JP2006231379A - Multi-spot welding equipment - Google Patents

Multi-spot welding equipment Download PDF

Info

Publication number
JP2006231379A
JP2006231379A JP2005051183A JP2005051183A JP2006231379A JP 2006231379 A JP2006231379 A JP 2006231379A JP 2005051183 A JP2005051183 A JP 2005051183A JP 2005051183 A JP2005051183 A JP 2005051183A JP 2006231379 A JP2006231379 A JP 2006231379A
Authority
JP
Japan
Prior art keywords
welding
igbt
point
current
pair
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005051183A
Other languages
Japanese (ja)
Inventor
Hiroaki Takishima
浩昭 瀧嶋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Topre Corp
Original Assignee
Topre Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Topre Corp filed Critical Topre Corp
Priority to JP2005051183A priority Critical patent/JP2006231379A/en
Publication of JP2006231379A publication Critical patent/JP2006231379A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Resistance Welding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a multi-spot welding equipment capable of ensuring a consistent welding condition by preventing leakage of the welding current at a weld point, enhancing the welding efficiency, and improving the welding quality. <P>SOLUTION: A plurality of upper electrodes 6-1, 6-2, ..., 6-n and a plurality of lower electrodes 7-1, 7-2, ..., 7-n are connected to a three-phase AC power supply (a welding power source) 1 in parallel. Control means (a welding control circuit 3 and an IGBT control circuit 4) are provided, in which switching elements IGBT-1, IGBT-2, ..., IGBT-n are connected to connection lines a1, a2, ..., an of the upper electrodes 6-1, 6-2, ..., 6-n and connection lines b1, b2, ..., bn of the lower electrodes 7-1, 7-2, ..., 7-n in series, respectively, and a pair of IGBT-1, IGBT-2, ..., IGBT-n facing each other are simultaneously and orderly turned ON/OFF to change the supply of the welding current to each weld point of metal plate W1, W2, and the welding current runs orderly to the plurality of weld points of the metal plates W1, W2. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被溶接物を多点溶接するマルチスポット溶接装置に関するものである。   The present invention relates to a multi-spot welding apparatus that performs multi-point welding of workpieces.

抵抗溶接の代表的なものとしてスポット溶接(点溶接)が知られているが、このスポット溶接は、上部電極と下部電極で被溶接物を挟持加圧した状態で両電極間に溶接電流を流すことによって被溶接物をスポット的に溶接する溶接方式である。   Spot welding (spot welding) is known as a typical resistance welding. In this spot welding, a welding current is passed between both electrodes while the workpiece is sandwiched and pressed between the upper electrode and the lower electrode. This is a welding method in which the workpiece is spot-welded.

ところで、多点溶接を行うためのマルチスポット溶接装置が実用化されているが、従来の装置は、各溶接点の複数の上部電極に同時に通電する方式を採っていたため、各溶接点に流れる電流の値に差が生じて各溶接点を均質に溶接できないばかりか、一度に大電流を流す必要があるため、大容量の溶接トランスを要し、装置が大型化するという問題があった。   By the way, a multi-spot welding apparatus for performing multi-point welding has been put into practical use. However, since the conventional apparatus employs a method in which a plurality of upper electrodes at each welding point are energized at the same time, the current flowing through each welding point. As a result, there is a problem that not only the welding points can be welded uniformly, but also a large current needs to flow at a time, so that a large-capacity welding transformer is required and the apparatus becomes large.

そこで、複数の溶接点を一度に溶接するのではなく、1点ずつ順番に溶接していく方式を採用したマルチスポット溶接装置が例えば特許文献1において提案されている。この特許文献1に記載されたマルチスポット溶接装置では、各上部電極毎に設けたスイッチング素子を制御手段により所定の時間間隔で順番にONし、このON期間中にON状態のスイッチング素子が接続された上部電極に対応する被溶接物の溶接箇所を1電極毎に溶接する方式が採用されている。   Therefore, for example, Patent Document 1 proposes a multi-spot welding apparatus that employs a method in which a plurality of welding points are not welded at a time but are welded one by one in order. In the multi-spot welding apparatus described in Patent Document 1, switching elements provided for each upper electrode are sequentially turned on at predetermined time intervals by the control means, and the ON-state switching elements are connected during this ON period. Further, a method is employed in which the welded portion of the work piece corresponding to the upper electrode is welded for each electrode.

