JP2006231724A - Method for producing sintered tube and supporting jig - Google Patents

Method for producing sintered tube and supporting jig Download PDF

Info

Publication number
JP2006231724A
JP2006231724A JP2005050160A JP2005050160A JP2006231724A JP 2006231724 A JP2006231724 A JP 2006231724A JP 2005050160 A JP2005050160 A JP 2005050160A JP 2005050160 A JP2005050160 A JP 2005050160A JP 2006231724 A JP2006231724 A JP 2006231724A
Authority
JP
Japan
Prior art keywords
molded body
support member
diameter
state
expanded
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005050160A
Other languages
Japanese (ja)
Inventor
Makoto Uchino
信 内埜
Hiroshi Tsukuda
洋 佃
Shigeru Okuma
滋 大隈
Toru Hojo
北條  透
Satoru Kairada
悟 皆良田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2005050160A priority Critical patent/JP2006231724A/en
Publication of JP2006231724A publication Critical patent/JP2006231724A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
  • Manufacturing Of Tubular Articles Or Embedded Moulded Articles (AREA)
  • Fuel Cell (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a sintered tube which can precisely maintain the shape of a tubular molding before being sintered and a supporting jig. <P>SOLUTION: The method for producing the sintered tube includes a step (a) for manufacturing the tubular molding 20 containing a metal or ceramic powder and a binder, a step (b) in which a cylindrical support member 10 with its outside diameter contracted and enlarged is inserted into the hollow part of the molding (20) while the diameter of the support member 10 is contracted, and a step (c) in which the support member 10, after being inserted into the hollow part of the molding 20, is expanded. The outside diameter of the contracted support member 10 is smaller than the inside diameter of the molding 20, and the outside diameter of the expanded support member 10 is substantially equal to the inside diameter of the molding 20. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、焼結金属又はセラミックスからなる管の製造方法に関し、特に焼結前のグリーン状態の成形体の形状を高精度に保持することのできる焼結管の製造方法及び支持治具に関する。   The present invention relates to a method for manufacturing a tube made of sintered metal or ceramics, and more particularly to a method for manufacturing a sintered tube and a supporting jig capable of maintaining the shape of a green compact before sintering with high accuracy.

焼結金属又はセラミックス製(以下、セラミックスと総称することがある)の管は種々の用途に用いられている。このセラミックス管の最も一般的な製造工程において、始めに、セラミックスの原料粉末と樹脂バインダを混練し、押出し成形して管状の成形体を作製する。得られた管状の成形体を所定の温度で焼結する。   Tubes made of sintered metal or ceramics (hereinafter sometimes collectively referred to as ceramics) are used in various applications. In the most general manufacturing process of this ceramic tube, first, a ceramic raw material powder and a resin binder are kneaded and extruded to produce a tubular molded body. The obtained tubular molded body is sintered at a predetermined temperature.

従来、焼結の際の変形を防止する種々の提案がなされている。例えば、特許文献1(特開2002−255659号公報)は、管状成形体を焼結するに際し、管状成形体を水平に保持した状態でその中心軸を中心として回転させながら焼結することを提案している。この提案によれば、管状成形体に等方的に自重が加わることにより、管状成形体の径の変形が抑制されるとしている。
また、特許文献2(特開2004−137099号公報)は、筒状成形体に第1孔と第2孔を形成し、この第1孔及び第2孔の各々の周囲、又は、近傍を補強部材で補強し、第1孔と第2孔とに棒状又は管状の治具を挿入し、管状成形体の長手方向が鉛直方向に向くように、管状成形体を治具で保持しつつ焼結することを提案している。
Conventionally, various proposals have been made to prevent deformation during sintering. For example, Patent Document 1 (Japanese Patent Laid-Open No. 2002-255659) proposes to sinter a tubular molded body while rotating the tubular molded body around its central axis while holding the tubular molded body horizontally. is doing. According to this proposal, deformation of the diameter of the tubular molded body is suppressed by applying isotropic weight to the tubular molded body.
Patent Document 2 (Japanese Patent Application Laid-Open No. 2004-137099) forms a first hole and a second hole in a cylindrical molded body, and reinforces the periphery or the vicinity of each of the first hole and the second hole. Reinforce with members, insert a rod-shaped or tubular jig into the first hole and the second hole, and sinter while holding the tubular molded body with the jig so that the longitudinal direction of the tubular molded body is oriented in the vertical direction Propose to do.

特開2002−255659号公報JP 2002-255659 A 特開2004−137099号公報JP 2004-137099 A

以上のように、セラミックス管の製造における変形としては、これまで焼結時の変形が問題視されてきた。ところが、セラミックス管の肉厚が薄くなってくると、管状成形体の強度が不足して、押出し成形後〜焼結までの過程での変形が問題となってくる。例えば、焼結前の段階で管状成形体が変形してしまい、焼結に供することができない場合がある。または,焼結後の収率が悪くなる場合がある。
本発明は、このような技術的課題に基づいてなされたもので、焼結前の管状成形体の形状維持を精度よく行うことができる焼結管の製造方法及び支持治具の提供を目的とする。
As described above, deformation during sintering has been regarded as a problem as deformation in the production of ceramic tubes. However, when the thickness of the ceramic tube is reduced, the strength of the tubular molded body is insufficient, and deformation in the process from extrusion molding to sintering becomes a problem. For example, the tubular molded body may be deformed before sintering and cannot be used for sintering. Or the yield after sintering may deteriorate.
The present invention was made based on such a technical problem, and aims to provide a method for manufacturing a sintered tube and a support jig capable of accurately maintaining the shape of a tubular molded body before sintering. To do.

