JP2006228912A - Thermoelectric conversion material and manufacturing method therefor - Google Patents

Thermoelectric conversion material and manufacturing method therefor Download PDF

Info

Publication number
JP2006228912A
JP2006228912A JP2005039872A JP2005039872A JP2006228912A JP 2006228912 A JP2006228912 A JP 2006228912A JP 2005039872 A JP2005039872 A JP 2005039872A JP 2005039872 A JP2005039872 A JP 2005039872A JP 2006228912 A JP2006228912 A JP 2006228912A
Authority
JP
Japan
Prior art keywords
thermoelectric
thermoelectric conversion
phase
conversion material
compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005039872A
Other languages
Japanese (ja)
Other versions
JP4515279B2 (en
Inventor
Yoshisato Kimura
好里 木村
Yasufumi Shibata
靖文 柴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Institute of Technology NUC
Toyota Motor Corp
Original Assignee
Tokyo Institute of Technology NUC
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Institute of Technology NUC, Toyota Motor Corp filed Critical Tokyo Institute of Technology NUC
Priority to JP2005039872A priority Critical patent/JP4515279B2/en
Publication of JP2006228912A publication Critical patent/JP2006228912A/en
Application granted granted Critical
Publication of JP4515279B2 publication Critical patent/JP4515279B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for manufacturing a thermoelectric conversion material by which the generation of micro cracking can be suppressed, a half Heusler's compound can be formed of single-phase structure or nearly single-phase structure, and the thermoelectric characteristic of the thermoelectric conversion material (ZT) can be improved, and to provide the thermoelectric conversion material which is made of a single-phase alloy of a half Heusler's compound, or an alloy having nearly single phase structure and has the high thermoelectric characteristic (ZT). <P>SOLUTION: This method is used to manufacture a thermoelectric conversion material which is formed by using a half Heusler's compound represented by MNiSn [M is at least one kind of Hf, Zr and Ti] by a unidirectional coagulation method. A floating zone melting method is preferable in the unidirectional coagulation method. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱電変換材料及びその製造方法に関し、詳しくは、MNiSnで表されるハーフホイスラー化合物で構成された熱電変換材料及びその製造方法に関する。   The present invention relates to a thermoelectric conversion material and a manufacturing method thereof, and more particularly, to a thermoelectric conversion material composed of a half-Heusler compound represented by MNiSn and a manufacturing method thereof.

ゼーベック効果を利用した熱電変換材料は、熱エネルギーを電気エネルギーに変換することが可能である。この性質を利用し、産業・民生用プロセスや移動体から排出される不要な排熱を有効な電力に変換することができるため、熱電変換材料は環境問題に配慮した省エネルギー技術として注目されている。   Thermoelectric conversion materials using the Seebeck effect can convert thermal energy into electrical energy. Because this property can be used to convert unnecessary waste heat from industrial and consumer processes and mobile objects into effective power, thermoelectric conversion materials are attracting attention as an energy-saving technology that takes environmental issues into consideration. .

熱電変換材料の性能は、性能指数(Z)と呼ばれる因子を温度(T)で無次元化した無次元性能指数ZTにより評価される。無次元性能指数は、ZT=(α2σ/κ)T〔α:ゼーベック係数(=熱起電力/温度差)、σ:電気伝導度(=1/ρ;ρ=抵抗率)、κ:熱伝導度、T:測定絶対温度〕で表され、分子α2σはパワーファクターと呼ばれる電気的な出力因子であり、分母κは熱的な因子である。ハーフホイスラー化合物は、従来から無次元性能指数ZTが比較的高く(ZT=0.1〜0.4)、環境負荷物質を含まない合金系が選べる材料として注目されている。このZTは一般に、1.0を超えることが実用上の目標値とされている。 The performance of the thermoelectric conversion material is evaluated by a dimensionless figure of merit ZT obtained by making a factor called figure of merit (Z) dimensionless by temperature (T). The dimensionless figure of merit is ZT = (α 2 σ / κ) T [α: Seebeck coefficient (= thermoelectromotive force / temperature difference), σ: electric conductivity (= 1 / ρ; ρ = resistivity), κ: Thermal conductivity, T: measurement absolute temperature], the numerator α 2 σ is an electrical output factor called a power factor, and the denominator κ is a thermal factor. The half-Heusler compound has hitherto been attracting attention as a material from which a dimensionless figure of merit ZT is relatively high (ZT = 0.1 to 0.4) and an alloy system that does not contain environmentally hazardous substances can be selected. In general, ZT exceeds 1.0 and is a practical target value.

ハーフホイスラー化合物MNiSn(M=Hf,Zr,Ti)合金は、熱伝導率が大きく、電気的特性に優れていることが知られている。そして、このハーフホイスラー化合物で構成された熱電変換材料の合成法には、従来からアーク溶解法が利用されることが多い。   The half-Heusler compound MNiSn (M = Hf, Zr, Ti) alloy is known to have a large thermal conductivity and excellent electrical characteristics. And the arc melting method is conventionally utilized in many cases for the synthesis method of the thermoelectric conversion material comprised with this half-Heusler compound.

しかし、アーク溶解法では、凝固速度が極端に速いために、ハーフホイスラー相以外に、非平衡な合金組織として不要な相(不純物)を多く(約50vol%程度)含み、単相化することは難しく、しかも凝固収縮の熱応力によって大量の微小な亀裂が潜在的に導入される傾向にある。   However, in the arc melting method, since the solidification rate is extremely high, in addition to the half-Heusler phase, it contains a lot of unnecessary phases (impurities) as a non-equilibrium alloy structure (about 50 vol%), making it a single phase Difficult, and there is a tendency for large numbers of microcracks to be potentially introduced by the thermal stress of solidification shrinkage.

このような不要な相(不純物)が多量に存在すると、熱起電力α及び電気伝導度σを低下させる。すなわち、α2σで表されるパワーファクターを低下させる。また、微小な亀裂の発生は、電気伝導度σを低下(抵抗率ρの上昇)させて熱電特性を損なう要因となっており、ZTのピーク温度がズレたり値の低下を招来する。さらに、微小な亀裂の発生は、材料の脆性に起因するものであり、試料の形状付加の際に支障を来たす一因となるほか、潜在的に微小な亀裂が多数存在すると見かけ上の熱伝導度(κ)を低く見積ることになり、性能の過大評価に繋がる危険性をも含んでいる。 When such an unnecessary phase (impurity) is present in a large amount, the thermoelectromotive force α and the electrical conductivity σ are lowered. That is, the power factor represented by α 2 σ is reduced. In addition, the occurrence of minute cracks is a factor that decreases the electrical conductivity σ (increases the resistivity ρ) and impairs the thermoelectric characteristics, causing the ZT peak temperature to shift and the value to decrease. In addition, the occurrence of microcracks is due to the brittleness of the material, which can be a cause of hindrance when adding the shape of the sample, and the apparent heat conduction when there are many microcracks. The degree (κ) is estimated to be low, and there is a risk of leading to overestimation of performance.

これらを回避するため、アーク溶解法による場合は一般に、アーク溶製した鋳塊を粉砕して粉末状にし、ホットプレスなどで圧粉焼結することにより試料の作製を行なっている。また、パワーファクターを向上させるために、Sb等を適量ドーピングすることも行なわれている。   In order to avoid these, in the case of the arc melting method, in general, the ingot made by arc melting is pulverized into a powder form, and the sample is prepared by sintering with a hot press or the like. In order to improve the power factor, doping with an appropriate amount of Sb or the like is also performed.

上記に関連した技術として、(TiZrHf)NiSn型のハーフホイスラー化合物を主相とした熱電変換材料が開示されている(例えば、特許文献1参照)。この材料では、アーク溶解での合成した後に熱処理(アニール処理)を施すことで、元素置換して材料組成を多元系にし、高いゼーベック係数と低い抵抗率とを維持しつつ熱伝導率を低減してZTの大きい熱電変換材料を得ると共に、アニール処理による単相化で熱電特性が高められるとされている。   As a technique related to the above, a thermoelectric conversion material having a (TiZrHf) NiSn type half-Heusler compound as a main phase is disclosed (for example, see Patent Document 1). In this material, heat treatment (annealing) is performed after synthesis by arc melting, replacing the element to make the material composition multi-component, reducing the thermal conductivity while maintaining a high Seebeck coefficient and low resistivity. Thus, it is said that a thermoelectric conversion material having a large ZT is obtained, and thermoelectric properties are improved by making it into a single phase by annealing.

上記以外にも、アーク溶解法によりFeVAl型のホイスラー化合物を用いてアーク溶解後、熱処理して単相化する開示もある(例えば、特許文献2参照)。
特開2004−356607号公報 米国特許2003−019681号明細書
In addition to the above, there is also a disclosure in which a single phase is formed by heat treatment after arc melting using an FeVA1 type Heusler compound by an arc melting method (see, for example, Patent Document 2).
JP 2004-356607 A US 2003-019681 Specification

しかしながら、上記のように元素置換した多元系では、相平衡が変わり相律の自由度が増す結果、熱処理による単相化では充分な単相を得るのは難しく、凝固収縮により組織内に導入される、熱電性能に影響する微小な亀裂の発生を抑えることも困難である。   However, in the multicomponent system substituted with elements as described above, the phase equilibrium is changed and the degree of freedom of phase rule is increased. As a result, it is difficult to obtain a sufficient single phase by heat treatment, and it is introduced into the tissue by solidification shrinkage. It is also difficult to suppress the occurrence of minute cracks that affect thermoelectric performance.

これまでのアーク溶解法では、不要な相(不純物)が共存しない単相で亀裂の発生のない熱電変換材料を製造し得る技術として、有用な方法が提案されるまでに至っておらず、従来の設計手法によってはハーフホイスラー化合物本来の固有の熱電特性を完全に引き出せていないのが実状である。   In the conventional arc melting method, no useful method has been proposed as a technique capable of producing a thermoelectric conversion material that does not cause cracks in a single phase in which unnecessary phases (impurities) do not coexist. The actual situation is that the inherent thermoelectric properties inherent to the half-Heusler compound cannot be extracted completely depending on the design method.

したがって、上記したようにハーフホイスラー化合物の無次元性能指数ZTは比較的高いとされているものの、ZTを導く分子をなすゼーベック係数及び電気伝導度が他の熱電変換材料に比べて高いが、分母を構成する熱伝導度も高いため、ZT≦0.4に過ぎず、一般に熱電変換材料の実用最低レベルとされるZT=1には依然として達していない。   Therefore, although the dimensionless figure of merit ZT of the half-Heusler compound is said to be relatively high as described above, the Seebeck coefficient and electric conductivity that form a molecule leading to ZT are higher than those of other thermoelectric conversion materials. Therefore, ZT ≦ 0.4 and ZT = 1, which is generally regarded as the lowest practical level of thermoelectric conversion materials, has not yet been reached.