特開2000−351081号公報JP 2000-351081 A

ところが、特許文献1に記載されたマルチスポット溶接装置では、下部電極が各溶接点について共通であって、これらが個別に溶接電源に接続されていないため、下部電極において隣の溶接点に溶接電流がリークして溶接条件が安定せず、溶接効率も悪いという問題があった。   However, in the multi-spot welding apparatus described in Patent Document 1, since the lower electrode is common to each welding point and these are not individually connected to the welding power source, the welding current is applied to the adjacent welding point in the lower electrode. Leaks, welding conditions are not stable, and welding efficiency is poor.

本発明は上記問題に鑑みてなされたもので、その目的とする処は、溶接点での溶接電流のリークを防いで安定した溶接条件を確保し、溶接効率を高めて溶接品質の向上を図ることができるマルチスポット溶接装置を提供することにある。   The present invention has been made in view of the above problems, and its objective is to prevent welding current leakage at the welding point to ensure stable welding conditions, to improve welding efficiency and to improve welding quality. An object of the present invention is to provide a multi-spot welding apparatus capable of performing the above.

上記目的を達成するため、請求項1記載の発明は、複数の上部電極とこれと同数の下部電極で被溶接物を挟持加圧しつつ、溶接電源から両電極間に溶接電流を流すことによって、被溶接物を多点溶接するマルチスポット溶接装置として、複数の前記上部電極と前記下部電極を前記溶接電源に各々並列に接続するとともに、これらの上部電極と下部電極の各接続ラインにスイッチング素子を各々直列に接続し、相対向する一対の上部電極と下部電極の各接続ラインに設けられた一対の前記スイッチング素子を同時且つ順番にON/OFFして被溶接物の各溶接点への溶接電流の供給を切り替える制御手段を設け、被溶接物の複数の溶接点に溶接電流を順番に流すことを特徴とする。   In order to achieve the above-mentioned object, the invention according to claim 1 is characterized in that a welding current is passed between both electrodes from a welding power source while sandwiching and pressing an object to be welded with a plurality of upper electrodes and the same number of lower electrodes. As a multi-spot welding apparatus for multi-point welding of the workpiece, a plurality of the upper electrode and the lower electrode are connected in parallel to the welding power source, and a switching element is connected to each connection line of the upper electrode and the lower electrode. Welding current to each welding point of the workpiece to be welded by simultaneously turning on and off the pair of switching elements provided in each connecting line of the pair of upper electrode and lower electrode facing each other in series The control means which switches supply of this is provided, A welding current is sent in order to several welding points of a to-be-welded object, It is characterized by the above-mentioned.

請求項2記載の発明は、請求項1記載の発明において、前記制御手段は、予め設定された順番に従って各一対の前記スイッチング素子を同時にON/OFFすることを特徴とする。   According to a second aspect of the present invention, in the first aspect of the present invention, the control means simultaneously turns on / off each pair of the switching elements according to a preset order.

請求項3記載の発明は、請求項1又は2記載の発明において、前記制御手段は、一対の前記スイッチング素子がONしている間に、前記溶接電源から各溶接点に、予め設定された所定の大きさの溶接電流を予め設定された所定時間だけ流すことを特徴とする。   According to a third aspect of the present invention, in the first or second aspect of the present invention, the control means is a predetermined preset from the welding power source to each welding point while the pair of switching elements are ON. The welding current of the magnitude | size of this is made to flow only for the predetermined time set beforehand.

本発明によれば、複数の上部電極と溶接電源との各接続ラインのみならず、複数の下部電極と溶接電源との各接続ラインにもスイッチング素子をそれぞれ設け、相対向する一対の上部電極と下部電極の各接続ラインに設けられた一対のスイッチング素子を同時且つ順番にON/OFFして被溶接物の各溶接点への溶接電流の供給を切り替えることによって、被溶接物の複数の溶接点に溶接電流を順番に流すようにしたため、溶接電流の他の溶接点へのリークが確実に防がれ、各溶接点において安定した溶接条件が確保されて溶接効率が高められ、各溶接点での溶接が均質化されて溶接品質の向上が図られる。   According to the present invention, a switching element is provided not only in each connection line between a plurality of upper electrodes and a welding power source but also in each connection line between a plurality of lower electrodes and a welding power source, and a pair of upper electrodes facing each other, A plurality of welding points of the work piece are switched by simultaneously turning on and off a pair of switching elements provided in each connection line of the lower electrode to switch the supply of the welding current to each welding point of the work piece. As a result, the welding current is flowed in order to prevent leakage of the welding current to other welding points, ensuring stable welding conditions at each welding point and improving welding efficiency. The welding is homogenized and the welding quality is improved.