管状成形体の形状を維持するためには、管状成形体の中空部にその内径に外径が等しい心棒を挿入すればよい。ところが、押出し成形後のセラミックス成形体はひずみがあり、その内径に等しい外径を有する心棒を挿入することは困難である。したがって、管状成形体との間に所定のクリアランスを形成する外径を有する心棒を用いることになる。しかしこれでは、管状成形体と棒材との間のクリアランスの存在によって、形状維持の大きな効果を期待することができない。そこで本発明は、管状成形体の中空部に挿入時には縮径状態をなしているが、管状成形体の中空部に挿入後には拡径状態となってその外径が管状成形体の内径と実質的に等しくなる心棒を用いることを提案する。
すなわち本発明は、金属又はセラミックス粉末とバインダを含む管状の成形体を作製するステップ(a)と、その外径が小さい縮径状態及びその外径が大きい拡径状態をなす棒状の支持部材を、縮径状態で成形体の中空部に挿入するステップ(b)と、支持部材を成形体の中空部に挿入した後に、支持部材を拡径状態とするステップ(c)と、を備える。そして、縮径状態の支持部材の外径は、成形体の内径よりも小さく、拡径状態の支持部材の外径は、成形体の内径と実質的に一致することを特徴としている。
In order to maintain the shape of the tubular molded body, a mandrel having an outer diameter equal to the inner diameter may be inserted into the hollow portion of the tubular molded body. However, the ceramic molded body after extrusion molding is distorted, and it is difficult to insert a mandrel having an outer diameter equal to the inner diameter. Therefore, a mandrel having an outer diameter that forms a predetermined clearance with the tubular molded body is used. However, in this case, the large effect of maintaining the shape cannot be expected due to the presence of the clearance between the tubular molded body and the bar. Therefore, the present invention is in a reduced diameter state when inserted into the hollow portion of the tubular molded body, but after inserting into the hollow portion of the tubular molded body, the diameter is expanded and its outer diameter is substantially equal to the inner diameter of the tubular molded body. We propose to use the same mandrel.
That is, the present invention provides a step (a) for producing a tubular molded body containing a metal or ceramic powder and a binder, and a rod-like support member having a reduced diameter state with a small outer diameter and an expanded state with a large outer diameter. A step (b) of inserting into the hollow portion of the molded body in a reduced diameter state, and a step (c) of setting the support member in a diameter-expanded state after inserting the support member into the hollow portion of the molded body. The outer diameter of the reduced diameter support member is smaller than the inner diameter of the molded body, and the outer diameter of the expanded diameter support member substantially matches the inner diameter of the molded body.

本発明において、支持部材は、捻じりばねを利用し、軸線回りに捩じることにより縮径状態及び拡径状態をなすコイル部材を備える構成とすることができる。コイルを捩じることによって、その径が拡大・縮小する機能を利用するものである。コイル部材を捩じるといった簡易な方法で縮径状態、拡径状態を実現することができる。また本発明において、支持部材は、内部の気体量が少ない場合に縮径状態をなし、内部の気体量が相対的に多い場合に拡径状態をなすバルーン部材を備えることができる。この形態も、気体の導入、排出という簡易な方法で、縮径状態、拡径状態を実現することができる。   In the present invention, the support member may be configured to include a coil member that uses a torsion spring and twists around the axis to form a reduced diameter state and an expanded diameter state. The function of expanding / reducing the diameter by twisting the coil is used. The reduced diameter state and the expanded diameter state can be realized by a simple method such as twisting the coil member. In the present invention, the support member can include a balloon member that is in a reduced diameter state when the amount of gas inside is small, and that is in a state of diameter expansion when the amount of gas inside is relatively large. This form can also realize a reduced diameter state and an enlarged diameter state by a simple method of introducing and discharging gas.

本発明において、支持部材を軸として成形体を回転させながら成形体の外周面を整形するステップ(d)を備えることができる。成形体を焼結する過程での成形体の変形を防止するために、支持部材を利用するものである。
また、本発明は支持部材を立てた状態で成形体を焼結するステップ(e)を備えることができる。特許文献2では、吊り下げた状態で成形体を焼結するが、さらに例えば支持部材を基材に立設することにより成形体を安定して支持することができる。ただし、焼結の全工程を支持部材で支持することは困難であり、成形体に含まれるバインダが抜けることにより強度が劣化する200〜300℃程度の温度を過ぎたら、支持部材を除去することが必要である。
In the present invention, a step (d) of shaping the outer peripheral surface of the molded body while rotating the molded body about the support member can be provided. In order to prevent deformation of the molded body in the process of sintering the molded body, a support member is used.
Moreover, this invention can be equipped with the step (e) of sintering a molded object in the state which stood the support member. In Patent Document 2, the molded body is sintered in a suspended state, but the molded body can be stably supported by, for example, standing a support member on the base material. However, it is difficult to support the entire sintering process with a support member, and the support member is removed after a temperature of about 200 to 300 ° C. at which the strength deteriorates due to removal of the binder contained in the molded body. is required.

