JP2006229750A - Unfolding antenna for space - Google Patents

Unfolding antenna for space Download PDF

Info

Publication number
JP2006229750A
JP2006229750A JP2005042769A JP2005042769A JP2006229750A JP 2006229750 A JP2006229750 A JP 2006229750A JP 2005042769 A JP2005042769 A JP 2005042769A JP 2005042769 A JP2005042769 A JP 2005042769A JP 2006229750 A JP2006229750 A JP 2006229750A
Authority
JP
Japan
Prior art keywords
thin film
antenna
segments
segment
space
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005042769A
Other languages
Japanese (ja)
Inventor
Takanori Tajima
隆範 田嶋
Mitsuteru Yamato
光輝 大和
Hiroyuki Shigemasa
裕之 重政
Masayuki Masuyama
正行 増山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2005042769A priority Critical patent/JP2006229750A/en
Publication of JP2006229750A publication Critical patent/JP2006229750A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain an expansion type antenna for space which can eliminate the need of designing a tension structure, mesh unfolding resistance, entanglement prevention and the like and simplify the assembling and adjustment of antenna mirror finished surfaces. <P>SOLUTION: Thin film segments 6 are shaped in a truncated sector obtained by radially dividing the plane shape of a paraboloid of revolution and have a out-of-plane stiffness. Two thin film segments 6 are arranged between each pair of rear face ribs 4 adjacent in a circumferential direction, truncated sector-shaped side faces of two thin film segments 6 are connected to each other at a plurality of places in a radial direction, and the other truncated sector-shaped side face of each thin film segment 6 is connected to the rear face rib 4 at a plurality of places in a radial direction to constitute an antenna reflecting mirror 2. The antenna reflecting mirror 2 is folded in the shape of a mountain at a position corresponding to the rear face ribs 4 and folded in the shape of valley at the mutually confronting parts of the truncated sector-shaped side faces of two thin film segments 6 between a pair of rear face ribs 4 adjacent in a circumferential direction. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、人工衛星などの宇宙機器に搭載される展開型アンテナに関し、特に宇宙で展開する際に確実にかつ簡易に展開できるアンテナ反射鏡の構造に関するものである。   The present invention relates to a deployable antenna mounted on space equipment such as an artificial satellite, and more particularly to a structure of an antenna reflector that can be reliably and easily deployed when deployed in space.

従来の宇宙用展開型アンテナは、アンテナの電波反射面を構成する金属メッシュと、その形状を保持するケーブルと、金属メッシュとケーブルを折り畳んだ状態から展開し、展開後は金属メッシュとケーブルネットワークとを保持する展開リブと、その展開リブを保持する展開ヒンジと、その展開ヒンジを固定するセンターハブと、を有する展開型アンテナにおいて、ケーブルを保持するための一端をケーブルに取り付けた収納ケーブルと、センターハブに設けられ、アンテナ反射鏡収納時は収納ケーブルの他端をセンターハブに離散的に固定し、アンテナ反射鏡添加維持には添加入部の添加に伴って収納ケーブルに展開方向の力が加わった順に収納ケーブルの他端をセンターハブから順次開放する収納ケーブルリリース機構と、を備えている(例えば、特許文献1参照)。   A conventional deployable antenna for space is developed from a metal mesh that constitutes a radio wave reflecting surface of the antenna, a cable that retains its shape, a metal mesh and a cable folded, and after deployment, a metal mesh and a cable network. A deployable antenna having a deployable rib, a deployable hinge that retains the deployable rib, and a center hub that fixes the deployable hinge, and a storage cable having one end for retaining the cable attached to the cable; It is provided on the center hub, and when the antenna reflector is housed, the other end of the housing cable is discretely fixed to the center hub. To maintain the addition of the antenna reflector, a force in the unfolding direction is applied to the housing cable along with the addition of the addition slot. A storage cable release mechanism that sequentially opens the other end of the storage cable from the center hub. (E.g., see Patent Document 1).

特開平7−226620号公報Japanese Patent Laid-Open No. 7-226620

従来の宇宙用展開型アンテナにおいては、剛性を有していない金属メッシュでアンテナ鏡面(電波反射鏡)を構成していることから、下記の不具合があった。
第1に、高い面精度が得られるようにアンテナ鏡面を展開できるように張力構造およびメッシュ展開抵抗力などに関する設計が必要となる。
第2に、展開時、金属メッシュおよびケーブルが絡んで展開できなくなるという不具合を解消するために、収納ケーブルを離散的にケーブルに離散的に取り付け、収納ケーブルリリース機構により、これらの収納ケーブルを展開時に順次開放する、という極めて複雑な絡み防止機構が必要となる。
第3に、アンテナ鏡面の組立、調整に多大な時間およびコストがかかってしまう。
The conventional space deployable antenna has the following problems because the antenna mirror surface (radio wave reflecting mirror) is formed of a metal mesh having no rigidity.
First, it is necessary to design the tension structure and the mesh deployment resistance so that the antenna mirror surface can be developed so as to obtain high surface accuracy.
Secondly, in order to solve the problem that the metal mesh and the cable become untangled during deployment, the storage cable is discretely attached to the cable, and the storage cable is released by the storage cable release mechanism. Sometimes an extremely complex entanglement prevention mechanism is required that opens sequentially.
Thirdly, much time and cost are required for assembling and adjusting the antenna mirror surface.

この発明は、上記課題を解決するためになされたもので、それぞれ回転放物面を放射状に分割した面形状を保持しようとする面外剛性を有し、電波反射面として機能する多数枚の薄膜セグメントによりアンテナ鏡面を構成するようにし、張力構造、メッシュ展開抵抗力および絡み防止などの設計を不要にできるとともに、アンテナ鏡面の組立、調整を簡易にできる宇宙用展開型アンテナを得ることを目的とする。   The present invention has been made in order to solve the above problems, and has a plurality of thin films each having an out-of-plane rigidity for maintaining a surface shape obtained by radially dividing a paraboloid of revolution and functioning as a radio wave reflecting surface. The purpose is to obtain a deployable antenna for space that can configure the antenna mirror surface with segments and eliminate the need for design such as tension structure, mesh deployment resistance and entanglement prevention, and easy assembly and adjustment of the antenna mirror surface. To do.

この発明による宇宙用展開型アンテナは、円盤状のセンターハブと、それぞれ一端を上記センターハブに回動自在に取り付けられて該センターハブの周方向に所定ピッチで配列され、該センターハブの軸心を筒状に囲繞する収納位置と該センターハブから放射状に開かれた展開位置とをとる多数本の背面リブと、上記多数本の背面リブの上記センターハブに対する回動動作に連動して収納、展開するように該多数本の背面リブに支持され、展開状態で回転放物面の面形状を有する電波反射面を構成するアンテナ反射鏡と、を備えている。そして、上記アンテナ反射鏡は、上記回転放物面の面形状を放射状に分割して得られる切頭扇状に成形され、かつ、無負荷状態で該回転放物面の面形状に復元する面外剛性を有する多数枚の薄膜セグメントを有し、該薄膜セグメントが周方向に隣接する上記背面リブの対間にそれぞれ2枚ずつ配設され、該2枚の薄膜セグメントの切頭扇状の側辺同士を対向させて径方向の複数箇所で該側辺同士の対向部に沿った回動軸回りに回動自在に連結され、かつ、該2枚の薄膜セグメントの切頭扇状の他の側辺を径方向の複数箇所で上記背面リブに該他の側辺に沿った回動軸回りに回動自在に連結されて構成されている。さらに、上記アンテナ反射鏡は、上記背面リブに対応する位置で山折りに、かつ、周方向に隣接する上記背面リブの対間の2枚の上記薄膜セグメントの切頭扇状の側辺同士の対向部で谷折りに折り畳まれて収納されている。   The space deployable antenna according to the present invention has a disk-shaped center hub, and one end of each of which is rotatably attached to the center hub and arranged at a predetermined pitch in the circumferential direction of the center hub. A plurality of back ribs that take a storage position that surrounds the tube in a cylindrical shape and a deployment position that is opened radially from the center hub; An antenna reflector that is supported by the multiple back ribs so as to expand and constitutes a radio wave reflecting surface having a surface shape of a paraboloid of rotation in the expanded state. The antenna reflector is formed into a truncated fan shape obtained by radially dividing the surface shape of the rotating paraboloid, and is restored to the surface shape of the rotating paraboloid in an unloaded state. A plurality of thin film segments having rigidity, each of which is disposed between the pair of back ribs adjacent to each other in the circumferential direction; And the other side edges of the two thin film segments are connected to each other at a plurality of locations in the radial direction so as to be rotatable about a rotation axis along the opposing portion of the side edges. A plurality of radial positions are connected to the back rib so as to be rotatable about a rotation axis along the other side. Further, the antenna reflecting mirror is mountain-folded at a position corresponding to the back rib, and is opposed to the fringe-shaped side edges of the two thin film segments between a pair of the back ribs adjacent in the circumferential direction. It is folded and stored in a valley fold.