以上のように、従来から広く用いられてきたアーク溶解法による合成では、ハーフホイスラー相と共に他の相が共存する共存相しか得られず、多量の微小な亀裂が発生してしまうため、ハーフホイスラー相を単相化してパワーファクターを引き出し、しかも同時に熱伝導度の低減をも実現するには限界がある。また、Sb、Pb等の有害物質によるドーピングが不要な技術が、環境への配慮の点で期待されている。   As described above, in the synthesis by the arc melting method that has been widely used conventionally, only a coexisting phase in which other phases coexist with the half-Heusler phase can be obtained, and a lot of minute cracks are generated. There is a limit to realizing a single phase to extract the power factor and at the same time to reduce the thermal conductivity. In addition, technologies that do not require doping with harmful substances such as Sb and Pb are expected from the viewpoint of environmental considerations.

本発明は、上記に鑑みなされたものであり、微小な亀裂の発生を抑えると共に、ハーフホイスラー化合物を単相化もしくは単相化に近い組織に構成することが可能で、熱電変換材料の熱電特性(即ちZT)を向上させ得る熱電変換材料の製造方法、並びにハーフホイスラー化合物の単相合金もしくは単相に近い組織の合金で構成され、高い熱電特性(即ちZT)を有する熱電変換材料を提供することを目的とし、該目的を達成することを課題とする。   The present invention has been made in view of the above, and while suppressing the occurrence of microcracks, it is possible to configure a half-Heusler compound in a single phase or a structure close to single phase, and thermoelectric characteristics of a thermoelectric conversion material The present invention provides a method for producing a thermoelectric conversion material capable of improving (ie, ZT), and a thermoelectric conversion material having a high thermoelectric property (ie, ZT) composed of a single-phase alloy of a half-Heusler compound or an alloy having a structure close to a single phase. It is an object to achieve this purpose.

本発明は、金属性の共存相及び潜在する微小亀裂の発生回避には、凝固(合成)中に安定した固相/液相界面を維持すべく凝固速度を極めて遅くできること、固相/液相界面近傍における化学組成を安定化するための攪拌が可能なこと、並びに不純物の混入を防止できることが重要で、そのためには一方向凝固法(好ましくは(光学式)浮遊帯溶融法)の利用及び、MNiSnの元素MサイトにHf,Zr,Tiを選択して固溶体化することが有効であるとの知見、並びに、質量と大きさの異なる同族元素Hf,Zr,Tiで(好ましくはHf,Zr及びTiの二種以上で)Mを組成することが熱伝導度κの低減に特に効果的であるとの知見を得、かかる知見に基づいて達成されたものである。   In the present invention, in order to avoid occurrence of metallic coexisting phase and latent microcracks, the solidification rate can be extremely slow to maintain a stable solid phase / liquid phase interface during solidification (synthesis). It is important to be able to stir to stabilize the chemical composition in the vicinity of the interface and to prevent contamination by impurities. For this purpose, use of a unidirectional solidification method (preferably (optical) floating zone melting method) and The fact that it is effective to select Hf, Zr, Ti at the element M site of MNiSn and to form a solid solution, as well as the homologous elements Hf, Zr, Ti having different masses and sizes (preferably Hf, Zr) The composition of M (with two or more of Ti and Ti) is particularly effective in reducing the thermal conductivity κ, and has been achieved based on such knowledge.

熱伝導度κは、フォノン散乱に関係する格子成分κphとキャリアである電子による成分κelとからなり、κelは優れた電気的特性を維持するために自由に調製することが不可能であるが、格子成分κphは単独で調整することができ、元素Mサイトを同族で質量及び大きさの異なるHf,Zr,Tiを用いて(好ましくはHf,Zr及びTiの二種以上の組成として)固溶体化することにより、前記κph(すなわちZTを導く分母をなす熱伝導度κ)を効果的に低減することができる。   Thermal conductivity κ consists of a lattice component κph related to phonon scattering and a component κel due to electrons as carriers, and κel cannot be freely prepared to maintain excellent electrical properties, The lattice component κph can be adjusted independently, and the element M site is made into a solid solution using Hf, Zr, Ti having the same family and different masses and sizes (preferably as a composition of two or more of Hf, Zr, and Ti). By doing so, it is possible to effectively reduce the κph (that is, the thermal conductivity κ that forms the denominator for introducing ZT).

本発明の前記課題を解決するための具体的手段は以下の通りである。
前記目的を達成するために、第1の発明である熱電変換材料の製造方法は、MNiSn〔Mは、Hf、Zr、及びTiの少なくとも一種を表す。〕で表されるハーフホイスラー化合物(以下、「本発明に係るMNiSn化合物」ともいう。)を用いた組織を一方向凝固法により形成(合成)するように構成したものである。換言すれば、一方向凝固法により本発明に係るMNiSn化合物を用いた組織を形成(合成)する工程を設けて構成されている。
Specific means for solving the problems of the present invention are as follows.
In order to achieve the above object, the method for producing a thermoelectric conversion material according to the first invention is MNiSn [M represents at least one of Hf, Zr, and Ti. A structure using a half-Heusler compound represented by the following (hereinafter also referred to as “MNiSn compound according to the present invention”) is formed (synthesized) by a unidirectional solidification method. In other words, it includes a step of forming (synthesizing) a tissue using the MNiSn compound according to the present invention by a unidirectional solidification method.

第一の発明の熱電変換材料の製造方法は、MNiSnで表されるハーフホイスラー化合物の合成を一方向凝固法により行なうことで、ハーフホイスラー化合物相以外の他の相(不純物)の共存を抑えて、共存相の体積率の小さいハーフホイスラー化合物の単相からなる組織、あるいは組成によっては単相に近い組織に近づけた構成とすることができるので、ハーフホイスラー化合物本来の固有の熱電特性、つまり熱起電力(ゼーベック係数)、電気伝導度及び熱伝導度を引き出し、熱電特性(ZT)を向上させることができる。単相化により特に、ZTを導く分子をなす熱起電力αを飛躍的に向上させることができる。   The method for producing a thermoelectric conversion material according to the first invention suppresses the coexistence of other phases (impurities) other than the half-Heusler compound phase by synthesizing a half-Heusler compound represented by MNiSn by a unidirectional solidification method. The structure of a single phase of a half-Heusler compound with a small volume fraction of the coexisting phase, or a structure close to that of a single phase depending on the composition, can be used. The electromotive force (Seebeck coefficient), electrical conductivity, and thermal conductivity can be extracted, and the thermoelectric characteristics (ZT) can be improved. In particular, the thermoelectric power α that forms a molecule that induces ZT can be dramatically improved by the single phase.

本発明において、単相とは、熱電変換材料を構成する組織に占める本発明に係るMNiSn化合物相の体積率が99vol%(体積%)以上である相状態をいう。   In the present invention, the single phase refers to a phase state in which the volume fraction of the MNiSn compound phase according to the present invention occupying the structure constituting the thermoelectric conversion material is 99 vol% (volume%) or more.

さらに一方向凝固法によることで、合成時における微小な亀裂の発生を防止することができるので、密度が向上し、抵抗率ρが低く抑えられ、ZTを導く分子をなす電気伝導度σを効果的に向上させることができる。   Furthermore, by using the unidirectional solidification method, it is possible to prevent the generation of minute cracks during synthesis, so the density is improved, the resistivity ρ is kept low, and the electrical conductivity σ that forms the molecule leading to ZT is effective. Can be improved.

また更に、Hf、Zr、及びTiより選択した一種もしくは二種以上をNi及びSnと固溶体化するようにし、3元系以上の構成とすることで、ZTを導く分母をなす熱伝導度をも効果的に低減させることができる。4元系以上の構成の場合が、熱伝導度低減の点でより効果的である。   Furthermore, one or two or more selected from Hf, Zr, and Ti are made into a solid solution with Ni and Sn, and by having a ternary system or higher structure, the thermal conductivity that forms the denominator leading to ZT is obtained. It can be effectively reduced. A quaternary system or more is more effective in reducing thermal conductivity.

上記のように、第1の発明においては、熱起電力α及び電気伝導度σの向上を図ると共に、熱伝導度κの低減をも図るので、ZTが飛躍的に向上し、優れた熱電特性を有する熱電変換材料を作製することが可能である。また、環境負荷物質に順ずるSbやPb等の有害元素をドーピングしなくとも高いZTが達成でき、優れた熱電特性を得ることができる。   As described above, in the first invention, since the thermoelectromotive force α and the electrical conductivity σ are improved and the thermal conductivity κ is reduced, the ZT is remarkably improved and excellent thermoelectric characteristics are obtained. It is possible to produce a thermoelectric conversion material having In addition, high ZT can be achieved without doping with harmful elements such as Sb and Pb in line with environmentally hazardous substances, and excellent thermoelectric characteristics can be obtained.

第1の発明においては、MNiSn(M:Hf、Zr、及びTiの少なくとも一種)で表されるハーフホイスラー化合物からなる単相もしくは略単相の組織に構成されることが望ましい。単相もしくは単相に近づけた組織に構成されることで、ハーフホイスラー化合物が本来有する固有の熱電特性をより効果的に引き出すことができる。   In the first aspect of the present invention, it is desirable to form a single-phase or substantially single-phase structure composed of a half-Heusler compound represented by MNiSn (M: at least one of Hf, Zr, and Ti). By being configured in a single phase or a structure close to a single phase, the inherent thermoelectric characteristics inherent in the half-Heusler compound can be more effectively extracted.

第1の発明においては、一方向凝固法によりハーフホイスラー化合物の組織を形成(合成)した後、さらに熱処理を施す(熱処理工程を設ける)ことが効果的である。熱処理を加えることにより、ZTがより向上し、更に熱電特性の良好な熱電変換材料とすることが可能である。   In the first invention, after forming (synthesizing) the structure of the half-Heusler compound by the unidirectional solidification method, it is effective to further perform heat treatment (providing a heat treatment step). By applying heat treatment, ZT can be further improved and a thermoelectric conversion material having excellent thermoelectric characteristics can be obtained.