又、溶接電流を全溶接点に一度に流すのではなく、各溶接点に順番に流すようにしたため、大電流を各溶接点に流すことができ、高い溶接効率を確保することができるとともに、高速化を実現して溶接時間の短縮化を図ることができる。   In addition, since the welding current is not flowed to all the welding points at once, but it is made to flow to each welding point in order, a large current can be flowed to each welding point, and high welding efficiency can be ensured, Speeding up can be realized and welding time can be shortened.

更に、通電制御方式として断続制御方式が採用されるため、各溶接点に供給される溶接電流の値及び通電時間、更には通電する溶接点の順番を任意に設定することができ、各溶接点毎に適した最適電流制御が可能となって高い溶接品質を確保することができる。   Furthermore, since the intermittent control method is adopted as the energization control method, the value of the welding current supplied to each welding point, the energizing time, and the order of the welding points to be energized can be arbitrarily set. Optimum current control suitable for each is possible, and high welding quality can be ensured.

以下に本発明の実施の形態を添付図面に基づいて説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1は本発明に係るマルチスポット溶接装置の基本構成を示すブロック図であり、図示のマルチスポット溶接装置は、三相交流電源1に接続された汎用溶接機2と、溶接制御回路(シーケンサ)3と、IGBT制御回路4と、溶接起動スイッチ(溶接起動SW)5と、n個(nは2以上の整数)の上部電極(溶接ガン)6−1,6−2,…,6−nと、各上部電極6の下方に対向配置された同数(n個)の下部電極7−1,7−2,…,7−nを含んで構成されている。尚、便宜上、複数の上部電極6−1,6−2,…,6−nと下部電極7−1,7−2,…,7−nに図1の左端から順に番号「1」,「2」,「3」,…,「n」を付すこととする。   FIG. 1 is a block diagram showing a basic configuration of a multi-spot welding apparatus according to the present invention. The illustrated multi-spot welding apparatus includes a general-purpose welding machine 2 connected to a three-phase AC power source 1 and a welding control circuit (sequencer). 3, IGBT control circuit 4, welding start switch (welding start SW) 5, and n (n is an integer of 2 or more) upper electrodes (welding guns) 6-1, 6-2,. And the same number (n) of lower electrodes 7-1, 7-2,..., 7-n arranged opposite to each other below the upper electrodes 6. For convenience, a plurality of upper electrodes 6-1, 6-2,..., 6-n and lower electrodes 7-1, 7-2,. “2”, “3”,..., “N” are attached.

上記溶接汎用機2は、溶接電源部21と、溶接トランス22及び整流回路23を含んで構成されており、図示しないが、溶接電源部21は、前記三相交流電源1からの三相交流を直流に変換するコンバータと、直流を平滑化するコンデンサ及び平滑化された直流を高周波の交流に変換するインバータを備えている。そして、溶接電源部21の出力端には前記溶接トランス22の一次側コイルL1が接続され、溶接トランス22の二次側コイルL2には前記整流回路23が接続されている。ここで、整流回路23は、溶接トランス22の二次側コイルL2に誘起された高周波電流を全波整流するものであって、2つのダイオードD1,D2を備えている。   The welding general-purpose machine 2 includes a welding power source unit 21, a welding transformer 22 and a rectifier circuit 23. Although not shown, the welding power source unit 21 receives three-phase AC from the three-phase AC power source 1. A converter for converting to direct current, a capacitor for smoothing direct current, and an inverter for converting the smoothed direct current to high frequency alternating current are provided. The primary side coil L1 of the welding transformer 22 is connected to the output end of the welding power source 21, and the rectifier circuit 23 is connected to the secondary side coil L2 of the welding transformer 22. Here, the rectifier circuit 23 performs full-wave rectification on the high-frequency current induced in the secondary coil L2 of the welding transformer 22, and includes two diodes D1 and D2.