この発明によれば、アンテナ反射鏡が、回転放物面の面形状を放射状に分割して得られる切頭扇状に成形され、かつ、無負荷状態で該回転放物面の面形状に復元する面外剛性を有する多数枚の薄膜セグメントを、切頭扇状の側辺同士を連結して構成されている。そこで、背面リブを放射状に展開した際に、各薄膜セグメントはその面外剛性により自ら回転放物面の面形状に復元するので、金属メッシュによりアンテナ鏡面を構成する場合に必要であった張力構造およびメッシュ展開抵抗力などに関する設計が不要となる。さらに、金属メッシュによりアンテナ鏡面を構成する場合に必要であったケーブルやケーブルリリース機構が不要となる。これにより、アンテナ鏡面の組立および調整が簡易となると共に、低コスト化が図られる。   According to the present invention, the antenna reflector is formed into a truncated fan shape obtained by radially dividing the surface shape of the rotating paraboloid, and is restored to the surface shape of the rotating paraboloid in an unloaded state. A large number of thin-film segments having out-of-plane rigidity are configured by connecting truncated fan-shaped sides. Therefore, when the back ribs are deployed radially, each thin film segment restores itself to the paraboloidal surface shape due to its out-of-plane rigidity, so the tension structure required when configuring the antenna mirror surface with a metal mesh In addition, it is not necessary to design the mesh deployment resistance. Furthermore, a cable and a cable release mechanism that are necessary when the antenna mirror surface is formed of a metal mesh are not required. Thereby, the assembly and adjustment of the antenna mirror surface can be simplified and the cost can be reduced.

実施の形態1.
図1はこの発明の実施の形態1に係る宇宙用展開型アンテナの収納状態を模式的に示す斜視図、図2はこの発明の実施の形態1に係る宇宙用展開型アンテナの収納状態を模式的に示す要部拡大斜視図、図3はこの発明の実施の形態1に係る宇宙用展開型アンテナの展開過渡状態を模式的に示す斜視図、図4はこの発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す側面図、図5はこの発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す斜視図、図6はこの発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す要部拡大斜視図、図7はこの発明の実施の形態1に係る宇宙用展開型アンテナのアンテナ反射鏡を構成する薄膜セグメントの材料である繊維強化プラスチックにおける強化繊維の配向方向を説明する平面図、図8はこの発明の実施の形態1に係る宇宙用展開型アンテナに適用される連結部材の構成を示す斜視図である。なお、図1、図3乃至図5では、連結部材が省略されている。
Embodiment 1 FIG.
FIG. 1 is a perspective view schematically showing a storage state of a space deployable antenna according to Embodiment 1 of the present invention, and FIG. 2 is a schematic view of a space deployable antenna according to Embodiment 1 of the present invention. FIG. 3 is a perspective view schematically showing a deployment transient state of the space deployable antenna according to the first embodiment of the present invention, and FIG. 4 is a diagram according to the first embodiment of the present invention. FIG. 5 is a perspective view schematically showing the deployment completion state of the space deployment antenna according to Embodiment 1 of the present invention, and FIG. 6 is a perspective view schematically showing the deployment completion state of the space deployment antenna. FIG. 7 is a main part enlarged perspective view schematically showing a deployment completion state of the space deployable antenna according to the first embodiment of the invention, and FIG. 7 shows the antenna reflector of the space deployable antenna according to the first embodiment of the present invention. Fiber reinforced plastic that is the material of the thin film segment Plan view illustrating the orientation direction of the reinforcing fibers in tick, Fig. 8 is a perspective view showing the configuration of the connecting member to be applied to space for deployment type antenna according to the first embodiment of the present invention. In addition, in FIG. 1, FIG. 3 thru | or FIG. 5, the connection member is abbreviate | omitted.

図1乃至図6において、展開型アンテナ1は、展開状態で回転放物面の面形状を構成する電波反射面を有するアンテナ反射鏡2と、円盤状に成形され、アンテナ反射鏡2の中心位置に配設されたセンターハブ3と、アンテナ反射鏡2の背面を支持する多数本の背面リブ4と、多数本の背面リブ4を傘状に収納、展開する展開機構5と、を備えている。   1 to 6, the deployable antenna 1 includes an antenna reflector 2 having a radio wave reflecting surface that forms a surface shape of a rotating paraboloid in a deployed state, a disk shape, and the center position of the antenna reflector 2. A center hub 3 disposed on the antenna reflector, a plurality of back ribs 4 that support the back surface of the antenna reflector 2, and a deployment mechanism 5 that houses and deploys the plurality of back ribs 4 in an umbrella shape. .

背面リブ4は、例えばチタン、ステンレスなどを用いて断面T字状に成形され、そのT字状の起立辺4aの端面をアンテナ反射鏡2側に向くようにして、センターハブ3を中心として等角ピッチで放射状に配列され、それぞれの一端がセンターハブ3の外周部に展開ヒンジ(図示せず)を介して回動自在に連結されている。そして、背面リブ4のT字状の起立辺4aの端面は、展開状態のアンテナ反射鏡2の電波反射面を構成する回転放物面の半径方向の面形状と同等の曲面形状に形成されている。   The back rib 4 is formed into a T-shaped cross section using, for example, titanium, stainless steel, etc., and the end surface of the T-shaped standing side 4a faces the antenna reflecting mirror 2 side, and the center hub 3 is the center. They are arranged radially at an angular pitch, and one end of each is rotatably connected to the outer peripheral portion of the center hub 3 via a developing hinge (not shown). And the end surface of the T-shaped upright side 4a of the back rib 4 is formed in a curved surface shape equivalent to the surface shape in the radial direction of the paraboloid of revolution that constitutes the radio wave reflecting surface of the antenna reflector 2 in the unfolded state. Yes.

アンテナ反射鏡2は、回転放物面を放射状に分割してなる切頭扇状に形成された多数の薄膜セグメント6を有する。各薄膜セグメント6は、例えばポリエーテルエーテルケトン樹脂やポリエーテルスルホン樹脂などをマトリックスとし、炭素繊維で強化したCFRP(Carbon Fiber Reinforced Plastic)を用い、回転放物面を放射状に分割してなる切頭扇状の薄膜に成形され、該薄膜の表面にカーボン、アルミ、銅などの導電性材料を被覆して構成されている。また、薄膜セグメント6は放射状に配列された背面リブ4の隣接する各対間に2枚ずつ配設されている。この2枚の薄膜セグメント6の各対は、その切頭扇状の側辺の端面同士を近接させて、薄膜セグメント6の裏面同士を連結部材7により連結されるとともに、各切頭扇状の他の側辺の端面を背面リブ4のT字状の起立辺4aの端面に近接させて、薄膜セグメント6の裏面と背面リブ4の起立辺4aの側面とを連結部材7により連結されている。さらに、連結部材7は、径方向に所定のピッチで配設されている。   The antenna reflecting mirror 2 has a large number of thin film segments 6 formed in a truncated fan shape obtained by radially dividing a paraboloid of revolution. Each thin film segment 6 is formed by dividing the rotational paraboloid radially by using CFRP (Carbon Fiber Reinforced Plastic), for example, which is made of polyether ether ketone resin or polyether sulfone resin as a matrix and reinforced with carbon fiber. The film is formed into a fan-shaped thin film, and the surface of the thin film is covered with a conductive material such as carbon, aluminum, or copper. Two thin film segments 6 are disposed between each pair of adjacent back ribs 4 arranged radially. In each pair of the two thin film segments 6, the end surfaces of the truncated fan-shaped sides are brought close to each other, the back surfaces of the thin film segments 6 are connected by the connecting member 7, and The back surface of the thin film segment 6 and the side surface of the standing side 4 a of the back rib 4 are connected by the connecting member 7 with the end surface of the side edge being brought close to the end surface of the T-shaped upstanding side 4 a of the back rib 4. Further, the connecting members 7 are arranged at a predetermined pitch in the radial direction.

