JP2006227174A - Resist developing solution and pattern forming method - Google Patents

Resist developing solution and pattern forming method Download PDF

Info

Publication number
JP2006227174A
JP2006227174A JP2005039100A JP2005039100A JP2006227174A JP 2006227174 A JP2006227174 A JP 2006227174A JP 2005039100 A JP2005039100 A JP 2005039100A JP 2005039100 A JP2005039100 A JP 2005039100A JP 2006227174 A JP2006227174 A JP 2006227174A
Authority
JP
Japan
Prior art keywords
molecular weight
solvent
resist
developer
dissolution rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005039100A
Other languages
Japanese (ja)
Inventor
Yasuhide Fujiwara
康秀 藤原
Masahiro Masuzawa
正弘 升澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005039100A priority Critical patent/JP2006227174A/en
Publication of JP2006227174A publication Critical patent/JP2006227174A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Photosensitive Polymer And Photoresist Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a resist developing solution which is reduced in a permeability into a gap between polymer aggregates and has a sufficient dissolution rate, and to provide a pattern forming method by which a pattern low in line edge roughnessby can be formed by using the resist developing solution. <P>SOLUTION: In order to reduce the line edge roughness, it is necessary to increase the molecular weight of a solvent without decreasing the dissolution rate, and the dissolution rate in an organic polymer is significantly influenced by the presence of a benzene ring and oxygen. If a hydroxyl group OH is present, the dissolution rate significantly decreases. The dissolution rate also significantly changes by the temperature of a solvent. That is, line edge roughness can be decreased by a developing solution containing a solvent having a plurality of phenyl groups, acetate groups, ketone groups and ether groups and having a large molecular weight. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レジスト膜を形成するためのレジスト現像液及びパターン形成方法に関する。   The present invention relates to a resist developer and a pattern forming method for forming a resist film.

近年、LSIのさらなる微細化や単電子トランジスタに代表されるよういなナノデバイスの研究開発の活発化に伴い、構造体を100nm以下の高精度で加工する技術が使用されている。このような加工は、リソグラフィ技術により実現される。リソグラフィ技術とは、レジストを被加工基板に塗布してレジスト膜を形成し、レジスト膜を選択的に感光させて領域内に潜像を形成した後、現像液に浸漬することにより、照射領域と被照射領域との現像液に対する溶解速度の差に基づいて、レジスト膜にパターンを形成する技術である。   In recent years, with further miniaturization of LSIs and active research and development of nanodevices such as single-electron transistors, techniques for processing structures with high accuracy of 100 nm or less have been used. Such processing is realized by a lithography technique. Lithography technology is to apply a resist to a substrate to be processed to form a resist film, selectively expose the resist film to form a latent image in the area, and then immerse it in a developing solution, thereby irradiating the irradiated area. This is a technique for forming a pattern on a resist film based on a difference in dissolution rate with respect to a developing solution from an irradiated region.

なお、照射領域内側が溶解除去されるタイプをポジ型という。100nm以下の寸法をなす微細なパターンをレジスト膜に形成する場合には、パターンの側壁の表面の微小な凸凹(ラインエッジラフネス)を無視することができず、パターンの寸法揺らぎ(パターンの寸法の最大値と最小値との差)を生じてしまう。この寸法揺らぎは、素子特性のバラつきにそのまま結びついてしまうため、素子の許容度以下に抑える必要がある。   A type in which the inside of the irradiation region is dissolved and removed is called a positive type. When a fine pattern having a dimension of 100 nm or less is formed on a resist film, minute unevenness (line edge roughness) on the surface of the pattern side wall cannot be ignored, and pattern dimension fluctuation (pattern dimension fluctuation) Difference between the maximum value and the minimum value). This dimensional fluctuation is directly linked to variations in element characteristics, and therefore must be suppressed to an element tolerance or less.

半導体素子におけるITRS(International Technology Roadmap for Semiconductors)のロードマップでは、パターンサイズ100nm、ラインエッジラフネスは、5nm以下が求められている。また、一般的にラインエッジラフネスとは、パターン側面の寸法揺らぎの主原因については、特許文献1で寸法揺らぎを低減するため、電子散乱を抑制する技術が開示されている。   In the ITRS (International Technology Roadmap for Semiconductors) roadmap for semiconductor devices, a pattern size of 100 nm and a line edge roughness of 5 nm or less are required. In general, line edge roughness is a technique that suppresses electron scattering in order to reduce dimensional fluctuation in Patent Document 1 as a main cause of dimensional fluctuation on a side surface of a pattern.

さらに、特許文献2では、PMMA(ポリメチルメタクリレート)やα−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名:ZEP520(日本ゼオン株式会社))等の有機高分子からなる一般的なレジストを用いたレジスト膜中には20〜30nm径の高分子集合体が存在し、これらの高分子集合体が現像時に集合体脱離現象を起こしてパターンの側壁に露出して、ラインエッジラフネスを生じてしまうことが寸法揺らぎの主原因であると述べており、集合体脱離現象を防ぐために集合体同士を結合させることにより、ラインエッジラフネスを低減する技術が開示されている。   Further, in Patent Document 2, a general organic polymer such as PMMA (polymethyl methacrylate) or a copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name: ZEP520 (Nippon Zeon Corporation)) is used. In a resist film using a typical resist, there are polymer aggregates having a diameter of 20 to 30 nm, and these polymer aggregates are exposed to pattern sidewalls during development and exposed to the pattern sidewalls. It is stated that the occurrence of edge roughness is the main cause of the dimensional fluctuation, and a technique for reducing the line edge roughness by coupling the aggregates to prevent the aggregate detachment phenomenon is disclosed.

同様に、特許文献3では、高分子集合体を小径化するレジスト材料により、ラインエッジラフネスを低減する技術が開示されている。このような材料の小径化は、レジスト材料として、PMMAのような有機高分子でなく、カリックスアレーン、SiO2等の無機材料を含有する材料により実現されている。しかし、このような材料は有機高分子に比べて感度が著しく低い問題があるため、用途が非常に限られる問題を有する。 Similarly, Patent Document 3 discloses a technique for reducing line edge roughness using a resist material that reduces the diameter of a polymer assembly. Such a reduction in the diameter of the material is realized not by an organic polymer such as PMMA as a resist material but by a material containing an inorganic material such as calixarene or SiO 2 . However, since such a material has a problem that sensitivity is remarkably lower than that of an organic polymer, it has a problem that its use is very limited.

さらに、実際に形成したパターンを切断してSEM(走査型電子顕微鏡)で観察すると、特許文献3(図1を参照)に示すようにレジスト内部(レジスト破断面)に高分子集合体が観察され、同様な周期の凹凸がパターン側面にも観察されていることから、これらの高分子集合体が寸法揺らぎの一因であると考えられる。ただし、パターン側面に観察される凹凸は、レジスト破断面での凹凸の高さに比べて明らかに小さく、露光現像条件により変化することから、レジスト材料だけでなく、現像条件によってもラインエッジラフネスが発生すると考えられる。   Further, when the actually formed pattern is cut and observed with an SEM (scanning electron microscope), a polymer aggregate is observed inside the resist (resist fracture surface) as shown in Patent Document 3 (see FIG. 1). Since similar irregularities are also observed on the side surface of the pattern, it is considered that these polymer aggregates contribute to dimensional fluctuation. However, the unevenness observed on the side surface of the pattern is clearly smaller than the height of the unevenness on the resist fracture surface, and changes depending on the exposure and development conditions, so the line edge roughness depends not only on the resist material but also on the development conditions. It is thought to occur.