前記一方向凝固法の中でも、浮遊帯溶融法(光学式浮遊帯溶融法を含む。)が効果的である。浮遊帯溶融法では、ハーフホイスラー化合物の組成(3元系のみならず4元系、5元系など)に関わらず、微小な亀裂発生の大幅な低減と共に単相化が可能であり、ハーフホイスラー化合物本来の固有の熱電特性を更に引き出することができ、ZTを飛躍的に高め、優れた熱電特性を有する熱電変換材料を作製することができる。   Among the unidirectional solidification methods, the floating zone melting method (including the optical floating zone melting method) is effective. In the floating zone melting method, regardless of the composition of the half-Heusler compound (not only ternary system, quaternary system, quinary system, etc.), it is possible to make a single phase with significant reduction of microcracking. Thermoelectric properties inherent to the compound can be further extracted, ZT can be dramatically increased, and a thermoelectric conversion material having excellent thermoelectric properties can be produced.

第2の発明である熱電変換材料は、上記の第1の発明である熱電変換材料の製造方法により作製されたものである。   The thermoelectric conversion material according to the second invention is produced by the method for producing a thermoelectric conversion material according to the first invention.

第2の発明である熱電変換材料は、第1の発明により作製されることにより、既述のように、ハーフホイスラー相以外の他の相(不純物)の共存が少なく、ハーフホイスラー化合物の単相からなる組織、あるいは単相に近い組織を主相とした構成を有し、微小な亀裂も少ないので、高い熱起電力α及び電気伝導度σを有すると共に、熱伝導度κも小さい。したがって、ZTが高く、熱電特性に優れる。   The thermoelectric conversion material according to the second invention is produced according to the first invention, and as described above, there is little coexistence of other phases (impurities) other than the half-Heusler phase, and the single phase of the half-Heusler compound Or a structure having a structure close to a single phase as a main phase, and there are few microcracks, so that it has a high thermoelectromotive force α and an electrical conductivity σ, and a low thermal conductivity κ. Therefore, ZT is high and thermoelectric properties are excellent.

第2の発明においては、MNiSn(M:Hf、Zr、及びTiの少なくとも一種〕で表されるハーフホイスラー化合物のうち、(HfxZr1-x)NiSn〔0<x<1〕の組成に好適に構成することができる。Mサイトを質量と大きさの異なる同族のHfとZrとで置換固溶すると、熱伝導率の格子成分を効果的に低減できるので、熱伝導度を効果的に低減することができる。(HfxZr1-x)NiSnの4元系組成とした場合に特に、高いZTの値を得ることができ(x=5付近の組成比において最も高いZTの値を得ることができ)、特に優れた発電特性を得ることができる。 In the second invention, among the half-Heusler compounds represented by MNiSn (M: at least one of Hf, Zr, and Ti), the composition of (Hf x Zr 1-x ) NiSn [0 <x <1] When the M site is substituted and dissolved with Hf and Zr of the same family having different masses and sizes, the lattice component of the thermal conductivity can be effectively reduced, so that the thermal conductivity is effectively reduced. Particularly when the quaternary composition of (Hf x Zr 1-x ) NiSn is used, a high ZT value can be obtained (the highest ZT value is obtained at a composition ratio in the vicinity of x = 5). Particularly excellent power generation characteristics can be obtained.

本発明によれば、微小な亀裂の発生を抑えると共に、ハーフホイスラー化合物を単相化もしくは単相化に近い組織に構成することが可能で、熱電変換材料の熱電特性(即ちZT)を向上させ得る熱電変換材料の製造方法、並びに、ハーフホイスラー化合物の単相合金もしくは単相に近い組織の合金で構成され、高い熱電特性(即ちZT)を有する熱電変換材料を提供することができる。   According to the present invention, it is possible to suppress the occurrence of minute cracks and to form a half-Heusler compound in a single-phase structure or a structure close to a single-phase structure, thereby improving the thermoelectric characteristics (that is, ZT) of the thermoelectric conversion material. It is possible to provide a method for producing a thermoelectric conversion material to be obtained, and a thermoelectric conversion material having a high thermoelectric property (ie, ZT), which is composed of a single-phase alloy of a half-Heusler compound or an alloy having a structure close to a single phase.

以下、本発明の熱電変換材料の製造方法について詳細に説明し、該説明を通じて本発明の熱電変換材料の詳細についても詳述することとする。   Hereinafter, the manufacturing method of the thermoelectric conversion material of the present invention will be described in detail, and the details of the thermoelectric conversion material of the present invention will be described in detail through the description.

本発明の熱電変換材料の製造方法は、一方向凝固法を用いることによって、MNiSnで表されるハーフホイスラー化合物の単相もしくは略単相で構成された組織(単相もしくは略単相からなる組織を含む。)、すなわち熱電変換特性に優れた相が主要な構成相である組織を形成するものである。   The method for producing a thermoelectric conversion material of the present invention uses a unidirectional solidification method to form a structure composed of a single phase or a substantially single phase of a half-Heusler compound represented by MNiSn (a structure composed of a single phase or a substantially single phase). That is, a structure having a phase having excellent thermoelectric conversion characteristics as a main constituent phase is formed.

本発明に係るハーフホイスラー化合物は、MNiSnで表される化合物であり、MはHf、Zr、又はTiのいずれか一種、あるいはHf、Zr、及びTiより選択される二種以上を表すものである。   The half-Heusler compound according to the present invention is a compound represented by MNiSn, and M represents any one of Hf, Zr, and Ti, or two or more selected from Hf, Zr, and Ti. .

具体的には、MNiSnには、3元系としてHfNiSn、ZrNiSn、TiNiSn、4元系として(HfxZr1-x)NiSn、(HfxTi1-x)NiSn、(TixZr1-x)NiSn〔いずれもxは0<x<1を満たす。〕、並びに5元系としてHfZrTiNiSn、(HfxZryTi1-x-y)NiSn〔x及びyは0<x+y<1を満たす。〕が含まれる。 Specifically, MNiSn includes HfNiSn, ZrNiSn, TiNiSn as a ternary system, (Hf x Zr 1-x ) NiSn, (Hf x Ti 1-x ) NiSn, (Ti x Zr 1-x as a quaternary system. ) NiSn [both satisfy x <0 <x <1. And HfZrTiNiSn, (Hf x Zr y Ti 1-xy ) NiSn [x and y satisfy 0 <x + y <1. ] Is included.

上記のうち、高い熱電特性(ZT)が得られる点で、MがHf、又はZrを表す場合が好ましく、特に3元系においてHfNiSn、又はZrNiSnが好ましい。また、高い熱電特性(ZT)が得られる点で、4元系においてはx=0.5の場合、すなわち(Hf0.5Zr0.5)NiSn、(Hf0.5Ti0.5)NiSn、(Ti0.5Zr0.5)NiSnが好ましい。 Among these, M is preferably Hf or Zr in that high thermoelectric properties (ZT) are obtained, and HfNiSn or ZrNiSn is particularly preferable in the ternary system. Further, in the point that high thermoelectric characteristics (ZT) can be obtained, in the case of x = 0.5 in the quaternary system, that is, (Hf 0.5 Zr 0.5 ) NiSn, (Hf 0.5 Ti 0.5 ) NiSn, (Ti 0.5 Zr 0.5 ). NiSn is preferred.

次に、一方向凝固法について説明する。
一方向凝固法は、固相/液相界面に最適な温度勾配を与え、結晶成長を一方向にコントロールして行なう方法であり、浮遊帯溶融法(光学式浮遊帯溶融法を含む。)やブリッジマン法、チョクラルスキー法などを挙げることができる。中でも、原料を溶融させるための容器が不要で溶融時の不純物混入を回避できる浮遊帯溶融法(特に光学式浮遊帯溶融法)が好ましい。光学式浮遊帯域溶融装置は、基本構造として溶融用の光源(ランプ)と楕円体鏡とを設けた構成となっており、ランプからの光を試料に集光して加熱、溶解することができる。
Next, the unidirectional solidification method will be described.
The unidirectional solidification method is a method in which an optimal temperature gradient is applied to the solid / liquid interface and the crystal growth is controlled in one direction, and includes a floating zone melting method (including an optical floating zone melting method) and the like. Examples include the Bridgeman method and the Czochralski method. Among these, a floating zone melting method (particularly an optical floating zone melting method) that does not require a container for melting the raw material and can avoid mixing impurities during melting is preferable. The optical floating zone melting apparatus has a structure in which a melting light source (lamp) and an ellipsoidal mirror are provided as a basic structure, and the light from the lamp can be condensed and heated and melted on a sample. .

以下、前記一方向凝固法について、好ましいものとして挙げた光学式浮遊帯溶融法を例に図1〜図2を参照して詳述する。図1は、光学式浮遊帯溶融法を利用した光学式浮遊帯域溶融装置の一例を上面からみたときの概略断面図であり、図2は、図1の光学式浮遊帯域溶融装置を側面からみたときの概略断面図である。   Hereinafter, the unidirectional solidification method will be described in detail with reference to FIGS. FIG. 1 is a schematic cross-sectional view of an example of an optical floating zone melting apparatus using the optical floating zone melting method as viewed from above, and FIG. 2 is a side view of the optical floating zone melting apparatus of FIG. It is a schematic sectional drawing at the time.

図1及び図2に示すように、光学式浮遊帯域溶融装置は、内部中空で試料を入れる石英管1と、石英管1が軸心部に位置するようにして石英管1の少なくとも一部を取り囲むと共に、取り囲まれた石英管1から均等距離に同一幅の4個の楕円体鏡2を無端状に繋げて形成された浮遊帯溶解室4とで構成された浮遊帯溶融炉を備えている。4個の楕円体鏡2の曲面には各々、ハロゲンランプ3a〜3dが取付けられており、楕円体鏡2の室内側は鏡面処理が施されている。ハロゲンランプから照射されたハロゲン光は、図1及び図2に示すように、鏡面処理された楕円体鏡2で反射して軸心部の石英管1に4方向から入射されるようになっている。   As shown in FIG. 1 and FIG. 2, the optical floating zone melting apparatus includes a quartz tube 1 in which a sample is hollow and a quartz tube 1 is positioned at an axial center portion, and at least a part of the quartz tube 1 is placed in an axial center portion. A floating zone melting furnace comprising a floating zone melting chamber 4 formed by connecting four ellipsoidal mirrors 2 of equal width at an equal distance from the surrounded quartz tube 1 in an endless manner is provided. . Halogen lamps 3a to 3d are attached to the curved surfaces of the four ellipsoidal mirrors 2, respectively, and the interior side of the ellipsoidal mirror 2 is subjected to mirror surface processing. As shown in FIGS. 1 and 2, the halogen light emitted from the halogen lamp is reflected by the mirror-finished ellipsoidal mirror 2 and enters the quartz tube 1 at the axial center from four directions. Yes.

