JP2006231106A - Offensive odor prevention method and offensive odor prevention system - Google Patents

Offensive odor prevention method and offensive odor prevention system Download PDF

Info

Publication number
JP2006231106A
JP2006231106A JP2005045349A JP2005045349A JP2006231106A JP 2006231106 A JP2006231106 A JP 2006231106A JP 2005045349 A JP2005045349 A JP 2005045349A JP 2005045349 A JP2005045349 A JP 2005045349A JP 2006231106 A JP2006231106 A JP 2006231106A
Authority
JP
Japan
Prior art keywords
ozone
tank
air
load
exhaust
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005045349A
Other languages
Japanese (ja)
Other versions
JP5179704B2 (en
Inventor
Hitoshi Inaba
仁 稲葉
Minehiko Sato
峰彦 佐藤
Shigeki Kamiya
成毅 神谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2005045349A priority Critical patent/JP5179704B2/en
Publication of JP2006231106A publication Critical patent/JP2006231106A/en
Application granted granted Critical
Publication of JP5179704B2 publication Critical patent/JP5179704B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To realize the prevention of offensive odor generation from a waste water storage tank at a low cost; to facilitate the design and construction of an odor prevention system. <P>SOLUTION: When ozone concentration in a gas phase in a storage tank 1 storing waste water where BOD load and organic SS load exist and their total is less than 50 kg/m<SP>3</SP>is D (ppb), discharge air quantity is E (m<SP>3</SP>/h), the half-life of ozone in air is τ (h), the upper target value of discharged ozone concentration control is D' (ppb), and the volume inside of an air discharge system of the storage tank 1 is V (m<SP>3</SP>) the volume inside of the air discharge system, V, is set so as to satisfy the following equation: V>τ×(log(D/D')/log2)×E. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はBOD(Biochemical Oxygen Demand:生化学的酸素要求量)負荷と,有機性SS(Suspended solid:浮遊物質)負荷が存在する廃水を貯留する槽からの悪臭の発生を防止するための方法及びシステムに関するものである。   The present invention relates to a method for preventing generation of malodor from a tank storing wastewater in which a BOD (Biochemical Oxygen Demand) load and an organic SS (Suspended solid) load exist. It is about the system.

前記したような有機性負荷のある廃水である厨房廃水や雑排水の一時貯留槽(流量調整槽含む)においては,一般的には送気を行わないために,流入水の流入が長時間途絶えた場合などには,貯留廃水は嫌気状態となって悪臭が発生し,通気管経由で屋外に臭気が放出されたり,マンホールの隙間などから悪臭が漏洩し,建物内に臭気が放出され問題になっている。   In the kitchen wastewater and wastewater temporary storage tanks (including flow control tanks), which are wastewater with organic loads as described above, inflow of inflow water has been interrupted for a long time because air is not generally supplied. In such a case, the stored wastewater becomes anaerobic and bad odor is generated, and the odor is released to the outside through the ventilation pipe. It has become.

それに対処するため,最近では大型の爽雑物をろ過した後,当該ろ過後の廃水中にオゾン含有空気を供給して浄化処理することが提案されている(特許文献1)。また浄化槽で発生した臭いについては,浄化槽の上部空間や廃水中にオゾンを直接供給し,空気層におけるオゾン濃度を0.1ppm以下に維持して,これを脱臭することが提案されている(特許文献2)。   In order to cope with this, recently, it has been proposed to purify a large-sized waste by supplying ozone-containing air into the wastewater after the filtration (Patent Document 1). As for the odor generated in the septic tank, it has been proposed that ozone is supplied directly to the upper space of the septic tank or waste water, and the ozone concentration in the air layer is maintained below 0.1 ppm to deodorize it (patent) Reference 2).

特開平9−314166号公報JP-A-9-314166 特開2000−233192号公報JP 2000-233192 A

しかしながら特許文献1に記載の従来の技術は,ろ過後の廃水中に十分な酸素を与えて,好気性バクテリアを活性させ,当該好気性バクテリアによって生活雑排水を浄化処理させるものである。そのため好気性バクテリアの繁殖環境を整えるため,前段でろ過処理する必要があり,また場合によっては,繁殖している好気性バクテリア自体から臭いが発生するおそれがある。また特許文献1に記載の技術は,BODを30ppm以下にするという,浄化処理自体が目的であるため,供給するオゾン含有空気の供給量が多く,そのために必要な設備,エネルギーが必要である。   However, the conventional technique described in Patent Document 1 provides sufficient oxygen to the wastewater after filtration to activate the aerobic bacteria, and the household wastewater is purified by the aerobic bacteria. For this reason, it is necessary to perform filtration in the previous stage in order to prepare a breeding environment for aerobic bacteria, and in some cases, there is a possibility that odors may be generated from the aerobic bacteria that are breeding. In addition, since the technology described in Patent Document 1 is intended to purify the BOD to be 30 ppm or less, the supply amount of ozone-containing air to be supplied is large, and necessary equipment and energy are required for this purpose.

一方特許文献2に記載のものでは,浄化槽の上部空間や廃水中にオゾンを直接供給し,空気層におけるオゾン濃度を0.1ppm以下に維持して,これを脱臭することが提案されているが,空気層側での脱臭に必要なオゾン濃度は臭気成分濃度と処理時間に依存している点,残量オゾンの濃度が分解半減期にも依存している点に考慮されていない。したがって,かかる従来技術では,空気層における所定のオゾン濃度を維持するために,過大な設備や,過剰な排気風量,処理容積を設計したり,必要以上にエネルギーを消費して,コストがかさんでいるという問題があった。   On the other hand, in the one described in Patent Document 2, it is proposed that ozone is directly supplied to the upper space of the septic tank or wastewater, and the ozone concentration in the air layer is maintained at 0.1 ppm or less to deodorize it. The ozone concentration required for deodorization on the air layer side is not taken into account in that it depends on the odor component concentration and the treatment time, and that the remaining ozone concentration also depends on the decomposition half-life. Therefore, in this conventional technology, in order to maintain a predetermined ozone concentration in the air layer, excessive equipment, excessive exhaust air volume and processing volume are designed, energy is consumed more than necessary, and costs increase. There was a problem of being out.

