JP2006224636A - Laminated plate - Google Patents

Laminated plate Download PDF

Info

Publication number
JP2006224636A
JP2006224636A JP2005044739A JP2005044739A JP2006224636A JP 2006224636 A JP2006224636 A JP 2006224636A JP 2005044739 A JP2005044739 A JP 2005044739A JP 2005044739 A JP2005044739 A JP 2005044739A JP 2006224636 A JP2006224636 A JP 2006224636A
Authority
JP
Japan
Prior art keywords
nonwoven fabric
prepreg
fiber
layer
pbz
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005044739A
Other languages
Japanese (ja)
Inventor
Tomoyuki Terao
知之 寺尾
Tomonari Deguchi
朋斉 出口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
New Oji Paper Co Ltd
Original Assignee
Oji Paper Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oji Paper Co Ltd filed Critical Oji Paper Co Ltd
Priority to JP2005044739A priority Critical patent/JP2006224636A/en
Publication of JP2006224636A publication Critical patent/JP2006224636A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laminated plate showing low thermal expansion ratio, excellent solder heat resistance and good machinability, and having a thin insulating layer, and also to provide its manufacturing method. <P>SOLUTION: A prepreg having a nonwoven fabric of polybenzazole fiber is used as a base material for at least one layer other than the outermost layer of the laminated plate composed of three or more insulating layers. It is preferable that the polybenzazole fiber is preliminarily partly or wholly flattened. The nonwoven fabric of para-aramid fiber as the base material is preferably used for the outermost layer. The para-aramid fiber is preferably poly-p-phenylene diphenyl ether terephthalamide. In the representative embodiment of the laminated plate having a build-up layer overlying each of both surfaces of a core base plate, the prepreg having nonwoven fabric of polybenzazole fiber as the base material is used for the layer other than the outermost layer, and the prepreg having the nonwoven fabric of the para-aramid fiber as the base material is used for the outermost layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、低熱膨張率で半田耐熱性に優れた薄型絶縁層を有する積層板に関するものであり、特に半導体が直接搭載される半導体プラスチックパッケージ用プリント配線板材料に好適な積層板に関する。   The present invention relates to a laminate having a thin insulating layer having a low thermal expansion coefficient and excellent solder heat resistance, and more particularly to a laminate suitable for a printed wiring board material for a semiconductor plastic package on which a semiconductor is directly mounted.

一般にプリント配線板用の積層板は、紙やガラスクロス等のシート状繊維基材に熱硬化性樹脂ワニスを含浸して乾燥することでプリプレグを製造し、このプリプレグを所要枚数重ねるとともに必要に応じて銅箔等の金属箔を重ね、加熱加圧することで製造される。シート状繊維基材は樹脂ワニスの保持体であるとともに、成形後の絶縁層の補強材としての役割も兼ねている。   In general, laminated boards for printed wiring boards are manufactured by impregnating a sheet-like fiber base material such as paper or glass cloth with a thermosetting resin varnish and drying it, and stacking the required number of prepregs as needed. It is manufactured by stacking metal foil such as copper foil and heating and pressing. The sheet-like fiber base material is a holding body for the resin varnish and also serves as a reinforcing material for the insulating layer after molding.

近年、電子機器の軽量小型化や高機能化の動向に伴い、携帯機器のマザーボードや半導体パッケージ基板を中心に、高密度配線が可能なビルドアップ配線板が多用されるようになってきた。現在主流のビルドアップ配線板はガラスエポキシ両面板や多層板をコア基板とし、その両面に樹脂を塗工、もしくは樹脂付き銅箔や樹脂フィルム等を積層してビルドアップ層を順次形成するが、積層板を薄型化するために、ビルドアップ層の厚みは50μmや30μmといった薄型化が強く要望されている。さらに、信号の高速化に伴い誘電特性も重要視されており、低誘電率材料が望まれている。   2. Description of the Related Art In recent years, with the trend of electronic devices to be lighter, smaller, and more functional, build-up wiring boards capable of high-density wiring have come to be frequently used, mainly for portable device motherboards and semiconductor package substrates. The current mainstream build-up wiring board uses a glass epoxy double-sided board or multilayer board as the core substrate, and a resin is applied on both sides, or a build-up layer is sequentially formed by laminating resin-coated copper foil or resin film. In order to reduce the thickness of the laminate, there is a strong demand for reducing the thickness of the build-up layer such as 50 μm or 30 μm. In addition, with the increase in signal speed, the dielectric characteristics are regarded as important, and a low dielectric constant material is desired.