光源には、ハロゲンランプ以外にキセノンランプなどを使用でき、キセノンランプによる場合は、到達温度が高く、放電により光るために光がシャープである等の利点がある。つまり、点に集光にすると温度を均一にでき、温度勾配を急峻にすることが可能である。   As the light source, a xenon lamp or the like can be used in addition to the halogen lamp, and the xenon lamp has advantages such as a high reached temperature and a sharp light because it emits light by discharge. That is, if the light is focused on the point, the temperature can be made uniform and the temperature gradient can be made steep.

石英管1は、乾燥脱酸素処理の後、図示しない一端から他端に向けてアルゴンガス等の不活性ガスを陽圧下で挿通し、金属蒸気などの汚れが蒸着しないようになっている。なお、陽圧にすることで、外部からの大気侵入が防止されている。   After the dry deoxygenation treatment, the quartz tube 1 is inserted with an inert gas such as argon gas from one end to the other end (not shown) under a positive pressure so that dirt such as metal vapor is not deposited. The positive pressure prevents the air from entering from the outside.

浮遊帯溶解室4の内部に位置する石英管1内には、図2に示すように、回転可能なフィードロッド(feed rod)5と回転可能なシードロッド(seed rod)6との間に加熱溶融により液相形成し得る液相領域(Molten Zone)7が設けられると共に、液相形成時にシードロッド6をフィードロッド5と共に(好ましくは回転させて)移動可能なようになっている。シードロッド6及びフィードロッド5は、アーク溶解にて作製した同一組成のロッド状インゴットである。   As shown in FIG. 2, the quartz tube 1 located inside the floating zone melting chamber 4 is heated between a rotatable feed rod 5 and a rotatable seed rod 6. A liquid phase region (Molten Zone) 7 capable of forming a liquid phase by melting is provided, and the seed rod 6 can be moved together with the feed rod 5 (preferably rotated) during the liquid phase formation. The seed rod 6 and the feed rod 5 are rod-shaped ingots having the same composition prepared by arc melting.

本実施形態では、楕円体鏡が4個の例を示したが、楕円体鏡が1個、2個の市販の装置を用いてもよい。楕円体鏡が4個の装置では4方向から加熱が行なえるため、均一な温度分布が得られる点で好適である。   In the present embodiment, an example in which the number of ellipsoidal mirrors is four has been described, but a commercially available apparatus having one or two ellipsoidal mirrors may be used. An apparatus with four ellipsoidal mirrors is suitable in that a uniform temperature distribution can be obtained because heating can be performed from four directions.

まず、アーク溶解等により長さ100〜200mm程度のロッド状に成形したハーフホイスラー化合物(例えばHfNiSn;多相よりなるものである。)を2つ用意し、これらを図3に示すように、シードロッド6及びフィードロッド5に各々の端部が互いに接近する状態で配置する。この状態で、フィードロッド5の下端とシードロッド6の上端とが溶解し始めるまでハロゲンランプのパワー(温度)を上昇させる。このとき、それぞれのロッドを相対的に逆方向となるように回転させる。溶解したら両ロッドを相互に逆方向に回転させたまま近づけて接触させ、液相領域7において融液部分を作る。このとき、図3に示すように、シードロッドとフィードロッドとの間に融液が表面張力で留まった状態になっている。そして、固相/液相界面が安定するまで30分程度保持した後、シードロッドとフィードロッドとの降下を開始する。シードロッド6の上側には、目的とする単相もしくは単相に近づいた組織のハーフホイスラー化合物(例えばHfNiSn)が凝固・成長し、フィードロッド5の下端が更に溶融することで液相が補充される。このとき、帯状の融液部分は、表面張力で浮いた状態のまま下から上へ移動することにより、つまり相対的に各ロッドは下へ、光は上へ移動することにより化合物が成長する(このため、浮遊帯溶融法と呼ばれる。)。ここで、融液の量が一定に保持されるように(つまり、温度と温度勾配を一定保つように)ハロゲンランプのパワーを調節しながら目的とする結晶を成長させるのが重要である。各ロッドの降下速度を同じにすると、成長するインゴットの外径が一定に保たれる(フィードロッドの降下速度を速くし、かつ安定成長が可能であれば外径を太くすることができる。)。なお、シードとの由来は、単結晶を作成する際には、予め方位がわかっている種結晶(シード)を用い、その結晶方位を継承して成長させることにある。   First, two half-Heusler compounds (for example, HfNiSn; made of multiphase) formed into a rod shape having a length of about 100 to 200 mm by arc melting or the like are prepared, and these are seeded as shown in FIG. The rod 6 and the feed rod 5 are arranged with their respective end portions approaching each other. In this state, the power (temperature) of the halogen lamp is increased until the lower end of the feed rod 5 and the upper end of the seed rod 6 begin to dissolve. At this time, the respective rods are rotated so as to be in opposite directions. When melted, the rods are brought into close contact with each other while rotating in opposite directions to form a melt portion in the liquid phase region 7. At this time, as shown in FIG. 3, the melt remains in the surface tension between the seed rod and the feed rod. Then, after holding for about 30 minutes until the solid phase / liquid phase interface is stabilized, the seed rod and the feed rod are started to descend. On the upper side of the seed rod 6, a half-Heusler compound (for example, HfNiSn) having a target single phase or a structure close to a single phase is solidified and grown, and the lower end of the feed rod 5 is further melted to replenish the liquid phase. The At this time, the band-like melt portion moves from the bottom to the top while being floated by the surface tension, that is, each rod relatively moves downward, and the light moves upward so that the compound grows ( For this reason, it is called floating zone melting.) Here, it is important to grow the target crystal while adjusting the power of the halogen lamp so that the amount of the melt is kept constant (that is, the temperature and the temperature gradient are kept constant). If the lowering speed of each rod is the same, the outer diameter of the growing ingot is kept constant (the lowering speed of the feed rod can be increased and the outer diameter can be increased if stable growth is possible). . Note that the seed originates from the use of a seed crystal (seed) whose orientation is known in advance when producing a single crystal, and inheriting the crystal orientation for growth.

上記のように、回転を加えることで攪拌が行なわれ、フィードロッド5及びシードロッド6を下降させることで、液相領域に覆い隠された固相/液晶界面において化合物相(又は金属相)の結晶が成長する。このようにして成長させて形成された組織は、ハーフホイスラー化合物(例えばHfNiSn)が99vol%以上占める単相、あるいは組成によっては従来以上に単相に近づいた組織に構成されており、熱電変換材料として高い熱電特性を示すものである。   As described above, stirring is performed by applying rotation, and by lowering the feed rod 5 and the seed rod 6, the compound phase (or metal phase) of the compound phase (or metal phase) is hidden at the solid phase / liquid crystal interface covered by the liquid phase region. Crystal grows. The structure formed by growing in this way is composed of a single phase in which a half-Heusler compound (for example, HfNiSn) occupies 99 vol% or more, or depending on the composition, a structure that is closer to a single phase than before. It shows high thermoelectric characteristics.

(光学式)浮遊帯溶融法による場合、凝固の組織形態を制御する最も重要な因子は「固相/液相界面の形態」であり、固相/液相界面の温度勾配、各元素の平衡分配、原子拡散などの因子の影響を受けやすく、特に温度勾配は外的に定量的な調整が比較的可能であって、凝固速度(成長速度)、攪拌速度により調整することが可能である。また、光源のランプパワーによっても間接的に調節が可能である。よって、2つのロッド状インゴット(フィードロッド5及びシードロッド6)の回転速度(すなわち攪拌速度)、フィードロッド6の移動速度(すなわち成長速度)を調整して、液相領域の温度勾配の条件を制御することにより、好適に熱電特性をコントロールすることができる。   In the case of the (optical) floating zone melting method, the most important factor for controlling the solidification tissue morphology is the “solid phase / liquid phase interface morphology”, the temperature gradient of the solid phase / liquid phase interface, and the equilibrium of each element. It is easily affected by factors such as distribution and atomic diffusion, and in particular, the temperature gradient can be relatively quantitatively adjusted externally, and can be adjusted by the solidification rate (growth rate) and the stirring rate. It can also be indirectly adjusted by the lamp power of the light source. Therefore, by adjusting the rotational speed (ie, stirring speed) of the two rod-shaped ingots (feed rod 5 and seed rod 6) and the moving speed (ie, growth speed) of the feed rod 6, the temperature gradient conditions in the liquid phase region can be adjusted. By controlling, the thermoelectric characteristics can be suitably controlled.

上記において、最適な凝固、成長条件、具体的には最適な攪拌速度、成長速度の条件は、固相/液相界面の状態に強く依存し、試料(化合物相)各々に唯一であるがその最適な条件(固相/液相界面における最適な温度勾配)を作り出すための装置側の条件が用いる個々の装置によって異なるため、場合により相違する。つまり、ランプの種類や数、配置、並びに楕円体鏡の形状や材質、試料までの光路の取り方などの諸因子により試料に与える温度分布が異なるので、最適な攪拌速度、成長速度の条件も異なる。一般には、攪拌速度は10〜50r.p.m.の範囲が好適であり、より好ましくは25〜45r.p.m.の範囲である。成長速度は1〜50mm/hの範囲が好適であり、より好ましくは2〜10mm/hの範囲である。また、温度勾配については、図3の破線で示すように、液相部位の液相量(幅)が均一でまっすぐな棒状となるように調整することが好ましい。   In the above, the optimum solidification and growth conditions, specifically, the optimum stirring speed and growth speed conditions are strongly dependent on the state of the solid phase / liquid phase interface and are unique to each sample (compound phase). Since the conditions on the apparatus side for producing the optimum conditions (optimal temperature gradient at the solid phase / liquid phase interface) vary depending on the individual apparatuses used, the conditions vary. In other words, the temperature distribution given to the sample differs depending on factors such as the type and number of lamps, the arrangement, the shape and material of the ellipsoidal mirror, and the method of taking the optical path to the sample. Different. In general, the stirring speed is preferably in the range of 10 to 50 rpm, and more preferably in the range of 25 to 45 rpm. The growth rate is preferably in the range of 1 to 50 mm / h, more preferably in the range of 2 to 10 mm / h. The temperature gradient is preferably adjusted so that the liquid phase amount (width) of the liquid phase portion is uniform and straight as shown by the broken line in FIG.