本発明はかかる点に鑑みてなされたものであり,オゾンの分解半減期をも考慮して所定の残留イオン濃度を達成し,また前記した従来技術におけるオゾン含有空気の供給量よりも少ない量で,貯留槽からの悪臭の発生を防止することを目的とするものである。   The present invention has been made in view of such a point, and achieves a predetermined residual ion concentration in consideration of the decomposition half-life of ozone, and in an amount smaller than the supply amount of ozone-containing air in the prior art described above. The purpose is to prevent the generation of malodor from the storage tank.

前記目的を達成するため,本発明は,BOD負荷と有機性SS負荷が存在し,BOD負荷+有機性SS負荷の合計が50kg/m未満の廃水を貯留している槽からの悪臭発生を防止するために,オゾン含有空気を前記槽内の廃水中に供給する方法であって,前記槽内における気相中のオゾン濃度をD[ppb(volppb)],前記槽からの排気風量をE[m/h],気中でのオゾンの半減期をτ[h],前記槽の排気系からのオゾン排出濃度制御上限目標値をD’[ppb(volppb)],前記槽の排気系内容積をV[m]としたとき,以下の式を満たすように,排気系内容積Vを設定することを特徴としている。
V>τ×(log(D/D’)/log2)×E
In order to achieve the above object, the present invention detects the generation of malodor from a tank in which waste water having BOD load and organic SS load is present and the sum of BOD load + organic SS load is less than 50 kg / m 3. In order to prevent this, a method of supplying ozone-containing air into the waste water in the tank, wherein the ozone concentration in the gas phase in the tank is D [ppb (volppb)], and the amount of exhaust air from the tank is E [M 3 / h], half-life of ozone in the air τ [h], ozone discharge concentration control upper limit target value from the exhaust system of the tank D ′ [ppb (volppb)], exhaust system of the tank When the internal volume is V [m 3 ], the exhaust system internal volume V is set so as to satisfy the following formula.
V> τ × (log (D / D ′) / log2) × E

濃度上限目標値D’は,例えば作業環境基準値100ppb(volppb:容積ppb。以下,本明細書において特に断りがないときには,「ppb」は「容積ppb」を示している)や生活環境基準値50ppbが採用される。そして廃水面近傍空間のオゾン濃度Dは,100〜1000ppb程度になるよう供給オゾン量および空気量を設定することになる。   The concentration upper limit target value D ′ is, for example, a work environment reference value of 100 ppb (volppb: volume ppb; hereinafter, “ppb” indicates “volume ppb” unless otherwise specified) or a living environment reference value 50 ppb is adopted. Then, the supply ozone amount and the air amount are set so that the ozone concentration D in the space near the waste water surface is about 100 to 1000 ppb.

例えば溶解しないで廃水面上に500ppbのオゾン濃度でオゾン含有空気が給気された場合,空気供給量を5m/hとすると,排気口での濃度を100ppb,気中でのオゾン半減期を1.5hとすると,排気系容積Vを,
V>1.5×(log(500/100)/log2)×5・[m]=17m
とすることで,排気口におけるオゾンの濃度は,100ppbとなる。
For example, when ozone-containing air is supplied to the wastewater surface at an ozone concentration of 500 ppb without dissolving, assuming that the air supply rate is 5 m 3 / h, the concentration at the exhaust port is 100 ppb and the ozone half-life in the air is Assuming 1.5h, the exhaust system volume V is
V> 1.5 × (log (500/100) / log2) × 5 · [m 3 ] = 17 m 3
By doing so, the concentration of ozone in the exhaust port becomes 100 ppb.

したがって,オゾンの濃度を常時監視する必要はなく。設計段階で適切な処理システムを構築することが可能になる。つまり廃水中に溶けずに気中に放出されたオゾンを所定の濃度まで減衰させるための排気系容積を設計段階で容易に確保かることが可能である。   Therefore, there is no need to constantly monitor the ozone concentration. An appropriate processing system can be constructed at the design stage. That is, it is possible to easily secure an exhaust system volume for attenuating ozone released into the air without being dissolved in the wastewater to a predetermined concentration at the design stage.

また前記オゾン含有空気の一日当たりの供給量Q[kg/日]については,
Q<{(BOD負荷+SS負荷)kg/日}×50であり,
前記オゾン含有空気中の純水オゾンの1日あたりの供給量Qオゾン[kg/日]は,
{(BOD負荷+SS負荷)kg/日}×0.0001<Qオゾン<{(BOD負荷+SS負荷)kg/日}×0.05,
としてもよい。
Regarding the daily supply amount Q [kg / day] of the ozone-containing air,
Q <{(BOD load + SS load) kg / day} × 50,
Supply amount Q ozone [kg / day] per day of pure water ozone in the ozone-containing air is
{(BOD load + SS load) kg / day} × 0.0001 <Q ozone <{(BOD load + SS load) kg / day} × 0.05,
It is good.

まずオゾン含有空気の一日当たりの供給量Qは,発明者らの知見によれば,{(BOD負荷+SS負荷)kg/日}の50倍程度あれば,脱臭目的,攪拌効果が十分達せられる。したがってブロワやポンプ等の機材については,この条件を満たす程度のものを採用すればよく,その分設置スペース,消費エネルギー,コスト等が節減できる。   First, according to the knowledge of the inventors, if the supply amount Q of ozone-containing air per day is about 50 times {(BOD load + SS load) kg / day}, the deodorizing purpose and the stirring effect can be sufficiently achieved. Therefore, it is sufficient to use equipment such as a blower and a pump that satisfies this condition, and the installation space, energy consumption, cost, etc. can be saved accordingly.

オゾン含有空気の1日あたりの供給量の下限については,オゾン発生器の性能,つまり発生オゾン濃度によって下限値は自ずと決定される。例えば空気を原料とするオゾン発生器を使用する場合,生成されるオゾン濃度は高くても1%程度なので,空気は99%含まれることになる。   The lower limit of the daily supply of ozone-containing air is naturally determined by the performance of the ozone generator, that is, the generated ozone concentration. For example, when an ozone generator using air as a raw material is used, since the generated ozone concentration is about 1% at the highest, 99% of the air is included.

一方オゾン含有空気中の純水オゾンの1日あたりの供給量Qオゾン[kg/日]の下限値は,防臭目的から考慮して,発明者らの知見によれば,{(BOD負荷+SS負荷)kg/日}×0.0001は必要であるとの観点から設定されている。また供給量Qオゾン[kg/日]の上限値については,{(BOD負荷+SS負荷)kg/日}の0.05倍以上になると,設備,使用する機材,例えばオゾン発生器が大型化,高価格化するので,コスト面を考慮すると{(BOD負荷+SS負荷)kg/日}の0.05倍未満程度でよいと考えられる。   On the other hand, the lower limit value of the supply amount Q ozone [kg / day] per day of pure water ozone in ozone-containing air is considered as {(BOD load + SS load) according to the knowledge of the inventors in consideration of deodorization purposes. ) Kg / day} × 0.0001 is set from the viewpoint of necessity. If the upper limit of supply amount Q ozone [kg / day] is 0.05 times or more than {(BOD load + SS load) kg / day}, the equipment and equipment to be used, such as an ozone generator, will become larger. Since the price increases, considering the cost, it may be less than 0.05 times {(BOD load + SS load) kg / day}.

本発明の防臭システムは,前記防臭方法を実施できるシステムとして構築され,貯留槽の廃水内にオゾン含有空気を供給する供給管と,前記槽内の雰囲気を槽外部に排気する排気管と,オゾン発生装置で発生したオゾンと,空気とを混合して前記供給管に送るオゾン含有空気供給装置とを備えている。そして前記槽内における気相中のオゾン濃度をD[ppb(volppb)],前記槽からの排気風量をE[m/h],気中でのオゾンの半減期をτ[h],前記槽の排気系からのオゾン排出濃度制御上限目標値をD’[ppb(volppb)],前記槽の排気系内容積をV[m]としたとき,以下の式を満たすように,排気系内容積Vが設定されている。
V>τ×(log(D/D’)/log2)×E
The deodorization system of the present invention is constructed as a system capable of carrying out the deodorization method, and includes a supply pipe for supplying ozone-containing air into the waste water of the storage tank, an exhaust pipe for exhausting the atmosphere in the tank to the outside of the tank, An ozone-containing air supply device that mixes ozone generated by the generator and air and sends the mixture to the supply pipe is provided. The ozone concentration in the gas phase in the tank is D [ppb (volppb)], the exhaust air volume from the tank is E [m 3 / h], the half-life of ozone in the air is τ [h], When the upper limit target value of ozone emission concentration control from the tank exhaust system is D ′ [ppb (volppb)] and the volume of the exhaust system inside the tank is V [m 3 ], the exhaust system is satisfied so that the following formula is satisfied. An internal volume V is set.
V> τ × (log (D / D ′) / log2) × E

なおシステムとして構築した場合,排気系内容積は,貯留層の水面上方の空間(いわゆる気相部分)及び排気管の内部(大気に通ずる排気口までの部分)を合計した容積を意味している。   When constructed as a system, the internal volume of the exhaust system means the total volume of the space above the water surface of the reservoir (so-called gas phase part) and the inside of the exhaust pipe (the part up to the exhaust port leading to the atmosphere). .

本発明において防臭システムを構築した場合,前記排気管を流れるオゾンの濃度を測定するセンサと,前記センサの測定結果に基づいて,前記オゾン含有空気供給装置からの供給を制御する制御装置とをさらに有するようにしてもよい。これによって,オゾン濃度が所定値以上になれば,オゾンの廃水中での消費量が減少したということになり,これは臭気発生源である菌を含めた有機性物質が少なくなったということを意味する。したがって,その時点でオゾン供給を停止しても臭気の発生は防止できる。なおかかる状態が持続すると,給気停止後のオゾン濃度は自己分解により減少するため,オゾン濃度が所定値以下になったときに再度オゾン含有空気を給気する。このような動作を繰り返すことで,防臭性能は維持されると共に,排気オゾン濃度も常に所定値以下に,かつ運転コストも節約できる。   When the deodorization system is constructed according to the present invention, a sensor for measuring the concentration of ozone flowing through the exhaust pipe, and a control device for controlling supply from the ozone-containing air supply device based on the measurement result of the sensor are further provided. You may make it have. As a result, if the ozone concentration exceeds the specified value, the amount of ozone consumed in the wastewater has decreased, which means that the amount of organic substances including bacteria that are the source of odor has decreased. means. Therefore, the generation of odor can be prevented even if the ozone supply is stopped at that time. If such a state continues, the ozone concentration after the supply of air is reduced due to self-decomposition, so that the ozone-containing air is supplied again when the ozone concentration falls below a predetermined value. By repeating such an operation, the deodorizing performance is maintained, the exhaust ozone concentration is always below a predetermined value, and the operating cost can be saved.

前記排気管又は前記排気管以降の排気系に,オゾンを分解処理可能なオゾン除去装置をさらに設けてもよい。臭気成分の分解及び自己分解によりオゾン濃度は低下していくが,万が一濃度上限目標値を超えた場合,例えば排気口でのオゾン濃度が例えば作業基準値(100ppm)以上となることが予測される場合などには,有効である。   An ozone removing device capable of decomposing ozone may be further provided in the exhaust pipe or the exhaust system after the exhaust pipe. The ozone concentration decreases due to decomposition of odor components and self-decomposition, but if the concentration exceeds the upper limit target value, it is predicted that, for example, the ozone concentration at the exhaust port will be, for example, the work reference value (100 ppm) or more. It is effective in some cases.

本発明によれば,少量のオゾン含有空気の供給で,廃水貯留槽における悪臭発生の防止を達成でき,かつこれを低コストで実現できる。しかもシステムを構築する場合の設計も容易で,既設の設備にも容易に適用できる。   According to the present invention, by supplying a small amount of ozone-containing air, it is possible to prevent the generation of malodor in the wastewater storage tank, and this can be realized at low cost. In addition, the system design is easy to design and can be easily applied to existing equipment.

以下,本発明の好ましい実施の形態について説明する。図1は,悪臭防止システムの概要を示しており,貯留槽1の上部には,開口部2を覆う蓋体3が設けられている。また貯留槽1の上部には,雑排水が槽内に流入するための配管4と,厨房排水が槽内に流入するための配管5とが接続されている。また貯留槽1の上部には,槽内の雰囲気を排気するための排気管6が接続されている。この貯留槽1は,日量40m/日の厨房排水と雑排水が流れ込み,その一次貯留槽として使用され,特に除害処理を行わずに下水放流している施設である。 Hereinafter, preferred embodiments of the present invention will be described. FIG. 1 shows an outline of the malodor control system, and a lid 3 that covers the opening 2 is provided at the upper part of the storage tank 1. Further, a pipe 4 for allowing miscellaneous wastewater to flow into the tank and a pipe 5 for allowing kitchen wastewater to flow into the tank are connected to the upper portion of the storage tank 1. An exhaust pipe 6 for exhausting the atmosphere in the tank is connected to the upper part of the storage tank 1. This storage tank 1 is a facility in which kitchen wastewater and miscellaneous wastewater of 40 m 3 / day flow in and is used as a primary storage tank, and discharges sewage without performing detoxification.

貯留槽1内の底部近傍には,排水ポンプ11が設けられ,貯留槽1内の廃水を,排水管12を通じて外部に放出する。そして貯留槽1内の底部近傍には,オゾン含有空気の放出部13が設けられている。貯留槽1の外部には,空気を取り入れて送気するブロワ14と,周囲の空気からオゾンを発生させるオゾン発生器15が設けられ,オゾン発生器15で発生したオゾンとブロワ14からの空気とが混合され,オゾン含有空気として給気管16を通じて,放出部13へと供給され,放出部13を通じて,貯留槽1内の廃水中に,オゾン含有空気が供給される。   A drainage pump 11 is provided in the vicinity of the bottom in the storage tank 1, and waste water in the storage tank 1 is discharged to the outside through the drain pipe 12. In the vicinity of the bottom in the storage tank 1, an ozone-containing air discharge part 13 is provided. Outside the storage tank 1, there are provided a blower 14 that takes in air and sends it, and an ozone generator 15 that generates ozone from the surrounding air. The ozone generated in the ozone generator 15 and the air from the blower 14 Are mixed and supplied as ozone-containing air to the discharge unit 13 through the air supply pipe 16, and the ozone-containing air is supplied to the wastewater in the storage tank 1 through the discharge unit 13.

次に本システムを用いた防臭方法の具体例について説明する。貯留槽1では,下水道管へのポンプアップの必要性から,排水ポンプ11によって,下水側に排水される。ところが,排水が流れ込まない夜間や休日には,最低設定水位で長時間貯留されるために,悪臭発生の最大原因である嫌気状態となり悪臭が発生する。この悪臭は,排気管6経由で屋外ばかりか,貯留槽1が設置されている室,例えば地下室にもマンホールの隙間から漏洩し長期間問題となる。   Next, a specific example of the deodorizing method using this system will be described. In the storage tank 1, drainage is performed to the sewage side by the drainage pump 11 because of the necessity of pumping up to the sewer pipe. However, at night and on holidays when wastewater does not flow in, it is stored for a long time at the minimum set water level, so it becomes an anaerobic state, which is the largest cause of bad odor, and bad odor is generated. This bad odor leaks not only through the exhaust pipe 6 but also into the room where the storage tank 1 is installed, for example, the basement, from the gap of the manhole, which causes a long-term problem.

前記した実施の形態にかかるシステムによれば,貯留槽1内に,放出部13からオゾン含有空気が供給されるので,悪臭発生源である菌の増殖が抑えられる。またオゾン含有空気を直接廃水中に送気しているので,完全な嫌気状態を回避することでも悪臭発生の原因である嫌気性菌の増殖を抑制している。そして廃水の水面から気相中に一部放出されている臭気成分についても,液相側に吸収されない残オゾンの作用によって,菌由来以外の臭気成分も含めて分解処理されている。したがって貯留槽1からの悪臭の発生は防止される。   According to the system according to the above-described embodiment, the ozone-containing air is supplied from the discharge unit 13 into the storage tank 1, so that the growth of bacteria that are a source of malodor is suppressed. Moreover, since ozone-containing air is directly sent to wastewater, the growth of anaerobic bacteria, which cause the generation of malodors, is also suppressed by avoiding complete anaerobic conditions. The odor components partially released from the surface of the wastewater into the gas phase are also decomposed including odor components other than those derived from bacteria by the action of residual ozone that is not absorbed by the liquid phase. Therefore, generation of malodor from the storage tank 1 is prevented.

次に実施例について説明する。貯留槽1内における気相中のオゾン濃度をDを500[ppb],排気風量Eを5[m/h],気中でのオゾンの半減期τを1.5[h],オゾン排出濃度制御上限目標値D’を100[ppb]に設定すれば,前記槽の排気系内容積Vは,
V>τ×(log(D/D’)/log2)×Eより,
7.1[m]より大きければよいことになる。これによって,排気管6の排気口6aでのオゾン濃度を100[ppb]とすることができる。なお図1における排気系内容積Vは,貯留槽1内における気相部分(貯留槽1内における廃水の水面と蓋体3によって区画された空間部分)の容積V0と,排気管6の排気口6aまでの容積V1との合計である。
Next, examples will be described. The ozone concentration in the gas phase in the storage tank 1 is 500 [ppb] for D, the exhaust air volume E is 5 [m 3 / h], the half-life time τ of ozone in the air is 1.5 [h], and the ozone is discharged. If the concentration control upper limit target value D ′ is set to 100 [ppb], the exhaust system internal volume V of the tank is
From V> τ × (log (D / D ′) / log2) × E,
It should be larger than 7.1 [m 3 ]. Thus, the ozone concentration at the exhaust port 6a of the exhaust pipe 6 can be set to 100 [ppb]. The exhaust system internal volume V in FIG. 1 is the volume V0 of the gas phase part in the storage tank 1 (the space part partitioned by the water surface of the wastewater and the lid 3 in the storage tank 1) and the exhaust port of the exhaust pipe 6. It is the sum of the volume V1 up to 6a.

また本発明にしたがったオゾン含有空気の総供給量およびオゾン供給量の例については,例えば以下のように決定される。
まず雑排水については,1日当たり10m,雑排水中のBOD負荷が100g/m,SS負荷が50g/m
厨房排水については,1日当たり30m,雑排水中のBOD負荷が600g/m,SS負荷が200g/mとした場合,
(BOD負荷+SS負荷)kg/日をXとすれば,
X=(100+50)×10+(600+200)×30=25500[g/日]=25.5kg/日
したがって1日あたりのオゾン含有空気の総供給量Q[kg/日]は,
Q<25.5kg/日×50=75kg/日と設定される。
Further, examples of the total supply amount of ozone-containing air and the ozone supply amount according to the present invention are determined as follows, for example.
First, for miscellaneous wastewater, 10 m 3 per day, BOD load in miscellaneous wastewater is 100 g / m 3 , SS load is 50 g / m 3 ,
For kitchen drainage, 30 m 3 per day, BOD load in miscellaneous drainage is 600 g / m 3 , SS load is 200 g / m 3 ,
If (BOD load + SS load) kg / day is X,
X = (100 + 50) × 10 + (600 + 200) × 30 = 25500 [g / day] = 25.5 kg / day Therefore, the total supply amount Q [kg / day] of ozone-containing air per day is
Q <25.5 kg / day × 50 = 75 kg / day is set.

一方オゾン含有空気中の純オゾンの供給量Qオゾン[kg/日]は,
(25.5kg/日×0.0001=0.0026kg/日)<Qオゾン<(25.5kg×0.005=1.275kg/日)
となり,0.0026kg<Qオゾン<1.275kgである。
実施例では,Qオゾンを0.018kg/日と設定した。
On the other hand, the supply quantity Q ozone [kg / day] of pure ozone in the ozone-containing air is
(25.5 kg / day × 0.0001 = 0.026 kg / day) <Q ozone <(25.5 kg × 0.005 = 1.275 kg / day)
Thus, 0.0026 kg <Q ozone <1.275 kg.
In the examples, Q ozone was set to 0.018 kg / day.

以上から,オゾン含有空気のオゾン濃度は,0.018/72=25ppmである。廃水中へのオゾンの溶解量は,貯留槽1の深さや,水温,給気方法,貯水水質等によって変わるが,本例では適用施設の条件から,大気側への開放供給空気中のオゾン濃度を予測することで,最適なオゾン空気供給方法を決定できる。したがってシステムの設計段階で,防臭目的が十分であり,しかも排出される防臭処理後の空気中のオゾン濃度を,所望の値,例えば生活環境基準値を順守することが可能である。なおこのオゾン含有空気の総供給量Qは,この供給のみで槽内の貯留水が攪拌できる範囲ということで決定している。   From the above, the ozone concentration of the ozone-containing air is 0.018 / 72 = 25 ppm. The amount of ozone dissolved in the wastewater varies depending on the depth of the storage tank 1, water temperature, air supply method, stored water quality, etc. In this example, the concentration of ozone in the open supply air to the atmosphere side depends on the conditions of the applicable facility. The optimal ozone air supply method can be determined. Therefore, at the system design stage, the purpose of deodorization is sufficient, and it is possible to comply with a desired value, for example, a standard value for living environment, for the ozone concentration in the air after the deodorization treatment is discharged. The total supply amount Q of the ozone-containing air is determined by the range in which the stored water in the tank can be stirred only by this supply.

さらに上記した実施例についての実際の評価について説明する。前記の実施例の処理条件を条件1とし,また比較対象条件として,オゾン含有空気の総供給量が同じで,純オゾン供給量を下限値(0.0026kg)として,これを処理条件を条件2とし,各々,まったく対策を行わなかった場合との比較結果を以下のようにして評価した。   Further, actual evaluation of the above-described embodiment will be described. The processing conditions of the above-described embodiment are set as condition 1, and as the comparison target conditions, the total supply amount of ozone-containing air is the same, and the pure ozone supply amount is set as the lower limit (0.0026 kg). The results of comparison with the case where no measures were taken were evaluated as follows.

本実施例にかかる防臭方法の適用前後の評価を,定性的ではあるが“1:不快臭が強くする,2:不快臭がする,3:不快臭ではないがにおいがある,4:ほとんど臭わない”の4段階で3名の被験者で行った。その結果を以下に示す。   The evaluation before and after the application of the deodorizing method according to this example is qualitative, but “1: unpleasant odor is strong, 2: unpleasant odor is present, 3: unpleasant odor is present, but smell is present, 4: almost odor is present. It was performed by 3 subjects in 4 stages of “No”. The results are shown below.

対策前:1+2+1=4点
条件1の対策後:3+3+4=10点
条件2の対策後:2+3+2=7点
Before countermeasure: 1 + 2 + 1 = 4 points After countermeasure for condition 1: 3 + 3 + 4 = 10 points After countermeasure for condition 2: 2 + 3 + 2 = 7 points

条件1による対策は,明らかに改善効果が確認できた結果となっている。一方,条件2(下限値)での結果は,改善効果は明らかであるが,防臭達成レベルとしては不十分であることが分かった。なおコストに関しては,従来の空気の供給のみによる対策と比較すると,条件1の初期コストはほぼ同等であるが,運転コストについては本発明の方が約1/3になるというシミュレーション結果が得られた。また従来の空気系での脱臭装置取り付けによる対策に対しては,初期コストでは,本発明の方がはるかに安価であり,運転コストについては脱臭フィルタ等の交換頻度で大きく変わるが,本発明の方がはるかに安価であるとの査定結果となった。   The measure under Condition 1 clearly shows the improvement effect. On the other hand, the results under Condition 2 (lower limit) show that the improvement effect is clear, but the level of achievement of deodorization is insufficient. Regarding the cost, compared with the conventional countermeasures using only air supply, the initial cost under Condition 1 is almost the same, but the simulation result that the present invention is about 1/3 in terms of the operating cost is obtained. It was. In addition, with respect to the countermeasures by installing a conventional deodorizing device in the air system, the present invention is much cheaper at the initial cost, and the operating cost varies greatly depending on the replacement frequency of the deodorizing filter, etc. The result was that it was much cheaper.

次に他の実施の形態について説明する。図2は,貯留槽1内の気相部分に,この気相部分を水平に仕切る仕切板21を設けたものである。なお仕切板21には開口部21aが形成され,当該開口部21aは蓋体22で閉鎖されている。したがって,この場合には,仕切板21より上方の気相部分が容積V0である。この仕切板21の槽内における上下位置を変更する(すなわち垂直方向の位置を変化させる)ことで,容積V0を任意に調節できる。仕切板21の槽内の上下方向の位置変更を可能にするには,例えば仕切板21の周縁部を,貯留槽1の内壁をスライド自在に構成し,適宜の駆動源によって,仕切板21を上下動させることが提案できる。かかる場合,例えば貯留槽1の内壁にレールや溝などのガイドを形成し,当該ガイドに適合する部材を仕切板21の周縁部に設ければ,仕切板21を水平状態に維持したまま安定してこれを上下に移動させることができる。上下動の機構自体は,例えばウォームギア装置を使用してもよく,その他ワイヤなどで仕切板21を吊下し,当該ワイヤをモーター等で巻き上げ,巻き戻しする機構を採用してもよい。
その他,例えば貯留槽1の内壁,又は内壁の内側に設けた起立壁の内側に段差を設けておき,仕切板21をこれにはめ合わさる形状としておけば,適宜仕切板の種類を交換してセットすることで,上下方向の位置を変更することが可能になり,容積V0を調節することができる。
Next, another embodiment will be described. In FIG. 2, a partition plate 21 for horizontally partitioning the gas phase portion is provided in the gas phase portion in the storage tank 1. An opening 21 a is formed in the partition plate 21, and the opening 21 a is closed with a lid 22. Therefore, in this case, the gas phase portion above the partition plate 21 has a volume V0. The volume V0 can be arbitrarily adjusted by changing the vertical position of the partition plate 21 in the tank (that is, changing the vertical position). In order to make it possible to change the vertical position of the partition plate 21 in the tank, for example, the peripheral portion of the partition plate 21 is configured to be slidable on the inner wall of the storage tank 1, and the partition plate 21 is moved by an appropriate drive source. It can be proposed to move up and down. In such a case, for example, if a guide such as a rail or a groove is formed on the inner wall of the storage tank 1 and a member that fits the guide is provided at the peripheral edge of the partition plate 21, the partition plate 21 is kept stable while being maintained in a horizontal state. Can be moved up and down. As the vertical movement mechanism itself, for example, a worm gear device may be used, or another mechanism may be employed in which the partition plate 21 is suspended by a wire, and the wire is wound and unwound by a motor or the like.
In addition, for example, if a step is provided on the inner wall of the storage tank 1 or an upright wall provided on the inner side of the storage tank 1 and the partition plate 21 is fitted to this, the type of the partition plate is appropriately changed and set. As a result, the position in the vertical direction can be changed, and the volume V0 can be adjusted.

また図2の例では,さらに排気管6に,オゾン濃度を検出するセンサ31を設け,その測定結果が制御装置32に入力されるようになっている。制御装置32では,当該測定結果に基づいてオゾン発生器15に対して発停制御を行う。   In the example of FIG. 2, a sensor 31 for detecting the ozone concentration is further provided in the exhaust pipe 6, and the measurement result is input to the control device 32. The control device 32 performs start / stop control on the ozone generator 15 based on the measurement result.

以上のような図2のシステムによれば,オゾン供給量および供給濃度をより高く設定することか可能となり,図1の例に対して次の点でより向上したシステムとなっている。すなわち,まずより高濃度のオゾンの供給が可能になり,悪臭防止性能が向上する。またより信頼性の高いオゾン排気濃度の管理が可能となっている。さらに廃水の水質によっては供給オゾンの液相での消費量が多くなり,気相濃度が極端に下がる場合が考えられるが,図2のシステムのように,排気管6でのオゾンの排気濃度に基づいてオゾン発生器15を制御することで,常にオゾン濃度を所定濃度に制御することが可能になる。これによって,気相に一部放出されうる悪臭成分を確実に処理することができる。そして水質がより清浄な場合に液相でのオゾンの消費が低下した際,図1の例ではかかる場合でも常に同量供給されることになり無駄が発生するが,図2の例ではオゾン発生器15の発停を制御できるから,水質が比較的清浄な場合には,オゾン発生器15が停止するので,無駄がない。   According to the system of FIG. 2 as described above, it is possible to set the ozone supply amount and supply concentration higher, and the system is improved in the following points with respect to the example of FIG. That is, it becomes possible to supply ozone at a higher concentration, and the odor prevention performance is improved. Also, more reliable management of ozone exhaust concentration is possible. Furthermore, depending on the quality of the wastewater, the amount of supply ozone in the liquid phase may increase, and the gas phase concentration may decrease drastically. However, as in the system of FIG. By controlling the ozone generator 15 based on this, it is possible to always control the ozone concentration to a predetermined concentration. This makes it possible to reliably treat malodorous components that can be partially released into the gas phase. When the consumption of ozone in the liquid phase decreases when the water quality is cleaner, in the example of FIG. 1, the same amount is always supplied even in such a case, but waste occurs, but in the example of FIG. Since the start and stop of the generator 15 can be controlled, the ozone generator 15 is stopped when the water quality is relatively clean, so there is no waste.

さらに他の実施の形態について説明する。図1,図2では,放出部13から廃水中に送気されるオゾン含有空気によって廃水を攪拌するようにしていたが,図3の例では,液相中にモーター等の駆動原41で作動する攪拌器42が設置されている。これによって,攪拌効果をも奏するために放出部13から廃水中に送気していたオゾン含有空気の供給量を減じることが可能であり,また攪拌効果自体も高い。したがって,ブロワ14自体も不要になる。そして攪拌効果が高いから,局所的な嫌気箇所の発生リスクを下げると共に,オゾンが貯留槽1内の廃水の隅々まで確実に行き届き,その結果,液相内での悪臭発生源の抑制信頼性がさらに向上する。   Still another embodiment will be described. In FIG. 1 and FIG. 2, the waste water is agitated by the ozone-containing air sent from the discharge unit 13 into the waste water. In the example of FIG. 3, the operation is performed by the driving source 41 such as a motor during the liquid phase. A stirrer 42 is installed. As a result, it is possible to reduce the supply amount of ozone-containing air that has been sent from the discharge unit 13 to the wastewater in order to achieve a stirring effect, and the stirring effect itself is high. Therefore, the blower 14 itself becomes unnecessary. And since the agitation effect is high, the risk of generating local anaerobic spots is reduced, and ozone reliably reaches every corner of the wastewater in the storage tank 1, and as a result, reliability of suppressing malodorous sources in the liquid phase. Is further improved.

また図3に示したように,排気管6の排気口6aにオゾン分解処理が可能なオゾン除去装置43を別途設けてもよい。これによって,排気管6を通じて排気される排気中のオゾン濃度が,例えば所定の環境基準値などを超えるといった事態を未然に防止することが可能である。なおこのオゾン除去装置43は,排気管6の途中など,貯留槽1の排気系であれば,いずれの場所に設置してもよい。   Further, as shown in FIG. 3, an ozone removing device 43 capable of ozone decomposition treatment may be separately provided at the exhaust port 6a of the exhaust pipe 6. As a result, it is possible to prevent a situation in which the ozone concentration in the exhaust gas exhausted through the exhaust pipe 6 exceeds a predetermined environmental standard value, for example. The ozone removing device 43 may be installed at any location as long as it is an exhaust system of the storage tank 1 such as in the middle of the exhaust pipe 6.

本発明は,廃水の防臭処理に有用である。   The present invention is useful for deodorizing treatment of wastewater.

実施の形態にかかる防臭システムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the deodorizing system concerning embodiment. 仕切板と濃度センサを備えた他の実施の形態にかかる防臭システムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the deodorizing system concerning other embodiment provided with the partition plate and the density | concentration sensor. 攪拌器を備えた他の実施の形態にかかる防臭システムの概要を示す説明図である。It is explanatory drawing which shows the outline | summary of the deodorizing system concerning other embodiment provided with the stirrer.

符号の説明Explanation of symbols

1 貯留槽
4,5 配管
6 排気管
6a 排気口
11 排水ポンプ
12 排水管
14 ブロワ
15 オゾン発生器
DESCRIPTION OF SYMBOLS 1 Storage tank 4,5 Piping 6 Exhaust pipe 6a Exhaust port 11 Drain pump 12 Drain pipe 14 Blower 15 Ozone generator

Claims (6)