しかしながら、上記のごとくプリプレグを用いないビルドアップ層は補強材がないために、強度が弱くクラックが入りやすい、熱膨張率が大きい、という問題があり、薄型化において大きな障害となっている。特に半導体プラスチックパッケージ用途においては半導体チップとの熱膨張の整合を図るため、平面方向の熱膨張率として10ppm/℃以下が要求されている。   However, as described above, the build-up layer that does not use a prepreg has no reinforcing material, and thus has a problem that it is weak in strength, easily cracks, and has a high coefficient of thermal expansion, which is a major obstacle in reducing the thickness. In particular, in a semiconductor plastic package application, a thermal expansion coefficient in the plane direction is required to be 10 ppm / ° C. or lower in order to match thermal expansion with a semiconductor chip.

このような状況から、薄物シート状繊維基材に熱硬化性樹脂を含浸した薄物プリプレグを採用する機運が高まっているが、従来の薄物ガラスクロスではレーザー加工性や表面平滑性が著しく劣るため採用が難しい。このため、ガラス繊維の繊維径を細くし、高度に開繊した薄物ガラスクロス(例えば特許文献1参照)や、断面が扁平形状のガラス繊維を用いた薄物ガラス不織布(例えば特許文献2参照)、パラ系アラミド繊維、ポリベンザゾール繊維等の耐熱性有機繊維を用いた薄物不織布(例えば特許文献3、4、5)、等が提案されている。   Under such circumstances, the momentum to adopt thin prepregs in which a thin sheet-like fiber base material is impregnated with a thermosetting resin is increasing, but conventional thin glass cloth is adopted because of its inferior laser workability and surface smoothness. Is difficult. For this reason, the fiber diameter of the glass fiber is reduced, and a thin glass cloth (see, for example, Patent Document 1) that is highly opened, or a thin glass nonwoven fabric that uses glass fibers having a flat cross section (see, for example, Patent Document 2), Thin nonwoven fabrics using heat-resistant organic fibers such as para-aramid fibers and polybenzazole fibers (for example, Patent Documents 3, 4, and 5) have been proposed.

しかしながら、上記薄物ガラスクロスや薄物ガラス不織布では熱膨張率、誘電率の点で満足のいくものが得られていない。また、パラ系アラミド繊維不織布はガラス基材に比べて積層板の半田耐熱性に劣り、半導体プラスチックパッケージ用途に要求されるような高度な半田耐熱性を満足するものは得られていない。さらにポリベンザゾール繊維不織布は、ポリベンザゾール繊維があまりに高強度のため、積層板のドリル穴あけや外形切断といった機械加工において、断面にケバが残りやすいといった欠点がある。
特開2002−242047号公報 特開2001−156460号公報 特開2004−51951号公報 特開2003−73921号公報 特開2002−173826号公報
However, the above thin glass cloth and thin glass nonwoven fabric have not been satisfactory in terms of thermal expansion coefficient and dielectric constant. Para-aramid fiber nonwoven fabrics are inferior to glass substrates in solder heat resistance of laminates, and none satisfying the high solder heat resistance required for semiconductor plastic package applications has been obtained. Furthermore, the polybenzazole fiber non-woven fabric has a defect that the cross-section tends to remain in a machining process such as drilling a hole or cutting an outer shape of the laminated plate because the polybenzazole fiber is too strong.
JP 2002-242047 A JP 2001-156460 A JP 2004-51951 A JP 2003-73921 A JP 2002-173826 A

本発明の課題は、低熱膨張率で半田耐熱性に優れた薄型絶縁層を有する、加工適性の良好な積層板を提供することにある。   An object of the present invention is to provide a laminate having good workability and having a thin insulating layer having a low thermal expansion coefficient and excellent solder heat resistance.

本発明者等は、ポリベンザゾール(PBZ)繊維不織布を基材とした積層板において、最外層にはPBZ繊維不織布を使用しないことで積層板の加工適性が著しく向上することを見出し、本発明を完成させるに至った。   The inventors of the present invention have found that, in a laminated board based on a polybenzazole (PBZ) fiber nonwoven fabric, the processability of the laminated board is remarkably improved by not using the PBZ fiber nonwoven fabric as the outermost layer. It came to complete.