本発明は、以上の焼結管の製造方法に用いる支持治具として、金属又はセラミックス粉末とバインダを含む管状の成形体の当該中空部に挿入されて成形体を支持する支持治具であって、その外径が小さい縮径状態及びその外径が大きい拡径状態をなし、その長さが相対的に長い場合に縮径状態をなし、その長さが相対的に短い場合に拡径状態をなすコイル部材を備えるものを提供とする。   The present invention, as a support jig used in the above method for manufacturing a sintered tube, is a support jig that is inserted into the hollow portion of a tubular molded body containing metal or ceramic powder and a binder and supports the molded body. , A reduced diameter state with a small outer diameter and an expanded state with a large outer diameter, a reduced diameter state when the length is relatively long, and an expanded state when the length is relatively short What is provided with the coil member which makes | forms is provided.

この支持軸として、コイル部材以外に心棒を備えることができ、コイル部材をその周囲に配設し、コイル部材を、心棒を基準としてその径が拡縮するようにすることができる。   As the support shaft, a mandrel can be provided in addition to the coil member, and the coil member can be disposed around the mandrel so that the diameter of the coil member can be expanded or reduced with respect to the mandrel.

以上説明したように、本発明によれば、縮径状態で支持部材を成形体の中空部に挿入し、支持部材を成形体の中空部に挿入した後に、支持部材を拡径状態として成形体を支持することができる。したがって、成形体への挿入を円滑に行うことができるとともに、拡径状態では成形体とのクリアランスをなくすことができるため、成形体の形状維持を精度よく行うことができる。   As described above, according to the present invention, the support member is inserted into the hollow portion of the molded body in a reduced diameter state, and the support member is inserted into the hollow portion of the molded body, and then the support member is expanded in diameter. Can be supported. Therefore, the insertion into the molded body can be performed smoothly, and the clearance from the molded body can be eliminated in the expanded diameter state, so that the shape of the molded body can be accurately maintained.

以下、添付図面に示す実施の形態に基づいてこの発明を詳細に説明する。
本実施の形態では、燃料電池用のセラミックス管を製造する例について説明する。燃料電池用のセラミックス管は、図1に示すように、混練物作製工程(ステップS101)、成形体作製工程(ステップS102)、支持部材挿入工程(ステップS103)、乾燥工程(ステップS104)、印刷工程(ステップS105)及び焼結工程(ステップS106)を備えている。以下、工程順に説明する。
Hereinafter, the present invention will be described in detail based on embodiments shown in the accompanying drawings.
In this embodiment, an example of manufacturing a ceramic tube for a fuel cell will be described. As shown in FIG. 1, the ceramic tube for a fuel cell includes a kneaded material preparation step (step S101), a molded body preparation step (step S102), a support member insertion step (step S103), a drying step (step S104), and printing. A process (step S105) and a sintering process (step S106) are provided. Hereinafter, it demonstrates in order of a process.

(1)混練物作製工程(ステップS101)
所定の粒径を有するセラミックスの粉末原料(カルシウム安定化ジルコニア、イットリウム安定化ジルコニア、アルミナ等)に有機系のバインダ(溶剤、添加剤を含む)を混合し、均一な混練物を形成する。混練物の作製は常法に従えばよい。なお、ここではセラミックスを例にして本発明を説明するが、金属粉末を用いて焼結管を製造する場合に本発明を適用することができるのは言うまでもない。
(2)成形体作製工程(ステップS102)
次に、以上で得られた混練物を用いて管状の成形体を作製する。成形体の作製には、押出し成形法を用いることが有効である。つまり、図2に示すように、混練物を押出し成形機30に投入し、押出し法により管状の成形体20を作製する。
(1) Kneaded material preparation process (step S101)
An organic binder (including a solvent and an additive) is mixed with a ceramic powder raw material (calcium stabilized zirconia, yttrium stabilized zirconia, alumina, etc.) having a predetermined particle size to form a uniform kneaded product. The kneaded material may be produced according to a conventional method. Here, the present invention will be described by taking ceramics as an example, but it goes without saying that the present invention can be applied when a sintered tube is manufactured using metal powder.
(2) Molded body manufacturing process (step S102)
Next, a tubular molded body is produced using the kneaded material obtained above. It is effective to use an extrusion molding method for producing a molded body. That is, as shown in FIG. 2, the kneaded product is put into an extrusion molding machine 30, and a tubular molded body 20 is produced by an extrusion method.