温度勾配を制御する方法には、楕円体鏡2によって試料の1点に集光された光の量を一部分遮蔽する方法が挙げられる。具体的には、上下に2分割されたアルミナ管で石英管1を外側から包み込むように覆い、その分割部分を試料の中心部(楕円体鏡2の1つの焦点部分)を基準にして合わせ、開口する量によって試料に到達する光量を調節する。中心の基準に対して上下対象となるように開口させると、上下に略対称な温度勾配が得られる。場合によっては、上下で温度勾配のプロファイルを変えることもできる。   As a method for controlling the temperature gradient, there is a method in which the amount of light collected at one point of the sample by the ellipsoidal mirror 2 is partially shielded. Specifically, the quartz tube 1 is covered with an alumina tube divided into two parts in the vertical direction so that the quartz tube 1 is wrapped from the outside, and the divided part is aligned with respect to the center of the sample (one focal part of the ellipsoidal mirror 2), The amount of light reaching the sample is adjusted by the amount of opening. When the aperture is opened so as to be a vertical target with respect to the center reference, a substantially symmetrical temperature gradient is obtained in the vertical direction. In some cases, the profile of the temperature gradient can be changed up and down.

本発明に係るMNiSn化合物は、いずれの組成に構成されている場合も上記と同様の方法によって、ZTが高く優れた熱電特性を有する熱電変換材料を作製することができる。   The MNiSn compound according to the present invention can produce a thermoelectric conversion material having high ZT and excellent thermoelectric properties by the same method as described above, regardless of the composition.

本発明においては、上記した光学式浮遊帯域溶融装置以外に、一方向凝固法を利用できる他の装置を適宜選択することができる。   In the present invention, in addition to the optical floating zone melting apparatus described above, other apparatuses that can use the unidirectional solidification method can be appropriately selected.

なお、本発明においては、MNiSn(M:Hf、Zr、及びTiの少なくとも一種)で表されるハーフホイスラー化合物の一種を用いることにより、該化合物の単相、あるいは組成によっては従来以上に単相に近づいた組織に構成できるが、一種を用いる以外に、二種以上を選択したMNiSn相を対象に構成してもよい。   In the present invention, by using one kind of half-Heusler compound represented by MNiSn (M: at least one kind of Hf, Zr and Ti), depending on the single phase or the composition of the compound, the single phase is more than conventional. However, in addition to using one type, an MNiSn phase selected from two or more types may be used as a target.

以下、実施例を示して本発明をより具体的に説明するが、本発明はこれらの実施例に限定されるものではない。なお、以下に示す実施例において、本発明に係る光学式浮遊帯溶融法を「OFZ」又は「OFZ法」と、これに更に熱処理を施した場合を「OFZ HT」と、従来法として挙げたアーク溶解法を「arc-melt」と、これに更に熱処理を施した場合を「arc HT」と略記することがある。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated more concretely, this invention is not limited to these Examples. In the examples shown below, the optical floating zone melting method according to the present invention is referred to as “OFZ” or “OFZ method”, and the case where further heat treatment is performed as “OFZ HT” as the conventional method. The arc melting method may be abbreviated as “arc-melt”, and the case of further heat treatment may be abbreviated as “arc HT”.

(実施例1)
まず、図1〜図2に示すように、試料を入れて浮遊帯溶融法により合成を行なう空間を形成する石英管1と、石英管1が軸心部に位置するようにして石英管1の少なくとも一部を取り囲むと共に、取り囲まれた石英管1から均等距離に同一幅の4個の楕円体鏡2を無端状に繋げて形成された浮遊帯溶解室4とで構成された浮遊帯溶融炉を備えた装置を用意した。この浮遊帯溶融炉には、4個の楕円体鏡2の曲面に各々ハロゲンランプ3a〜3dが設けられ、楕円体鏡2の室内側となる内壁は鏡面処理が施されて、ハロゲンランプから照射されたハロゲン光が、図1及び図2に示すように、鏡面処理された内壁面で反射して軸心部の石英管1に入射、石英管内の試料を加熱できるようになっている。
Example 1
First, as shown in FIGS. 1 to 2, a quartz tube 1 that forms a space in which a sample is put and is synthesized by a floating zone melting method, and the quartz tube 1 is positioned so that the quartz tube 1 is positioned at the axial center. A floating zone melting furnace comprising at least a part and a floating zone melting chamber 4 formed by connecting four ellipsoidal mirrors 2 of equal width at an equal distance from the surrounded quartz tube 1 in an endless manner. A device equipped with was prepared. In this floating zone melting furnace, halogen lamps 3a to 3d are provided on the curved surfaces of the four ellipsoidal mirrors 2, respectively, and the inner wall on the indoor side of the ellipsoidal mirror 2 is subjected to mirror surface treatment and irradiated from the halogen lamps. As shown in FIGS. 1 and 2, the halogen light thus reflected is reflected on the mirror-finished inner wall surface and is incident on the quartz tube 1 at the axial center so that the sample in the quartz tube can be heated.

浮遊帯溶解室4の内部に位置する石英管1内には、図2に示すように、回転可能なフィードロッド(feed rod)5と回転可能なシードロッド(seed rod)6との間に加熱溶融により液相形成し得る液相領域(Molten Zone)7が設けられると共に、液相形成時にシードロッド6をフィードロッド5と共に(好ましくは回転させて)移動可能なようになっている。   As shown in FIG. 2, the quartz tube 1 located inside the floating zone melting chamber 4 is heated between a rotatable feed rod 5 and a rotatable seed rod 6. A liquid phase region (Molten Zone) 7 capable of forming a liquid phase by melting is provided, and the seed rod 6 can be moved together with the feed rod 5 (preferably rotated) during the liquid phase formation.

まず、アーク溶解により長さ約100mm、径φ10mmの棒状体にアーク溶製した2つのHfNiSn化合物(多相からなるもの)を用意し、これらを図3に示すように、シードロッド6及びフィードロッド5として各々の端部が互いに接近する状態で配置した。なお、アーク溶解は常法に準じて行なった。   First, two HfNiSn compounds (consisting of multiphases) prepared by arc melting into a rod-like body having a length of about 100 mm and a diameter of 10 mm by arc melting were prepared. As shown in FIG. 5, each end portion was arranged close to each other. Arc melting was performed according to a conventional method.

この状態で、フィードロッド5の下端とシードロッド6の上端とが溶解し始めるまでハロゲンランプのパワー(温度)を上昇させると共に、両ロッドの回転方向が相対的に逆向きになるように回転させた。溶解したら両ロッドの各々を45r.p.m.の回転速度で相互に逆回転させたまま近づけて接触させ、液相領域7において融液部分を作り、固相/液相界面が安定するまで30分程度保持した後、シードロッドとフィードロッドとを10mm/hの移動速度にて降下した。シードロッド6の上部には、単相組織のハーフホイスラー化合物(例えばHfNiSn)が凝固・成長し、本発明のHfNiSn熱電材料(OFZ材)を得た。   In this state, the power (temperature) of the halogen lamp is increased until the lower end of the feed rod 5 and the upper end of the seed rod 6 begin to melt, and the rods are rotated so that the rotation directions of the rods are relatively opposite to each other. It was. Once dissolved, each rod is brought into close contact with each other at a rotational speed of 45 rpm to create a melt in the liquid phase region 7 until the solid phase / liquid phase interface is stabilized. After holding for about 30 minutes, the seed rod and the feed rod were lowered at a moving speed of 10 mm / h. A half-Heusler compound (for example, HfNiSn) having a single phase structure was solidified and grown on the seed rod 6 to obtain the HfNiSn thermoelectric material (OFZ material) of the present invention.

なお、安定に結晶成長させるためには固相/液相界面における温度勾配を適性かつ一定に保つ必要があるが、実際には温度や温度勾配を測定できないことから、本実施例では、液相の量(幅)を目安とし、図3の破線で示すように一定幅(一定量)の液相が保持されるように、ハロゲンランプのパワーの微調整を行なった。また、必要に応じてフィードロッドの移動速度も微調整するようにした。   In order to stably grow crystals, the temperature gradient at the solid phase / liquid phase interface must be kept appropriate and constant. However, since the temperature and temperature gradient cannot actually be measured, in this example, the liquid phase Using the amount (width) as a guide, the power of the halogen lamp was finely adjusted so that a liquid phase with a certain width (a certain amount) was maintained as indicated by the broken line in FIG. Also, the moving speed of the feed rod is finely adjusted as necessary.

(実施例2)
実施例1において、HfNiSn化合物を、アーク溶製したZrNiSn化合物に代え、かつ移動速度を5mm/hに変更したこと以外、実施例1と同様にして、本発明のZrNiSn熱電材料(OFZ材)を得た。
(Example 2)
In Example 1, the ZrNiSn thermoelectric material (OFZ material) of the present invention was used in the same manner as in Example 1 except that the HfNiSn compound was replaced with the arc-melted ZrNiSn compound and the moving speed was changed to 5 mm / h. Obtained.

(実施例3)
実施例1において、HfNiSn化合物を、アーク溶製したTiNiSn化合物に代えたこと以外、実施例1と同様にして、本発明のTiNiSn熱電材料(OFZ材)を得た。
(Example 3)
In Example 1, the TiNiSn thermoelectric material (OFZ material) of the present invention was obtained in the same manner as in Example 1 except that the HfNiSn compound was replaced with the arc-melted TiNiSn compound.

(実施例4)
実施例1において、得られたHfNiSn熱電材料を1000℃(1273K)で24時間加熱処理したこと以外、実施例1と同様にして、本発明のTiNiSn熱電材料(OFZ熱処理材)を得た。
Example 4
In Example 1, a TiNiSn thermoelectric material (OFZ heat-treated material) of the present invention was obtained in the same manner as in Example 1 except that the obtained HfNiSn thermoelectric material was heat-treated at 1000 ° C. (1273 K) for 24 hours.

(実施例5)
実施例1において、移動速度(成長速度)10mm/hを5mm/h、20mm/hに変更したこと以外、実施例1と同様にして、二種の本発明のHfNiSn熱電材料(OFZ材)を得た。
(Example 5)
In Example 1, two kinds of HfNiSn thermoelectric materials (OFZ materials) of the present invention were used in the same manner as in Example 1 except that the moving speed (growth speed) was changed from 10 mm / h to 5 mm / h and 20 mm / h. Obtained.