BOD負荷と有機性SS負荷が存在し,BOD負荷+有機性SS負荷の合計が50kg/m未満の廃水を貯留している槽からの悪臭発生を防止するために,オゾン含有空気を前記槽内の廃水中に供給する方法であって,
前記槽内における気相中のオゾン濃度をD[ppb(volppb)],前記槽からの排気風量をE[m/h],気中でのオゾンの半減期をτ[h],前記槽の排気系からのオゾン排出濃度制御上限目標値をD’[ppb(volppb)],前記槽の排気系内容積をV[m]としたとき,以下の式を満たすように,排気系内容積Vを設定することを特徴とする,悪臭防止方法。
V>τ×(log(D/D’)/log2)×E
To BOD load and organic SS load is present, the sum of BOD load + organic SS load to prevent malodor generation from the tank that stores the wastewater of less than 50 kg / m 3, the tanks containing ozone air A method of supplying the wastewater in
The ozone concentration in the gas phase in the tank is D [ppb (volppb)], the exhaust air volume from the tank is E [m 3 / h], the half-life of ozone in the air is τ [h], and the tank When the upper limit target value of ozone emission concentration control from the exhaust system is D ′ [ppb (volppb)] and the internal volume of the exhaust system of the tank is V [m 3 ], the contents of the exhaust system satisfy the following formula: A foul odor prevention method characterized by setting the product V.
V> τ × (log (D / D ′) / log2) × E
前記オゾン含有空気の1日あたりの供給量Q[kg/日]は,
Q<{(BOD負荷+SS負荷)kg/日}×50であり,
前記オゾン含有空気中の純水オゾンの1日当たりの供給量Qオゾン[kg/日]は,
{(BOD負荷+SS負荷)kg/日}×0.0001<Qオゾン<{(BOD負荷+SS負荷)kg/日}×0.05
であることを特徴とする,請求項1に記載の悪臭防止方法。
The supply amount Q [kg / day] of the ozone-containing air per day is
Q <{(BOD load + SS load) kg / day} × 50,
The supply amount Q ozone [kg / day] of pure water ozone in the ozone-containing air per day is
{(BOD load + SS load) kg / day} × 0.0001 <Q ozone <{(BOD load + SS load) kg / day} × 0.05
The malodor control method according to claim 1, wherein:
廃水を貯留している槽からの悪臭発生を防止するためのシステムであって,
前記槽の廃水内にオゾン含有空気を供給する供給管と,
前記槽内の雰囲気を槽外部に排気する排気管と,
オゾン発生装置で発生したオゾンと,空気とを混合して前記供給管に送るオゾン含有空気供給装置と,
を有し,
前記槽内における気相中のオゾン濃度をD[ppb(volppb)],前記槽からの排気風量をE[m/h],気中でのオゾンの半減期をτ[h],前記槽の排気系からのオゾン排出濃度制御上限目標値をD’[ppb(volppb)],前記槽の排気系内容積をV[m]としたとき,以下の式を満たすように,排気系内容積Vを設定することを特徴とする,悪臭防止システム。
V>τ×(log(D/D’)/log2)×E
A system for preventing the generation of malodor from a tank storing wastewater,
A supply pipe for supplying ozone-containing air into the waste water of the tank;
An exhaust pipe for exhausting the atmosphere in the tank to the outside of the tank;
An ozone-containing air supply device that mixes ozone generated by the ozone generator and air and sends the mixture to the supply pipe;
Have
The ozone concentration in the gas phase in the tank is D [ppb (volppb)], the exhaust air volume from the tank is E [m 3 / h], the half-life of ozone in the air is τ [h], and the tank When the upper limit target value of ozone emission concentration control from the exhaust system is D ′ [ppb (volppb)] and the internal volume of the exhaust system of the tank is V [m 3 ], the contents of the exhaust system satisfy the following formula: Odor control system characterized by setting product V.
V> τ × (log (D / D ′) / log2) × E
前記排気管を流れるオゾンの濃度を測定するセンサと,前記センサの測定結果に基づいて,前記オゾン含有空気供給装置からの供給を制御する制御装置とをさらに有することを特徴とする,請求項3に記載の悪臭防止システム。 4. A sensor for measuring the concentration of ozone flowing through the exhaust pipe, and a control device for controlling supply from the ozone-containing air supply device based on a measurement result of the sensor. Odor prevention system as described in. 前記排気管又は前記排気管以降の排気系に,オゾンを分解処理可能なオゾン除去装置をさらに有することを特徴とする,請求項4に記載の悪臭防止システム。 The malodor control system according to claim 4, further comprising an ozone removing device capable of decomposing ozone in the exhaust pipe or an exhaust system after the exhaust pipe. 前記槽の気相部分を水平に仕切る仕切板を有し,当該仕切板は槽内の上下方向に位置変更が可能であることを特徴とする,請求項3〜5のいずれかに記載の悪臭防止システム。
The malodor according to any one of claims 3 to 5, further comprising a partition plate for horizontally partitioning a gas phase portion of the tank, wherein the partition plate can be repositioned in a vertical direction in the tank. Prevention system.
JP2005045349A 2005-02-22 2005-02-22 Odor prevention method and odor prevention system Active JP5179704B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005045349A JP5179704B2 (en) 2005-02-22 2005-02-22 Odor prevention method and odor prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005045349A JP5179704B2 (en) 2005-02-22 2005-02-22 Odor prevention method and odor prevention system

Publications (2)

Publication Number Publication Date
JP2006231106A true JP2006231106A (en) 2006-09-07
JP5179704B2 JP5179704B2 (en) 2013-04-10

Family

ID=37039335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005045349A Active JP5179704B2 (en) 2005-02-22 2005-02-22 Odor prevention method and odor prevention system

Country Status (1)

Country Link
JP (1) JP5179704B2 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235139A (en) * 1997-02-25 1998-09-08 Inax Corp Deodorization method in drainage treatment facility
JP2000233192A (en) * 1999-02-10 2000-08-29 Satoru Yamada Septic tank and its method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10235139A (en) * 1997-02-25 1998-09-08 Inax Corp Deodorization method in drainage treatment facility
JP2000233192A (en) * 1999-02-10 2000-08-29 Satoru Yamada Septic tank and its method

Also Published As

Publication number Publication date
JP5179704B2 (en) 2013-04-10

Similar Documents

Publication Publication Date Title
US7468135B2 (en) Portable tank wastewater treatment system and method
JP2769973B2 (en) Method and apparatus for treating water to be treated containing organic sulfur compounds
US20100200502A1 (en) Septic system remediation method and apparatus
JP5179704B2 (en) Odor prevention method and odor prevention system
JP2000263084A (en) Waste water treatment equipment and waste water treatment method
JP2004122131A (en) Garbage disposer
AU692318B2 (en) Sewage respiration inhibition
US7429320B2 (en) Wastewater treatment system
KR101313401B1 (en) Device for microbial decomposition treatment and treatment unit for treating organic substances
KR101202766B1 (en) Liquid fertilizer producting apparatus including stink removing function of livestock excrements
JP2006289344A (en) Exhaust gas treatment device and exhaust gas treatment method
JP2001252680A (en) Crease trap sludge treating device
JP2007222749A (en) Waste water treatment apparatus and method
JP2009255015A (en) Water treatment apparatus and water treating method
JPH09206780A (en) Aerobic biological treating device
JP3518857B2 (en) Simple method for deodorizing organic sludge concentrated exhaust gas
JP2007301513A (en) Water treatment apparatus
JP7084731B2 (en) Biological treatment equipment, biological treatment method and adjustment equipment
JPH0716594A (en) Waste water treatment apparatus
JPH10235139A (en) Deodorization method in drainage treatment facility
JP6405411B2 (en) High concentration organic wastewater treatment method and high concentration organic wastewater treatment system
JPS63294994A (en) Method for operating malodor preventive device for waste water tank for building or the like
JP3406253B2 (en) Septic tank and deodorizing method of septic tank
JP2869410B1 (en) Prevention of bulking in activated sludge treatment
JPH10192897A (en) Sludge treating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

R150 Certificate of patent or registration of utility model

Ref document number: 5179704

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150