(3)支持部材挿入工程(ステップS103)
押出し成形機30で成形された管状の成形体20の中空部分に、図2に示すように支持部材10を挿入する。本実施の形態では、押出し成形機30から連続的に作製される管状の成形体20の中空部に該当する位置に支持部材10が待ち受けている。押出し成形機30から連続的に押出され、コンベア31上を図中左方向に進行する結果、成形体20の中空部に支持部材10が挿入される。所定長の押出しが行われると押出しを一旦停止し、成形体20を切断する。
なお、この例では、成形体20を押出ししながら支持部材10を成形体20の中空部に挿入する例を示したが、所定長の成形体20を作製した後に、支持部材10を成形体20の中空部に挿入してもよいことは言うまでもない。
(3) Support member insertion step (step S103)
As shown in FIG. 2, the support member 10 is inserted into the hollow portion of the tubular molded body 20 formed by the extrusion molding machine 30. In the present embodiment, the support member 10 is waiting at a position corresponding to the hollow portion of the tubular molded body 20 continuously produced from the extrusion molding machine 30. As a result of continuous extrusion from the extrusion molding machine 30 and progressing on the conveyor 31 in the left direction in the figure, the support member 10 is inserted into the hollow portion of the molded body 20. When extrusion of a predetermined length is performed, extrusion is temporarily stopped and the molded body 20 is cut.
In this example, the support member 10 is inserted into the hollow portion of the molded body 20 while the molded body 20 is extruded. However, after the molded body 20 having a predetermined length is manufactured, the support member 10 is inserted into the molded body 20. Needless to say, it may be inserted into the hollow portion.

図3は本実施の形態における支持部材10によって成形体20を支持する手順を示す図であり、(a)は支持部材10が縮径状態を示す図、(b)は支持部材10が拡径状態を示す図である。
図3に示すように、支持部材10は、コイル部材1、心棒2及びコイル調整ナット3を備えている。時計方向に巻き回されたコイル部材1は心棒2の周囲に配設されている。コイル部材1を構成する線材の一端E1は心棒2に固定されている。また、コイル部材1を構成する線材の他端E2はコイル調整ナット3の外周に固定されている。心棒2の外周にはねじが切られており、コイル調整ナット3は心棒2に螺合されている。
支持部材10は、コイル部材1の外周に保護管4が配設されている。保護管4は、コイル部材1が成形体20に直接接触することによって成形体20の内周面に接触痕が付くのを防止するために設けてある。保護管4は、コイル部材1が拡縮するのに応じて変形する必要があるため、樹脂、ゴム等の可撓性の材料で構成することが望ましい。
FIGS. 3A and 3B are diagrams showing a procedure for supporting the molded body 20 by the support member 10 in the present embodiment. FIG. 3A is a diagram showing the support member 10 in a reduced diameter state, and FIG. It is a figure which shows a state.
As shown in FIG. 3, the support member 10 includes a coil member 1, a mandrel 2, and a coil adjustment nut 3. The coil member 1 wound in the clockwise direction is disposed around the mandrel 2. One end E1 of the wire constituting the coil member 1 is fixed to the mandrel 2. Further, the other end E <b> 2 of the wire constituting the coil member 1 is fixed to the outer periphery of the coil adjustment nut 3. The outer periphery of the mandrel 2 is threaded, and the coil adjustment nut 3 is screwed onto the mandrel 2.
The support member 10 is provided with a protective tube 4 on the outer periphery of the coil member 1. The protective tube 4 is provided in order to prevent contact marks on the inner peripheral surface of the molded body 20 when the coil member 1 is in direct contact with the molded body 20. Since the protective tube 4 needs to be deformed as the coil member 1 expands and contracts, it is desirable that the protective tube 4 be made of a flexible material such as resin or rubber.

支持部材10を成形体20の中空部に挿入する図2の段階では、支持部材10は図3(a)に示すように、縮径状態をなしている。このときの支持部材10の外径(保護管4の外径)は、成形体20の内径よりも小さいため、成形体20の中空部に支持部材10を容易に挿入することができる。
支持部材10を必要な分だけ成形体20に挿入した後に、図3(b)に示すように、支持部材10の径、具体的にはコイル部材1の径を拡大(拡径)する。コイル部材1を拡径するためには、コイル調整ナット3を、図中左方向に進行するように半時計方向に捩じる。コイル部材1は、前述したように時計方向に巻き回されているため、コイル調整ナット3を半時計方向に捩じることによって、コイル部材1は巻き回しと逆方向の捻じりが軸線回りに加えられるために、その径が拡大する。コイル調整ナット3は、コイル部材1の径が拡大して保護管4の外径が成形体20の内径と実質的に一致するまで捩じられる。
At the stage of FIG. 2 in which the support member 10 is inserted into the hollow portion of the molded body 20, the support member 10 is in a reduced diameter state as shown in FIG. Since the outer diameter of the support member 10 at this time (the outer diameter of the protective tube 4) is smaller than the inner diameter of the molded body 20, the support member 10 can be easily inserted into the hollow portion of the molded body 20.
After inserting the support member 10 into the molded body 20 as much as necessary, the diameter of the support member 10, specifically, the diameter of the coil member 1 is increased (expanded) as shown in FIG. In order to increase the diameter of the coil member 1, the coil adjustment nut 3 is twisted counterclockwise so as to advance in the left direction in the figure. Since the coil member 1 is wound in the clockwise direction as described above, by twisting the coil adjusting nut 3 in the counterclockwise direction, the coil member 1 is twisted in the opposite direction to the winding around the axis. To be added, its diameter increases. The coil adjustment nut 3 is twisted until the diameter of the coil member 1 increases and the outer diameter of the protective tube 4 substantially matches the inner diameter of the molded body 20.