ところで、前記n個の各上部電極6−1,6−2,…,6−nと下部電極7−1,7−2,…,7−nはそれぞれ独立に構成されており、上部電極6−1,6−2,…,6−nは、各々接続ラインa1,a2,…,anを介して前記整流回路23の(+)端子に並列に接続され、下部電極7−1,7−2,…,7−nは、各々接続ラインb1,b2,…,bnを介して前記整流回路23の(−)端子に並列に接続されている。そして、上部電極6−1,6−2,…,6−nの接続ラインa1,a2,…,anと下部電極7−1,7−2,…,7−nの接続くラインb1,b2,…,bnの各々には、電気的な導通をON/OFFするスイッチング素子としてのIGBT(Insulated Gate Bipolar Transistor )がそれぞれ直列に接続されている。尚、各接続ラインa1,a2,…,an及びb1,b2,…,bnにそれぞれ接続された各一対のIGBTを図1の左端から順にIGBT−1,IGBT−2,…,IGBT−nと表示する。   The n upper electrodes 6-1, 6-2,..., 6-n and the lower electrodes 7-1, 7-2,. -1,6-2,..., 6-n are connected in parallel to the (+) terminal of the rectifier circuit 23 via connection lines a1, a2,. 2,..., 7-n are connected in parallel to the (−) terminal of the rectifier circuit 23 via connection lines b1, b2,. Then, connection lines a1, a2,..., An of the upper electrodes 6-1, 6-2,..., 6-n and lines b1, b2 connecting the lower electrodes 7-1, 7-2,. ,..., Bn are respectively connected in series with IGBTs (Insulated Gate Bipolar Transistors) as switching elements for turning on / off electrical conduction. It should be noted that a pair of IGBTs connected to each of the connection lines a1, a2,..., An and b1, b2,..., Bn are IGBT-1, IGBT-2,. indicate.

そして、接続ラインa1,a2,…,anと接続ラインb1,b2,…,bnにそれぞれ接続された各n個のIGBT−1,IGBT−2,…,IGBT−nは、前記IGBT制御回路4にそれぞれ接続されている。ここで、IGBT制御回路4は、前記溶接制御回路3から送信されるIGBT選択信号によって、駆動(ON/OFF)すべきIGBTを選択するとともに、同じく溶接制御回路3から送信されるIGBT開閉信号に基づいて、選択されたIGBTをON/OFFするものであって、本実施の形態では、相対向する一対の上部電極6−1,6−2,…,6−nと下部電極7−1,7−2,…,7−nの各接続ラインa1とb1,a2とb2,…,anとbnにそれぞれ接続された一対のIGBT−1,IGBT−2,…,IGBT−nを同時且つ順番にON/OFFして被溶接物である2枚の金属板(ワーク)W1,W2の各溶接点への溶接電流の供給を切り替える制御手段を構成している。   .., An and the n IGBT-1, IGBT-2,..., IGBT-n respectively connected to the connection lines b1, b2,. Are connected to each. Here, the IGBT control circuit 4 selects an IGBT to be driven (ON / OFF) based on the IGBT selection signal transmitted from the welding control circuit 3, and uses the IGBT open / close signal transmitted from the welding control circuit 3 as well. In this embodiment, the selected IGBT is turned on / off. In the present embodiment, a pair of upper electrodes 6-1, 6-2,. .., 7-n, and a pair of IGBT-1, IGBT-2,..., IGBT-n connected to the respective connection lines a1 and b1, a2 and b2,. The control means is configured to switch the supply of the welding current to each welding point of the two metal plates (workpieces) W1 and W2 which are ON / OFF.

他方、前記溶接制御回路3は、前記溶接起動スイッチ5から発信される溶接開始信号を受けて前記汎用溶接機2に溶接開始信号を送信し、予め設定された大きさの溶接電流を予め設定された所定の通電時間だけ所定の溶接点に流すよう指令を発するとともに、汎用溶接機2から発信される溶接終了信号を受信すると、IGBT制御回路4に対してIGBT開閉信号を出力してON状態にある一対のIGBTをOFFするとともに、IGBT選択信号をIGBT制御回路4に送信して次の一対のIGBTを選択し、その一対のIGBTを同時にONする。以後、溶接制御回路3は、同様の作用をn回繰り返す。   On the other hand, the welding control circuit 3 receives a welding start signal transmitted from the welding start switch 5 and transmits a welding start signal to the general-purpose welding machine 2, and a welding current having a preset magnitude is set in advance. When the welding end signal transmitted from the general-purpose welding machine 2 is received, the IGBT control circuit 4 is output with an IGBT open / close signal and turned on. A pair of IGBTs are turned OFF, an IGBT selection signal is transmitted to the IGBT control circuit 4 to select the next pair of IGBTs, and the pair of IGBTs are turned ON simultaneously. Thereafter, the welding control circuit 3 repeats the same action n times.

次に、以上の構成を有するマルチスポット溶接装置による被溶接物の多点溶接を図2を参照しながら説明する。尚、図2は被溶接物の溶接点への通電制御を示すタイミングチャートである。   Next, multi-point welding of an object to be welded by the multi-spot welding apparatus having the above configuration will be described with reference to FIG. FIG. 2 is a timing chart showing energization control to the welding point of the workpiece.