前記の問題を解決するための本発明は、以下の(1)〜(5)の各発明を包含する。
(1) 三層以上の絶縁層から構成される積層板であって、最外層以外の少なくとも一層に、ポリベンザゾール繊維不織布を基材としたプリプレグを用いた積層板。
(2) ポリベンザゾール繊維不織布が、あらかじめ部分扁平化または全扁平化したポリベンザゾール繊維をバインダー成分で結着した湿式不織布であることを特徴とする(1)に記載の積層板。
(3) 最外層にパラ系アラミド繊維不織布を基材としたプリプレグを使用することを特徴とする(1)または(2)に記載の積層板。
(4) パラ系アラミド繊維不織布がポリ−p−フェニレンジフェニルエーテルテレフタラミド繊維をバインダー成分で結着した湿式不織布であることを特徴とする(3)に記載の積層板。
(5) コア基板の両面にプリプレグを積層してビルドアップ層を形成した積層板であって、最外層以外のビルドアップ層にはポリベンザゾール繊維不織布を基材としたプリプレグを使用し、最外層にはパラ系アラミド繊維不織布を基材としたプリプレグを使用することを特徴とする積層板。
The present invention for solving the above problems includes the following inventions (1) to (5).
(1) A laminate comprising three or more insulating layers, wherein a prepreg based on a polybenzazole fiber nonwoven fabric is used as at least one layer other than the outermost layer.
(2) The laminated board according to (1), wherein the polybenzazole fiber nonwoven fabric is a wet nonwoven fabric obtained by binding partially flattened or fully flattened polybenzazole fibers with a binder component.
(3) The laminate according to (1) or (2), wherein a prepreg based on a para-aramid fiber nonwoven fabric is used for the outermost layer.
(4) The laminate according to (3), wherein the para-aramid fiber nonwoven fabric is a wet nonwoven fabric obtained by binding poly-p-phenylenediphenyl ether terephthalamide fibers with a binder component.
(5) A laminated board in which a prepreg is laminated on both surfaces of a core substrate to form a buildup layer, and a prepreg based on a polybenzazole fiber nonwoven fabric is used for a buildup layer other than the outermost layer. A laminate comprising a prepreg based on a para-aramid fiber nonwoven fabric as an outer layer.

本発明の積層板は、PBZ繊維不織布を基材とすることで熱膨張率を小さくすることができる。また、PBZ繊維不織布は有機繊維基材の中で特に半田耐熱性に優れた積層板が得られるため、半導体チップを実装する半導体パッケージ用途に最適である。さらに、最外層にPBZ繊維不織布を使用しないことで機械加工適性も良好である。   The laminated board of this invention can make a thermal expansion coefficient small by using a PBZ fiber nonwoven fabric as a base material. Moreover, the PBZ fiber nonwoven fabric is most suitable for a semiconductor package application in which a semiconductor chip is mounted because a laminated board having particularly excellent solder heat resistance is obtained among organic fiber base materials. Furthermore, the suitability for machining is good by not using a PBZ fiber nonwoven fabric for the outermost layer.

本発明では第一に、繊維軸方向に負の熱膨張率を示し、かつ高弾性率であるPBZ繊維からなる不織布を基材とすることで、平面方向における絶縁層の熱膨張率を小さくすることが出来る。ここでいうPBZとは、ポリベンゾオキサゾール(PBO)ホモポリマー、ポリベンゾチアゾール(PBT)ホモポリマーおよびそれらPBO、PBTのランダム、シーケンシあるいはブロック共重合ポリマーをいう。PBZ繊維とはPBZからなる繊維(例えばZYLON/東洋紡績社登録商標)である。繊維軸方向に負の熱膨張率を示す他の耐熱性有機繊維としては、パラ系アラミド繊維、液晶ポリエステル繊維等が挙げられる。   In the present invention, first, the thermal expansion coefficient of the insulating layer in the plane direction is reduced by using a nonwoven fabric made of PBZ fibers having a negative thermal expansion coefficient in the fiber axis direction and having a high elastic modulus. I can do it. PBZ here means polybenzoxazole (PBO) homopolymer, polybenzothiazole (PBT) homopolymer, and random, sequential or block copolymer of PBO and PBT. The PBZ fiber is a fiber made of PBZ (for example, ZYLON / registered trademark of Toyobo Co., Ltd.). Examples of other heat-resistant organic fibers that exhibit a negative coefficient of thermal expansion in the fiber axis direction include para-aramid fibers and liquid crystal polyester fibers.

次に本発明では、積層板の内層にのみPBZ繊維不織布を基材として使用する。PBZ繊維はあまりに高強度のため、積層板の機械加工時に表層部に近い部分では繊維が外に逃げてケバとして残りやすいが、内層であれば繊維の逃げ道がないため、ケバとして残りにくい。また、積層板の耐熱試験では内層の剥離や膨れが生じやすいが、PBZ繊維基材はパラ系アラミド繊維基材や液晶ポリエステル繊維基材よりも半田耐熱性に優れた積層板が得られるため、内層材料に最適である。   Next, in this invention, a PBZ fiber nonwoven fabric is used as a base material only for the inner layer of a laminated board. The PBZ fiber is so strong that when the laminated plate is machined, the fiber is likely to escape to the outside in a portion close to the surface layer portion, but the inner layer is unlikely to remain as a fluff because there is no fiber escape path. Moreover, in the heat resistance test of the laminated board, peeling and swelling of the inner layer are likely to occur, but since the PBZ fiber base material can obtain a laminated board having better solder heat resistance than the para-aramid fiber base material and the liquid crystal polyester fiber base material, Ideal for inner layer materials.

PBZ繊維不織布があらかじめ部分扁平化または全扁平化されたPBZ繊維からなる場合はさらに好ましい。本発明における部分扁平化されたPBZ繊維とは、例えば特許文献4に例示された、繊維の長さ方向において部分的に扁平化された幅広部分を有する繊維を指す。本発明における全扁平化した繊維とは、例えば特許文献5に例示された、繊維の長さ方向に渡って全て扁平化された繊維を指す。PBZ繊維の部分扁平化もしくは全扁平化の方法は、例えば繊維をサンドミル処理する方法(例えば特許文献4、5参照)が挙げられる。このような部分扁平化もしくは全扁平化繊維は容易に屈曲し、あたかも繊維長の短い繊維の集合体のように不織布の面内での繊維の分布が均一化する。また、扁平化された部分は繊維の厚さが薄いため、不織布断面における繊維層数が増加し、厚さ方向での繊維の分布も均一化する。このような部分扁平化もしくは全扁平化PBZ繊維を全繊維中の25質量%以上使用した不織布を基材として用いると、絶縁層中のPBZ繊維分布が著しく向上し、積層板の加工適性も向上する。より好ましくは30質量%以上である。   More preferably, the PBZ fiber nonwoven fabric is made of PBZ fibers that have been partially flattened or flattened in advance. The partially flattened PBZ fiber in the present invention refers to a fiber having a wide part partially flattened in the length direction of the fiber exemplified in Patent Document 4, for example. The completely flattened fiber in the present invention refers to a fiber that is flattened over the entire length direction of the fiber as exemplified in Patent Document 5, for example. Examples of the method of partial flattening or total flattening of PBZ fibers include a method of sand milling the fibers (see, for example, Patent Documents 4 and 5). Such partially flattened or fully flattened fibers are easily bent, and the distribution of the fibers in the surface of the nonwoven fabric becomes uniform as if they were aggregates of fibers having a short fiber length. Further, since the flattened portion has a thin fiber thickness, the number of fiber layers in the cross section of the nonwoven fabric increases, and the fiber distribution in the thickness direction becomes uniform. When a nonwoven fabric using 25% by mass or more of such partially flattened or fully flattened PBZ fibers is used as a base material, the distribution of PBZ fibers in the insulating layer is remarkably improved, and the processability of the laminate is also improved. To do. More preferably, it is 30 mass% or more.

最外層に使用する素材としては特に限定せず、プリプレグ、樹脂付き銅箔、熱硬化性樹脂フィルム、感光性樹脂等の公知の材料が使用できるが、低熱膨張の特徴を損なわない材料が好ましく、特にパラ系アラミド繊維不織布を基材としたプリプレグが好ましい。   The material used for the outermost layer is not particularly limited, and known materials such as prepreg, resin-coated copper foil, thermosetting resin film, and photosensitive resin can be used, but materials that do not impair the characteristics of low thermal expansion are preferable, Particularly preferred is a prepreg based on a para-aramid fiber nonwoven fabric.

本発明におけるアラミドとは、ISO2076−1977に定義された「アミド結合を介して結びついた芳香族基より成る合成高分子で、該アミド結合の85%以上が2個の芳香環と直接結合しており、該アミド基の50%以下がイミド基で置換されていてもよい」ものを指す。また、本発明におけるパラ系アラミドとは、上記アラミドのうち、アミド基の芳香環への結合がパラ位置にあるものを指す。現在、市場で入手できるパラ系アラミド繊維としてはポリ−p−フェニレンテレフタラミド繊維(例えばケブラー/デュポン社登録商標)とポリ−p−フェニレンジフェニルエーテルテレフタラミド繊維(例えばテクノーラ/帝人テクノプロダクツ社登録商標)を挙げることができるが、本発明においては、ポリ−p−フェニレンジフェニルエーテルテレフタラミド繊維が好ましい。ポリ−p−フェニレンジフェニルエーテルテレフタラミド繊維の方が熱膨張率、半田耐熱性、加工適性の面で優れた積層板が得られるからである。   Aramid in the present invention is a synthetic polymer composed of an aromatic group linked through an amide bond as defined in ISO 2076-1977. More than 85% of the amide bond is directly bonded to two aromatic rings. And 50% or less of the amide group may be substituted with an imide group ”. The para-aramid in the present invention refers to the aramid in which the amide group is bonded to the aromatic ring at the para position. Currently, commercially available para-aramid fibers include poly-p-phenylene terephthalamide fibers (for example, Kevlar / DuPont registered trademark) and poly-p-phenylene diphenyl ether terephthalamide fibers (for example, Technora / Teijin Techno Products). In the present invention, poly-p-phenylene diphenyl ether terephthalamide fibers are preferable. This is because the poly-p-phenylene diphenyl ether terephthalamide fiber can provide a laminate having excellent thermal expansion coefficient, solder heat resistance, and processability.

本発明で使用する不織布は湿式不織布であることが好ましい。不織布の製造方法は乾式法、湿式法に大別できるが、湿式法の方がより繊維の分布が均一な不織布を得ることができるからである。湿式法とはいわゆる抄紙法であり、繊維を水中に分散した繊維スラリーをワイヤー介して脱水し、加熱乾燥することでシートを得る。繊維の形態は特に限定せず、チョップドファイバー、パルプ等を挙げることができる。繊維径は0.1〜2d、繊維長は1〜10mmが好ましい。   The nonwoven fabric used in the present invention is preferably a wet nonwoven fabric. The manufacturing method of the nonwoven fabric can be roughly divided into a dry method and a wet method, but the wet method can obtain a nonwoven fabric with a more uniform fiber distribution. The wet method is a so-called papermaking method, in which a fiber slurry in which fibers are dispersed in water is dehydrated through a wire and heated to dry to obtain a sheet. The form of the fiber is not particularly limited, and examples thereof include chopped fiber and pulp. The fiber diameter is preferably 0.1 to 2d, and the fiber length is preferably 1 to 10 mm.

パラ系アラミド繊維、PBZ繊維は自己接着性がないため、バインダー成分により繊維同士を結着する。バインダー成分としては、繊維状樹脂バインダーや粒状樹脂バインダー、液状樹脂バインダー等、公知のものが広く採用できるが、不織布の引張強度を考慮すれば液状樹脂バインダーが好ましい。液状樹脂バインダーとしては熱硬化性樹脂の水溶液またはエマルジョンが好ましく、熱硬化性樹脂としては、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、アクリル樹脂、ポリイミド樹脂、シリコーン樹脂等が使用できるが、耐熱性、機械強度、電気特性等を考慮すればエポキシ樹脂、ポリイミド樹脂が好ましい。液状樹脂バインダーをスプレーや含浸、カーテンコート等の公知の方法で不織布に添加した後、熱風や赤外線加熱、加熱ドラム等の公知の方法で加熱乾燥して繊維間を結合させる。乾燥後の不織布中のバインダー量は5〜30質量%が好ましく、さらに好ましくは10〜25質量%である。5質量%未満では不織布の強度が低くなり、30質量%を超えると不織布のしなやかさが損なわれたり、後の熱カレンダー処理時に熱ロールを汚して生産性を悪化させるといった問題がある。   Since para-aramid fibers and PBZ fibers do not have self-adhesive properties, the fibers are bound together by a binder component. As the binder component, known ones such as a fibrous resin binder, a granular resin binder, and a liquid resin binder can be widely adopted, but a liquid resin binder is preferable in consideration of the tensile strength of the nonwoven fabric. As the liquid resin binder, an aqueous solution or emulsion of a thermosetting resin is preferable, and as the thermosetting resin, for example, an epoxy resin, a phenol resin, a melamine resin, an acrylic resin, a polyimide resin, a silicone resin, and the like can be used. In view of mechanical strength, electrical characteristics, etc., epoxy resin and polyimide resin are preferable. The liquid resin binder is added to the nonwoven fabric by a known method such as spraying, impregnation or curtain coating, and then heated and dried by a known method such as hot air, infrared heating, or a heating drum to bond the fibers. The amount of the binder in the nonwoven fabric after drying is preferably 5 to 30% by mass, more preferably 10 to 25% by mass. If it is less than 5% by mass, the strength of the nonwoven fabric is lowered, and if it exceeds 30% by mass, the flexibility of the nonwoven fabric is impaired, or the heat roll is soiled during the subsequent heat calendering process to deteriorate productivity.

本発明で使用する不織布は厚さを10〜50μmとすることが好ましく、より好ましくは最終目的とする絶縁層の厚さ以下に不織布の厚さを調整しておくことが好ましい。不織布の密度が低すぎるとプリプレグ中に空隙が多く残り、積層板中に微小なボイドが生じる恐れがある。不織布の密度が高すぎると熱硬化性樹脂ワニスの含浸性が劣る。したがって、不織布の密度は0.3〜1.0g/cm程度が好ましい。 The nonwoven fabric used in the present invention preferably has a thickness of 10 to 50 μm, and more preferably, the thickness of the nonwoven fabric is adjusted to be equal to or less than the final target insulating layer thickness. If the density of the nonwoven fabric is too low, a large amount of voids may remain in the prepreg, and fine voids may be generated in the laminate. If the density of the nonwoven fabric is too high, the impregnation property of the thermosetting resin varnish is inferior. Therefore, the density of the nonwoven fabric is preferably about 0.3 to 1.0 g / cm 3 .

不織布の厚さの調整は熱カレンダー処理が好適である。熱カレンダー処理時の熱ロール温度は250℃以上が好ましく、より好ましくは280℃以上である。このような熱履歴を与えておくことで、熱プレス時の不織布の変形が少なくなり、均一構造が保持されるからである。熱カレンダー処理時のロール間の線圧は、幅方向での厚みの均一性を考慮して通常500N/cm以上で処理される。   Thermal calendering is suitable for adjusting the thickness of the nonwoven fabric. The heat roll temperature during the heat calender treatment is preferably 250 ° C. or higher, more preferably 280 ° C. or higher. By providing such a heat history, deformation of the nonwoven fabric during hot pressing is reduced, and a uniform structure is maintained. In consideration of the uniformity of thickness in the width direction, the linear pressure between the rolls during the heat calendering treatment is usually 500 N / cm or more.

この不織布に熱硬化性樹脂を含浸し、加熱乾燥してプリプレグを得る。熱硬化性樹脂は一般に当業界で使用される熱硬化性樹脂が使用できる。例えば、エポキシ樹脂、ポリイミド樹脂、BT(ビスマレイミドトリアジン)樹脂、フェノール樹脂、メラミン樹脂、シアネート樹脂、ポリフェニレンエーテル樹脂、フッ素樹脂等を挙げることができ、1種或いは2種以上を組み合せて使用できる。樹脂中には難燃剤、カップリング剤等の添加剤や、充填材等を配合しても良い。硬化剤や硬化促進剤を添加することももちろん可能である。   The nonwoven fabric is impregnated with a thermosetting resin and dried by heating to obtain a prepreg. As the thermosetting resin, a thermosetting resin generally used in the art can be used. For example, an epoxy resin, a polyimide resin, a BT (bismaleimide triazine) resin, a phenol resin, a melamine resin, a cyanate resin, a polyphenylene ether resin, a fluorine resin, and the like can be used, and one kind or a combination of two or more kinds can be used. You may mix | blend an additive, such as a flame retardant and a coupling agent, a filler, etc. in resin. It is of course possible to add a curing agent or a curing accelerator.

不織布に熱硬化性樹脂ワニスを含浸する方法も特に限定せず、キスコート、ディッピング等の公知の方法が広く採用できる。熱硬化性樹脂ワニスを含浸後に加熱乾燥して樹脂を半硬化状態としプリプレグを得るが、加熱乾燥方法も特に限定せず、熱風や赤外線等の公知の方法が採用できる。乾燥後のプリプレグ中の樹脂比率は30〜80質量%が好ましい。特にビルドアップ層に使用する場合、回路穴埋め性を考慮して樹脂比率を高めに設定すると良い。   The method of impregnating the non-woven fabric with the thermosetting resin varnish is not particularly limited, and known methods such as kiss coating and dipping can be widely employed. Although impregnating the thermosetting resin varnish and drying by heating to make the resin semi-cured to obtain a prepreg, the heating and drying method is not particularly limited, and known methods such as hot air and infrared rays can be employed. The resin ratio in the prepreg after drying is preferably 30 to 80% by mass. In particular, when used for a build-up layer, the resin ratio is preferably set high in consideration of circuit hole filling.

このようにして得られたプリプレグを加熱加圧成形することで薄型の絶縁層を得る。加熱加圧成形の方法は特に限定せず、通常は枚葉による熱プレスが採用される。プレス温度やプレス時間、面圧も特に限定せず、熱硬化性樹脂の種類に応じて適宜決定される。   A thin insulating layer is obtained by heat-pressing the prepreg thus obtained. The method of heat and pressure molding is not particularly limited, and usually a hot press using a single wafer is employed. The pressing temperature, pressing time, and surface pressure are not particularly limited, and are appropriately determined according to the type of thermosetting resin.

なお、本発明では複数の絶縁層形成材料を積層した場合、例えその間に内層回路が設けられていなくても別の絶縁層として取り扱う。例えば、PBZプリプレグ2枚の両側にアラミドプリプレグを一枚づつ、さらにその両側に銅箔を1枚づつ配して一体化した積層板は、絶縁層4層の両面銅張り積層板である。これは樹脂付き銅箔や樹脂塗工により形成された絶縁層にも適用される。   In the present invention, when a plurality of insulating layer forming materials are laminated, they are handled as different insulating layers even if no inner layer circuit is provided therebetween. For example, a laminated board in which one aramid prepreg is arranged on both sides of two PBZ prepregs and one copper foil is arranged on both sides and integrated is a double-sided copper-clad laminated board having four insulating layers. This also applies to an insulating layer formed by resin-coated copper foil or resin coating.

本発明ではPBZ繊維不織布を基材としたプリプレグ(PBZプリプレグ)を最外層に使用しない以外は特に層構成は限定しないが、最外層にはアラミドプリプレグを用いることが好ましい。例えば、コア基板(一般的にはガラスエポキシ両面板や多層板)の両面にPBZプリプレグを配し、加熱加圧してビルドアップ層を形成後、内層用回路および層間接続回路を形成する。これを順次繰り返した後に、最外層にのみアラミドプリプレグを使用する方法が挙げられる。コア基板がPBZプリプレグで形成されていてもよい。また、複数の両面板の間にPBZプリプレグを挟み、加熱加圧して多層板とする方法が挙げられる。この場合も、外側にくる両面板がアラミドプリプレグで形成されていることが好ましい。   In the present invention, the layer configuration is not particularly limited except that a prepreg based on a PBZ fiber nonwoven fabric (PBZ prepreg) is not used for the outermost layer, but an aramid prepreg is preferably used for the outermost layer. For example, a PBZ prepreg is disposed on both surfaces of a core substrate (generally, a glass epoxy double-sided board or a multilayer board), heated and pressed to form a buildup layer, and then an inner layer circuit and an interlayer connection circuit are formed. A method of using an aramid prepreg only in the outermost layer after repeating this in sequence. The core substrate may be formed of a PBZ prepreg. Moreover, the method of pinching a PBZ prepreg between several double-sided boards, and heating and pressurizing to make a multilayer board is mentioned. Also in this case, it is preferable that the double-sided plate on the outside is formed of an aramid prepreg.

回路形成方法も特に限定せず、サブトラクティブ法、アディティブ法、セミアディティブ法等の公知の方法が広く採用できる。層間の接続方法も特に限定せず、ドリル加工、レーザー加工等の公知の手法で形成した孔にメッキ、導電ペースト充填等の公知の手法で導体を形成する方法、プリプレグにレーザー孔をあけて導電ペーストを充填し、その後に熱圧成形する方法(例えばALIVH/松下電器産業)、金属または金属ペーストバンプ付きの金属箔を配してプリプレグを突き破る方法(例えばB2it/ディー・ティー・サーキットテクノロジー)、等の公知の方法が広く採用できる。   The circuit formation method is not particularly limited, and a known method such as a subtractive method, an additive method, or a semi-additive method can be widely adopted. The connection method between the layers is not particularly limited, and a method of forming a conductor by a known method such as plating or filling with a conductive paste in a hole formed by a known method such as drilling or laser processing, a laser hole in a prepreg is made conductive. A method of filling a paste and then hot pressing (for example, ALIVH / Matsushita Electric Industrial Co., Ltd.), a method of placing a metal or metal foil with a metal paste bump and breaking through a prepreg (for example, B2it / DT circuit technology), Such publicly known methods can be widely adopted.

以下に実施例を挙げて本発明をより具体的に説明するが、勿論本発明はこれらによって限定されるものではない。   EXAMPLES The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to these examples.

(不織布およびプリプレグの作製)
PBZ繊維として繊維長3mmのPBO繊維(ZYLON−HM/東洋紡製:PBZ繊維A)を水に分散して固形分濃度0.3%のスラリーを調整した。次に、平均粒径3mmのアルミナビーズを充填率20%(最密充填量に対して)となるように充填した容量1400mlの横形サンドミル(商品名;DYNO−MILL TYPE KDL−PILOT/シンマルエンタープライゼス製)に、該スラリーを流量350ml/min(滞留時間2.6min)の条件で流送し、回転数2400rpm(周速12.6m/sec)で処理してPBZ繊維Bを得た。PBZ繊維Bは部分的に扁平化された領域を有する部分扁平化繊維であった。さらに、アルミナビーズの充填率を40%(最密充填量に対して)となるように充填した以外は同様に処理してPBZ繊維Cを得た。PBZ繊維Cは繊維の全領域が扁平化された全扁平化繊維であった。
PBZ繊維Aを乾燥後の米坪が16g/mとなるように湿式法でシート化した。このシートに熱硬化性エポキシ樹脂エマルジョンを乾燥後の不織布中での含有率が20%となるようにスプレー法で添加し、加熱乾燥して米坪20g/mの不織布を得た。次いで、ロール温度200℃の熱カレンダーにより厚さ35μmとなるように処理した。この不織布に、エポキシ樹脂ワニスを乾燥後の米坪が55g/mとなるように含浸し、140℃オーブン中で5分間加熱乾燥してプリプレグ(PBZプリプレグA)を得た。
同様にしてPBZ繊維B、PBZ繊維Cを使用したPBZプリプレグB、PBZプリプレグC、パラ系アラミド繊維A(ケブラー/東レ・デュポン製/繊維長3mm)を使用したアラミドプリプレグA、パラ系アラミド繊維B(テクノーラ/帝人製/繊維長3mm)を使用したアラミドプリプレグBを得た。
(Production of non-woven fabric and prepreg)
A PBO fiber (ZYLON-HM / manufactured by Toyobo: PBZ fiber A) having a fiber length of 3 mm was dispersed in water as a PBZ fiber to prepare a slurry having a solid content concentration of 0.3%. Next, a horizontal sand mill (trade name: DYNO-MILL TYPE KDL-PILOT / Shinmaru Enterprise) filled with alumina beads having an average particle diameter of 3 mm so as to have a filling rate of 20% (relative to the closest packing amount). The slurry was fed under the conditions of a flow rate of 350 ml / min (residence time 2.6 min) and treated at a rotational speed of 2400 rpm (circumferential speed 12.6 m / sec) to obtain PBZ fibers B. The PBZ fiber B was a partially flattened fiber having a partially flattened region. Further, PBZ fibers C were obtained in the same manner except that the filling rate of alumina beads was 40% (relative to the closest packing amount). The PBZ fiber C was an all flattened fiber in which the entire region of the fiber was flattened.
The PBZ fiber A was formed into a sheet by a wet method so that the rice basis weight after drying was 16 g / m 2 . A thermosetting epoxy resin emulsion was added to this sheet by a spray method so that the content in the nonwoven fabric after drying was 20%, followed by drying by heating to obtain a nonwoven fabric having a weight of 20 g / m 2 . Subsequently, it processed so that it might become thickness 35micrometer with the heat | fever calendar with a roll temperature of 200 degreeC. The nonwoven fabric was impregnated with an epoxy resin varnish so that the rice basis weight after drying was 55 g / m 2 and dried by heating in a 140 ° C. oven for 5 minutes to obtain a prepreg (PBZ prepreg A).
Similarly, PBZ prepreg B using PBZ fiber B, PBZ fiber C, PBZ prepreg C, aramid prepreg A using para-aramid fiber A (manufactured by Kevlar / Toray DuPont / fiber length 3 mm), para-aramid fiber B Aramid prepreg B using (Technola / Teijin / Fiber length 3 mm) was obtained.