(4)乾燥工程(ステップS104)
支持部材10を拡径状態となした後、成形体20を乾燥して成形体20に含まれるバインダに含まれる溶剤を主に除去する。この乾燥は、乾燥炉で例えば50〜200℃の温度に保持することにより行われる。このとき、成形体20を支持する支持部材10の両端を吊り下げた状態で乾燥を行うことができるが、押出し直後の成形体20はバインダを多く含むため、変形しやすい。したがって、図4に示すように、回転する一対のローラ5上に載せた状態で乾燥することが望ましい。成形体20は、その外表面がローラ5と接触するため、変形が防止される。このとき、図4に示すように、支持部材10とローラ5の回転軸との距離を規制するリンク6を、支持部材10とローラ5に掛け渡すことが望ましい。成形体20のローラ5からの離間を防止するためである。
(4) Drying process (step S104)
After the supporting member 10 is brought into the expanded state, the molded body 20 is dried to mainly remove the solvent contained in the binder contained in the molded body 20. This drying is performed by maintaining the temperature at, for example, 50 to 200 ° C. in a drying furnace. At this time, drying can be performed in a state where both ends of the support member 10 that supports the molded body 20 are suspended, but the molded body 20 immediately after extrusion includes a large amount of binder, and thus is easily deformed. Therefore, as shown in FIG. 4, it is desirable to dry in a state of being placed on a pair of rotating rollers 5. Since the outer surface of the molded body 20 is in contact with the roller 5, deformation is prevented. At this time, as shown in FIG. 4, it is desirable that the link 6 that regulates the distance between the support member 10 and the rotation shaft of the roller 5 is spanned between the support member 10 and the roller 5. This is to prevent the molded body 20 from being separated from the roller 5.

(5)印刷工程(ステップS105)
成形体20が所定程度乾燥した後に、成形体20の外表面に、スクリーン印刷により、ペースト状の燃料極材料(例えば、Ni/ジルコニア)を塗布する。燃料極膜は、成形体20の外周面上に、その長手方向に対して、一定の幅で縞状に印刷する。次に、その上にペースト状の電解質材料(例えば、ジルコニア)を重ねて塗布(スクリーン印刷)し、乾燥炉で50〜200℃で乾燥する。電解質膜は、燃料極膜と同様に、縞状に印刷する。ただし、一方向に少しだけずらす。続いて、その上に、ある縞の電解質膜と隣の縞の燃料極膜とをインタコネクタ膜で接続するように、ペースト状のインタコネクタ材料(例えば、ランタンクロマイトもしくは チタン酸化物)を重ねて塗布(スクリーン印刷)し、乾燥炉で50〜200℃で乾燥する。更に、電解質膜上にペースト状の空気極材料(例えば、ランタンマンガネート)を重ねて塗布(スクリーン印刷)し、乾燥炉で50〜200℃で乾燥する。
(5) Printing process (step S105)
After the molded body 20 is dried to a predetermined extent, a paste-like fuel electrode material (for example, Ni / zirconia) is applied to the outer surface of the molded body 20 by screen printing. The fuel electrode film is printed on the outer peripheral surface of the molded body 20 in a striped pattern with a constant width in the longitudinal direction. Next, a paste-like electrolyte material (for example, zirconia) is applied thereon (screen printing) and dried at 50 to 200 ° C. in a drying furnace. The electrolyte membrane is printed in a striped manner, similar to the fuel electrode membrane. However, shift it slightly in one direction. Subsequently, a paste-like interconnector material (for example, lanthanum chromite or titanium oxide) is overlaid thereon so that the electrolyte membrane of a certain stripe and the fuel electrode membrane of the adjacent stripe are connected by the interconnector film. Apply (screen printing) and dry at 50-200 ° C. in a drying oven. Further, a paste-like air electrode material (for example, lanthanum manganate) is applied on the electrolyte membrane in an overlapping manner (screen printing), and dried at 50 to 200 ° C. in a drying furnace.

(6)焼結工程(ステップS106)
所定の印刷が終了した成形体20は次いで焼結される。焼結は、成形体20から支持部材10を取り除いた後に行うことができる。成形体20から支持部材10を除去するのに先立って、支持部材10のコイル調整ナット3を時計方向に捩じることにより、コイル部材1の径を小さくして、支持部材10を縮径状態にする。
成形体20から支持部材10を取り除いた後に焼結する場合は、特許文献2に示されるような方法で成形体20を焼結炉内に吊り下げた状態で焼結することができる。焼結は、例えば、適当な昇温速度(例えば1℃/分)で、保持温度(1200〜1700℃)まで昇温する。そして、保持温度になったら所定時間だけ、その温度を保持する。その後、焼結温度を降下させる。降温は、適当な降温速度(例えば2℃/分)で行われる。
(6) Sintering process (step S106)
The molded body 20 for which predetermined printing has been completed is then sintered. Sintering can be performed after the support member 10 is removed from the molded body 20. Prior to removing the support member 10 from the molded body 20, the coil adjustment nut 3 of the support member 10 is twisted clockwise to reduce the diameter of the coil member 1 and reduce the diameter of the support member 10. To.
In the case of sintering after removing the support member 10 from the molded body 20, the molded body 20 can be sintered in a state where it is suspended in a sintering furnace by a method as disclosed in Patent Document 2. In the sintering, for example, the temperature is raised to a holding temperature (1200 to 1700 ° C.) at an appropriate heating rate (eg, 1 ° C./min). When the holding temperature is reached, the temperature is held for a predetermined time. Thereafter, the sintering temperature is lowered. The temperature is lowered at an appropriate rate of temperature reduction (for example, 2 ° C./min).