(比較例1〜3)
アーク溶解法によりアーク溶製したHfNiSn化合物(比較例1)、ZrNiSn化合物(比較例2)、又はTiNiSn化合物(比較例3)の各々を、800℃(1073K)で336時間アニール処理して、比較のHfNiSn熱電材料、ZrNiSn熱電材料、TiNiSn熱電材料(アーク材)を得た。
(Comparative Examples 1-3)
Each of the HfNiSn compound (Comparative Example 1), ZrNiSn compound (Comparative Example 2), or TiNiSn compound (Comparative Example 3) arc-melted by the arc melting method was annealed at 800 ° C. (1073 K) for 336 hours, and compared. HfNiSn thermoelectric material, ZrNiSn thermoelectric material, and TiNiSn thermoelectric material (arc material) were obtained.

(比較例4〜5)
アーク溶解法によりアーク溶製したHfNiSn化合物(比較例4)、又はZrNiSn化合物(比較例5)の鋳塊を、各々粉砕して粉末状にし、ホットプレスを用いて50MPaで5時間圧粉焼結して、比較のHfNiSn熱電材料、ZrNiSn熱電材料(ホットプレス材)を得た。
(Comparative Examples 4-5)
Ingots of HfNiSn compound (Comparative Example 4) or ZrNiSn compound (Comparative Example 5) produced by arc melting by the arc melting method are each pulverized into powders, and compacted with a hot press at 50 MPa for 5 hours. Thus, a comparative HfNiSn thermoelectric material and a ZrNiSn thermoelectric material (hot press material) were obtained.

(評価1)
−1.組織の評価(1)−
実施例1〜3で得たOFZ材(OFZ as-grown;本発明のHfNiSn熱電材料、ZrNiSn熱電材料、TiNiSn熱電材料)、並びに比較例1〜3で得たアーク材(arc-melt as-cast;比較のHfNiSn熱電材料、ZrNiSn熱電材料、TiNiSn熱電材料)に対し、走査型電子顕微鏡を用いて背面反射電子像(BEI)を撮影し、目視観察により組織を評価した。背面反射電子像(BEI)を図4〜図6に示す。
(Evaluation 1)
-1. Evaluation of organization (1)-
OFZ materials obtained in Examples 1 to 3 (OFZ as-grown; HfNiSn thermoelectric material of the present invention, ZrNiSn thermoelectric material, TiNiSn thermoelectric material) and arc materials obtained in Comparative Examples 1 to 3 (arc-melt as-cast) A back-scattered electron image (BEI) was taken using a scanning electron microscope for the comparative HfNiSn thermoelectric material, ZrNiSn thermoelectric material, TiNiSn thermoelectric material), and the structure was evaluated by visual observation. Back-reflected electron images (BEI) are shown in FIGS.

評価の結果、図4(b)、図5(b)、図6(b)に示すように、OFZ法を用いた本発明のOFZ材は、いずれも亀裂の発生が飛躍的に抑えられ、特に本発明のHfNiSn熱電材料、ZrNiSn熱電材料ではほぼ単相の組織を有しており(HfNiSnは体積率で99%以上、ZrNiSnは体積率で97%以上)、本発明のTiNiSn熱電材料もTiNiSn相以外の他の共存相が大幅に減少し、飛躍的に単相に近づいた組織とすることができた。   As a result of the evaluation, as shown in FIGS. 4 (b), 5 (b), and 6 (b), the OFZ material of the present invention using the OFZ method can dramatically suppress the occurrence of cracks, In particular, the HfNiSn thermoelectric material and the ZrNiSn thermoelectric material of the present invention have a substantially single-phase structure (HfNiSn is 99% or more by volume and ZrNiSn is 97% or more by volume), and the TiNiSn thermoelectric material of the present invention is also TiNiSn. The coexisting phase other than the phase was greatly reduced, and a structure that drastically approached the single phase could be obtained.

これに対し、図4(a)、図5(a)、図6(a)に示すように、比較のアーク材は、凝固速度が極めて速いことから凝固過程に大きく依存して非平衡状態で組織が形成され、いずれの熱電材料も2相以上が共存する多相組織、特に比較のTiNiSn熱電材料では非平衡4相組織であった。また、微小な亀裂も認められた。   On the other hand, as shown in FIGS. 4 (a), 5 (a), and 6 (a), the comparative arc material has a very fast solidification rate, so that it largely depends on the solidification process and is in an unbalanced state. A structure was formed, and each thermoelectric material had a multiphase structure in which two or more phases coexisted, particularly a non-equilibrium four-phase structure in the comparative TiNiSn thermoelectric material. In addition, minute cracks were also observed.

−2.組織の評価(2)−
実施例1で得たOFZ材及び実施例5で得た二種のOFZ材に対し、走査型電子顕微鏡を用いて背面反射電子像(BEI)を撮影し、OFZ法における成長速度が組織形成に及ぼす影響を目視観察により組織を評価した。背面反射電子像(BEI)を図7(a)〜(c)に示す。
-2. Organizational evaluation (2)-
Back-reflected electron images (BEI) were taken for the OFZ material obtained in Example 1 and the two kinds of OFZ materials obtained in Example 5 using a scanning electron microscope, and the growth rate in the OFZ method was sufficient for the formation of the structure. The structure was evaluated by visual observation. The backscattered electron images (BEI) are shown in FIGS.

評価の結果、図7(a)〜(c)に示すように、成長速度を5〜20mm/hの範囲で変更しても(攪拌速度及び温度勾配は固定)、ほぼ単相とみなせる組織を得ることができた。特に、10mm/hの場合が良好であり、体積率99%以上の完全な単相と考えてもよい相が得られた。   As a result of the evaluation, as shown in FIGS. 7A to 7C, even when the growth rate is changed within the range of 5 to 20 mm / h (stirring rate and temperature gradient are fixed), a structure that can be regarded as a substantially single phase is obtained. I was able to get it. In particular, the case of 10 mm / h was good, and a phase that could be considered as a complete single phase with a volume ratio of 99% or more was obtained.

−3.熱起電力(ゼーベック係数)及び電気抵抗率の測定・評価−
HfNiSn熱電材料として、実施例1で得た本発明のOFZ材及び実施例4で得た本発明のOFZ熱処理材、並びに比較例4で得たホットプレス材に対し、アルバック理工(株)製のZEM−1を用いて、各々のゼーベック係数及び電気抵抗率(電気伝導度の逆数)を測定した。具体的には、熱起電力(ゼーベック係数)は、2つの電極を用いて両電極間に発生する熱起電力と電極間の温度差とを測定して単位温度あたりの熱起電力を算出することにより、電気伝導度は四端子法での測定により、それぞれ求めた。そして、得られた値と温度との関係図(図8)を作成し、これらの温度依存性を評価した。ゼーベック係数及び電気抵抗率を図8(a)〜(b)に示す。なお、図中には、アーク溶解して得たアーク材をバルクで測定した文献値(▲)を併記してある。
-3. Measurement and evaluation of thermoelectromotive force (Seebeck coefficient) and electrical resistivity
As the HfNiSn thermoelectric material, the OFZ material of the present invention obtained in Example 1, the OFZ heat-treated material of the present invention obtained in Example 4, and the hot press material obtained in Comparative Example 4 were manufactured by ULVAC-RIKO Co., Ltd. Each Seebeck coefficient and electrical resistivity (reciprocal of electrical conductivity) were measured using ZEM-1. Specifically, the thermoelectromotive force (Seebeck coefficient) is calculated by measuring the thermoelectromotive force generated between both electrodes using two electrodes and the temperature difference between the electrodes, and calculating the thermoelectromotive force per unit temperature. Thus, the electric conductivity was obtained by measurement by the four probe method. And the relationship figure (FIG. 8) of the obtained value and temperature was created, and these temperature dependence was evaluated. Seebeck coefficient and electrical resistivity are shown in FIGS. In the figure, literature values (▲) obtained by measuring the arc material obtained by arc melting in bulk are also shown.

図8(a)に示すように、本発明のOFZ材及びOFZ熱処理材は、従来のホットプレス材に比し、ゼーベック係数(熱起電力)が大幅に向上しており、特に室温に近づくにつれて−400μV/Kに向かう大きな値を示した。なお、HfNiSnはn型半導体として振舞うため、熱起電力は負の値を示し、絶対値が大きい(すなわち図の下方)ほど熱起電力は大きいことを表す。また、図8(b)に示すように、本発明のOFZ材及びOFZ熱処理材は、電気抵抗率を大幅に低減することができた。いずれにおいても、OFZ熱処理材がより良好であった。   As shown in FIG. 8A, the OFZ material and the OFZ heat-treated material of the present invention have a significantly improved Seebeck coefficient (thermoelectromotive force) compared to the conventional hot press material, and particularly as the temperature approaches room temperature. A large value toward -400 μV / K was shown. Since HfNiSn behaves as an n-type semiconductor, the thermoelectromotive force shows a negative value, and the larger the absolute value (that is, in the lower part of the figure), the greater the thermoelectromotive force. Moreover, as shown in FIG.8 (b), the OFZ material and OFZ heat processing material of this invention were able to reduce electric resistivity significantly. In any case, the OFZ heat-treated material was better.

次に、ZrNiSn熱電材料について、実施例2で得た本発明のOFZ材、及び比較例5で得たホットプレス材に対し、アルバック理工(株)製のZEM−1を用いて上記と同様にして、ゼーベック係数及び電気抵抗率(電気伝導度の逆数)の測定を行なった。そして、得られた値と温度との関係図(図9)を作成し、これらの温度依存性を評価した。ゼーベック係数及び電気抵抗率を図9(a)〜(b)に示す。なお、図中には、バルクで測定したアーク溶解して得たアーク材の文献値(▲)を併記してある。   Next, for the ZrNiSn thermoelectric material, the OFZ material of the present invention obtained in Example 2 and the hot press material obtained in Comparative Example 5 were used in the same manner as described above using ZEM-1 manufactured by ULVAC-RIKO Co., Ltd. The Seebeck coefficient and electrical resistivity (reciprocal of electrical conductivity) were measured. And the relationship figure (FIG. 9) of the obtained value and temperature was created, and these temperature dependence was evaluated. Seebeck coefficient and electrical resistivity are shown in FIGS. In the figure, the literature values (▲) of arc materials obtained by arc melting measured in bulk are also shown.

図9(a)に示すように、本発明のOFZ材は、ゼーベック係数(熱起電力)が従来のホットプレス材に比し小幅なものの良化しており、電気抵抗率は図9(b)に示すように、大幅な低減を図ることができた。   As shown in FIG. 9 (a), the OFZ material of the present invention has a small Seebeck coefficient (thermoelectromotive force) compared with the conventional hot press material, but the electrical resistivity is improved as shown in FIG. 9 (b). As shown in Fig. 4, a significant reduction was achieved.