図1に示すように、被溶接物として2枚の金属板(ワーク)W1,W2を多点溶接(本実施の形態では、n点溶接)する場合には、これら2枚の金属板W1,W2を上下に重ね合わせてこれらを各n個の上部電極6−1,6−2,…,6−nと下部電極7−1,7−2,…,7−nによって挟持し、不図示の加圧機構によって2枚の金属板W1,W2を上部電極6−1,6−2,…,6−nと下部電極7−1,7−2,…,7−nによって加圧する。   As shown in FIG. 1, when two metal plates (workpieces) W1 and W2 are welded as multi-point welding (in this embodiment, n-point welding), these two metal plates W1 and W2 are welded. W2 are stacked one above the other and sandwiched between n upper electrodes 6-1, 6-2,..., 6-n and lower electrodes 7-1, 7-2,. The two metal plates W1, W2 are pressurized by the upper electrodes 6-1, 6-2,..., 6-n and the lower electrodes 7-1, 7-2,.

上記状態において、溶接起動スイッチ5がONされて溶接制御回路3に対して溶接開始の信号が出力されると、溶接制御回路3は、IGBT制御回路4にIGBT選択信号を送信して例えば溶接点の第1点に対応する一対のIGBT(本実施の形態では、番号「1」の上部電極6−1と下部電極6−2の接続ラインa1,b1に接続された一対のIGBT−1)を選択するとともに、IGBT開閉信号をIGBT制御回路4に送信し、選択された一対のIGBT−1を図2に示すように同時にONする。すると、第1の溶接点における上部電極6−1と下部電極7−1が間に金属板W1,W2を介して導通状態となる。尚、このとき、他の各一対のIGBT−2,IGBT−3,…,IGBT−nは全てOFF状態にあって、接続ラインa2とb2,a3とb3,…,anとbnは全て非導通状態にある。   In the above state, when the welding start switch 5 is turned on and a welding start signal is output to the welding control circuit 3, the welding control circuit 3 transmits an IGBT selection signal to the IGBT control circuit 4, for example, a welding point. A pair of IGBTs corresponding to the first point (in this embodiment, a pair of IGBTs 1 connected to the connection lines a1 and b1 of the upper electrode 6-1 and the lower electrode 6-2 with the number "1") At the same time, an IGBT open / close signal is transmitted to the IGBT control circuit 4, and the selected pair of IGBT-1 is simultaneously turned ON as shown in FIG. Then, the upper electrode 6-1 and the lower electrode 7-1 at the first welding point are in a conductive state via the metal plates W1 and W2. At this time, the other pairs of IGBT-2, IGBT-3,..., IGBT-n are all in the OFF state, and the connection lines a2 and b2, a3 and b3,. Is in a state.

又、溶接制御回路3は、汎用溶接機2に対して第1点目の溶接点に対して溶接電流を流すための指令として溶接開始信号(第1溶接開始信号)を出力する。すると、図2に示すように、汎用溶接機2の整流回路23において整流された高周波電流が導通状態にある番号「1」の上部電極6−1と下部電極間7−1間に所定の通電時間t1だけ流れ、これによって2枚の金属板W1,W2は第1点目の溶接点がスポット溶接される。尚、スポット溶接する溶接点の順番(つまり、ON/OFFするIGBTの順番)と各溶接点に流される溶接電流の大きさ及び通電時間は予め任意に設定されており、これらは溶接制御回路3に内蔵された不図示のメモリに記憶されている。   In addition, the welding control circuit 3 outputs a welding start signal (first welding start signal) as a command for flowing a welding current to the first welding point with respect to the general-purpose welding machine 2. Then, as shown in FIG. 2, predetermined energization is performed between the upper electrode 6-1 and the lower electrode 7-1 of the number “1” in which the high-frequency current rectified in the rectifier circuit 23 of the general-purpose welding machine 2 is in a conductive state. The first welding point is spot-welded on the two metal plates W1 and W2 by the flow of time t1. Note that the order of the welding points to be spot-welded (that is, the order of IGBTs to be turned ON / OFF), the magnitude of the welding current passed through each welding point, and the energization time are arbitrarily set in advance. These are the welding control circuit 3. Is stored in a memory (not shown) incorporated in the memory.