また、支持部材10を成形体20に挿入した状態で焼結を開始することができる。ただし、この場合、焼結の完了まで支持部材10を成形体20に挿入しておくことを意味していない。所定温度に達したら、支持部材10を成形体20から除去する必要がある。例えば、成形体20を焼結炉内で吊り下げる一方、支持部材10を成形体20の中空部に挿入しておく。このとき、支持部材10は拡径状態である。また、成形体20の中空部に挿入していない支持部材10の他端を、焼結炉を貫通して焼結炉外に位置させておく。所定の温度に達すると、焼結炉外に位置させた支持部材10を操作して縮径することにより、支持部材10を成形体20から抜き取る。なお、この焼結工程でバインダが除去される。   In addition, sintering can be started with the support member 10 inserted into the molded body 20. However, in this case, it does not mean that the support member 10 is inserted into the molded body 20 until the completion of sintering. When the predetermined temperature is reached, the support member 10 needs to be removed from the molded body 20. For example, while the molded body 20 is suspended in a sintering furnace, the support member 10 is inserted into the hollow portion of the molded body 20. At this time, the support member 10 is in an expanded state. Further, the other end of the support member 10 that is not inserted into the hollow portion of the molded body 20 is positioned outside the sintering furnace through the sintering furnace. When the temperature reaches a predetermined temperature, the support member 10 is removed from the molded body 20 by operating the support member 10 positioned outside the sintering furnace to reduce the diameter. In this sintering process, the binder is removed.

以上の工程を経ることにより、セラミックス管の表面上に燃料電池セル(インタコネクタ膜−燃料極膜− 電解質膜−空気極膜−インタコネクタ膜という1つの燃料電池セル)が複数集合した固体電解質型燃料電池のセル管が完成する。   Through the above process, a solid electrolyte type in which a plurality of fuel cells (one fuel cell of interconnector membrane-fuel electrode membrane-electrolyte membrane-air electrode membrane-interconnector membrane) are assembled on the surface of the ceramic tube. The cell tube of the fuel cell is completed.

以上の実施形態では、コイル部材1を用いて支持部材10を縮径状態、拡径状態としているが、図5に示すように、中空のバルーンを支持部材40とすることができる。この支持部材40は、中空部への気体を導入、排出を制御することにより、支持部材40を縮径状態及び拡径状態とすることができる。つまり、中空部への気体導入が少なければ縮径状態となり、図5(a)に示すように、この状態のときに成形体20の中空部に支持部材40を挿入する。成形体20の中空部に支持部材を挿入後、支持部材40の気体導入孔Hから気体を中空部へ導入することにより、支持部材40は拡径状態となる。   In the above embodiment, the support member 10 is reduced in diameter and expanded using the coil member 1, but a hollow balloon can be used as the support member 40 as shown in FIG. 5. This support member 40 can make the support member 40 into a diameter-reduced state and a diameter-expanded state by controlling the introduction and discharge of gas into the hollow portion. That is, if there is little gas introduction into a hollow part, it will be in a reduced diameter state, and as shown to Fig.5 (a), the support member 40 is inserted in the hollow part of the molded object 20 at this state. After the support member is inserted into the hollow portion of the molded body 20, the support member 40 is in an expanded state by introducing gas from the gas introduction hole H of the support member 40 into the hollow portion.

次に、本発明を実施するための支持部材10の仕様の例を示す。
コイル部材1としては、捻じりばねを利用する。捻じりばねとは、よく知られているように、線材を捩ることでばねの働きをさせようという形式のばねです。ばねの占める面積(コイル径)を小さくすることができるという特質を有しているため、本発明に使用することができる。本発明では、丸で比較的太めの線径を持つばねを使用することが好ましい。ばねを構成する線材の材質は、ばね用ステンレス鋼線(JIS SUS304WPB)など耐久性があり、ばねの反発力が弱い、やわらかい素材を用いることができる。
Next, the example of the specification of the support member 10 for implementing this invention is shown.
As the coil member 1, a torsion spring is used. As is well known, a torsion spring is a type of spring that acts as a spring by twisting a wire. Since it has the characteristic that the area (coil diameter) which a spring occupies can be made small, it can be used for this invention. In the present invention, it is preferable to use a spring having a round and relatively thick wire diameter. The material of the wire constituting the spring can be a soft material having durability such as a stainless steel wire for spring (JIS SUS304WPB) and weak spring repulsion.