上記のような電子ビーム等の放射線を照射して現像してパターンを形成する技術で、現像液に特徴があるものとしては、特許文献4、特許文献5に記載されており、特許文献4には、ケトン系溶剤を使用し、特許文献5には、ケトン系溶剤とエーテル系溶剤の混液を用いている。
特開2004−119414号公報 特許第3542106号公報 特許第3479236号公報 特開昭63−236033号公報 特開2001−215731号公報
A technique for forming a pattern by irradiating with radiation such as an electron beam as described above and having characteristics of a developer is described in Patent Document 4 and Patent Document 5, and Patent Document 4 Uses a ketone solvent, and Patent Document 5 uses a mixture of a ketone solvent and an ether solvent.
JP 2004-119414 A Japanese Patent No. 3542106 Japanese Patent No. 3479236 JP-A-63-236033 JP 2001-215731 A

しかしながら、特許文献1〜5には、以下に示す問題を有する。
特許文献1に記載されている発明では、電子散乱を低減することは可能であるが、ラインエッジラフネスは電子散乱ではなく高分子集合体に起因するために、ラインエッジラフネスを低減することはできない。
However, Patent Documents 1 to 5 have the following problems.
In the invention described in Patent Document 1, it is possible to reduce the electron scattering, but the line edge roughness cannot be reduced because the line edge roughness is caused not by electron scattering but by a polymer aggregate. .

また、特許文献2に記載されている発明は、高分子集合体同士をリンクさせて高分子集合体と高分子集合体の隙間への溶剤の新というを防止し、ラインエッジラフネスを低減することは可能であるが、感度の低下が著しといった問題が発生してしまう。   In addition, the invention described in Patent Document 2 links the polymer aggregates to prevent new solvent in the gaps between the polymer aggregates and the polymer aggregates, thereby reducing line edge roughness. However, there is a problem that the sensitivity is significantly reduced.

また、特許文献3に記載されている発明は、高分子集合体を小径化するレジスト材料により、ラインエッジラフネスを低減することが可能であるが、このような材料は有機高分子に比べて感度が著しく低い問題があるため、用途が非常に限られてしまうといった問題を有する。   In addition, the invention described in Patent Document 3 can reduce line edge roughness by using a resist material that reduces the diameter of a polymer aggregate. However, such a material is more sensitive than an organic polymer. However, there is a problem that usage is very limited.

また、特許文献4に記載されている発明は、ケトン系溶剤を使用しているため、分子量を大きくすると溶解性が下がってしまうためにラインエッジラフネスを低減することができない。   In addition, since the invention described in Patent Document 4 uses a ketone solvent, if the molecular weight is increased, the solubility is lowered, so that the line edge roughness cannot be reduced.

また、特許文献5に記載されている発明は、ケトン系溶剤とエーテル系溶剤との混液現像液を使用することで、混合した場合でも高分子への浸透作用は単独で作用することから、溶解度の高い溶剤に溶解度の低い溶剤を混合することは溶解度の調整にはなるが、同じ分子サイズの現像液の溶解度を下げたことと等価であることから、ラインエッジラフネスを低減させることができない。   Further, the invention described in Patent Document 5 uses a mixed developer of a ketone solvent and an ether solvent, and even when mixed, the penetrating action to the polymer acts independently, so the solubility. Mixing a low-solubility solvent with a high-solubility solvent adjusts the solubility, but is equivalent to lowering the solubility of a developer having the same molecular size, and therefore, line edge roughness cannot be reduced.

本発明は係る問題に鑑みてなされたものであり、高分子集合体と高分子集合体との隙間への浸透力を弱め、十分な溶解速度を有するレジスト現像液と該レジスト現像液を使用して、低いラインエッジラフネスのパターンを形成可能としたパターン形成方法を提供することを目的とする。   The present invention has been made in view of the above problems, and uses a resist developer having a sufficient dissolution rate and a resist developer that weakens the penetration force into the gap between the polymer aggregate and the polymer aggregate. An object of the present invention is to provide a pattern forming method capable of forming a low line edge roughness pattern.

上記目的を達成するために、請求項1記載のレジスト現像液は、電子ビーム等の放射線の照射により、ポリマー鎖が切断されて低分子化することにより、溶剤に対して溶解するレジスト材料の現像液において、現像液は、酢酸基またはケトン基、エーテル基、フェニル基を少なくとも2つ以上有し、かつ分子量が150以上であることを特徴とする。   In order to achieve the above object, the resist developer according to claim 1 develops a resist material that dissolves in a solvent by cutting a polymer chain and reducing its molecular weight by irradiation with radiation such as an electron beam. The developer is characterized in that the developer has at least two acetic acid groups or ketone groups, ether groups, and phenyl groups, and has a molecular weight of 150 or more.

請求項2記載の発明は、請求項1記載のレジスト現像液であって、現像液はベンゼン系溶剤であり、該ベンゼン系溶剤は、酸素を1つ以上有し、かつ、分子量が150以上であることを特徴とする。   The invention according to claim 2 is the resist developer according to claim 1, wherein the developer is a benzene solvent, and the benzene solvent has one or more oxygen and has a molecular weight of 150 or more. It is characterized by being.

請求項3記載の発明は、請求項1記載のレジスト現像液であって、現像液は、酢酸系の溶剤で、酢酸基とは別に酸素を1つ以上有し、かつ分子量が150以上であることを特徴とする。   The invention described in claim 3 is the resist developer according to claim 1, wherein the developer is an acetic acid-based solvent having one or more oxygens apart from the acetic acid group and having a molecular weight of 150 or more. It is characterized by that.

請求項4記載の発明は、請求項1記載のレジスト現像液であって、現像液は、エーテル系の溶剤で、エーテル基とは別に酸素を1つ以上有し、かつ分子量が150以上であることを特徴とする。   The invention according to claim 4 is the resist developer according to claim 1, wherein the developer is an ether-based solvent having one or more oxygens apart from the ether group and having a molecular weight of 150 or more. It is characterized by that.

請求項5記載のパターン形成方法は、基板上に電子ビーム等の放射線を照射する工程と、照射する工程によって、ポリマーの鎖が切断されて低分子化することにより、溶剤に対して溶解するレジスト材料を塗布し、焼付けする工程と、焼付けする工程によって得られたレジスト膜に、選択的に電子ビーム、遠紫外線、イオンビームまたはX線を照射し露光する工程と、請求項1から4のいずれか1項に記載のレジスト現像液で現像する工程とを有することを特徴とする。   The pattern forming method according to claim 5 is a resist that dissolves in a solvent by irradiating a substrate with a radiation such as an electron beam and a step of irradiating the polymer by cutting a polymer chain to lower the molecular weight. 5. A step of applying a material and baking, a step of selectively irradiating a resist film obtained by the baking step with an electron beam, a deep ultraviolet ray, an ion beam, or an X-ray, and exposing the resist film. And a step of developing with the resist developer described in item 1.

請求項6記載のパターン形成方法は、現像する工程では、レジスト現像液を加熱することで現像速度を高めて現像することを特徴とする。   The pattern forming method according to claim 6 is characterized in that, in the step of developing, the resist developer is heated to develop at a higher developing speed.

請求項7記載のパターン形成方法は、現像する工程では、レジスト現像液を冷却することで現像速度を下げて現像することを特徴とする。   The pattern forming method according to claim 7 is characterized in that in the developing step, the resist developer is cooled to develop at a lower developing speed.

本発明によれば、大きな分子量で高分子集合体と高分子集合体との隙間への浸透力を弱め、かつ2つ以上の溶解性を高める官能基を有するので、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成することができるレジスト現像液を実現できる。
また、高分子量でかつ十分な溶解性を有する現像液で現像することにより、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成することができる。
According to the present invention, since it has a functional group that weakens the penetrating power into the gap between the polymer aggregate and the polymer aggregate with a large molecular weight and increases the solubility of two or more, it has sufficient sensitivity, In addition, a resist developer that can form a pattern of 100 nm or less with low line edge roughness can be realized.
Further, by developing with a developer having a high molecular weight and sufficient solubility, a pattern of 100 nm or less having sufficient sensitivity and low line edge roughness can be formed.

次に、図面を参照して、本実施形態を説明する。
PMMA、PMIPK(ポリメチルイソプロピルケトン)、PBS(ポリブタジエンスチレン)、ポリ(2,2,2−トリフルオロエチル−2−クロロアクリレート)、α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体に代表される有機高分子からなるポジ型レジストは、1000〜100万程度の分子量を有する糸状のポリマーが数個〜数100程度凝集した数10nmの高分子集合体からなる。
Next, this embodiment will be described with reference to the drawings.
PMMA, PMIPK (polymethyl isopropyl ketone), PBS (polybutadiene styrene), poly (2,2,2-trifluoroethyl-2-chloroacrylate), copolymer of methyl α-chloroacrylate and α-methylstyrene A positive resist made of an organic polymer represented by (1) consists of a polymer aggregate of several tens of nm in which several to several hundreds of filamentous polymers having a molecular weight of about 1,000 to 1,000,000 are aggregated.

実際には高分子集合体は糸球のようなものなので、高分子集合体同士もお互いに有る程度からみあっている。レジストに電子線等の放射線が照射されると高分子の鎖が切断され、分子量が減少する。PMMAの場合の露光量(Dose量)と分子量の関係を図3に示す。分子量が小さくなると溶剤に対する溶解性が高くなるので、露光されたレジストを溶剤で現像すると照射領域が溶解して除去されパターンが形成される。   Actually, the polymer aggregates are like a ball, so the polymer aggregates are in agreement with each other. When the resist is irradiated with radiation such as an electron beam, the polymer chain is cut and the molecular weight is reduced. The relationship between the exposure amount (Dose amount) and the molecular weight in the case of PMMA is shown in FIG. Since the solubility in a solvent increases as the molecular weight decreases, when the exposed resist is developed with a solvent, the irradiated region dissolves and is removed to form a pattern.

PMMAの場合の分子量と4−メチル−2−ペンタノンに対する溶解速度の関係を図4に示す。溶剤の種類と溶解速度の関係は、同じ種類の溶剤の場合、図5のように分子量が大きくなるほど(溶剤の分子サイズが大きくなるほど)溶解速度が遅くなる。   The relationship between the molecular weight in the case of PMMA and the dissolution rate with respect to 4-methyl-2-pentanone is shown in FIG. Regarding the relationship between the type of solvent and the dissolution rate, in the case of the same type of solvent, the dissolution rate decreases as the molecular weight increases (as the solvent molecular size increases) as shown in FIG.

これは、溶剤の分子サイズが大きくなるほど有機高分子への溶剤の浸透力が弱くなるためで、有機高分子の溶解現象は、浸透した溶剤により糸状の有機高分子の絡み合いが解かれ、溶剤側に引き離されていくことによって説明される。   This is because as the solvent molecular size increases, the penetration of the solvent into the organic polymer becomes weaker. The organic polymer dissolution phenomenon is caused by the entanglement of the filamentous organic polymer by the permeated solvent and the solvent side. It is explained by being separated.

この有機高分子への溶剤の浸透は、当然のことながら高分子集合体への浸透に比べ、高分子集合体と高分子集合体との隙間への浸透の方が高速に起きるため、図1、図2のようにパターンの側面に高分子集合体と同様な周期の凹凸が形成され、ラインエッジラフネスが発生する。   Naturally, the permeation of the solvent into the organic polymer is faster in the permeation of the gap between the polymer assembly and the polymer assembly than in the polymer assembly. As shown in FIG. 2, irregularities having the same period as the polymer aggregate are formed on the side surface of the pattern, and line edge roughness is generated.

高分子集合体と高分子集合体との隙間へ溶剤が浸透と同等な速度で高分子集合体へ溶剤が浸透して溶解すれば、ラインエッジラフネスを低減することが可能になる。すなわち、溶剤の分子サイズが同じ場合には、溶剤の溶解速度を高めることにより、ラインエッジラフネスを低減することが可能になる。   If the solvent penetrates and dissolves into the polymer aggregate at a rate equivalent to the penetration of the solvent into the gap between the polymer aggregate, the line edge roughness can be reduced. That is, when the molecular size of the solvent is the same, the line edge roughness can be reduced by increasing the dissolution rate of the solvent.

しかし、溶剤の溶解速度を高めると、電子線が照射されていない領域の溶解速度も高くなるため、パターン形状の悪化、未露光領域の面粗さの悪化などの問題が生じるため、実際には溶剤の溶解速度を高めることにより、ラインエッジラフネスを低減することはできない。さらに、未露光領域の面粗さの悪化は、ランドラフネスも悪化させるので、すなわち、現像液としては、溶解速度はある範囲に限定される。   However, when the dissolution rate of the solvent is increased, the dissolution rate of the region that is not irradiated with the electron beam also increases, which causes problems such as deterioration of the pattern shape and deterioration of the surface roughness of the unexposed region. The line edge roughness cannot be reduced by increasing the dissolution rate of the solvent. Furthermore, the deterioration of the surface roughness of the unexposed area also deteriorates the land roughness. That is, as a developer, the dissolution rate is limited to a certain range.

また、高分子集合体と高分子集合体との隙間への浸透を抑えることにより、ラインエッジラフネスを低減することが可能になる。すなわち、溶剤の高分子集合体を溶解する速度が同じ場合には、溶剤の分子量を大きくして分子サイズを大きくして、高分子集合体と高分子集合体との隙間への浸透を抑えることにより、ラインエッジラフネスを低減することが可能になる。   In addition, it is possible to reduce the line edge roughness by suppressing the permeation into the gap between the polymer aggregate and the polymer aggregate. That is, when the solvent polymer aggregate dissolution rate is the same, increase the molecular weight of the solvent to increase the molecular size and suppress penetration into the gap between the polymer aggregate and the polymer aggregate. Thus, the line edge roughness can be reduced.

ただし、溶剤の分子量を大きくすると、前述に示すように溶解速度が低下して、ラインエッジラフネスを悪化させるばかりでなく、パターニングの感度が悪くなる問題が生じる。
よって、ラインエッジラフネスを低減するためには、溶解速度を低下させることなく、溶剤の分子量を大きくする必要がある有機高分子への溶解速度は、ベンゼン環と、酸素の存在が大きく影響する。また、水酸基OHが存在すると逆に溶解速度が著しく低下する。また、溶解速度は、溶媒の温度によっても大きく変化する。
すなわち、フェニル基、酢酸基、ケトン基、エーテル基を複数有し、かつ大きな分子量を有する溶剤を含有する現像液により、ラインエッジラフネスを低減することが可能になる。
However, when the molecular weight of the solvent is increased, the dissolution rate is lowered as described above, and not only the line edge roughness is deteriorated, but also the problem of poor patterning sensitivity arises.
Therefore, in order to reduce line edge roughness, the benzene ring and the presence of oxygen have a great influence on the dissolution rate in an organic polymer where the molecular weight of the solvent needs to be increased without reducing the dissolution rate. On the other hand, when the hydroxyl group OH is present, the dissolution rate is significantly reduced. In addition, the dissolution rate varies greatly depending on the temperature of the solvent.
That is, the line edge roughness can be reduced by a developer containing a solvent having a plurality of phenyl groups, acetic acid groups, ketone groups, and ether groups and having a large molecular weight.

図1、図2に示すようにPMMA、PMIPK(ポリメチルイソプロピルケトン)、PBS(ポリブタジエンスチレン)、ポリ(2,2,2−トリフルオロエチル−2−クロロアクリレート)、α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体に代表される有機高分子からなるポジ型レジストは、数10nmの高分子集合体からなり、ラインエッジラフネスの発生に関与する。   As shown in FIG. 1 and FIG. 2, PMMA, PMIPK (polymethyl isopropyl ketone), PBS (polybutadiene styrene), poly (2,2,2-trifluoroethyl-2-chloroacrylate), methyl α-chloroacrylate and A positive resist made of an organic polymer typified by a copolymer with α-methylstyrene is made of a polymer aggregate of several tens of nanometers and is involved in the generation of line edge roughness.

これらの有機高分子からなるポジ型レジストは、電子ビーム、遠紫外線、イオンビームまたはX線等の放射線が照射されると高分子の鎖が切断され、図3に示すように分子量が減少し、図4に示すように現像液に対する溶解速度が増加し、放射線の照射部が現像液に溶解してパターンが形成される。   Positive type resists made of these organic polymers have polymer chains cut when irradiated with radiation such as electron beam, far ultraviolet ray, ion beam or X-ray, and the molecular weight decreases as shown in FIG. As shown in FIG. 4, the dissolution rate with respect to the developer increases, and the radiation irradiated portion dissolves in the developer to form a pattern.

図3、図4では、PMMAを4−メチル−2−ペンタノンで現像した場合の溶解速度を示す。
溶剤の種類と溶解速度の関係は、同じ種類の溶剤の場合図5のように分子量が大きくなるほど溶剤の分子サイズが大きくなるほど)溶解速度が遅くなる。これは、溶剤の分子サイズが大きくなるほど有機高分子への溶剤の浸透力が弱くなるためで、有機高分子の溶解現象は、新党した溶剤により糸状の有機高分子の絡み合いが解かれ、溶剤側に引き離されていくことによって説明される。
3 and 4 show the dissolution rate when PMMA is developed with 4-methyl-2-pentanone.
Regarding the relationship between the type of solvent and the dissolution rate, in the case of the same type of solvent, the dissolution rate becomes slower as the molecular weight increases and the molecular size of the solvent increases as shown in FIG. This is because, as the molecular size of the solvent increases, the penetration of the solvent into the organic polymer becomes weaker. The dissolution phenomenon of the organic polymer is untangled by the new party solvent, and the solvent side It is explained by being separated.

この有機高分子への溶剤の浸透は、当然のことながら高分子集合体への浸透に比べ、高分子集合体と高分子集合体の隙間への浸透の方が高速に起きるため、図1、図2のようにパターンの側面に高分子集合体と同様な周期の凹凸が形成され、ラインエッジラフネスが発生する。   Since the permeation of the solvent into the organic polymer naturally occurs faster in the gap between the polymer assembly and the polymer assembly than in the polymer assembly, FIG. As shown in FIG. 2, irregularities having the same period as the polymer aggregate are formed on the side surface of the pattern, and line edge roughness is generated.

このことは、高分子集合体と高分子集合体との隙間への浸透を抑えることにより、ラインエッジラフネスを低減することが可能であることを意味する。すなわち、溶剤の高分子集合体を溶解する速度が同じ場合には、溶剤の分子量を大きくして分子サイズを大きくして、高分子集合体と高分子集合体との隙間への浸透を抑えることにより、ラインエッジラフネスを低減することが可能になる。   This means that the line edge roughness can be reduced by suppressing penetration of the polymer aggregate into the gap between the polymer aggregate. That is, when the solvent polymer aggregate dissolution rate is the same, increase the molecular weight of the solvent to increase the molecular size and suppress penetration into the gap between the polymer aggregate and the polymer aggregate. Thus, the line edge roughness can be reduced.

実際には、α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名:ZEP−520A)を電子ビームで完全露光し(露光量:150μC/cm2)、各種現像液で現像した場合の溶解速度を図6に示す。 Actually, a copolymer of α-methyl chloroacrylate and α-methylstyrene (trade name: ZEP-520A) is completely exposed with an electron beam (exposure amount: 150 μC / cm 2 ), and developed with various developers. The dissolution rate in this case is shown in FIG.

ラインエッジラフネスは、加速電圧50kV、ビーム径20nmでライン&スペースパターンを複数の露光量で描画し、溝とスペースがともに100nmになった領域のパターンをSEM(走査型電子顕微鏡)で撮影し、撮影された画像から溝のエッジを画像処理で検出してエッジ座標から測定した。   Line edge roughness is a line & space pattern drawn with multiple exposures at an acceleration voltage of 50 kV and a beam diameter of 20 nm, and a pattern of a region where both grooves and spaces are 100 nm is photographed with an SEM (scanning electron microscope). The edge of the groove was detected by image processing from the photographed image and measured from the edge coordinates.

図7は、溶解速度が200〜300nmと500〜600nmに分類して現像液分子量と、ラインエッジラフネスの関係をグラフ化した。酢酸nアミルが、一般的に使用されている標準現像液である。
図6、図7から明らかなようにラインエッジラフネスは、現像液の分子量を大きくすることにより、低減される。同様に、分子量495000のPMMAを電子ビームで完全露光し(露光量:300μC/cm2)、各種現像液で現像した場合の溶解速度を図11に示す(ラインエッジラフネスの測定は、前述の通り)。
FIG. 7 is a graph showing the relationship between the developer molecular weight and the line edge roughness by classifying the dissolution rate into 200 to 300 nm and 500 to 600 nm. N-amyl acetate is a commonly used standard developer.
As apparent from FIGS. 6 and 7, the line edge roughness is reduced by increasing the molecular weight of the developer. Similarly, PMMA having a molecular weight of 495,000 is completely exposed with an electron beam (exposure amount: 300 μC / cm 2 ) and developed with various developing solutions. FIG. 11 shows the dissolution rate (measurement of line edge roughness is as described above). ).

図12は、溶解速度が150〜250nmの場合の現像液分子量とラインエッジラフネスの関係をグラフ化した。
図11、図12から明らかなようにPMMAの場合にもラインエッジラフネスは5nm以下が求められており、図7、図12から明らかなように、現像液分子量は、150以上が必要条件となる。ただし、前述のように現像液の分子量を大きくすると、溶解速度が落ち、大きな露光量で露光しないとパターン形成できなくなる問題がある。
FIG. 12 is a graph showing the relationship between the developer molecular weight and the line edge roughness when the dissolution rate is 150 to 250 nm.
As is clear from FIGS. 11 and 12, the line edge roughness is also required to be 5 nm or less in the case of PMMA. As is clear from FIGS. 7 and 12, the molecular weight of the developer is 150 or more. . However, when the molecular weight of the developer is increased as described above, there is a problem that the dissolution rate decreases, and the pattern cannot be formed unless the exposure is performed with a large exposure amount.

実際には、完全露光された状態で溶解速度が100Å/sec以上なければパターン形成困難である。また、逆に、700Å/secを超える溶解速度では、未露光部(露光しない領域)が溶解して、ランド部の膜減り、ランド部の荒れの発生が起きるので、パターン形成困難である。すなわち、分子量を大きくしても、溶解速度は所定領域に存在しないと現像液としては使用できないので、分子量を大きくすることによって低下する溶解性を官能基等で補う必要がある。   Actually, it is difficult to form a pattern unless the dissolution rate is 100 Å / sec or more in a completely exposed state. On the other hand, at a dissolution rate exceeding 700 liters / sec, the unexposed portion (non-exposed region) is dissolved, the land portion is reduced in film thickness, and the land portion is roughened, making it difficult to form a pattern. That is, even if the molecular weight is increased, the dissolution rate cannot be used as a developer unless the dissolution rate is in a predetermined region. Therefore, it is necessary to supplement the solubility, which decreases with increasing molecular weight, with a functional group or the like.

実際には、有機高分子からなるポジ型レジストの溶解性には、酸素の存在が大きく寄与する。よって、酢酸基、ケトン基、エーテル基、フェニル基のうち1つ以上の官能基を複数有することにより、溶解速度を低下させることなく、150以上の分子量を実現することができ、ラインエッジラフネスを5nm以下にさせることが可能となる。   Actually, the presence of oxygen greatly contributes to the solubility of a positive resist made of an organic polymer. Therefore, by having a plurality of one or more functional groups of acetic acid group, ketone group, ether group, and phenyl group, it is possible to realize a molecular weight of 150 or more without lowering the dissolution rate, thereby reducing the line edge roughness. It becomes possible to make it 5 nm or less.

[実施例1]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光して100nmのライン&スペースパターンの潜像を形成し、酢酸基とエーテル基を1つづつ有し、分子量が160.2の酢酸2ブトキシエチルで現像した。
パターンをSEMにより、ラインエッジラフネスを測定したところ4.7nmであった。
[Example 1]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 100 nm line and space pattern. Developed with 2-butoxyethyl acetate having one acetic acid group and one ether group and a molecular weight of 160.2.
When the line edge roughness of the pattern was measured by SEM, it was 4.7 nm.

[比較例1]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光し、100nmのライン&スペースパターンの潜像を形成し、酢酸基1つを有し、分子量が130の酢酸nアミルで現像したところラインエッジラフネスは、5.5nmであった。
[Comparative Example 1]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 100 nm line and space pattern. When developed with n-amyl acetate having one acetic acid group and a molecular weight of 130, the line edge roughness was 5.5 nm.

[実施例2]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光し、120nmのライン&スペースパターンの潜像を形成し、ベンゼン環とエーテル基を1つづつ有し、分子量が164.2のペンチルフェニルエーテルで現像したところラインエッジラフネスは4.7nmであった。
[Example 2]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 120 nm line and space pattern. When developed with pentylphenyl ether having one benzene ring and one ether group and a molecular weight of 164.2, the line edge roughness was 4.7 nm.

[比較例2]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光し、120nmのライン&スペースパターンの潜像を形成し、酢酸基1つを分子量が130の酢酸nアミルで現像したところラインエッジラフネスは、5.4nmであった。
[Comparative Example 2]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 120 nm line and space pattern. When one acetic acid group was developed with n-amyl acetate having a molecular weight of 130, the line edge roughness was 5.4 nm.

[実施例3]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光し、60nmのライン&スペースパターンの潜像を形成し、ベンゼン環と2個の酸素を有し、分子量が166.2のフェニルアセトアルデヒドジメチルアセタールで現像したところラインエッジラフネスは、4.5nmであった。
[Example 3]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 60 nm line and space pattern. When developed with phenylacetaldehyde dimethyl acetal having a benzene ring and two oxygens and a molecular weight of 166.2, the line edge roughness was 4.5 nm.

[比較例3]
α−クロロアクリル酸メチルとα−メチルスチレンとの共重合体(商品名ZEP−520A)を加速電圧50kV、ビーム径20nmの電子ビームで露光し、60nmのライン&スペースパターンの潜像を形成し、酢酸基1つを有し、分子量が130の酢酸nアミルで現像したところラインエッジラフネスは5.5nmであった。
[Comparative Example 3]
A copolymer of methyl α-chloroacrylate and α-methylstyrene (trade name ZEP-520A) is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 60 nm line and space pattern. When developed with n-amyl acetate having one acetic acid group and a molecular weight of 130, the line edge roughness was 5.5 nm.

[実施例4]
分子量495000のPMMAを加速電圧50kV、ビーム径20nmの電子ビームで露光し、100nmのライン&スペースパターンの潜像を形成し、酢酸基とエーテル基を1つづつ有し、分子量が160.2の酢酸2ブトキシエチルで現像したところラインエッジラフネスは、4.6nmであった。
[Example 4]
A PMMA having a molecular weight of 495,000 is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a line and space pattern of 100 nm, having one acetate group and one ether group, and having a molecular weight of 160.2. When developed with 2-butoxyethyl acetate, the line edge roughness was 4.6 nm.

[比較例4]
分子量495000のPMMAを加速電圧50kV、ビーム径20nmの電子ビームで露光し、100nmのライン&スペースパターンの潜像を形成し、分子量100の4−メチル−2−ペンタノンと分子量60のIPAの混液で現像したところラインエッジラフネスは、5.8nmであった。
[Comparative Example 4]
A PMMA with a molecular weight of 495,000 is exposed with an electron beam with an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image with a 100 nm line and space pattern, and a mixture of 4-methyl-2-pentanone with a molecular weight of 100 and IPA with a molecular weight of 60 When developed, the line edge roughness was 5.8 nm.

[実施例5]
分子量495000のPMMAを加速電圧50kV、ビーム径20nmの電子ビームで露光し、120nmのライン&スペースパターンの潜像を形成し、酢酸基1個とエーテル基2個を有し、分子量176.2の酢酸2(エトキシエトキシ)エチルで現像したところラインエッジラフネスは、4.4nmであった。
[Example 5]
A PMMA having a molecular weight of 495,000 is exposed with an electron beam having an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image having a 120 nm line and space pattern, having one acetic acid group and two ether groups, and having a molecular weight of 176.2. When developed with 2 (ethoxyethoxy) ethyl acetate, the line edge roughness was 4.4 nm.

[比較例5]
分子量495000のPMMAを加速電圧50kV、ビーム径20nmの電子ビームで露光し、120nmのライン&スペースパターンの潜像を形成し、分子量100の4−メチル−2−ペンタノンと分子量60のIPAの混液で現像したところラインエッジラフネスは、5.8nmであった。
[Comparative Example 5]
A PMMA with a molecular weight of 495000 is exposed to an electron beam with an acceleration voltage of 50 kV and a beam diameter of 20 nm to form a latent image with a 120 nm line and space pattern, and a mixture of 4-methyl-2-pentanone with a molecular weight of 100 and IPA with a molecular weight of 60 When developed, the line edge roughness was 5.8 nm.

現像液は、上記に限定されるものではなく、酢酸基、ケトン棋、エーテル基、フェニル基のうち1つ以上の官能基を複数有し、かつ分子量が150以上の溶剤が該当する。また、上記レジスト材料に限定されるわけではなく、電子ビーム等放射線の照射により、ポリマーの鎖が切断されて低分子化することにより、溶剤に対して溶解するレジスト材料が該当する。   The developer is not limited to the above, and corresponds to a solvent having a plurality of one or more functional groups of acetic acid group, ketone cage, ether group, and phenyl group and having a molecular weight of 150 or more. The resist material is not limited to the above resist material, and corresponds to a resist material that dissolves in a solvent when a polymer chain is cut and its molecular weight is reduced by irradiation with radiation such as an electron beam.

以上の説明から、本実施形態では、大きな分子量で高分子集合体と高分子集合体の隙間への浸透力を弱め、かつ2つ以上の溶解性を高める官能基を有するので、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成できる現像液を実現することができる。   From the above description, in this embodiment, since it has a functional group that weakens the penetrating power into the gap between the polymer aggregate and the polymer aggregate with a large molecular weight and enhances the solubility of two or more, sufficient sensitivity is obtained. A developer capable of forming a pattern of 100 nm or less having low line edge roughness can be realized.

また、大きな分子量で高分子集合体と高分子集合体の隙間への浸透力を弱め、かつベンゼン環と酸素により、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成できる現像液を実現できる。   In addition, a large molecular weight can weaken the penetration force into the gap between the polymer aggregates, and the benzene ring and oxygen can form a pattern of 100 nm or less with sufficient sensitivity and low line edge roughness. A developer can be realized.

また、大きな分子量で高分子集合体と高分子集合体との隙間への浸透力を弱め、かつ酢酸基と酸素により、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成できる現像液を実現することができる。   In addition, with a large molecular weight, the penetration force into the gap between polymer aggregates is weakened, and with acetic acid groups and oxygen, a pattern with 100 nm or less is formed with sufficient sensitivity and low line edge roughness. A developer that can be produced can be realized.

また、大きな分子量で高分子集合体と高分子集合体との隙間への浸透力を弱め、かつエーテル基と酸素により、十分な感度を有し、かつラインエッジラフネスの低い100nm以下のパターンを形成できる現像液を実現することができる。   In addition, with a large molecular weight, the penetration force into the gap between polymer aggregates is weakened, and with ether groups and oxygen, a pattern of 100 nm or less with sufficient sensitivity and low line edge roughness is formed. A developer that can be produced can be realized.

また、溶解速度の不足する現像液に対し、低いラインエッジラフネスの100nm以下のパターンを形成することができる。   Further, a pattern having a low line edge roughness of 100 nm or less can be formed for a developing solution having a short dissolution rate.

さらに、溶解速度が大きすぎて未露光部の荒れが発生する現像液に対し、低いラインエッジラフネスの100nm以下のパターンを形成することができる。   Furthermore, a pattern having a low line edge roughness of 100 nm or less can be formed for a developing solution in which the dissolution rate is too high and the unexposed portions are roughened.

レジスト内部の高分子集合体とパターン側面の高分子集合体のSEM写真を示した図である。It is the figure which showed the SEM photograph of the polymer aggregate in a resist, and the polymer aggregate of a pattern side surface. レジスト内部の高分子集合体とパターン側面の高分子集合体のSEM写真を示した図である。It is the figure which showed the SEM photograph of the polymer aggregate in a resist, and the polymer aggregate of a pattern side surface. 露光量とレジスト分子量との関係を示したグラフである。It is the graph which showed the relationship between the exposure amount and the resist molecular weight. 露光量とレジストの溶解速度及び現像液温度との温度の関係示したグラフである。It is the graph which showed the relationship between the exposure amount, the melt | dissolution rate of a resist, and the temperature of a developing solution. 現像液分子量と現像速度の関係を示したグラフである。3 is a graph showing the relationship between the developer molecular weight and the developing speed. 各種現像液の分子量と溶解速度とラインエッジラフネス(LER)との関係を示した表である。It is the table | surface which showed the relationship between the molecular weight of various developing solution, a dissolution rate, and line edge roughness (LER). 溶解速度が一定値の場合の現像液分子量とラインエッジラフネス(LER)との関係を示したグラフである。6 is a graph showing the relationship between developer molecular weight and line edge roughness (LER) when the dissolution rate is a constant value. 各種現像液の分子量と溶解速度とラインエッジラフネス(LER)との関係を示した表である。It is the table | surface which showed the relationship between the molecular weight of various developing solution, a dissolution rate, and line edge roughness (LER). 現像液分子量が一定値の場合の溶解速度とラインエッジラフネス(LER)との関係を示したグラフである。6 is a graph showing the relationship between the dissolution rate and the line edge roughness (LER) when the developer molecular weight is a constant value. 各種現像液の溶解速度と分子量との関係を示したグラフである。It is the graph which showed the relationship between the dissolution rate of various developing solutions, and molecular weight. 各種現像液の分子量と溶解速度とラインエッジラフネス(LER)との関係を示した表である。It is the table | surface which showed the relationship between the molecular weight of various developing solution, a dissolution rate, and line edge roughness (LER). 溶解速度が一定値の場合の現像液分子量とラインエッジラフネス(LER)との関係を示したグラフである。6 is a graph showing the relationship between developer molecular weight and line edge roughness (LER) when the dissolution rate is a constant value. 各種現像液の分子量と溶解速度と現像液温度とラインエッジラフネス(LER)の関係を示した表である。It is the table | surface which showed the relationship between the molecular weight of various developing solution, a melt | dissolution rate, a developing solution temperature, and line edge roughness (LER).

Claims (7)

電子ビーム等の放射線の照射により、ポリマー鎖が切断されて低分子化することにより、溶剤に対して溶解するレジスト材料の現像液において、
前記現像液は、酢酸基またはケトン基、エーテル基、フェニル基を少なくとも2つ以上有し、かつ分子量が150以上であることを特徴とするレジスト現像液。
In the developer of the resist material that dissolves in the solvent by cutting the polymer chain and reducing the molecular weight by irradiation with radiation such as an electron beam,
The resist developer has at least two acetic acid groups or ketone groups, ether groups, and phenyl groups, and has a molecular weight of 150 or more.
前記現像液はベンゼン系溶剤であり、該ベンゼン系溶剤は、酸素を1つ以上有し、かつ、分子量が150以上であることを特徴とする請求項1記載のレジスト現像液。   2. The resist developer according to claim 1, wherein the developer is a benzene solvent, and the benzene solvent has one or more oxygen and has a molecular weight of 150 or more. 前記現像液は、酢酸系の溶剤で、酢酸基とは別に酸素を1つ以上有し、かつ分子量が150以上であることを特徴とする請求項1記載のレジスト現像液。   2. The resist developer according to claim 1, wherein the developer is an acetic acid-based solvent having one or more oxygens apart from the acetate group and having a molecular weight of 150 or more. 前記現像液は、エーテル系の溶剤で、エーテル基とは別に酸素を1つ以上有し、かつ分子量が150以上であることを特徴とする請求項1記載のレジスト現像液。   2. The resist developer according to claim 1, wherein the developer is an ether solvent having at least one oxygen other than the ether group and having a molecular weight of 150 or more. 基板上に電子ビーム等の放射線を照射する工程と、
前記照射する工程によって、ポリマーの鎖が切断されて低分子化することにより、溶剤に対して溶解するレジスト材料を塗布し、焼付けする工程と、
前記焼付けする工程によって得られたレジスト膜に、選択的に電子ビーム、遠紫外線、イオンビームまたはX線を照射し露光する工程と、
請求項1から4のいずれか1項に記載のレジスト現像液で現像する工程とを有することを特徴とするパターン形成方法。
Irradiating the substrate with radiation such as an electron beam;
Applying and baking a resist material that dissolves in a solvent by cutting the polymer chain and reducing the molecular weight by the irradiation step;
A step of selectively irradiating the resist film obtained by the baking step with an electron beam, a deep ultraviolet ray, an ion beam or an X-ray;
A pattern forming method comprising: developing with the resist developer according to claim 1.
前記現像する工程では、前記レジスト現像液を加熱することで現像速度を高めて現像することを特徴とする請求項5記載のパターン形成方法。   6. The pattern forming method according to claim 5, wherein, in the step of developing, the resist developer is heated to develop at a higher developing speed. 前記現像する工程では、前記レジスト現像液を冷却することで現像速度を下げて現像することを特徴とする請求項5記載のパターン形成方法。   6. The pattern forming method according to claim 5, wherein in the developing step, the resist developing solution is cooled to develop at a developing speed.
JP2005039100A 2005-02-16 2005-02-16 Resist developing solution and pattern forming method Pending JP2006227174A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005039100A JP2006227174A (en) 2005-02-16 2005-02-16 Resist developing solution and pattern forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005039100A JP2006227174A (en) 2005-02-16 2005-02-16 Resist developing solution and pattern forming method

Publications (1)

Publication Number Publication Date
JP2006227174A true JP2006227174A (en) 2006-08-31

Family

ID=36988613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005039100A Pending JP2006227174A (en) 2005-02-16 2005-02-16 Resist developing solution and pattern forming method

Country Status (1)

Country Link
JP (1) JP2006227174A (en)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1939691A2 (en) 2006-12-25 2008-07-02 FUJIFILM Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP1980911A2 (en) 2007-04-13 2008-10-15 FUJIFILM Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
WO2008129964A1 (en) 2007-04-13 2008-10-30 Fujifilm Corporation Method for pattern formation, and resist composition, developing solution and rinsing liquid for use in the method for pattern formation
EP2003504A2 (en) 2007-06-12 2008-12-17 FUJIFILM Corporation Method of forming patterns
WO2010087516A1 (en) * 2009-01-30 2010-08-05 Fujifilm Corporation Negative resist pattern forming method, developer and negative chemical-amplification resist composition used therefor, and resist pattern
US7851140B2 (en) 2007-06-12 2010-12-14 Fujifilm Corporation Resist composition for negative tone development and pattern forming method using the same
US7985534B2 (en) 2007-05-15 2011-07-26 Fujifilm Corporation Pattern forming method
US7998655B2 (en) 2007-06-12 2011-08-16 Fujifilm Corporation Method of forming patterns
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
WO2011125571A1 (en) * 2010-03-31 2011-10-13 Hoya株式会社 Resist developer, method for forming a resist pattern and method for manufacturing a mold
JP2011215242A (en) * 2010-03-31 2011-10-27 Hoya Corp Method for forming resist pattern and method for manufacturing mold
WO2013018569A1 (en) * 2011-08-04 2013-02-07 Hoya株式会社 Resist developer, process for forming resist pattern and process for producing mold
US8476001B2 (en) 2007-05-15 2013-07-02 Fujifilm Corporation Pattern forming method
US8530148B2 (en) 2006-12-25 2013-09-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8546063B2 (en) 2009-02-20 2013-10-01 Fujifilm Corporation Organic solvent development or multiple development pattern-forming method using electron beams or EUV rays
WO2013145695A1 (en) * 2012-03-30 2013-10-03 富士フイルム株式会社 Resist development method, resist pattern formation method, mold manufacturing method, and developing solution used for same
US8603733B2 (en) 2007-04-13 2013-12-10 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
US8617794B2 (en) 2007-06-12 2013-12-31 Fujifilm Corporation Method of forming patterns
US8632942B2 (en) 2007-06-12 2014-01-21 Fujifilm Corporation Method of forming patterns
US8637229B2 (en) 2006-12-25 2014-01-28 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
KR20140103187A (en) 2007-06-12 2014-08-25 후지필름 가부시키가이샤 Resist composition for negative tone development and pattern forming method using the same
US8889339B2 (en) 2011-03-25 2014-11-18 Fujifilm Corporation Resist pattern forming method, resist pattern, crosslinkable negative chemical amplification resist composition for organic solvent development, resist film and resist-coated mask blanks
US10026516B2 (en) 2015-07-29 2018-07-17 Accuthera Inc. Collimator apparatus, radiation system, and method for controlling collimators
WO2021145343A1 (en) * 2020-01-17 2021-07-22 日本ゼオン株式会社 Copolymer, positive resist composition, and method for forming resist pattern
KR20220041153A (en) 2019-08-29 2022-03-31 후지필름 가부시키가이샤 Pattern forming method, electronic device manufacturing method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127737A (en) * 1985-11-28 1987-06-10 Japan Synthetic Rubber Co Ltd Developing solution
JPH0418564A (en) * 1990-01-22 1992-01-22 Asahi Chem Ind Co Ltd Developer for photosensitive elastomer composition
JP2000039717A (en) * 1998-07-24 2000-02-08 Fujitsu Ltd Resist pattern forming method and production of semiconductor device
JP2001215731A (en) * 2000-02-01 2001-08-10 Nippon Zeon Co Ltd Resist developer and developing method
JP2001318472A (en) * 2000-02-28 2001-11-16 Mitsubishi Electric Corp Developing method, pattern forming method, method for producing photomask using these and method for producing semiconductor device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62127737A (en) * 1985-11-28 1987-06-10 Japan Synthetic Rubber Co Ltd Developing solution
JPH0418564A (en) * 1990-01-22 1992-01-22 Asahi Chem Ind Co Ltd Developer for photosensitive elastomer composition
JP2000039717A (en) * 1998-07-24 2000-02-08 Fujitsu Ltd Resist pattern forming method and production of semiconductor device
JP2001215731A (en) * 2000-02-01 2001-08-10 Nippon Zeon Co Ltd Resist developer and developing method
JP2001318472A (en) * 2000-02-28 2001-11-16 Mitsubishi Electric Corp Developing method, pattern forming method, method for producing photomask using these and method for producing semiconductor device

Cited By (55)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9465298B2 (en) 2006-12-25 2016-10-11 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8637229B2 (en) 2006-12-25 2014-01-28 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8951718B2 (en) 2006-12-25 2015-02-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP1939691A2 (en) 2006-12-25 2008-07-02 FUJIFILM Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8530148B2 (en) 2006-12-25 2013-09-10 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP2535771A1 (en) 2006-12-25 2012-12-19 Fujifilm Corporation Pattern forming method
US8227183B2 (en) 2006-12-25 2012-07-24 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
EP2413195A2 (en) 2006-12-25 2012-02-01 Fujifilm Corporation Pattern forming method
EP2413194A2 (en) 2006-12-25 2012-02-01 Fujifilm Corporation Pattern forming method
US9291904B2 (en) 2006-12-25 2016-03-22 Fujifilm Corporation Pattern forming method, resist composition for multiple development used in the pattern forming method, developer for negative development used in the pattern forming method, and rinsing solution for negative development used in the pattern forming method
US8017304B2 (en) 2007-04-13 2011-09-13 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
EP1980911A2 (en) 2007-04-13 2008-10-15 FUJIFILM Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US8603733B2 (en) 2007-04-13 2013-12-10 Fujifilm Corporation Pattern forming method, and resist composition, developer and rinsing solution used in the pattern forming method
WO2008129964A1 (en) 2007-04-13 2008-10-30 Fujifilm Corporation Method for pattern formation, and resist composition, developing solution and rinsing liquid for use in the method for pattern formation
US8241840B2 (en) 2007-04-13 2012-08-14 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US8034547B2 (en) 2007-04-13 2011-10-11 Fujifilm Corporation Pattern forming method, resist composition to be used in the pattern forming method, negative developing solution to be used in the pattern forming method and rinsing solution for negative development to be used in the pattern forming method
US7985534B2 (en) 2007-05-15 2011-07-26 Fujifilm Corporation Pattern forming method
US8476001B2 (en) 2007-05-15 2013-07-02 Fujifilm Corporation Pattern forming method
US7998655B2 (en) 2007-06-12 2011-08-16 Fujifilm Corporation Method of forming patterns
US9046782B2 (en) 2007-06-12 2015-06-02 Fujifilm Corporation Resist composition for negative tone development and pattern forming method using the same
US8088557B2 (en) 2007-06-12 2012-01-03 Fujifilm Corporation Method of forming patterns
KR20140103187A (en) 2007-06-12 2014-08-25 후지필름 가부시키가이샤 Resist composition for negative tone development and pattern forming method using the same
US9176386B2 (en) 2007-06-12 2015-11-03 Fujifilm Corporation Method of forming patterns
EP2579098A1 (en) 2007-06-12 2013-04-10 Fujifilm Corporation Method of forming patterns
US8071272B2 (en) 2007-06-12 2011-12-06 Fujifilm Corporation Method of forming patterns
US8895225B2 (en) 2007-06-12 2014-11-25 Fujifilm Corporation Method of forming patterns
EP2003504A2 (en) 2007-06-12 2008-12-17 FUJIFILM Corporation Method of forming patterns
US7851140B2 (en) 2007-06-12 2010-12-14 Fujifilm Corporation Resist composition for negative tone development and pattern forming method using the same
US8852847B2 (en) 2007-06-12 2014-10-07 Fujifilm Corporation Method of forming patterns
US9458343B2 (en) 2007-06-12 2016-10-04 Fujifilm Corporation Method of forming patterns
US8617794B2 (en) 2007-06-12 2013-12-31 Fujifilm Corporation Method of forming patterns
US8632942B2 (en) 2007-06-12 2014-01-21 Fujifilm Corporation Method of forming patterns
US8017298B2 (en) 2007-06-12 2011-09-13 Fujifilm Corporation Method of forming patterns
US8642253B2 (en) 2007-06-12 2014-02-04 FUJIFILM Incorporated Resist composition for negative tone development and pattern forming method using the same
US8637222B2 (en) 2009-01-30 2014-01-28 Fujifilm Corporation Negative resist pattern forming method, developer and negative chemical-amplification resist composition used therefor, and resist pattern
WO2010087516A1 (en) * 2009-01-30 2010-08-05 Fujifilm Corporation Negative resist pattern forming method, developer and negative chemical-amplification resist composition used therefor, and resist pattern
JP2010256858A (en) * 2009-01-30 2010-11-11 Fujifilm Corp Negative resist pattern forming method, developer and negative chemical-amplification resist composition used therefor, and resist pattern
US8546063B2 (en) 2009-02-20 2013-10-01 Fujifilm Corporation Organic solvent development or multiple development pattern-forming method using electron beams or EUV rays
EP2746853A2 (en) 2009-02-20 2014-06-25 Fujifilm Corporation Organic solvent development or multiple development pattern-forming method using electron beams or EUV rays
EP3745207A1 (en) 2009-02-20 2020-12-02 FUJIFILM Corporation Pattern-forming method using electron beams for euv rays and use of this method for forming a fine circuit of a semiconductor device
WO2011125571A1 (en) * 2010-03-31 2011-10-13 Hoya株式会社 Resist developer, method for forming a resist pattern and method for manufacturing a mold
US8822134B2 (en) 2010-03-31 2014-09-02 Hoya Corporation Resist developer, method for forming a resist pattern and method for manufacturing a mold
KR101827587B1 (en) 2010-03-31 2018-02-08 호야 가부시키가이샤 Resist developer, method for forming a resist pattern and method for manufacturing a mold
JP2011215242A (en) * 2010-03-31 2011-10-27 Hoya Corp Method for forming resist pattern and method for manufacturing mold
JP2011215243A (en) * 2010-03-31 2011-10-27 Hoya Corp Resist developer, method for forming resist pattern and method for manufacturing mold
US8889339B2 (en) 2011-03-25 2014-11-18 Fujifilm Corporation Resist pattern forming method, resist pattern, crosslinkable negative chemical amplification resist composition for organic solvent development, resist film and resist-coated mask blanks
WO2013018569A1 (en) * 2011-08-04 2013-02-07 Hoya株式会社 Resist developer, process for forming resist pattern and process for producing mold
TWI563352B (en) * 2011-08-04 2016-12-21 Hoya Corp Resist developer, method for forming resist pattern and method for manufacturing mold
JP2013210411A (en) * 2012-03-30 2013-10-10 Fujifilm Corp Method for developing resist, method for forming resist pattern, method for manufacturing mold, and developing solution used for the same
US9417530B2 (en) 2012-03-30 2016-08-16 Fujifilm Corporation Method for developing resist, method for forming a resist pattern, method for producing a mold, and developing fluid utilized in these methods
WO2013145695A1 (en) * 2012-03-30 2013-10-03 富士フイルム株式会社 Resist development method, resist pattern formation method, mold manufacturing method, and developing solution used for same
KR20140148457A (en) 2012-03-30 2014-12-31 후지필름 가부시키가이샤 Resist development method, resist pattern formation method, mold manufacturing method, and developing solution used for same
US10026516B2 (en) 2015-07-29 2018-07-17 Accuthera Inc. Collimator apparatus, radiation system, and method for controlling collimators
KR20220041153A (en) 2019-08-29 2022-03-31 후지필름 가부시키가이샤 Pattern forming method, electronic device manufacturing method
WO2021145343A1 (en) * 2020-01-17 2021-07-22 日本ゼオン株式会社 Copolymer, positive resist composition, and method for forming resist pattern

Similar Documents

Publication Publication Date Title
JP2006227174A (en) Resist developing solution and pattern forming method
JP5952613B2 (en) Resist developing method, resist pattern forming method, mold manufacturing method, and developer used therefor
KR20160063318A (en) Exposure activated chemically amplified directed self-assembly(dsa) for back end of line(beol) pattern cutting and plugging
JP2009272623A (en) Method for forming fine pattern of semiconductor device by means of double patterning process utilizing acid diffusion
JP2003195521A (en) Forming method for photoresist pattern and semiconductor element
JP2004530922A (en) Process for forming sublithographic photoresist features
US10527941B2 (en) Extreme ultraviolet photoresist and method
JP2009282542A (en) Resist and method of forming resist pattern
US7662542B2 (en) Pattern forming method and semiconductor device manufacturing method
CN108333866B (en) Method of photolithographic patterning
JP4967630B2 (en) Imprint mold and imprint mold manufacturing method
US20090092799A1 (en) Mixed lithography with dual resist and a single pattern transfer
JP2010156819A (en) Semiconductor device manufacturing method
Thackeray et al. Advances in low diffusion EUV resists
US10863630B2 (en) Material composition and methods thereof
JP5096860B2 (en) Pattern formation method
KR100764416B1 (en) Manufacturing Method of Semiconductor Device Using Immersion Lithography Process
JP4417090B2 (en) Pattern forming method, mask and exposure apparatus
JP2005114973A (en) Method for forming fine resist pattern
US11803125B2 (en) Method of forming a patterned structure and device thereof
JP2007201446A (en) Method for forming fine pattern of semiconductor element
Rembert et al. Tilted ion implantation of spin-coated SiARC films for sub-lithographic and two-dimensional patterning
US20060040216A1 (en) Method of patterning photoresist film
JP2004045969A (en) Pattern forming material and pattern forming method
KR100537181B1 (en) Method for forming photoresist pattern capable of preventing degradation caused with delaying develop after exposure

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20080122

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20100401

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101012

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110301