ところで、本実施の形態では、金属板W1,W2に対しては図1の左端から順番(つまり、番号「1」,「2」,「3」,…,「n」の順番)にスポット溶接するよう設定されており、前述のように汎用溶接機2から第1点目の溶接点に対して溶接電流が所定の通電時間t1だけ流されると、汎用溶接機2から溶接終了信号(第1溶接終了信号)が溶接制御回路3に送信される。すると、溶接制御回路3は、IGBT制御回路4に対してIGBT選択信号を出力して次の第2点目の溶接点に対応する一対のIGBT−2を選択し、図2に示すように、前の第1点目の溶接点に対応するIGBT−1をOFFした後、選択した次の第2点目のIGBT−2をONする。すると、第1点目の溶接点における上部電極6−1と下部電極7−1の導通が遮断されるとともに、第2点目の溶接点における上部電極6−2と下部電極7−2が導通状態となる。   By the way, in the present embodiment, spot welding is sequentially performed on the metal plates W1 and W2 from the left end in FIG. 1 (that is, in the order of numbers “1”, “2”, “3”,..., “N”). When the welding current is passed from the general-purpose welding machine 2 to the first welding point for a predetermined energization time t1 as described above, the welding end signal (first A welding end signal) is transmitted to the welding control circuit 3. Then, the welding control circuit 3 outputs an IGBT selection signal to the IGBT control circuit 4 and selects a pair of IGBT-2 corresponding to the next second welding point, as shown in FIG. After turning off IGBT-1 corresponding to the previous first point welding point, the next selected second point IGBT-2 is turned on. Then, the conduction between the upper electrode 6-1 and the lower electrode 7-1 at the first welding point is interrupted, and the upper electrode 6-2 and the lower electrode 7-2 at the second welding point are conducted. It becomes a state.

又、溶接制御回路3は、汎用溶接機2に対して第2点目の溶接点に対して溶接電流を流すための指令として溶接開始信号(第2溶接開始信号)を出力する。すると、図2に示すように、汎用溶接機2において整流された高周波電流が導通状態にある番号「2」の上部電極6−2と下部電極7−2間に所定の通電時間t2だけ流れ、これによって2枚の金属板W1,W2は第2点目の溶接点がスポット溶接される。   In addition, the welding control circuit 3 outputs a welding start signal (second welding start signal) as a command for flowing a welding current to the second welding point with respect to the general-purpose welding machine 2. Then, as shown in FIG. 2, the high-frequency current rectified in the general-purpose welding machine 2 flows between the upper electrode 6-2 and the lower electrode 7-2 of the number “2” in the conductive state for a predetermined energization time t2, As a result, the second welding point of the two metal plates W1, W2 is spot-welded.

以後同様にして、3点目以降の各一対のIGBT−3,…,IGBT−nのON/OFFが順次切り替えられ、金属板W1,W2の第3点目,…,第n点目に、予め設定された大きさの溶接電流が予め設定された通電時間t3,…,tnだけそれぞれ流され、2枚の金属板W1,W2の第1点〜第n点の計n個の溶接点に対するスポット溶接がこの順に順次連続的になされる。   Thereafter, similarly, ON / OFF of each pair of IGBT-3,..., IGBT-n after the third point is sequentially switched, and the third point,..., Nth point of the metal plates W1, W2 A welding current having a preset magnitude is supplied for a preset energization time t3,..., Tn, respectively, and is applied to a total of n welding points from the first point to the nth point of the two metal plates W1, W2. Spot welding is successively performed in this order.

以上のように、本実施の形態においては、複数の上部電極6−1,6−2,…,6−nと溶接電源(本実施の形態では、汎用溶接機2)との各接続ラインa1,a2,…anのみならず、複数の下部電極7−1−7−2,…,7−nと溶接電源との各接続ラインb1,b2,…,bnにもスイッチング素子としてのIGBT−1,IGBT−2,…,IGBT−nをそれぞれ設け、各一対のIGBT−1,IGBT−2,…,IGBT−nを同時且つ順番にON/OFFして被溶接物である金属板W1,W2の計n個の各溶接点への溶接電流の供給を切り替えることによって、金属板W1,W2のn個の溶接点に溶接電流を順番に流すようにしたため、溶接電流の他の溶接点へのリークが確実に防がれ、各溶接点において安定した溶接条件が確保されて溶接効率が高められ、各溶接点での溶接が均質化されて溶接品質の向上が図られる。   As described above, in the present embodiment, each connection line a1 between the plurality of upper electrodes 6-1, 6-2, ..., 6-n and the welding power source (general-purpose welding machine 2 in the present embodiment). , A2,... An as well as connection lines b1, b2,..., Bn between the plurality of lower electrodes 7-1-7-2,. , IGBT-2,..., IGBT-n, respectively, and a pair of IGBT-1, IGBT-2,. Since the welding current is sequentially supplied to the n welding points of the metal plates W1 and W2 by switching the supply of the welding current to each of the n welding points in total, the welding current is supplied to the other welding points. Leakage is reliably prevented, and stable welding conditions at each welding point Welding efficiency is increased is coercive, improvement in the welding quality can be achieved by welding the homogenization at each weld point.