ここで、この薄膜セグメント6は、例えば、オートクレーブ成形により回転放物面の面形状に成形されており、面外剛性を有している。即ち、薄膜セグメント6は、負荷状態ではその面形状を変えつつ弾性変形し、負荷が解除されると、回転放物面の面形状に復元するように成形されている。
また、薄膜セグメント6を作製するCFRPの強化繊維である炭素繊維8は、図7に示されるように、互いに60°の交差角度の3つの繊維配向方向を持つように編み込まれている。この3軸タイプの炭素繊維で強化したCFRPは、繊維方向には繊維の有する強度に応じた強度を発揮するが、繊維方向に直交する方向では強度が非常に弱くなるという異方性が解消され、いずれの方向に対しても同じ剛性、弾性率が得られる。このCFRPを用いることで、薄膜セグメント6の熱膨張率をゼロに調整することができる。
Here, the thin film segment 6 is formed into a surface shape of a paraboloid of revolution by, for example, autoclave molding, and has out-of-plane rigidity. That is, the thin film segment 6 is shaped to be elastically deformed while changing its surface shape in a loaded state, and to be restored to the surface shape of the paraboloid when the load is released.
Further, as shown in FIG. 7, the carbon fiber 8 that is a CFRP reinforcing fiber for forming the thin film segment 6 is knitted so as to have three fiber orientation directions with an intersection angle of 60 °. CFRP reinforced with this triaxial type carbon fiber exhibits strength according to the strength of the fiber in the fiber direction, but the anisotropy that the strength becomes very weak in the direction perpendicular to the fiber direction is eliminated. The same rigidity and elastic modulus can be obtained in any direction. By using this CFRP, the thermal expansion coefficient of the thin film segment 6 can be adjusted to zero.

連結部材7は、薄膜セグメント6の材料であるCFRPを矩形平板状に成形され、その長手方向を2分割する分割ライン7aの領域のみがマトリックスの未含浸状態となっている。即ち、連結部材7は、図8に示されるように、CFRPで矩形平板状に成形された一対の接合部7bが、所定の隙間をもって、分割ライン7aにより連結されて構成されている。この分割ライン7aは炭素繊維のみで構成されているので、連結部材7は、分割ライン7aの部位で屈曲可能となる。
そして、連結部材7は、分割ライン7aを薄膜セグメント6の切頭扇状の側辺の端面同士の対向部に沿わせて、両接合部7bを隣接する薄膜セグメント6の裏面に接着固定されている。これにより、2枚の薄膜セグメント6は連結部材7の分割ライン7aを回動軸として回動自在に、即ち屈曲自在に連結されている。また、連結部材7は、分割ライン7aを薄膜セグメント6の切頭扇状の他の側辺の端面と背面リブ4のT字状の起立辺4aの端面との対向部に沿わせて、両接合部7bを薄膜セグメント6の裏面および背面リブ4のT字状の起立辺4aの側面に接着固定されている。これにより、各薄膜セグメント6は連結部材7の分割ライン7aを回動軸として回動自在に、即ち屈曲自在に背面リブ4に連結されている。
The connecting member 7 is made of CFRP, which is the material of the thin film segment 6, in a rectangular flat plate shape, and only the region of the dividing line 7a that divides the longitudinal direction into two is in an unimpregnated state of the matrix. That is, as shown in FIG. 8, the connecting member 7 is formed by connecting a pair of joint portions 7b formed of a CFRP into a rectangular flat plate shape by a dividing line 7a with a predetermined gap. Since the dividing line 7a is composed of only carbon fibers, the connecting member 7 can be bent at the portion of the dividing line 7a.
The connecting member 7 is bonded and fixed to the back surface of the adjacent thin film segment 6 with the dividing line 7a along the opposing portion of the end faces of the truncated fan-shaped side edges of the thin film segment 6. . As a result, the two thin film segments 6 are connected so as to be rotatable, that is, bendable, with the dividing line 7a of the connecting member 7 as a rotation axis. In addition, the connecting member 7 is formed by joining the dividing line 7a along the facing portion between the end face of the other side of the truncated fan shape of the thin film segment 6 and the end face of the T-shaped upright side 4a of the back rib 4. The part 7 b is bonded and fixed to the back surface of the thin film segment 6 and the side surface of the T-shaped upstanding side 4 a of the back rib 4. Thereby, each thin film segment 6 is connected to the back rib 4 so as to be rotatable, that is, bendable, with the dividing line 7a of the connecting member 7 as a rotation axis.

つぎに、このように構成された展開型アンテナ1の収納状態について説明する。
隣り合う背面リブ4間に配設されている2枚の薄膜セグメント6は、薄膜セグメント6の切頭扇状の側辺同士が連結部材7の分割ライン7aを回動軸として屈曲自在に連結され、さらに薄膜セグメント6の切頭扇状の他の側辺がそれぞれ背面リブ4の起立辺4aに連結部材7の分割ライン7aを回動軸として屈曲自在に連結されている。
そこで、展開型アンテナ1の収納状態では、図1に示されるように、背面リブ4はそれぞれ展開機構5によりセンターハブ3の軸心と略平行な収納位置に移行され、T字状の底辺同士を接近させて略筒状に配列されている。そして、隣り合う背面リブ4間に配設されている2枚の薄膜セグメント6は、薄膜セグメント6の切頭扇状の側辺同士の連結部がセンターハブ3の軸心位置に近接する谷折り(切頭扇状の側辺同士の連結部が裏面側から見て谷状態)に折り曲げられている。これにより、アンテナ反射鏡2は、図2に示されるように、各背面リブ4の部分で山折りに、隣り合う背面リブ4間で谷折りに折り畳まれて収納されている。この時、各薄膜セグメント6は、その面形状が面外剛性に抗して弾性変形されている。即ち、各薄膜セグメント6には、回転放物面の面形状に復帰しようとする復元力が蓄圧されている。
このように、展開型アンテナ1は、アンテナ反射鏡2が谷折りと山折りとに交互に折り畳まれて収納されて、ロケットに搭載される。
Next, the retracted state of the deployable antenna 1 configured as described above will be described.
The two thin film segments 6 disposed between the adjacent back ribs 4 are connected so that the truncated fan-shaped sides of the thin film segment 6 can be bent with the dividing line 7a of the connecting member 7 as a rotation axis. Further, the other side edges of the thin film segment 6 in a truncated fan shape are connected to the standing side 4a of the back rib 4 so as to be bendable with the dividing line 7a of the connecting member 7 as a rotation axis.
Therefore, in the retracted state of the deployable antenna 1, as shown in FIG. 1, the back ribs 4 are moved to the retracted positions substantially parallel to the center of the center hub 3 by the unfolding mechanism 5. Are arranged in a substantially cylindrical shape. The two thin film segments 6 disposed between the adjacent back ribs 4 are valley folds in which the connecting portions of the truncated fan-shaped sides of the thin film segment 6 are close to the axial center position of the center hub 3 (see FIG. The connecting portion between the truncated fan-shaped sides is bent in a valley state when viewed from the back side. As a result, as shown in FIG. 2, the antenna reflecting mirror 2 is housed by being folded in a mountain fold at each back rib 4 and in a valley fold between adjacent back ribs 4. At this time, the surface shape of each thin film segment 6 is elastically deformed against the out-of-plane rigidity. That is, each thin film segment 6 is accumulated with a restoring force for returning to the surface shape of the paraboloid of revolution.
Thus, the deployable antenna 1 is mounted on a rocket with the antenna reflector 2 folded and stored alternately in a valley fold and a mountain fold.