捻じりばねのコイル径の変化量ΔDは、以下の式で表すことができる。
ΔD=(Δn/n)×D
D :無負荷のコイル中心径
ΔD:トルクが負荷された時のコイル中心径の減少量
n :無負荷時の有効巻き数
Δn:トルクが負荷された時の巻き数の増加量
The amount of change ΔD in the coil diameter of the torsion spring can be expressed by the following equation.
ΔD = (Δn / n) × D
D: No-load coil center diameter ΔD: Amount of decrease in coil center diameter when torque is applied n: Effective number of turns when no load is applied Δn: Increase amount of turns when torque is applied

コイル中心径の変化を大きくする為に、比較的巻き数の少ない捻じりばねを用いると強度が低下する恐れがあるので、線材の径を大きくすることが好ましい。
具体的には、成形体20の内径が20〜30mmの範囲にあるものとすると、コイル径は、成形体20の内径−(0.2〜1mm)の間で変動させる必要がある。例えば、成形体20の内径が25mmの場合、D:24.8mm(拡径状態の径)、ΔD:0.8mm、n:3とすると、Δn:トルクが負荷された時の巻き数の増加量が、10%となるような捻じりばねを用い、かつその捻じりばねにトルクをあたえれば、拡径状態から縮径状態とすることができる。
If a torsion spring having a relatively small number of turns is used in order to increase the change in the coil center diameter, the strength may be lowered. Therefore, it is preferable to increase the diameter of the wire.
Specifically, when the inner diameter of the molded body 20 is in the range of 20 to 30 mm, the coil diameter needs to be varied between the inner diameter of the molded body 20-(0.2 to 1 mm). For example, when the inner diameter of the molded body 20 is 25 mm, D: 24.8 mm (diameter in the expanded state), ΔD: 0.8 mm, and n: 3, Δn: increase in the number of turns when torque is loaded If a torsion spring having an amount of 10% is used and a torque is applied to the torsion spring, the expanded diameter state can be changed to the reduced diameter state.

本実施の形態におけるセラミックス管の製造工程を示すフローチャートである。It is a flowchart which shows the manufacturing process of the ceramic pipe | tube in this Embodiment. 本実施の形態における押出し工程及び支持部材挿入工程を示す図である。It is a figure which shows the extrusion process and support member insertion process in this Embodiment. 本実施の形態における支持部材によって成形体を支持する手順を示す断面図であり、(a)は支持部材が縮径状態を示す図、(b)は支持部材が拡径状態を示す図である。It is sectional drawing which shows the procedure which supports a molded object with the support member in this Embodiment, (a) is a figure which shows a diameter reduction state of a support member, (b) is a figure which shows a diameter expansion state of a support member. . 本実施の形態における乾燥工程を示す図である。It is a figure which shows the drying process in this Embodiment. 本実施の形態における他の支持部材を示す断面図であり、(a)は支持部材が縮径状態を示す図、(b)は支持部材が拡径状態を示す図である。It is sectional drawing which shows the other support member in this Embodiment, (a) is a figure in which a support member shows a diameter-reduced state, (b) is a figure in which a support member shows a diameter-expanded state.

符号の説明Explanation of symbols

10,40…支持部材、1…コイル部材、2…心棒、3…コイル調整ナット、4…保護管、5…ローラ、6…リンク、20…成形体、30…押出し成形機   DESCRIPTION OF SYMBOLS 10,40 ... Support member, 1 ... Coil member, 2 ... Mandrel, 3 ... Coil adjustment nut, 4 ... Protective tube, 5 ... Roller, 6 ... Link, 20 ... Molded object, 30 ... Extruder

Claims (7)