又、溶接電流を全溶接点に一度に流すのではなく、各溶接点に順番に流すようにしたため、大電流を各溶接点に流すことができ、高い溶接効率を確保することができるとともに、高速化を実現して溶接時間の短縮化を図ることができる。   In addition, since the welding current is not flowed to all the welding points at once, but it is made to flow to each welding point in order, a large current can be flowed to each welding point, and high welding efficiency can be ensured, Speeding up can be realized and welding time can be shortened.

更に、通電制御方式として断続制御方式が採用されるため、各溶接点に供給される溶接電流の値及び通電時間、更には通電する溶接点の順番を任意に設定することができ、各溶接点毎に適した最適電流制御が可能となって高い溶接品質を確保することができる。   Furthermore, since the intermittent control method is adopted as the energization control method, the value of the welding current supplied to each welding point, the energizing time, and the order of the welding points to be energized can be arbitrarily set. Optimum current control suitable for each is possible, and high welding quality can be ensured.

尚、本実施の形態では、通電する溶接点の順番を図1の左端からの番号「1」,「2」,…,「n」の順としたが、この順番は溶接条件等に応じて任意に設定することができる。   In this embodiment, the order of the welding points to be energized is the order of numbers “1”, “2”,..., “N” from the left end in FIG. It can be set arbitrarily.

本発明は、複数の溶接点に対して1点ずつ順番に溶接していく方式のマルチスポット溶接装置に対して有用である。   The present invention is useful for a multi-spot welding apparatus that welds a plurality of welding points one by one in order.

本発明に係るマルチスポット溶接装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the multi-spot welding apparatus which concerns on this invention. 本発明に係るマルチスポット溶接装置における通電制御を示すタイミングチャートである。It is a timing chart which shows the electricity supply control in the multi spot welding apparatus which concerns on this invention.

符号の説明Explanation of symbols

1 三相交流電源(溶接電源)
2 汎用溶接機
3 溶接制御回路(制御手段)
4 IGBT制御回路(制御手段)
5 溶接起動スイッチ
6−1,…,6−n 上部電極
7−1,…,7−n 下部電極
21 溶接電源部
22 溶接トランス
23 整流回路
a1,…,an 上部電極の接続ライン
b1,…,bn 下部電極の接続ライン
D1,D2 ダイオード
IGBT−1,…,IGBT−n スイッチング素子
L1 溶接トランスの一次側コイル
L2 溶接トランスの二次側コイル
t1,…,tn 通電時間
W1,W2 金属板(被溶接物)
1 Three-phase AC power supply (welding power supply)
2 General-purpose welding machine 3 Welding control circuit (control means)
4 IGBT control circuit (control means)
5 Welding start switch 6-1, ..., 6-n Upper electrode 7-1, ..., 7-n Lower electrode 21 Welding power source 22 Welding transformer 23 Rectifier circuit a1, ..., an Upper electrode connection line b1, ..., bn Lower electrode connection line D1, D2 Diode IGBT-1, ..., IGBT-n Switching element L1 Welding transformer primary coil L2 Welding transformer secondary coil t1, ..., tn Energizing time W1, W2 Metal plate (covered Welded)

Claims (3)

複数の上部電極とこれと同数の下部電極で被溶接物を挟持加圧しつつ、溶接電源から両電極間に溶接電流を流すことによって、被溶接物を多点溶接するマルチスポット溶接装置であって、
複数の前記上部電極と前記下部電極を前記溶接電源に各々並列に接続するとともに、これらの上部電極と下部電極の各接続ラインにスイッチング素子を各々直列に接続し、相対向する一対の上部電極と下部電極の各接続ラインに設けられた一対の前記スイッチング素子を同時且つ順番にON/OFFして被溶接物の各溶接点への溶接電流の供給を切り替える制御手段を設け、被溶接物の複数の溶接点に溶接電流を順番に流すことを特徴とするマルチスポット溶接装置。
A multi-spot welding apparatus for performing multi-point welding of a workpiece by passing a welding current between both electrodes from a welding power source while sandwiching and pressing the workpiece with a plurality of upper electrodes and the same number of lower electrodes. ,
A plurality of the upper electrode and the lower electrode are connected in parallel to the welding power source, and a switching element is connected in series to each connection line of the upper electrode and the lower electrode, and a pair of upper electrodes facing each other, A control means is provided for switching the supply of welding current to each welding point of the work piece by simultaneously turning on and off the pair of switching elements provided in each connection line of the lower electrode in order, A multi-spot welding apparatus, wherein a welding current is passed through the welding points in order.
前記制御手段は、予め設定された順番に従って各一対の前記スイッチング素子を同時にON/OFFすることを特徴とする請求項1記載のマルチスポット溶接装置。   The multi-spot welding apparatus according to claim 1, wherein the control means simultaneously turns on / off each pair of the switching elements according to a preset order. 前記制御手段は、一対の前記スイッチング素子がONしている間に、前記溶接電源から各溶接点に、予め設定された所定の大きさの溶接電流を予め設定された所定時間だけ流すことを特徴とする請求項1又は2記載のマルチスポット溶接装置。   The control means causes a welding current of a predetermined magnitude to flow from the welding power source to each welding point for a preset predetermined time while the pair of switching elements are ON. The multi-spot welding apparatus according to claim 1 or 2.
JP2005051183A 2005-02-25 2005-02-25 Multi-spot welding equipment Pending JP2006231379A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005051183A JP2006231379A (en) 2005-02-25 2005-02-25 Multi-spot welding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005051183A JP2006231379A (en) 2005-02-25 2005-02-25 Multi-spot welding equipment

Publications (1)

Publication Number Publication Date
JP2006231379A true JP2006231379A (en) 2006-09-07

Family

ID=37039599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005051183A Pending JP2006231379A (en) 2005-02-25 2005-02-25 Multi-spot welding equipment

Country Status (1)

Country Link
JP (1) JP2006231379A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205473A (en) * 2010-12-23 2011-10-05 浙江豪情汽车制造有限公司 Welding leakage prevention spot-welding machine
CN103521964A (en) * 2013-10-31 2014-01-22 东风汽车有限公司 Welding leakage prevention device of spot welding machine
CN103817406A (en) * 2014-02-21 2014-05-28 唐山松下产业机器有限公司 Welding power source management system and management method thereof
CN104483901A (en) * 2014-12-04 2015-04-01 重庆大东汽车配件有限公司 Leakage-proof nut detection device and detection method for preventing lack of weld
CN114789291A (en) * 2022-03-30 2022-07-26 广汽本田汽车有限公司 Spot welding device and using method thereof

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102205473A (en) * 2010-12-23 2011-10-05 浙江豪情汽车制造有限公司 Welding leakage prevention spot-welding machine
CN103521964A (en) * 2013-10-31 2014-01-22 东风汽车有限公司 Welding leakage prevention device of spot welding machine
CN103817406A (en) * 2014-02-21 2014-05-28 唐山松下产业机器有限公司 Welding power source management system and management method thereof
CN104483901A (en) * 2014-12-04 2015-04-01 重庆大东汽车配件有限公司 Leakage-proof nut detection device and detection method for preventing lack of weld
CN114789291A (en) * 2022-03-30 2022-07-26 广汽本田汽车有限公司 Spot welding device and using method thereof

Similar Documents

Publication Publication Date Title
US20240316674A1 (en) Methods and apparatus to provide welding power
CN1180599A (en) Method and apparatus for controlling resistance welding
JP2006007313A (en) Power source for high current welding
US20170189986A1 (en) Welding Power Supply With Half Bridge
JP2006231379A (en) Multi-spot welding equipment
US20140175065A1 (en) Welding-Current Control Method of the Resistance Welding Machine and Welding-Current Control Device
JP2000052051A (en) Inverter type resistance welding control device
JP2012045569A (en) Resistance welding method and resistance welding device
JP6460121B2 (en) Power supply device, joining system, and energization processing method
EP3415262A1 (en) Direct contact- and alternating current trapezoidal wave-based electric resistance welding process method of aluminum
TW458832B (en) Resistance welder
JP2011110565A (en) Power source device for arc welding
JPH1085947A (en) Method and device for controlling resistance welding
JP6421947B2 (en) Welding apparatus and welding method
JPH08197260A (en) Inverter control ac resistance welding equipment and its resistance welding method
JP2013166162A (en) Welding tip and resistance welding equipment
JP2002210566A (en) Metal member joining method, and ac waveform inverter type power source device
JP2011167716A (en) Resistance welding control method
KR100935008B1 (en) Device for selecting electricity power in the inverter welding machine
JP2013010105A (en) Resistance welding method and resistance welding apparatus
WO2004001940A1 (en) High-current power supply using storage battery
EP3415261B1 (en) Method for producing tubular radiators by welding and corresponding welding apparatus
US20180304397A1 (en) Direct-contact type alternating current trapezoidal wave aluminum resistance welding process method
KR100360596B1 (en) Resistance welding machine
KR0182848B1 (en) Mode control apparatus of composite welding system and the method