ついで、宇宙空間での展開型アンテナ1の展開動作について説明する。
各背面リブ4が、展開機構5により、センターハブ3の軸心となす角度を徐々に大きくするように展開される。この時、図3に示されるように、隣り合う背面リブ4のなす角度が徐々に大きくなり、これにより、隣り合う背面リブ4間に位置する2枚の薄膜セグメント6同士のなす角度が徐々に大きくなる。そして、図4乃至図6に示されるように、各背面リブ4の展開が完全に終了すると、隣り合う2枚の薄膜セグメント6同士のなす角度がほぼ180°となり、回転放物面の面形状に展開された電波反射面を有するアンテナ反射鏡2が構築される。
Next, a deployment operation of the deployable antenna 1 in space will be described.
Each back rib 4 is expanded by the expanding mechanism 5 so that the angle formed with the axis of the center hub 3 is gradually increased. At this time, as shown in FIG. 3, the angle formed between the adjacent back ribs 4 gradually increases, whereby the angle formed between the two thin film segments 6 located between the adjacent back ribs 4 gradually increases. growing. Then, as shown in FIGS. 4 to 6, when the development of each back rib 4 is completely completed, the angle formed by the two adjacent thin film segments 6 becomes approximately 180 °, and the surface shape of the paraboloid of revolution. Thus, the antenna reflector 2 having the radio wave reflecting surface developed in FIG.

この種の展開型アンテナは、ロケット搭載性により最大長さ(展開状態では、電波反射面の開口径が最大長さとなる)が制限される。しかし、この実施の形態1による展開型アンテナ1は、アンテナ反射鏡2が谷折りと山折りとを交互に、かつ、均等に折り畳まれて収納されているので、収納時の最大長さは、展開型アンテナ1の軸方向長さとなり、アンテナ反射鏡2の開口径のほぼ1/2に抑えられ、開口径8〜10mクラスの展開型アンテナまでロケットに搭載できるようにできる。
また、薄膜セグメント6が面外剛性を有しているので、背面リブ4の展開過渡状態では、各薄膜セグメント6は、蓄圧されている復元力が放勢され、自ら回転放物面の面形状に復帰するように変形する。さらに、背面リブ4の展開が完了すると、各薄膜セグメント6に負荷がかからなくなり、各薄膜セグメント6は回転放物面の面形状に完全に復元する。従って、アンテナ鏡面をメッシュで構成していた従来の展開型アンテナにおける張力構造およびメッシュ展開抵抗力などに関する設計が不要となる。また、従来の展開型アンテナにおける極めて複雑な金属メッシュおよびケーブルの絡み防止機構が不要となる。さらに、アンテナ反射鏡2の組立、調整が簡易となり、従来の展開型アンテナに比べて、アンテナの製作時間、コストを大幅に低減することができる。
This type of deployable antenna has a maximum length (the aperture diameter of the radio wave reflecting surface becomes the maximum length in the deployed state) due to the rocket mountability. However, in the deployable antenna 1 according to the first embodiment, the antenna reflecting mirror 2 is alternately folded and stored in a valley fold and a mountain fold, so that the maximum length when stored is: The length of the deployable antenna 1 in the axial direction is reduced to about ½ of the aperture diameter of the antenna reflector 2, and a deployable antenna having an aperture diameter of 8 to 10 m can be mounted on the rocket.
Further, since the thin film segments 6 have out-of-plane rigidity, in the deployment transition state of the back rib 4, each thin film segment 6 is released from the accumulated restoring force, and the surface shape of the paraboloid of revolution itself. Deforms to return to. Further, when the development of the back rib 4 is completed, no load is applied to each thin film segment 6, and each thin film segment 6 is completely restored to the surface shape of the rotating paraboloid. Therefore, it is not necessary to design the tension structure and the mesh deployment resistance in the conventional deployable antenna in which the antenna mirror surface is configured by a mesh. Further, a very complicated metal mesh and a cable entanglement preventing mechanism in the conventional deployable antenna are not required. Furthermore, the assembly and adjustment of the antenna reflector 2 can be simplified, and the manufacturing time and cost of the antenna can be greatly reduced as compared with the conventional deployable antenna.

また、薄膜セグメント6がCFRPで作製されているので、金属メッシュを用いる従来の展開型アンテナに比べて著しい軽量化が図られる。
また、CFRPが三軸タイプの炭素繊維織物で強化されているので、薄膜セグメント6の熱膨張率をゼロに調整でき、アンテナ反射鏡2の電波反射面の面精度が高められる。
Further, since the thin film segment 6 is made of CFRP, the weight can be significantly reduced as compared with a conventional deployable antenna using a metal mesh.
Moreover, since CFRP is reinforced with the triaxial type carbon fiber fabric, the coefficient of thermal expansion of the thin film segment 6 can be adjusted to zero, and the surface accuracy of the radio wave reflecting surface of the antenna reflector 2 can be improved.

また、連結部材7は、CFRPを矩形平板状に成形され、その長手方向を2分割する分割ライン7aの領域のみがマトリックスの未含浸状態となっており、分割ライン7aの部位で屈曲可能となっている。そして、連結部材7は、自身が変形してアンテナ反射鏡2の収納、展開動作を実現しているので、機械的な回転部を有するヒンジでの回転部におけるガタツキがなく、展開された電波反射面の面精度が高められる。つまり、機械的な回転部を有するヒンジを連結部材として適用した場合には、アンテナ反射鏡の展開時に、ヒンジの回転部におけるガタツキに起因する電波反射面の面精度が低下する問題があったが、この連結部材7を用いることにより、この電波反射面の面精度の低下が抑制される。
さらに、この連結部材7は、自身が変形するので、曲率を持つ薄膜セグメント6になじみやすく、連結部材7を用いることに起因する展開抵抗力の増加が抑制される。
The connecting member 7 is formed of CFRP in a rectangular flat plate shape, and only the region of the dividing line 7a that divides the longitudinal direction into two is in an unimpregnated state of the matrix, and can be bent at the portion of the dividing line 7a. ing. Since the connecting member 7 is deformed to realize the storing and unfolding operation of the antenna reflecting mirror 2, there is no backlash in the rotating portion at the hinge having the mechanical rotating portion, and the unfolded radio wave reflection. The surface accuracy of the surface is increased. That is, when a hinge having a mechanical rotating part is applied as a connecting member, there has been a problem that the surface accuracy of the radio wave reflecting surface due to backlash in the rotating part of the hinge is lowered when the antenna reflector is deployed. By using this connecting member 7, a decrease in surface accuracy of the radio wave reflecting surface is suppressed.
Furthermore, since the connecting member 7 is deformed, the connecting member 7 is easily adapted to the thin film segment 6 having a curvature, and an increase in the development resistance due to the use of the connecting member 7 is suppressed.

なお、上記実施の形態1では、薄膜セグメント6を作製するCFRPのマトリックスとして、ポリエーテルエーテルケトン樹脂やポリエーテルスルホン樹脂などの熱可塑性樹脂を用いるものとしているが、マトリックスはエポキシ樹脂や不飽和ポリエステル樹脂などの熱硬化性樹脂を用いてもよい。
また、上記実施の形態1では、薄膜セグメント6が3軸タイプの炭素繊維で強化したCFRPを用いるものとしているが、互いに直交する2つの繊維配向方向を持つように編み込まれた2軸タイプの炭素繊維で強化したCFRPの膜を、繊維配向方向が直交するように積層して薄膜セグメントを作製してもよい。この場合においても、3軸タイプの炭素繊維で強化したCFRPと同様に、異方性が解消され、いずれの方向に対しても同じ剛性、弾性率が得られる。
また、上記実施の形態1では、薄膜セグメント6がCFRPで作製されているものとしているが、薄膜セグメント6の材料はCFRPに限定されるものではなく、面外剛性を有していればよく、例えばアラミド樹脂で強化したAFRP(Aramid Fiber Reinforced Plastic)や炭素繊維とアラミド繊維などのハイブリッド繊維で強化したHFRP(Hybrid Fiber Reinforced Plastic)などの繊維強化プラスチックでもよい。
In the first embodiment, a thermoplastic resin such as a polyether ether ketone resin or a polyether sulfone resin is used as the CFRP matrix for producing the thin film segment 6, but the matrix is an epoxy resin or an unsaturated polyester. A thermosetting resin such as a resin may be used.
In the first embodiment, the thin film segment 6 is made of CFRP reinforced with triaxial carbon fibers. However, the biaxial carbon knitted so as to have two fiber orientation directions orthogonal to each other. A thin film segment may be produced by laminating CFRP films reinforced with fibers so that the fiber orientation directions are orthogonal to each other. Also in this case, the anisotropy is eliminated and the same rigidity and elastic modulus can be obtained in any direction as in the case of CFRP reinforced with the triaxial carbon fiber.
In the first embodiment, the thin film segment 6 is made of CFRP. However, the material of the thin film segment 6 is not limited to CFRP, as long as it has an out-of-plane rigidity. For example, fiber reinforced plastics such as AFRP (Aramid Fiber Reinforced Plastic) reinforced with aramid resin and HFRP (Hybrid Fiber Reinforced Plastic) reinforced with hybrid fibers such as carbon fiber and aramid fiber may be used.