以上のように、浮遊帯溶融法による合成にて微小な亀裂が少なく単相もしくは単相に近づいた組織を持つハーフホイスラー合金が得られ、熱電特性のうち電気的な特性〔すなわちZTの分子(パワーファクター)α2σ〕を大幅に向上させることができた。すなわち、浮遊帯溶融法(一方向凝固法)により、単相化を容易に行なえると共に、ゆっくりと凝固、育成が可能であるので、凝固収縮に伴なう熱応力が抑制されて微小亀裂の発生が抑えられ、ハーフホイスラー化合物が本来有する固有の電気的な特性を引き出すことができた。 As described above, a half-Heusler alloy having a single phase or a structure close to a single phase is obtained by the synthesis by the floating zone melting method, and the electrical properties [that is, ZT molecules ( Power factor) α 2 σ] was greatly improved. In other words, the floating zone melting method (unidirectional solidification method) makes it easy to make a single phase, and it is possible to solidify and grow slowly, so that the thermal stress accompanying solidification shrinkage is suppressed and microcracks are Occurrence was suppressed, and the inherent electrical characteristics inherent in the half-Heusler compound could be extracted.

上記の結果をもとに、HfNiSn熱電材料、ZrNiSn熱電材料のパワーファクター(α2σ)の温度依存性を図10に示す。図8及び図9の通り、ゼーベック係数と電気抵抗率との両方を向上させることができたので、パワーファクターは、HfNiSn熱電材料については図10(a)のように、従来のホットプレス材に対し、OFZ材では約3倍、OFZ熱処理材では約5倍の向上効果を得ることができた。また、ZrNiSn熱電材料については、ゼーベック係数の向上が小幅であったが電気抵抗率の低減が大幅であったため、パワーファクターとしては図10(b)のように、従来のホットプレス材に対して約4倍の向上効果を得ることができた。 Based on the above results, FIG. 10 shows the temperature dependency of the power factor (α 2 σ) of the HfNiSn thermoelectric material and the ZrNiSn thermoelectric material. As shown in FIGS. 8 and 9, since both the Seebeck coefficient and the electrical resistivity could be improved, the power factor of the HfNiSn thermoelectric material is the same as that of the conventional hot press material as shown in FIG. 10 (a). On the other hand, an improvement effect of about 3 times with the OFZ material and about 5 times with the OFZ heat-treated material could be obtained. In addition, for the ZrNiSn thermoelectric material, the improvement in the Seebeck coefficient was small, but the electrical resistivity was greatly reduced. As a power factor, as shown in FIG. The improvement effect of about 4 times was able to be acquired.

次に、熱電特性のうち熱的な特性に関連した実施例を示す。
(実施例6)
実施例1において、HfNiSn化合物を、アーク溶製した(Hf0.5Zr0.5)NiSn化合物〔x=0.5〕に代えたこと以外、実施例1と同様にして、本発明の(Hf0.5Zr0.5)NiSn熱電材料(OFZ材)を得た。
Next, examples related to thermal characteristics among thermoelectric characteristics will be described.
(Example 6)
In Example 1, the HfNiSn compound, except that instead of the arc melting (Hf 0.5 Zr 0.5) NiSn compound [x = 0.5], in the same manner as in Example 1, of the present invention (Hf 0.5 Zr 0.5) NiSn A thermoelectric material (OFZ material) was obtained.

(比較例6)
アーク溶解法によりアーク溶製した(Hf0.5Zr0.5)NiSn化合物を、800℃(1073K)で336時間アニール処理して、比較の(Hf0.5Zr0.5)NiSn熱電材料(アーク材)を得た。
(Comparative Example 6)
The (Hf 0.5 Zr 0.5 ) NiSn compound produced by arc melting by the arc melting method was annealed at 800 ° C. (1073 K) for 336 hours to obtain a comparative (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material (arc material).

(評価2)
−4.組織の評価−
実施例6で得たOFZ材(OFZ as-grown;本発明の(Hf0.5Zr0.5)NiSn熱電材料)と比較例6で得たアーク材(arc-melt as-cast;比較の(Hf0.5Zr0.5)NiSn熱電材料)とを走査型電子顕微鏡を用いて背面反射電子像(BEI)を撮影し、目視観察により組織を評価した。背面反射電子像(BEI)を図11に示す。
(Evaluation 2)
-4. Evaluation of the organization
OFZ material obtained in Example 6 (OFZ as-grown; (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material of the present invention) and arc material obtained in Comparative Example 6 (arc-melt as-cast; comparative (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material) was taken with a scanning electron microscope, a back-scattered electron image (BEI) was photographed, and the structure was evaluated by visual observation. A backscattered electron image (BEI) is shown in FIG.

図11(b)に示すように、Hf:Zr組成比が1:1で置換固溶する組成の合金をOFZ法を用いて溶製した本発明の(Hf0.5Zr0.5)NiSn熱電材料は、図11(a)に示す比較のアーク材に比し、既述した3元系(HfNiSn熱電材料など)の場合と同様、亀裂の発生及び、共存相((Hf,Zr)Sn3等)の体積率が大幅に低減され、単相に構成された組織(体積率で97%以上)を得ることができた。これに対し、比較のアーク材の組織は多相であり、微小な亀裂も認められた。 As shown in FIG. 11 (b), the (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material of the present invention obtained by melting an alloy having a composition in which the Hf: Zr composition ratio is 1: 1 and is dissolved by substitution using the OFZ method, Compared with the comparative arc material shown in FIG. 11 (a), as in the case of the ternary system (HfNiSn thermoelectric material etc.) described above, the occurrence of cracks and the presence of coexisting phases ((Hf, Zr) Sn 3 etc.) The volume ratio was greatly reduced, and a structure composed of a single phase (97% or more by volume ratio) could be obtained. On the other hand, the structure of the comparative arc material was multiphase, and minute cracks were also observed.

なお、上記では(HfxZr1-x)NiSn〔x=0.5〕の場合を示したが、Hf及びZrの組合せ以外のHfxTi1-xやTixZr1-xの組合せとした場合並びに、Hf/Zr比がx=0.5以外の組成比をとる場合も同様である。 In the above description, the case of (Hf x Zr 1-x ) NiSn [x = 0.5] has been shown. However, combinations of Hf x Ti 1-x and Ti x Zr 1-x other than the combination of Hf and Zr The same applies to the case where the Hf / Zr ratio takes a composition ratio other than x = 0.5.

−5.無次元性能指数ZTの評価−
実施例6で得た本発明の(Hf0.5Zr0.5)NiSn熱電材料(OFZ材)について、既述の3元系の場合と同様にゼーベック係数及び電気抵抗率(電気伝導度の逆数)の測定を行なうと共に、レーザーフラッシュ法を用いた常法により熱伝導度を求め、これらの値から各温度でのZTを求めたときのZTと温度との関係図(図12)を作成し、ZTの温度依存性を評価した。ZTを図12に示す。
-5. Evaluation of dimensionless figure of merit ZT
For the (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material (OFZ material) of the present invention obtained in Example 6, measurement of Seebeck coefficient and electrical resistivity (reciprocal of electrical conductivity) as in the case of the ternary system described above. In addition, the thermal conductivity is obtained by a conventional method using a laser flash method, and a relationship diagram (FIG. 12) between ZT and temperature when ZT at each temperature is obtained from these values is created. Temperature dependence was evaluated. ZT is shown in FIG.

図12に示すように、ZTは良好な値を示し、900〜1000K付近ではZT=0.9の優れた熱電特性を得ることができた。   As shown in FIG. 12, ZT showed a good value, and an excellent thermoelectric characteristic of ZT = 0.9 could be obtained in the vicinity of 900 to 1000K.

すなわち、既述の3元系の場合と同様に電気的な特性(熱起電力α及び電気伝導度ρ)が向上するのみならず、同時に更に同族のHf及びZrによるMNiSnのMサイトの置換固溶により3元系(HfNiSnやZrNiSn)よりも熱伝導度をより効果的に低減させることができた。   That is, not only the electrical characteristics (thermoelectromotive force α and electric conductivity ρ) are improved as in the case of the ternary system described above, but at the same time, the substitutional fixation of the M site of MNiSn by Hf and Zr of the same family is further performed. The thermal conductivity could be reduced more effectively than the ternary system (HfNiSn or ZrNiSn).

上記では、特にHfNiSn、ZrNiSn、TiNiSn、(Hf0.5Zr0.5)NiSnの組成とした場合を中心に説明したが、これら以外の(HfxTi1-x)NiSnや(TixZr1-x)NiSn、HfZrTiNiSnなど、既述のMNiSnで表されるハーフホイスラー化合物に含まれる他の組成とした場合も上記と同様の方法により、温度勾配、具体的には攪拌速度、移動速度を適宜選択して成長速度を制御することで高い熱電特性を有する熱電変換材料を得ることが可能である。 In the above description, the case where the composition of HfNiSn, ZrNiSn, TiNiSn, and (Hf 0.5 Zr 0.5 ) NiSn is used is mainly described. However, other than these, (Hf x Ti 1-x ) NiSn and (Ti x Zr 1-x ) When other compositions included in the half-Heusler compound represented by MNiSn, such as NiSn and HfZrTiNiSn, are used, the temperature gradient, specifically the stirring speed and the moving speed are appropriately selected by the same method as described above. It is possible to obtain a thermoelectric conversion material having high thermoelectric properties by controlling the growth rate.

本発明の熱電変換材料は、排熱などを利用して温度差を与えたときに熱電変換によって熱エネルギーを電気エネルギー(起電力)に直接変換できる熱電モジュールなどを構成する熱電変換素子の材料として好適に用いることができる。   The thermoelectric conversion material of the present invention is a material for a thermoelectric conversion element that constitutes a thermoelectric module that can directly convert thermal energy into electric energy (electromotive force) by thermoelectric conversion when a temperature difference is given using exhaust heat or the like. It can be used suitably.