金属又はセラミックス粉末とバインダを含む管状の成形体を作製するステップ(a)と、
その外径が小さい縮径状態及びその外径が大きい拡径状態をなす棒状の支持部材を、前記縮径状態で前記成形体の中空部に挿入するステップ(b)と、
前記支持部材を前記成形体の中空部に挿入した後に、前記支持部材を前記拡径状態とするステップ(c)と、を備え、
前記縮径状態の前記支持部材の外径は、前記成形体の内径よりも小さく、
前記拡径状態の前記支持部材の外径は、前記成形体の内径と実質的に一致することを特徴とする焼結管の製造方法。
Producing a tubular molded body containing a metal or ceramic powder and a binder;
A step (b) of inserting a rod-shaped support member that has a reduced diameter state with a small outer diameter and an expanded state with a large outer diameter into the hollow portion of the molded body in the reduced diameter state;
After inserting the support member into the hollow part of the molded body, the step (c) of making the support member in the expanded state,
The outer diameter of the support member in the reduced diameter state is smaller than the inner diameter of the molded body,
The method for manufacturing a sintered tube, wherein an outer diameter of the support member in the expanded state substantially coincides with an inner diameter of the molded body.
前記支持部材は、軸線回りに捻じることにより前記縮径状態及び前記拡径状態なすコイル部材を備えることを特徴とする請求項1に記載の焼結管の製造方法。   The method for manufacturing a sintered tube according to claim 1, wherein the support member includes a coil member that forms the reduced diameter state and the expanded diameter state by twisting around an axis. 前記支持部材は、内部の気体量が少ない場合に前記縮径状態をなし、内部の気体量が相対的に多い場合に前記拡径状態をなすバルーン部材を備えることを特徴とする請求項1に記載の焼結管の製造方法。   The said support member is provided with the balloon member which makes the said diameter-reduced state when the amount of gas inside is small, and makes the said diameter-expanded state when the amount of gas inside is relatively large. The manufacturing method of the sintered tube of description. 前記支持部材を軸として前記成形体を回転させながら前記成形体の外周面を整形するステップ(d)を備えることを特徴とする請求項1〜3のいずれかに記載の焼結管の製造方法。   The method for producing a sintered tube according to any one of claims 1 to 3, further comprising a step (d) of shaping the outer peripheral surface of the molded body while rotating the molded body around the support member. . 前記支持部材を立てた状態で前記成形体を焼成するステップ(e)を備えることを特徴とする請求項1〜4のいずれかに記載の焼結管の製造方法。   The method for manufacturing a sintered tube according to any one of claims 1 to 4, further comprising a step (e) of firing the molded body in a state where the support member is erected. 金属又はセラミックス粉末とバインダを含む管状の成形体の当該中空部に挿入されて前記成形体を支持する支持治具であって、
その外径が小さい縮径状態及びその外径が大きい拡径状態をなし、
その長さが長い場合に前記縮径状態をなし、その長さが短い場合に前記拡径状態をなすコイル部材を備えることを特徴とする支持治具。
A support jig for supporting the molded body inserted into the hollow portion of a tubular molded body containing a metal or ceramic powder and a binder,
It has a reduced diameter state with a small outer diameter and an expanded state with a large outer diameter,
A support jig comprising: a coil member that is in the reduced diameter state when the length is long, and that is in the expanded state when the length is short.
前記コイル部材をその周囲に配設する心棒を備え、前記コイル部材は前記心棒を基準としてその径が拡縮することを特徴とする請求項6に記載の支持治具。   The supporting jig according to claim 6, further comprising a mandrel disposed around the coil member, wherein the diameter of the coil member expands and contracts with respect to the mandrel.
JP2005050160A 2005-02-25 2005-02-25 Method for producing sintered tube and supporting jig Withdrawn JP2006231724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005050160A JP2006231724A (en) 2005-02-25 2005-02-25 Method for producing sintered tube and supporting jig

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005050160A JP2006231724A (en) 2005-02-25 2005-02-25 Method for producing sintered tube and supporting jig

Publications (1)

Publication Number Publication Date
JP2006231724A true JP2006231724A (en) 2006-09-07

Family

ID=37039896

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005050160A Withdrawn JP2006231724A (en) 2005-02-25 2005-02-25 Method for producing sintered tube and supporting jig

Country Status (1)

Country Link
JP (1) JP2006231724A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110370450A (en) * 2019-07-30 2019-10-25 长沙秋点兵信息科技有限公司 A kind of reducing mold plumbing installation and variable diameter method convenient for casting demoulding

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110370450A (en) * 2019-07-30 2019-10-25 长沙秋点兵信息科技有限公司 A kind of reducing mold plumbing installation and variable diameter method convenient for casting demoulding
CN110370450B (en) * 2019-07-30 2021-05-14 长沙秋点兵信息科技有限公司 Diameter changing method convenient for pouring and demolding

Similar Documents

Publication Publication Date Title
US20050000621A1 (en) Method of making laminate thin-wall ceramic tubes and said tubes with electrodes, particularly for solid oxide fuel cells
CN107768210B (en) Large power long service life cathode heater sub-assembly preparation method
EP1055261B1 (en) Method of making straight fuel cell tubes
JP2006231724A (en) Method for producing sintered tube and supporting jig
CN1986204A (en) Forming method for assembly of bead core and apex rubber
EP2878417A1 (en) Green-honeycomb-molded-body holder and method for producing diesel particulate filter
JP2003031179A (en) Small-sized fluorescent lamp, and manufacturing method and manufacturing device of the same
US8581493B2 (en) Ceramic electrode for a high-pressure discharge lamp
US20070120491A1 (en) High intensity discharge lamp having compliant seal
JP5372921B2 (en) Method for manufacturing a high intensity discharge lamp
JP4929961B2 (en) High pressure mercury lamp
US20140111080A1 (en) Method for producing a winding for producing electrodes for discharge lamps, winding properties in electrodes for discharge lamps and method for producing an electrode for discharge lamps
JP4442124B2 (en) Short arc discharge lamp
JPH10182243A (en) Production of ceramic long sized body
US8159135B2 (en) Electrode for high pressure discharge lamp, high pressure discharge lamp, and method for manufacturing electrode for high pressure discharge lamptechnical field
JP3580300B2 (en) Method of manufacturing arc tube closure, and discharge lamp using the closure
JP2007157676A (en) Element press mechanism device
FI111347B (en) Process and apparatus for forming a tube with a sleeve, and a tube with a sleeve
JP2004221091A (en) Light emitting container and high pressure discharge lamp having same
JP3533603B2 (en) Method of manufacturing cathode for discharge lamp
US20090134799A1 (en) Discharge lamp, electrode, and method of manufacturing a component of a discharge lamp
JP2002260580A (en) Electrode for discharge lamp
CN113770241A (en) Winding drum device and conical drum manufacturing method
JP2003290823A (en) Manufacturing method for uneven thickness tube
JP2008075823A (en) Method of manufacturing sintered bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513