また、上記実施の形態1では、CFRPを矩形平板状に成形され、その長手方向を2分割する分割ライン7aの領域のみがマトリックスの未含浸状態となっている連結部材7を用いるものとして説明しているが、連結部材は自身が変形(屈曲)してアンテナ反射鏡2を収納、展開できるものであればよく、例えば、破断歪みが大きいAFRPを薄板状に成形したもの、芳香族ポリイミドフィルムなどのプラスチックフィルム、金メッキが施されたモリブデンワイヤを編み込んだ金属メッシュ、CFRPで作製されたCスプリングなどを用いることができる。ここで、連結部材として芳香族ポリイミドフィルムを用いれば、アンテナ反射鏡2の展開耐久性が向上される。また、連結部材としてCスプリングを用いれば、アンテナ反射鏡2の電波反射面全体の剛性が向上される。
また、上記実施の形態1では、背面リブ4がチタン、ステンレスなどの金属材料で作製されているものとしているが、背面リブは薄板状のCFRPのプリプレグを多数枚積層一体化して構成するようにしてもよい。この場合、展開型アンテナの軽量化が図られる。
In the first embodiment, the description will be made on the assumption that the CFRP is formed in a rectangular flat plate shape, and the connecting member 7 is used in which only the region of the dividing line 7a that divides the longitudinal direction into two is in an unimpregnated state of the matrix. However, the connecting member is not limited as long as it can be deformed (bent) to accommodate and deploy the antenna reflector 2. For example, AFRP having a large breaking strain formed into a thin plate, an aromatic polyimide film, etc. A plastic film, a metal mesh braided with a molybdenum wire plated with gold, a C spring made of CFRP, or the like can be used. Here, if an aromatic polyimide film is used as the connecting member, the deployment durability of the antenna reflector 2 is improved. Further, if a C spring is used as the connecting member, the rigidity of the entire radio wave reflecting surface of the antenna reflecting mirror 2 is improved.
In the first embodiment, the back rib 4 is made of a metal material such as titanium or stainless steel. However, the back rib is formed by laminating and integrating a large number of thin CFRP prepregs. May be. In this case, the deployable antenna can be reduced in weight.

実施の形態2.
図9はこの発明の実施の形態2に係る宇宙用展開型アンテナの収納状態を模式的に示す要部斜視図である。
図9において、展開型アンテナ1Aは、背面リブ4間の2枚の薄膜セグメント6がそれぞれ谷折りに折り畳まれた後、渦巻き状に巻かれて収納されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 2. FIG.
FIG. 9 is a perspective view schematically showing a main part of a storage state of the space deployable antenna according to the second embodiment of the present invention.
In FIG. 9, the deployable antenna 1 </ b> A is housed by being wound spirally after the two thin film segments 6 between the back ribs 4 are folded into valley folds.
Other configurations are the same as those in the first embodiment.

この展開型アンテナ1Aは、背面リブ4間の2枚の薄膜セグメント6がそれぞれ谷折りに折り畳まれ、さらに渦巻き状に巻かれて収納されているので、展開型アンテナ1Aの収納状態の半径方向外形寸法を縮小でき、ロケットへの搭載性がさらに向上する。   In this deployable antenna 1A, the two thin film segments 6 between the back ribs 4 are each folded into a valley fold and further wound in a spiral shape. The size can be reduced, and the mountability to the rocket is further improved.

実施の形態3.
図10はこの発明の実施の形態3に係る宇宙用展開型アンテナの収納状態を模式的に示す要部拡大斜視図、図11はこの発明の実施の形態3に係る宇宙用展開型アンテナの展開完了状態を模式的に示す要部拡大斜視図である。
図10および図11において、薄膜セグメント6Aは、切頭扇形の側辺の長さ方向の略中央部と外周辺の周方向の略中央部とを結ぶ線分で分割された略三角形の副セグメント6bと残部である主セグメント6aとを備えている。そして、薄膜セグメント6Aは、主セグメント6aと副セグメント6bとの分割端面を近接させて、分割端面同士の対向部に分割ライン7aを沿わせた連結部材7の両接合部7bを、主セグメント6aと副セグメント6bとの裏面に接着して、全体として切頭扇形に構成されている。この薄膜セグメント6Aは、薄膜セグメント6と同様に、回転放物面を放射状に分割した切頭扇状に成形され、面外剛性を有している。
2枚の薄膜セグメント6Aは、副セグメント6bを相対するように背面リブ4間に配設され、切頭扇状の側辺の端面同士の対向部に分割ライン7aを沿わせた連結部材7の第1および第2接合部7bを、隣接する薄膜セグメント6Aの裏面に接着して、連結されている。この時、2枚の薄膜セグメント6Aの副セグメント6b同士が相対して連結部材7により連結されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 3 FIG.
10 is an enlarged perspective view of a main part schematically showing a storage state of the space deployable antenna according to the third embodiment of the present invention, and FIG. 11 is a deployment of the space deployable antenna according to the third embodiment of the present invention. It is a principal part expansion perspective view which shows a completion state typically.
10 and 11, the thin film segment 6A is a substantially triangular sub-segment divided by a line segment connecting a substantially central portion in the length direction of the side of the truncated sector and a substantially central portion in the circumferential direction of the outer periphery. 6b and the remaining main segment 6a. Then, the thin film segment 6A is formed by connecting both joints 7b of the connecting member 7 with the division lines 7a along the opposing portions of the division end faces, with the division end faces of the main segment 6a and the sub-segment 6b close to each other. And the sub-segment 6b are bonded to the back surface to form a truncated sector as a whole. Similar to the thin film segment 6, the thin film segment 6 </ b> A is formed in a truncated fan shape in which the paraboloid of revolution is radially divided and has out-of-plane rigidity.
The two thin film segments 6A are disposed between the back ribs 4 so as to face the sub-segment 6b, and the second thin film segments 6A are connected to each other along the dividing line 7a at the opposed portions of the end faces of the truncated fan-shaped sides. The 1st and 2nd junction part 7b is adhere | attached and connected with the back surface of 6 A of adjacent thin film segments. At this time, the sub-segments 6b of the two thin film segments 6A are connected to each other by the connecting member 7.
Other configurations are the same as those in the first embodiment.

このように構成された展開型アンテナ1Bは、図10に示されるように、隣り合う背面リブ4間の2枚の薄膜セグメント6Aは、主セグメント6a同士の連結部および主セグメント6aと副セグメント6bとの連結部でそれぞれ谷折りに、副セグメント6b同士の連結部で山折りに折り曲げられて収納されている。
また、展開型アンテナ1Bは、背面リブ4を展開させると、各背面リブ4に連結されている両主セグメント6aは、背面リブ4に対して連結部材7の分割ライン7aを回動軸として回動し、両主セグメント6aのなす角度がほぼ180°となるように展開される。また、隣り合う背面リブ4間に配設されている両主セグメント6aは、両主セグメント6aを連結している連結部材7の分割ライン7aを回動軸として回動し、両主セグメント6aのなす角度がほぼ180°となるように展開される。また、隣り合う主セグメント6aと副セグメント6bとは、主セグメント6aおよび副セグメント6bを連結している連結部材7の分割ライン7aを回動軸として回動し、主セグメント6aと副セグメント6bのなす角度がほぼ180°となるように展開される。さらに、隣り合う両副セグメント6bは、両副セグメント6bを連結している連結部材7の分割ライン7aを回動軸として回動し、両副セグメント6bのなす角度がほぼ180°となるように展開される。そして、各主セグメント6a及び副セグメント6bは、その面外剛性により、それぞれ回転放物面の面形状に復元する。これにより、回転放物面の面形状に展開された電波反射面を有するアンテナ反射鏡2Aが構築される。
As shown in FIG. 10, the deployable antenna 1B configured as described above includes two thin film segments 6A between adjacent back ribs 4, a connecting portion between the main segments 6a, a main segment 6a, and a sub-segment 6b. And are folded and stored in a mountain fold at the connecting portion between the sub-segments 6b.
Further, when the deployable antenna 1B deploys the back ribs 4, both the main segments 6a connected to the back ribs 4 rotate with respect to the back rib 4 using the dividing line 7a of the connecting member 7 as a rotation axis. It is developed so that the angle formed by both main segments 6a is approximately 180 °. Further, the two main segments 6a disposed between the adjacent back ribs 4 rotate about the dividing line 7a of the connecting member 7 connecting the two main segments 6a as the rotation axis, and the two main segments 6a It is developed so that the angle formed is approximately 180 °. Further, the adjacent main segment 6a and sub-segment 6b rotate about the dividing line 7a of the connecting member 7 connecting the main segment 6a and the sub-segment 6b as a rotation axis, and the main segment 6a and the sub-segment 6b It is developed so that the angle formed is approximately 180 °. Further, the adjacent sub-segments 6b rotate about the dividing line 7a of the connecting member 7 connecting the sub-segments 6b as a rotation axis so that the angle formed by both the sub-segments 6b is approximately 180 °. Be expanded. And each main segment 6a and subsegment 6b are each restored | restored in the surface shape of a rotation paraboloid by the out-of-plane rigidity. Thereby, the antenna reflecting mirror 2A having the radio wave reflecting surface developed in the surface shape of the rotating paraboloid is constructed.

このように、この実施の形態3によれば、アンテナ反射鏡2Aが谷折りと山折りとに交互に、かつ、均等に折り畳まれ、さらに谷折りの外周側の部位が山折りに折り返されて収納されているので、周方向長さの長い薄膜セグメント6Aの切頭扇形の外周辺がほぼ2分割に折り返されている。そこで、展開型アンテナ1Bを収納状態としたときに、背面リブ4の先端からセンターハブ3の軸心方向への薄膜セグメント6Aの延出量が半減し、収納状態の半径方向外形寸法が縮小され、ロケットへの搭載性がさらに向上する。   As described above, according to the third embodiment, the antenna reflector 2A is alternately and evenly folded into the valley fold and the mountain fold, and further, the outer peripheral portion of the valley fold is folded back into the mountain fold. Since it is housed, the outer periphery of the truncated fan shape of the thin film segment 6A having a long circumferential length is folded back into two substantially. Therefore, when the deployable antenna 1B is in the retracted state, the amount of extension of the thin film segment 6A from the tip of the back rib 4 in the axial direction of the center hub 3 is halved, and the radial outer dimension in the retracted state is reduced. , Mounting on rockets is further improved.

実施の形態4.
この実施の形態4では、金メッキが施されたモリブデンの細線を編み込んで作製された長尺の金属メッシュが、隣接する薄膜セグメント6の切頭扇状の側辺間の隙間を、切頭扇状の側辺の全長にわたって塞ぐように、隣接する薄膜セグメント6の表面側に接着されている。
なお、他の構成は上記実施の形態1と同様に構成されている。
Embodiment 4 FIG.
In the fourth embodiment, a long metal mesh produced by braiding gold-plated molybdenum fine wires opens a gap between the truncated fan-shaped side edges of adjacent thin film segments 6 to the truncated fan-shaped side. It is bonded to the surface side of the adjacent thin film segment 6 so as to cover the entire length of the side.
Other configurations are the same as those in the first embodiment.

この実施の形態4によれば、薄膜セグメント6間の隙間が金属メッシュで塞がれているので、回転放物面の全体を電波反射面とするアンテナ反射鏡を構築することができる。   According to the fourth embodiment, since the gap between the thin film segments 6 is closed with the metal mesh, it is possible to construct an antenna reflector that uses the entire paraboloid of revolution as the radio wave reflecting surface.

この発明の実施の形態1に係る宇宙用展開型アンテナの収納状態を模式的に示す斜視図である。It is a perspective view which shows typically the accommodation state of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナの収納状態を模式的に示す要部拡大斜視図である。It is a principal part expansion perspective view which shows typically the accommodation state of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナの展開過渡状態を模式的に示す斜視図である。It is a perspective view which shows typically the expansion | deployment transition state of the expansion | deployment type | formula antenna for space concerning Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す側面図である。It is a side view which shows typically the completion state of expansion | deployment of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す斜視図である。It is a perspective view which shows typically the deployment completion state of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナの展開完了状態を模式的に示す要部拡大斜視図である。It is a principal part expansion perspective view which shows typically the completion state of expansion | deployment of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナのアンテナ反射鏡を構成する薄膜セグメントの材料である繊維強化プラスチックにおける強化繊維の配向方向を説明する平面図である。It is a top view explaining the orientation direction of the reinforced fiber in the fiber reinforced plastic which is the material of the thin film segment which comprises the antenna reflector of the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態1に係る宇宙用展開型アンテナに適用される連結部材の構成を示す斜視図である。It is a perspective view which shows the structure of the connection member applied to the space | gear deployment type antenna which concerns on Embodiment 1 of this invention. この発明の実施の形態2に係る宇宙用展開型アンテナの収納状態を模式的に示す要部斜視図である。It is a principal part perspective view which shows typically the accommodation state of the space | gear deployment type antenna which concerns on Embodiment 2 of this invention. この発明の実施の形態3に係る宇宙用展開型アンテナの収納状態を模式的に示す要部拡大斜視図である。It is a principal part expansion perspective view which shows typically the accommodation state of the space | gear deployment type antenna which concerns on Embodiment 3 of this invention. この発明の実施の形態3に係る宇宙用展開型アンテナの展開完了状態を模式的に示す要部拡大斜視図である。It is a principal part expansion perspective view which shows typically the completion state of expansion | deployment of the space | gear deployment type antenna which concerns on Embodiment 3 of this invention.

符号の説明Explanation of symbols

1,1A,1B 展開型アンテナ、2,2A アンテナ反射鏡、3 センターハブ、4 背面リブ、6,6A 薄膜セグメント、6a 主セグメント、6b 副セグメント、7 連結部材、7a 分割ライン、7b 接合部(第1および第2の接合部)、8 炭素繊維。   1,1A, 1B Deployable antenna, 2,2A antenna reflector, 3 center hub, 4 back rib, 6,6A thin film segment, 6a main segment, 6b subsegment, 7 connecting member, 7a dividing line, 7b joint ( First and second joints), 8 carbon fibers.