光学式浮遊帯溶融法を利用した光学式浮遊帯域溶融装置の一例を上面からみたときの概略断面図である。It is a schematic sectional drawing when an example of the optical floating zone melting apparatus using the optical floating zone melting method is seen from the upper surface. 図1の光学式浮遊帯域溶融装置を側面からみたときの概略断面図である。It is a schematic sectional drawing when the optical floating zone melting apparatus of FIG. 1 is seen from the side. 浮遊帯溶融炉の石英管内でハーフホイスラー化合物を合成しているところを説明するための概念図である。It is a conceptual diagram for demonstrating the place which synthesize | combines a half Heusler compound within the quartz tube of a floating zone melting furnace. (a)は従来のアーク溶解法によるHfNiSn熱電材料の組織を示し、(b)はOFZ法によるHfNiSn熱電材料の組織を示す図である。(A) shows the structure of the HfNiSn thermoelectric material by the conventional arc melting method, and (b) shows the structure of the HfNiSn thermoelectric material by the OFZ method. (a)は従来のアーク溶解法によるZrNiSn熱電材料の組織を示し、(b)はOFZ法によるZrNiSn熱電材料の組織を示す図である。(A) shows the structure of a ZrNiSn thermoelectric material by a conventional arc melting method, and (b) shows the structure of a ZrNiSn thermoelectric material by an OFZ method. (a)は従来のアーク溶解法によるTiNiSn熱電材料の組織を示し、(b)はOFZ法によるTiNiSn熱電材料の組織を示す図である。(A) shows the structure of a TiNiSn thermoelectric material by a conventional arc melting method, and (b) shows the structure of a TiNiSn thermoelectric material by an OFZ method. OFZ法における成長速度を(a)5mm/h、(b)10mm/h、(c)20mm/hとしたときの組織を示す図である。It is a figure which shows a structure | tissue when the growth rate in OFZ method is (a) 5 mm / h, (b) 10 mm / h, (c) 20 mm / h. (a)はHfNiSn熱電材料のゼーベック係数の温度依存性を示すグラフであり、(b)はHfNiSn熱電材料の電気抵抗値の温度依存性を示すグラフである。(A) is a graph which shows the temperature dependence of the Seebeck coefficient of a HfNiSn thermoelectric material, (b) is a graph which shows the temperature dependence of the electrical resistance value of a HfNiSn thermoelectric material. (a)はZrNiSn熱電材料のゼーベック係数の温度依存性を示すグラフであり、(b)はZrNiSn熱電材料の電気抵抗値の温度依存性を示すグラフである。(A) is a graph which shows the temperature dependence of the Seebeck coefficient of a ZrNiSn thermoelectric material, (b) is a graph which shows the temperature dependence of the electrical resistance value of a ZrNiSn thermoelectric material. (a)はHfNiSn熱電材料のパワーファクターの温度依存性を示すグラフであり、(b)はZrNiSn熱電材料のパワーファクターの温度依存性を示すグラフである。(A) is a graph which shows the temperature dependence of the power factor of HfNiSn thermoelectric material, (b) is a graph which shows the temperature dependence of the power factor of ZrNiSn thermoelectric material. (a)は従来のアーク溶解法による(Hf0.5Zr0.5)NiSn熱電材料の組織を示し、(b)はOFZ法による(Hf0.5Zr0.5)NiSn熱電材料の組織を示す図である。(A) shows the structure of a (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material by a conventional arc melting method, and (b) shows the structure of a (Hf 0.5 Zr 0.5 ) NiSn thermoelectric material by an OFZ method. (Hf0.5Zr0.5)NiSn熱電材料のZTと温度との関係を示すグラフである。It is a graph showing the relationship between the ZT and temperature (Hf 0.5 Zr 0.5) NiSn thermoelectric material.

符号の説明Explanation of symbols

1…石英管
4…浮遊帯溶解室
3a,3b,3c,3d…ハロゲンランプ
DESCRIPTION OF SYMBOLS 1 ... Quartz tube 4 ... Floating zone dissolution chamber 3a, 3b, 3c, 3d ... Halogen lamp

Claims (6)

MNiSnで表されるハーフホイスラー化合物〔Mは、Hf、Zr、及びTiの少なくとも一種を表す。〕を用いた組織を一方向凝固法により形成することを特徴とする熱電変換材料の製造方法。   Half-Heusler compound represented by MNiSn [M represents at least one of Hf, Zr, and Ti. ] Is formed by the unidirectional solidification method. 前記組織を、前記一方向凝固法により前記ハーフホイスラー化合物の単相もしくは略単相に形成する請求項1に記載の熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to claim 1, wherein the structure is formed into a single phase or a substantially single phase of the half-Heusler compound by the unidirectional solidification method. 形成された前記組織に更に熱処理を施す熱処理工程を有する請求項1又は2に記載の熱電変換材料の製造方法。   The manufacturing method of the thermoelectric conversion material of Claim 1 or 2 which has the heat processing process which heat-processes further to the formed said structure | tissue. 前記一方向凝固法が浮遊帯溶融法である請求項1〜3のいずれか1項に記載の熱電変換材料の製造方法。   The method for producing a thermoelectric conversion material according to any one of claims 1 to 3, wherein the unidirectional solidification method is a floating zone melting method. 請求項1〜4のいずれか1項に記載の熱電変換材料の製造方法により作製されたことを特徴とする熱電変換材料。   A thermoelectric conversion material produced by the method for producing a thermoelectric conversion material according to claim 1. (HfxZr1-x)NiSn〔0<x<1〕の組成に構成された請求項5に記載の熱電変換材料。 The thermoelectric conversion material according to claim 5, wherein the thermoelectric conversion material is configured to have a composition of (Hf x Zr 1-x ) NiSn [0 <x <1].
JP2005039872A 2005-02-16 2005-02-16 Thermoelectric conversion material and manufacturing method thereof Expired - Fee Related JP4515279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039872A JP4515279B2 (en) 2005-02-16 2005-02-16 Thermoelectric conversion material and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039872A JP4515279B2 (en) 2005-02-16 2005-02-16 Thermoelectric conversion material and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2006228912A true JP2006228912A (en) 2006-08-31
JP4515279B2 JP4515279B2 (en) 2010-07-28

Family

ID=36990019

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039872A Expired - Fee Related JP4515279B2 (en) 2005-02-16 2005-02-16 Thermoelectric conversion material and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP4515279B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519255B2 (en) 2008-12-15 2013-08-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermoelectric material and method of manufacturing the material
CN110640138A (en) * 2019-09-11 2020-01-03 大连理工大学 ZrNiSn-based Half-Heusler thermoelectric material and preparation method thereof and method for regulating and controlling inversion defects

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208368A (en) * 1995-01-25 1996-08-13 K Ii D:Kk Suspended zone melting device
JP2002173400A (en) * 2000-12-06 2002-06-21 Univ Shizuoka Method of growing bulk single crystal beta iron silicide crystal from liquid phase
WO2004095594A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Thermoelectrically transducing material, thermoelectric transducer using the material, and generating method and cooling method using the transducer
JP2004349566A (en) * 2003-05-23 2004-12-09 Kyocera Corp Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module
JP2004356607A (en) * 2002-11-12 2004-12-16 Toshiba Corp Thermoelectric conversion material and thermoelectric transducer

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08208368A (en) * 1995-01-25 1996-08-13 K Ii D:Kk Suspended zone melting device
JP2002173400A (en) * 2000-12-06 2002-06-21 Univ Shizuoka Method of growing bulk single crystal beta iron silicide crystal from liquid phase
JP2004356607A (en) * 2002-11-12 2004-12-16 Toshiba Corp Thermoelectric conversion material and thermoelectric transducer
WO2004095594A1 (en) * 2003-04-22 2004-11-04 Matsushita Electric Industrial Co., Ltd. Thermoelectrically transducing material, thermoelectric transducer using the material, and generating method and cooling method using the transducer
JP2004349566A (en) * 2003-05-23 2004-12-09 Kyocera Corp Unidirectional coagulation thermoelectric crystal material and its manufacturing method, thermoelectric component using the same and its manufatcuring method, and thermoelectric module

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8519255B2 (en) 2008-12-15 2013-08-27 Kabushiki Kaisha Toyota Chuo Kenkyusho Thermoelectric material and method of manufacturing the material
CN110640138A (en) * 2019-09-11 2020-01-03 大连理工大学 ZrNiSn-based Half-Heusler thermoelectric material and preparation method thereof and method for regulating and controlling inversion defects

Also Published As

Publication number Publication date
JP4515279B2 (en) 2010-07-28

Similar Documents

Publication Publication Date Title
JP4198055B2 (en) Method for manufacturing a device for direct thermoelectric energy conversion
Liang et al. Ultra-fast synthesis and thermoelectric properties of Te doped skutterudites
Zheng et al. High thermoelectric performance of mechanically robust n-type Bi 2 Te 3− x Se x prepared by combustion synthesis
JP2010166016A (en) Thermoelectric material and method of manufacturing the same
JP2009277735A (en) Method of manufacturing thermoelectric material
KR101997203B1 (en) Compound semiconductor thermoelectric material and manufacturing method thereof
Chen et al. Eutectic microstructure and thermoelectric properties of Mg 2 Sn
Liu et al. Combustion synthesis of Cu2SnSe3 thermoelectric materials
JP5099976B2 (en) Method for producing thermoelectric conversion material
Byrnes et al. Thermoelectric performance of thermally aged nanostructured bulk materials—a case study of lead chalcogenides
JP4515279B2 (en) Thermoelectric conversion material and manufacturing method thereof
Ishtiyak et al. Intrinsic extremely low thermal conductivity in BaIn2Te4: Synthesis, crystal structure, Raman spectroscopy, optical, and thermoelectric properties
JP2006128235A (en) Thermoelectric material and manufacturing method thereof
JP5281308B2 (en) Thermoelectric material and manufacturing method thereof
JP2017500726A (en) Thermoelectric material and manufacturing method thereof
Truong Thermoelectric properties of higher manganese silicides
JP5313858B2 (en) MnSix powder and manufacturing method thereof, and CaSiy powder for manufacturing MnSix powder and manufacturing method thereof
JP4533294B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP2004067425A (en) Si CLATHRATE SINGLE CRYSTAL AND ITS PREPARATION PROCESS
JP4775055B2 (en) Thermoelectric conversion material and manufacturing method thereof
JP3882047B2 (en) Method for synthesizing magnesium silicide
KR20170024471A (en) Thermoelectric powder and materials with improved thermostability and manufacturing methods thereof
Hmood et al. Structural, characterization and electrical properties of AgPbmSbTem+ 2 compounds synthesized through a solid-state microwave technique
Aminorroaya et al. Thermoelectric properties and microstructure studies of spinodally decomposed PbTe0. 38S0. 62 alloy
Akasaka et al. Effects of post-annealing on thermoelectric properties of p-type CoSb3 grown by the vertical Bridgman method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080123

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100427

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100428

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100512

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130521

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees