Although the reflected light increases, the light that penetrates into the phosphor particles decreases, and the fluorescence characteristics tend to deteriorate, but the refractive index of the resin and the refraction of the phosphor particles are at the interface between the resin and the phosphor particles. When a layer having an intermediate refractive index is formed, reflected light is reduced and fluorescence characteristics can be improved. Therefore, when forming a composite metal oxide film on the surface of phosphor particles using a treatment solution containing multiple types of metal complex ions and water as described above, the type and blending ratio of the metal complex ions are adjusted. Thus, by forming the refractive index of the composite metal oxide film formed on the surface of the phosphor particles between the refractive index of the resin and the refractive index of the phosphor particles, the reflected light can be reduced, and the fluorescence can be reduced. The characteristics can be improved.

上記のように表面処理をした蛍光体粒子は、シリコーン樹脂などの透明樹脂に混合し、樹脂中に分散させて使用されるものであり、発光波長が300nm〜480nmに発光ピークを有する発光素子と組み合わせて発光装置を形成することができるものである。発光波長が300nm〜480nmに発光ピークを有する発光素子としては、窒化ガリウム系化合物半導体による紫外線あるいは青色光を放射するLEDチップなどを挙げることができる。   The phosphor particles subjected to the surface treatment as described above are used by being mixed with a transparent resin such as a silicone resin and dispersed in the resin, and a light emitting device having an emission peak at an emission wavelength of 300 nm to 480 nm; A light-emitting device can be formed in combination. Examples of the light emitting element having an emission peak at an emission wavelength of 300 nm to 480 nm include an LED chip that emits ultraviolet light or blue light by a gallium nitride compound semiconductor.

図1(a)は発光装置の一例を示すものであり、実装基板1の実装凹部2の底部にLEDなどの発光素子3を実装し、蛍光体粒子を分散させた透明樹脂を実装凹部2に充填して硬化させることによって、蛍光体粒子を分散させた樹脂からなる蛍光発光体4で発光素子3を封止して覆うようにしてある。発光素子3の実装個数は1個であっても複数個であってもよい。そしてこのように形成される発光装置にあって、発光素子3から発光した光のうち、一部は蛍光発光体4を透過して外部に出射されると共に、他の一部は蛍光発光体4中の蛍光体粒子に一次放射光として吸収される。あるいは、発光素子3から発光した光のほぼ全体が蛍光体粒子に吸収される。蛍光体粒子はこの一次放射光を吸収して励起され、一次放射光より長波長で発光して外部に出射される。このとき、蛍光発光体4に含有させる蛍光体粒子の種類や、発光素子3の発光波長の選定によって、白色発光の発光装置を形成することができるものである。蛍光発光体4は上記のように蛍光体粒子を分散させた樹脂で発光素子3を封止するものとして形成する他に、蛍光体粒子を分散させた樹脂を板状に成形して蛍光発光体4を形成し、図1(b)のように、この板状他の蛍光発光体4を発光素子3の上に配置して発光装置を形成し、発光素子3の光をこの蛍光発光体4に通過させるようにすることもできる。   FIG. 1A shows an example of a light emitting device. A light emitting element 3 such as an LED is mounted on the bottom of a mounting recess 2 of a mounting substrate 1, and a transparent resin in which phosphor particles are dispersed is applied to the mounting recess 2. By filling and curing, the light emitting element 3 is sealed and covered with a fluorescent light emitting body 4 made of a resin in which fluorescent particles are dispersed. The number of mounted light emitting elements 3 may be one or plural. In the light emitting device thus formed, part of the light emitted from the light emitting element 3 is transmitted through the fluorescent light emitter 4 and emitted to the outside, and the other part is emitted from the fluorescent light emitter 4. It is absorbed as primary radiation by the phosphor particles inside. Alternatively, almost the entire light emitted from the light emitting element 3 is absorbed by the phosphor particles. The phosphor particles are excited by absorbing the primary radiation, emit light at a wavelength longer than that of the primary radiation, and are emitted to the outside. At this time, a light emitting device that emits white light can be formed by selecting the type of phosphor particles to be included in the fluorescent light emitter 4 and the light emission wavelength of the light emitting element 3. As described above, the fluorescent light emitter 4 is formed by sealing the light emitting element 3 with the resin in which the phosphor particles are dispersed, and the fluorescent light emitter 4 is formed by molding the resin in which the phosphor particles are dispersed into a plate shape. 1, and the plate-like fluorescent light emitter 4 is arranged on the light emitting element 3 to form a light emitting device, and the light from the light emitting element 3 is transmitted to the fluorescent light emitter 4 as shown in FIG. It can also be made to pass through.

ここで、蛍光体粒子を分散した樹脂を硬化させて蛍光発光体4を調製するにあたって、蛍光体粒子の粒径が大きいと、樹脂が硬化する時間内にその自重により蛍光体粒子が沈降し、蛍光発光体4内での蛍光体粒子の分散が不均一になり、蛍光発光体4内での蛍光体粒子による波長変換が不均一になって蛍光発光体4の発光に色ムラが生じるが、蛍光体粒子は上記のようにフッ素を配位子とする金属錯イオンと水を含有する処理溶液で処理することによって、蛍光体粒子の凝集体を解離させて小粒子化することができる。従って、樹脂への蛍光体粒子の分散性が向上し、樹脂が硬化する間に蛍光体粒子が沈降するようなことはなく、色ムラなく発光させることができるものである。また蛍光体粒子は小粒子化によって、表面に欠陥が発生し易くなって蛍光特性の低下が生じる傾向があるが、上記のように蛍光体粒子をフッ素を配位子とする金属錯イオンと水を含有する処理溶液で処理することによって、蛍光体粒子の欠陥は除去されていると共に、欠陥が再度生じないように金属酸化物で被覆されているので、蛍光体粒子の蛍光特性が低下することを防ぐことができる。従って、本発明で処理した蛍光体粒子を用いた発光装置は、蛍光発光体4内での蛍光体粒子による波長変換が均一になり、色ムラなく発光させることができるものである。   Here, in preparing the phosphor 4 by curing the resin in which the phosphor particles are dispersed, if the particle size of the phosphor particles is large, the phosphor particles settle due to their own weight within the time when the resin is cured, Although the dispersion of the phosphor particles in the fluorescent light emitter 4 becomes non-uniform, the wavelength conversion by the phosphor particles in the fluorescent light emitter 4 becomes non-uniform, and color unevenness occurs in the light emission of the fluorescent light emitter 4. By treating the phosphor particles with the treatment solution containing the metal complex ion having fluorine as a ligand and water as described above, the aggregates of the phosphor particles can be dissociated into small particles. Accordingly, the dispersibility of the phosphor particles in the resin is improved, and the phosphor particles do not settle while the resin is cured, and light can be emitted without color unevenness. In addition, phosphor particles tend to have defects on the surface due to the reduction in particle size, and there is a tendency for the phosphor properties to deteriorate. By treating with the treatment solution containing the phosphor particles, the defects of the phosphor particles are removed and the phosphor particles are coated with a metal oxide so that the defects do not occur again. Can be prevented. Therefore, the light emitting device using the phosphor particles treated according to the present invention is uniform in wavelength conversion by the phosphor particles in the phosphor 4, and can emit light without color unevenness.

次に、本発明を実施例によって具体的に説明する。   Next, the present invention will be specifically described with reference to examples.

(実施例1)
硝酸イットリウム(Y(NO・6HO)を2.7g、塩化アルミニウム(AlCl・6HO)を3.0g、硝酸セリウム(Ce(NO・6HO)を0.2g、純水100mlに溶解し、この混合溶液に、1mol/Lアンモニア水溶液70mLを攪拌しながらゆっくりと滴下し、一晩反応させた。反応終了後、濾過水洗し、得られた粉末を乾燥機中で100℃にて加熱乾燥させた。さらにこの粉末を1300℃で2時間焼結させ、YAG:Ce蛍光体粒子を得た。このYAG:Ce蛍光体粒子の平均粒径は100nmであった。
Example 1
Yttrium nitrate (Y (NO 3) 3 · 6H 2 O) and 2.7 g, aluminum chloride (AlCl 3 · 6H 2 O) 3.0g, cerium nitrate (Ce (NO 3) 3 · 6H 2 O) 0 .2 g and dissolved in 100 ml of pure water, 70 mL of a 1 mol / L aqueous ammonia solution was slowly added dropwise to this mixed solution while stirring and allowed to react overnight. After completion of the reaction, the mixture was washed with filtered water, and the obtained powder was heated and dried at 100 ° C. in a dryer. Further, this powder was sintered at 1300 ° C. for 2 hours to obtain YAG: Ce phosphor particles. The average particle diameter of the YAG: Ce phosphor particles was 100 nm.

次に、表1の水溶液濃度になるように調製した処理溶液50mLに、上記のYAG:Ce蛍光体粒子を混合し、室温にて20分間攪拌して反応させ、エッチング処理及びSiO被膜の形成処理を行なった後、濾過水洗し、100℃の乾燥機で乾燥して、SiO被膜を表面に被覆したYAG:Ce蛍光体粒子を得た。 Next, the YAG: Ce phosphor particles described above were mixed with 50 mL of the processing solution prepared to have the aqueous solution concentration shown in Table 1, and reacted by stirring for 20 minutes at room temperature to form an etching process and formation of a SiO 2 film. After the treatment, it was washed with filtered water and dried with a dryer at 100 ° C. to obtain YAG: Ce phosphor particles having a SiO 2 coating on the surface.

このSiO被覆YAG:Ce蛍光体粒子を、シリコーン樹脂(信越シリコーン社製「KE106」)100質量部に対して20質量部混合して分散させた。そして実装基板に実装したLED発光素子(発光波長460nm)の上に、この蛍光体粒子を分散させた樹脂を封止して硬化させ、白色LED発光装置(図1参照)を作製した。 20 parts by mass of the SiO 2 -coated YAG: Ce phosphor particles were mixed and dispersed with respect to 100 parts by mass of a silicone resin (“KE106” manufactured by Shin-Etsu Silicone Co., Ltd.). Then, a resin in which the phosphor particles are dispersed is sealed and cured on the LED light emitting element (emission wavelength: 460 nm) mounted on the mounting substrate, thereby producing a white LED light emitting device (see FIG. 1).

このようにして得られた白色LED発光装置からの出力光は、色ムラのない、色温度が約4730Kの白色光であり、その効率は25ml/Wであった。   The output light from the white LED light-emitting device thus obtained was white light having no color unevenness and a color temperature of about 4730 K, and its efficiency was 25 ml / W.

(実施例2)
表1の水溶液濃度になるように調製した処理溶液50mLに、実施例1と同様に調製したYAG:Ce蛍光体粒子を混合し、室温にて20分間攪拌して反応させ、エッチング処理及びSiO−TiO被膜の形成処理を行なった後、濾過水洗し、100℃の乾燥機で乾燥して、SiO−TiO被膜を表面に被覆したYAG:Ce蛍光体粒子を得た。
(Example 2)
The treatment solution 50mL prepared so that the concentration of the aqueous solution of Table 1, YAG was prepared in the same manner as in Example 1 were mixed with Ce phosphor particles, the reaction stirred for 20 minutes at room temperature, an etching treatment and SiO 2 after performing the formation process of -TiO 2 coating, filtered washed with water and dried at a 100 ° C. oven, YAG was coated SiO 2 -TiO 2 film on the surface: to obtain a Ce phosphor particles.

そしてこのSiO−TiO被覆YAG:Ce蛍光体粒子を用い、実施例1と同様にして白色LED発光装置を作製した。このようにして得られた白色LED発光装置からの出力光は、色ムラのない、色温度が約4730Kの白色光であり、その効率は26ml/Wであった。 Then, using this SiO 2 —TiO 2 coated YAG: Ce phosphor particles, a white LED light emitting device was produced in the same manner as in Example 1. The output light from the white LED light-emitting device thus obtained was white light with no color unevenness and a color temperature of about 4730 K, and its efficiency was 26 ml / W.

(比較例)
HFを0.1質量%となるように希釈したHF水溶液に、実施例1と同様に調製したYAG:Ce蛍光体粒子を混合し、室温にて1時間攪拌して、エッチング処理を行ない、エッチング終了後、濾過水洗して洗浄した。次に、このYAG:Ce蛍光体粒子を、テトラエトキシシラン1.0gを溶解したイソプロパノール50ml中に分散させ、室温で1時間攪拌して反応させ、SiO被膜の形成処理を行なった。反応終了後、濾過水洗し、100℃の乾燥機で乾燥して、SiO被膜を表面に被覆したYAG:Ce蛍光体粒子を得た。
(Comparative example)
YAG: Ce phosphor particles prepared in the same manner as in Example 1 were mixed with an HF aqueous solution diluted with HF to be 0.1% by mass, stirred at room temperature for 1 hour, and subjected to an etching treatment to perform etching. After completion, it was washed with filtered water. Next, the YAG: Ce phosphor particles were dispersed in 50 ml of isopropanol in which 1.0 g of tetraethoxysilane was dissolved, and the mixture was stirred at room temperature for 1 hour to react to form a SiO 2 film. After completion of the reaction, it was washed with filtered water and dried with a dryer at 100 ° C. to obtain YAG: Ce phosphor particles with a SiO 2 coating on the surface.

そしてこのSiO被覆YAG:Ce蛍光体粒子を用い、実施例1と同様にして白色LED発光装置を作製した。このようにして得られた白色LED発光装置からの出力光は、色温度が約4730Kの白色光であるが、色ムラが所々でみられ、その効率は22ml/Wであった。 A white LED light-emitting device was produced in the same manner as in Example 1 using the SiO 2 -coated YAG: Ce phosphor particles. The output light from the white LED light-emitting device thus obtained was white light having a color temperature of about 4730 K. Color unevenness was observed in several places, and the efficiency was 22 ml / W.

Figure 2006232949
Figure 2006232949

発光装置の一例を示すものであり、(a)(b)はそれぞれ断面図である。An example of a light-emitting device is shown, and (a) and (b) are cross-sectional views, respectively.

符号の説明Explanation of symbols

1 実装基板
3 発光素子
4 蛍光発光体
DESCRIPTION OF SYMBOLS 1 Mounting board 3 Light emitting element 4 Fluorescent light emitter

Claims (8)

金属酸化物で蛍光体粒子の表面を被覆するにあたって、金属酸化物を構成する金属を中心原子としフッ素を配位子とする金属錯イオンと水を含有する処理溶液を、蛍光体粒子に接触させることを特徴とする蛍光体粒子の処理方法。   When coating the surface of the phosphor particles with a metal oxide, a treatment solution containing a metal complex ion having a metal constituting the metal oxide as a central atom and fluorine as a ligand and water is brought into contact with the phosphor particles. And a method for treating phosphor particles. 蛍光体粒子は金属酸化物で形成されていることを特徴とする請求項1に記載の蛍光体粒子の処理方法。   The method for treating phosphor particles according to claim 1, wherein the phosphor particles are formed of a metal oxide. 上記金属錯イオンはSiF 2−であることを特徴とする請求項1又は2に記載の蛍光体粒子の処理方法。 The method for treating phosphor particles according to claim 1, wherein the metal complex ion is SiF 6 2− . 上記処理溶液には、フッ素を配位子とするSi錯イオンと、フッ素を配位子とするTi錯イオンと、フッ素を配位子とするY錯イオンと、フッ素を配位子とするZr錯イオンから選ばれた少なくとも2種以上の金属錯イオンを含有することを特徴とする請求項1乃至3のいずれかに記載の蛍光体粒子の処理方法。   The treatment solution includes a Si complex ion having fluorine as a ligand, a Ti complex ion having fluorine as a ligand, a Y complex ion having fluorine as a ligand, and Zr having fluorine as a ligand. The method for treating phosphor particles according to any one of claims 1 to 3, comprising at least two or more metal complex ions selected from complex ions. 蛍光体粒子の表面を被覆する金属酸化物を2〜5nmの厚みに形成することを特徴とする請求項1乃至4のいずれかに記載の蛍光体粒子の処理方法。   The method for treating phosphor particles according to any one of claims 1 to 4, wherein a metal oxide covering the surface of the phosphor particles is formed to a thickness of 2 to 5 nm. 上記処理溶液の金属錯イオン濃度は、0.01〜0.2mol/Lであることを特徴とする請求項1乃至5のいずれかに記載の蛍光体粒子の処理方法。   The method for treating phosphor particles according to claim 1, wherein the treatment solution has a metal complex ion concentration of 0.01 to 0.2 mol / L. 発光波長が300nm〜480nmに発光ピークを有する発光素子と、発光素子の光を吸収して発光する請求項1乃至6のいずれかの方法で処理された蛍光体粒子を樹脂に分散させた蛍光発光体とを具備して成ることを特徴とする発光装置。   A light emitting device having an emission peak at an emission wavelength of 300 nm to 480 nm, and a fluorescent light emission in which phosphor particles treated by the method of any one of claims 1 to 6 that emit light by absorbing the light of the light emitting device are dispersed in a resin A light emitting device comprising a body. 請求項1乃至6のいずれかの方法で表面が金属酸化物で被覆されて成ることを特徴とする蛍光体粒子。
A phosphor particle, the surface of which is coated with a metal oxide by the method according to claim 1.
JP2005048001A 2005-02-23 2005-02-23 Method for treating phosphor particle, light emitting device, and phosphor particle Withdrawn JP2006232949A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005048001A JP2006232949A (en) 2005-02-23 2005-02-23 Method for treating phosphor particle, light emitting device, and phosphor particle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005048001A JP2006232949A (en) 2005-02-23 2005-02-23 Method for treating phosphor particle, light emitting device, and phosphor particle

Publications (1)

Publication Number Publication Date
JP2006232949A true JP2006232949A (en) 2006-09-07

Family

ID=37040963

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005048001A Withdrawn JP2006232949A (en) 2005-02-23 2005-02-23 Method for treating phosphor particle, light emitting device, and phosphor particle

Country Status (1)

Country Link
JP (1) JP2006232949A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322001A (en) * 2005-05-16 2006-11-30 Samsung Electro Mech Co Ltd Coated nanoparticle and electronic element utilizing the same
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
JP2009105379A (en) * 2007-10-05 2009-05-14 Panasonic Electric Works Co Ltd Light-emitting device
JP2012031425A (en) * 2010-03-31 2012-02-16 Sekisui Chem Co Ltd Surface-treated fluorescent body and process for production of surface-treated fluorescent body
WO2012023714A2 (en) * 2010-08-14 2012-02-23 Seoul Semiconductor Co., Ltd. Surface-modified silicate luminophores
JP2013071987A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Production method for surface-treated phosphor, surface-treated phosphor, composition containing surface-treated phosphor and led light-emitting device
EP2602303A1 (en) * 2010-08-04 2013-06-12 Sekisui Chemical Co., Ltd. Surface-treated fluorescent material and process for producing surface-treated fluorescent material
JP2013136758A (en) * 2007-01-12 2013-07-11 National Institute For Materials Science Fluorescent material, process for producing the same, and luminescent device
JP2013533363A (en) * 2010-07-27 2013-08-22 ゼネラル・エレクトリック・カンパニイ Moisture-resistant phosphor and related methods
US9196785B2 (en) 2010-08-14 2015-11-24 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified quantum dot luminophores
US9234129B2 (en) 2010-08-14 2016-01-12 Seoul Semiconductor Co., Ltd. Surface-modified quantum dot luminophores
US9614129B2 (en) 2010-08-14 2017-04-04 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified luminophores

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006322001A (en) * 2005-05-16 2006-11-30 Samsung Electro Mech Co Ltd Coated nanoparticle and electronic element utilizing the same
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
JP2013136758A (en) * 2007-01-12 2013-07-11 National Institute For Materials Science Fluorescent material, process for producing the same, and luminescent device
JP2009105379A (en) * 2007-10-05 2009-05-14 Panasonic Electric Works Co Ltd Light-emitting device
TWI495709B (en) * 2010-03-31 2015-08-11 Sekisui Chemical Co Ltd And a method for producing a surface-treated phosphor and a surface-treated phosphor
CN102822313A (en) * 2010-03-31 2012-12-12 积水化学工业株式会社 Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
EP2554628A1 (en) * 2010-03-31 2013-02-06 Sekisui Chemical Co., Ltd. Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
JP2012031425A (en) * 2010-03-31 2012-02-16 Sekisui Chem Co Ltd Surface-treated fluorescent body and process for production of surface-treated fluorescent body
EP2554628A4 (en) * 2010-03-31 2014-03-05 Sekisui Chemical Co Ltd Surface-treated fluorescent bodies and process for production of surface-treated fluorescent bodies
JP2013533363A (en) * 2010-07-27 2013-08-22 ゼネラル・エレクトリック・カンパニイ Moisture-resistant phosphor and related methods
KR101832529B1 (en) 2010-07-27 2018-02-26 제너럴 일렉트릭 캄파니 Moisture-resistant phosphor and associated method
EP2602303A1 (en) * 2010-08-04 2013-06-12 Sekisui Chemical Co., Ltd. Surface-treated fluorescent material and process for producing surface-treated fluorescent material
EP2602303A4 (en) * 2010-08-04 2014-03-05 Sekisui Chemical Co Ltd Surface-treated fluorescent material and process for producing surface-treated fluorescent material
US8791488B2 (en) 2010-08-04 2014-07-29 Sekisui Chemical Co., Ltd. Surface-treated fluorescent material and process for producing surface-treated fluorescent material
CN103068953A (en) * 2010-08-14 2013-04-24 首尔半导体株式会社 Surface-modified silicate luminophores
WO2012023714A3 (en) * 2010-08-14 2012-05-18 Seoul Semiconductor Co., Ltd. Surface-modified silicate luminophores
US8581286B2 (en) 2010-08-14 2013-11-12 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified silicate luminophores
US8945421B2 (en) 2010-08-14 2015-02-03 Seoul Semiconductor Co., Ltd. Surface-modified silicate luminophores
WO2012023714A2 (en) * 2010-08-14 2012-02-23 Seoul Semiconductor Co., Ltd. Surface-modified silicate luminophores
US9196785B2 (en) 2010-08-14 2015-11-24 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified quantum dot luminophores
US9234129B2 (en) 2010-08-14 2016-01-12 Seoul Semiconductor Co., Ltd. Surface-modified quantum dot luminophores
US9614129B2 (en) 2010-08-14 2017-04-04 Seoul Semiconductor Co., Ltd. Light emitting device having surface-modified luminophores
US9960324B2 (en) 2010-08-14 2018-05-01 Seoul Semiconductor Co., Ltd. Light-emitting device having surface-modified luminophores
US10312420B2 (en) 2010-08-14 2019-06-04 Seoul Semiconducter Co., Ltd. Light-emitting device having surface-modified luminophores
JP2013071987A (en) * 2011-09-27 2013-04-22 Sekisui Chem Co Ltd Production method for surface-treated phosphor, surface-treated phosphor, composition containing surface-treated phosphor and led light-emitting device

Similar Documents

Publication Publication Date Title
JP2006232949A (en) Method for treating phosphor particle, light emitting device, and phosphor particle
US9006966B2 (en) Coatings for photoluminescent materials
TWI502052B (en) Silicophosphate phosphors
EP2596080B1 (en) Garnet material, method for its manufacturing and radiation-emitting component comprising the garnet material
TWI377242B (en) Aluminate-based blue phosphors
RU2569167C2 (en) Led with silicate luminophors with modified surface
TWI577054B (en) Wavelength converting device and light emitting device using the same
JP2011029497A (en) White light emitting device and illumination apparatus using the same
JP2008506011A (en) Efficient green-emitting phosphor and combination with red-emitting phosphor
KR101854114B1 (en) Metal fluoride-based red phosphors and light emitting device containing the same
JPWO2014104143A1 (en) Phosphor, phosphor-containing composition and light emitting device using the phosphor, and image display device and illumination device using the light emitting device
KR20090082234A (en) Nano-yag:ce phosphor compositions and their methods of preparation
KR20120104377A (en) Light emitting diode device with luminescent material
JP6603458B2 (en) Phosphor, method for producing the same, and light emitting device using the phosphor
JP6149606B2 (en) Method for producing fluoride phosphor
KR20170140343A (en) Phosphor and phosphor-converted LED
JP2007131843A (en) Silicate-based orange fluorophor
JP2016204432A (en) Phosphor, light-emitting device, illumination device and image display device
KR20150055578A (en) Light emitting element, light emitting device and those manufacturing methods
JP6201848B2 (en) Phosphor, phosphor-containing composition, light emitting device, illumination device, and liquid crystal display device
JP6231787B2 (en) Phosphor and light emitting device
JP2017078097A (en) Phosphor, light emitting device, illumination device and image display device
JP2016155899A (en) Fluoride phosphor complex and method for producing the same, and light emitting device prepared with the complex
JP6741056B2 (en) Method for producing rare earth aluminate phosphor
TWI394827B (en) Phosphors and white light illumination devices utilizing the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513