Claims (8)

円盤状のセンターハブと、
それぞれ一端を上記センターハブに回動自在に取り付けられて該センターハブの周方向に所定ピッチで配列され、該センターハブの軸心を筒状に囲繞する収納位置と該センターハブから放射状に開かれた展開位置とをとる多数本の背面リブと、
上記多数本の背面リブの上記センターハブに対する回動動作に連動して収納、展開するように該多数本の背面リブに支持され、展開状態で回転放物面の面形状を有する電波反射面を構成するアンテナ反射鏡と、を備え、
上記アンテナ反射鏡は、上記回転放物面の面形状を放射状に分割して得られる切頭扇状に成形され、かつ、無負荷状態で該回転放物面の面形状に復元する面外剛性を有する多数枚の薄膜セグメントを有し、該薄膜セグメントが周方向に隣接する上記背面リブの対間にそれぞれ2枚ずつ配設され、該2枚の薄膜セグメントの切頭扇状の側辺同士を対向させて径方向の複数箇所で該側辺同士の対向部に沿った回動軸回りに回動自在に連結され、かつ、該2枚の薄膜セグメントの切頭扇状の他の側辺を径方向の複数箇所で上記背面リブに該他の側辺に沿った回動軸回りに回動自在に連結されて構成されており、
上記アンテナ反射鏡は、上記背面リブに対応する位置で山折りに、かつ、周方向に隣接する上記背面リブの対間の2枚の上記薄膜セグメントの切頭扇状の側辺同士の対向部で谷折りに折り畳まれて収納されていることを特徴とする宇宙用展開型アンテナ。
A disc-shaped center hub,
One end of each center hub is rotatably attached to the center hub and arranged at a predetermined pitch in the circumferential direction of the center hub. The storage position surrounds the center of the center hub in a cylindrical shape, and is opened radially from the center hub. A large number of back ribs that take the open position,
A radio wave reflecting surface that is supported by the plurality of back ribs so as to be housed and deployed in conjunction with the rotational movement of the plurality of back ribs with respect to the center hub, and has a paraboloidal surface shape in the deployed state. Comprising an antenna reflector to constitute,
The antenna reflector is formed into a truncated fan shape obtained by radially dividing the surface shape of the rotating paraboloid, and has an out-of-plane rigidity that restores the surface shape of the rotating paraboloid in an unloaded state. A plurality of thin film segments, and two thin film segments are disposed between the pair of circumferentially adjacent back ribs, and the two thin film segments face each other in the shape of a truncated fan. Let the other side edges of the two thin film segments be connected in a radial direction so as to be pivotally connected around a rotation axis along the opposing portions of the side edges at a plurality of radial positions. Are configured to be pivotally connected to the back rib at a plurality of locations around a rotation axis along the other side,
The antenna reflector is mountain-folded at a position corresponding to the back rib, and at a facing portion between the truncated fan-shaped sides of the two thin film segments between a pair of the back ribs adjacent in the circumferential direction. An expandable antenna for space use, which is folded and stored in a valley fold.
上記薄膜セグメントは、CFRPを上記回転放物面の面形状を放射状に分割して得られる切頭扇状に成形し、導電性材料を表面に被覆して構成されていることを特徴とする請求項1記載の宇宙用展開型アンテナ。   The thin film segment is formed by forming CFRP into a truncated fan shape obtained by radially dividing the surface shape of the paraboloid of revolution, and covering the surface with a conductive material. 1. A deployable antenna for space according to 1. 上記CFRPの炭素繊維は、互いに60°の交差角度の3つの繊維配向方向をもつように編み込まれていることを特徴とする請求項2記載の宇宙用展開型アンテナ。   3. The space deployable antenna according to claim 2, wherein the carbon fiber of the CFRP is knitted so as to have three fiber orientation directions having an intersecting angle of 60 ° with each other. 上記薄膜セグメント同士および上記薄膜セグメントと上記背面リブとが、屈曲して上記回動軸を構成する連結部材で連結されていることを特徴とする請求項1記載の宇宙用展開型アンテナ。   2. The deployable antenna for space according to claim 1, wherein the thin film segments and the thin film segments and the back rib are connected by a connecting member that is bent to form the rotating shaft. 上記連結部材は、マトリックスを繊維で強化したプラスチックを平板状に成形された第1および第2の接合部が所定の隙間を持って該繊維で連結されて構成され、上記第1および第2の接合部が上記薄膜セグメント又は上記背面リブに接合され、上記第1および第2の接合部間に位置する上記繊維の部位が上記回動軸を構成していることを特徴とする請求項4記載の宇宙用展開型アンテナ。   The connecting member is formed by connecting the first and second joint portions formed of a plastic whose matrix is reinforced with fibers into a flat plate shape with a predetermined gap, and the first and second joints. The joint portion is joined to the thin film segment or the back rib, and the fiber portion located between the first and second joint portions constitutes the rotating shaft. Deployable antenna for space. 上記連結部材は、Cスプリングで構成されていることを特徴とする請求項4記載の宇宙用展開型アンテナ。   5. The space deployable antenna according to claim 4, wherein the connecting member comprises a C spring. 収納状態の上記アンテナ反射鏡は、周方向に隣接する上記背面リブの対間の2枚の上記薄膜セグメントの切頭扇状の側辺同士の対向部で谷折りに折り畳まれた部位が渦巻き状に巻回されていることを特徴とする請求項1記載の宇宙用展開型アンテナ。   The antenna reflector in the stowed state has a spirally folded portion folded in a valley fold at the opposed portions of the two fan-shaped side portions of the thin film segments between the pair of back ribs adjacent in the circumferential direction. 2. The deployable antenna for space according to claim 1, wherein the antenna is wound. 上記薄膜セグメントは、切頭扇状の外周辺と側辺との交点から該外周辺の所定領域と該側辺の所定領域を含む略三角形の副セグメントと残る主セグメントとに分割され、該副セグメントと該主セグメントとが分割面同士を対向させて複数箇所で該分割面同士の対向部に沿った回動軸回りに回動自在に連結されて構成され、
隣り合う上記背面リブの対間に配設された2枚の上記薄膜セグメントは、上記副セグメント同士を対向させて配置され、上記副セグメント同士および上記主セグメント同士を対向させて径方向の複数箇所で対向部に沿った回動軸回りに回動自在に連結されており、
収納状態の上記アンテナ反射鏡は、周方向に隣接する上記背面リブの対間の2枚の上記薄膜セグメントの上記主セグメント同士の対向部で谷折りに、かつ、上記副セグメント同士の対向部で山折りに、さらに上記各薄膜セグメントの上記主セグメントと上記副セグメントとの対向部で谷折りに折り畳まれていることを特徴とする請求項1記載の宇宙用展開型アンテナ。
The thin film segment is divided into a substantially triangular sub-segment including a predetermined region on the outer periphery, a predetermined region on the side, and a remaining main segment from the intersection of the fringe-shaped outer periphery and the side. And the main segment are configured such that the divided surfaces face each other and are pivotally connected around a rotation axis along a facing portion of the divided surfaces at a plurality of locations.
The two thin film segments disposed between the pair of adjacent back ribs are arranged so that the sub-segments are opposed to each other, and the sub-segments and the main segments are opposed to each other in a plurality of radial directions. It is connected so that it can freely rotate around the rotation axis along the facing part.
The antenna reflector in the stored state is valley-folded at the opposed portions of the main segments of the two thin film segments between the pair of back ribs adjacent in the circumferential direction, and at the opposed portions of the sub-segments. 2. The space deployable antenna according to claim 1, wherein the space-foldable antenna is folded in a mountain fold and further in a valley fold at an opposing portion of the main segment and the sub-segment of each thin film segment.
JP2005042769A 2005-02-18 2005-02-18 Unfolding antenna for space Pending JP2006229750A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005042769A JP2006229750A (en) 2005-02-18 2005-02-18 Unfolding antenna for space

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005042769A JP2006229750A (en) 2005-02-18 2005-02-18 Unfolding antenna for space

Publications (1)

Publication Number Publication Date
JP2006229750A true JP2006229750A (en) 2006-08-31

Family

ID=36990679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005042769A Pending JP2006229750A (en) 2005-02-18 2005-02-18 Unfolding antenna for space

Country Status (1)

Country Link
JP (1) JP2006229750A (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010016747A (en) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp Membrane reflector and method of manufacturing the same
JP2010537880A (en) * 2007-08-28 2010-12-09 レイセオン カンパニー Spacecraft with payload-centric configuration
CN104269652A (en) * 2014-09-18 2015-01-07 哈尔滨工业大学 Connector and connection method for radial rib inflatable space antenna rib plate and metal elastic net reflection face
CN104765122A (en) * 2015-04-29 2015-07-08 哈尔滨工业大学 Telescopic truss type binary optical space camera and on-orbit work method thereof
CN105720349A (en) * 2016-04-07 2016-06-29 西安交通大学 Slide type unfolding umbrella-shaped antenna structure framework and unfolding method
CN105896020A (en) * 2016-05-05 2016-08-24 湖南航天环宇通信科技股份有限公司 Expandable fixed surface antenna
KR101754234B1 (en) * 2017-04-05 2017-07-05 엘아이지넥스원 주식회사 Antenna on boarding a satellite
CN107465449A (en) * 2017-09-18 2017-12-12 云南电网有限责任公司红河供电局 A kind of control method and device of emergency communication system antenna
CN107685881A (en) * 2017-09-14 2018-02-13 中国人民解放军国防科技大学 Space flexible capturing device and capturing method thereof
CN107946725A (en) * 2017-11-07 2018-04-20 广西大学 A kind of folding and unfolding mechanism of double-slider spring assembly constraint telescopic rod
KR101961672B1 (en) * 2018-06-11 2019-03-26 두온시스템(주) Level Sensing Apparatus
WO2019145663A1 (en) * 2018-01-29 2019-08-01 Centre National d'Études Spatiales Foldable/deployable device comprising at least four warped sectors connected by hinges
CN110098459A (en) * 2019-05-15 2019-08-06 燕山大学 A kind of flexible film laying-out device structure based on foldable antenna
CN111547273A (en) * 2020-05-14 2020-08-18 中国人民解放军国防科技大学 Thin film spacecraft
CN112514161A (en) * 2018-06-28 2021-03-16 牛津空间系统有限公司 Deployable film structure for antenna
JP2021079296A (en) * 2021-03-08 2021-05-27 株式会社三洋物産 Game machine
CN113221201A (en) * 2021-05-12 2021-08-06 西安电子科技大学 Folding design method of small-curvature revolution paraboloid film
CN113636108A (en) * 2021-06-30 2021-11-12 中国人民解放军战略支援部队航天工程大学 Plate type space structure capable of being folded and unfolded repeatedly
CN113764899A (en) * 2021-08-04 2021-12-07 同济大学 Net surface installation method of rib net type deployable antenna

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010537880A (en) * 2007-08-28 2010-12-09 レイセオン カンパニー Spacecraft with payload-centric configuration
JP2010016747A (en) * 2008-07-07 2010-01-21 Mitsubishi Electric Corp Membrane reflector and method of manufacturing the same
CN104269652A (en) * 2014-09-18 2015-01-07 哈尔滨工业大学 Connector and connection method for radial rib inflatable space antenna rib plate and metal elastic net reflection face
CN104765122A (en) * 2015-04-29 2015-07-08 哈尔滨工业大学 Telescopic truss type binary optical space camera and on-orbit work method thereof
CN105720349B (en) * 2016-04-07 2018-04-17 西安交通大学 A kind of deployable umbrella antenna structural framework of slidingtype and method of deploying
CN105720349A (en) * 2016-04-07 2016-06-29 西安交通大学 Slide type unfolding umbrella-shaped antenna structure framework and unfolding method
CN105896020A (en) * 2016-05-05 2016-08-24 湖南航天环宇通信科技股份有限公司 Expandable fixed surface antenna
CN105896020B (en) * 2016-05-05 2018-07-24 湖南航天环宇通信科技股份有限公司 Deployable solid surface antenna
KR101754234B1 (en) * 2017-04-05 2017-07-05 엘아이지넥스원 주식회사 Antenna on boarding a satellite
CN107685881A (en) * 2017-09-14 2018-02-13 中国人民解放军国防科技大学 Space flexible capturing device and capturing method thereof
CN107685881B (en) * 2017-09-14 2023-10-31 中国人民解放军国防科技大学 Space flexible capturing device and capturing method thereof
CN107465449A (en) * 2017-09-18 2017-12-12 云南电网有限责任公司红河供电局 A kind of control method and device of emergency communication system antenna
CN107465449B (en) * 2017-09-18 2021-01-05 云南电网有限责任公司红河供电局 Control method and device for antenna of emergency communication system
CN107946725B (en) * 2017-11-07 2020-01-10 广西大学 Folding and unfolding mechanism of double-slider spring combination constraint telescopic rod
CN107946725A (en) * 2017-11-07 2018-04-20 广西大学 A kind of folding and unfolding mechanism of double-slider spring assembly constraint telescopic rod
FR3077270A1 (en) * 2018-01-29 2019-08-02 Centre National D'etudes Spatiales FOLDABLE / DEPLOYABLE DEVICE COMPRISING AT LEAST FOUR LEFT SECTIONS CONNECTED BY HINGES
WO2019145663A1 (en) * 2018-01-29 2019-08-01 Centre National d'Études Spatiales Foldable/deployable device comprising at least four warped sectors connected by hinges
KR101961672B1 (en) * 2018-06-11 2019-03-26 두온시스템(주) Level Sensing Apparatus
CN112514161A (en) * 2018-06-28 2021-03-16 牛津空间系统有限公司 Deployable film structure for antenna
JP7440182B2 (en) 2018-06-28 2024-02-28 オックスフォード スペース システムズ リミテッド Deployable membrane structures for antennas and deployable antennas
US11909114B2 (en) 2018-06-28 2024-02-20 Oxford Space Systems Limited Deployable membrane structure for an antenna
CN110098459B (en) * 2019-05-15 2020-04-07 燕山大学 Telescopic film distribution mechanism based on foldable antenna
CN110098459A (en) * 2019-05-15 2019-08-06 燕山大学 A kind of flexible film laying-out device structure based on foldable antenna
CN111547273A (en) * 2020-05-14 2020-08-18 中国人民解放军国防科技大学 Thin film spacecraft
CN111547273B (en) * 2020-05-14 2021-05-25 中国人民解放军国防科技大学 Thin film spacecraft
JP2021079296A (en) * 2021-03-08 2021-05-27 株式会社三洋物産 Game machine
CN113221201B (en) * 2021-05-12 2023-08-04 西安电子科技大学 Folding design method of small-curvature paraboloid-of-revolution film
CN113221201A (en) * 2021-05-12 2021-08-06 西安电子科技大学 Folding design method of small-curvature revolution paraboloid film
CN113636108A (en) * 2021-06-30 2021-11-12 中国人民解放军战略支援部队航天工程大学 Plate type space structure capable of being folded and unfolded repeatedly
CN113764899A (en) * 2021-08-04 2021-12-07 同济大学 Net surface installation method of rib net type deployable antenna

Similar Documents

Publication Publication Date Title
JP2006229750A (en) Unfolding antenna for space
JP7011115B2 (en) Foldable RF membrane antenna
US7009578B2 (en) Deployable antenna with foldable resilient members
JP2006224866A (en) Deployable antenna for space
US5977932A (en) Self-deploying helical structure
JP6640351B2 (en) Deployable antenna
JPH05191134A (en) Antenna reflector, shape of which can be changed during usage
US5451975A (en) Furlable solid surface reflector
US6828949B2 (en) Solid surface implementation for deployable reflectors
US3360798A (en) Collapsible reflector
KR101759620B1 (en) Antenna on boarding a satellite
JP4876941B2 (en) Deployable antenna
US9899743B2 (en) Foldable radio wave antenna deployment apparatus for a satellite
JPH1188041A (en) Edge support umbrella reflection device whose height is small when loading
US20090213031A1 (en) Furlable Shape-Memory Reflector
JPH098544A (en) Antenna reflector
JP2003531544A (en) An antenna based on a compact, stowable, thin, continuous surface with radial and circumferential stiffness that deploys and maintains the antenna surface in a predetermined surface geometry
US6229501B1 (en) Reflector and reflector element for antennas for use in outer space and a method for deploying the reflectors
Lin et al. Shape memory rigidizable inflatable (RI) structures for large space systems applications
WO2019087236A1 (en) Reflector, developed antenna, and aerospace vehicle
EP3598576B1 (en) Reflecting systems, such as reflector antenna systems, with tension-stabilized reflector positional apparatus
KR101754234B1 (en) Antenna on boarding a satellite
JP2019536394A (en) Deployable winding rib assembly
JPH10135725A (en) Synchronous rotating two-axes machine hinge assembly
JP2013219768A (en) Antenna reflector reconfigurable during operation