<実施例1>
PBZプリプレグAを4枚重ねた外側にアラミドプリプレグAを1枚づつ(プリプレグ計6枚)、さらにその外側に厚さ18μmの銅箔を1枚づつ配置し、温度180℃、面圧4MPaの条件で1時間プレスして両面銅張り積層板を得た。
<Example 1>
Four PBZ prepregs A are stacked on the outside with one aramid prepreg A (total of six prepregs), and one 18 μm thick copper foil is placed on the outside, with a temperature of 180 ° C. and a surface pressure of 4 MPa. And pressed for 1 hour to obtain a double-sided copper-clad laminate.

<実施例2>
PBZプリプレグAを全てPBZプリプレグBに置き換えた以外は、実施例1と同様にして両面銅張り積層板を得た。
<Example 2>
A double-sided copper-clad laminate was obtained in the same manner as in Example 1 except that all the PBZ prepreg A was replaced with PBZ prepreg B.

<実施例3>
PBZプリプレグAを全てPBZプリプレグCに置き換えた以外は、実施例1と同様にして両面銅張り積層板を得た。
<Example 3>
A double-sided copper-clad laminate was obtained in the same manner as in Example 1 except that all the PBZ prepreg A was replaced with the PBZ prepreg C.

<実施例4>
アラミドプリプレグAを全てアラミドプリプレグBに置き換えた以外は、実施例3と同様にして両面銅張り積層板を得た。
<Example 4>
A double-sided copper-clad laminate was obtained in the same manner as in Example 3 except that all of the aramid prepreg A was replaced with the aramid prepreg B.

<比較例1>
PBZプリプレグA、アラミドプリプレグAを全てPBZプリプレグCに置き換えた以外は、実施例1と同様にして両面銅張り積層板を得た。
<Comparative Example 1>
A double-sided copper-clad laminate was obtained in the same manner as in Example 1 except that PBZ prepreg A and aramid prepreg A were all replaced with PBZ prepreg C.

<比較例2>
PBZプリプレグBを全てアラミドプリプレグBに置き換えた以外は、比較例1と同様にして両面銅張り積層板を得た。
<Comparative example 2>
A double-sided copper-clad laminate was obtained in the same manner as in Comparative Example 1 except that all PBZ prepreg B was replaced with aramid prepreg B.

<比較例3>
PBZプリプレグAをアラミドプリプレグBに、アラミドプリプレグAをPBZプリプレグCにそれぞれ置き換えた以外は、実施例1と同様にして両面銅張り積層板を得た。
<Comparative Example 3>
A double-sided copper-clad laminate was obtained in the same manner as in Example 1 except that PBZ prepreg A was replaced with aramid prepreg B and aramid prepreg A was replaced with PBZ prepreg C.

(測定・評価方法)
以下の評価方法により上記実施例、比較例の積層板を評価した結果を表1に記載する。
<積層板の熱膨張係数>
熱膨張係数の測定はTMAを用いた。両面銅張り積層板の銅箔を全面エッチング除去後、幅5mm、長さ25mmの寸法に切り出し、昇降温速度5℃/min、引張り荷重10g、スパン20mmの条件で引張り荷重法により熱膨張率を測定した。測定は窒素中で行い、20℃→180℃→20℃→100℃の繰り返し測定における2度目の昇温時の30℃〜80℃における平均熱膨張率を求めた。なお、サンプルの切り出しは、長さ方向が不織布の熱カレンダー処理時の通紙方向およびその直交方向になるように2通り行い、両者の平均値を算出した。
(Measurement and evaluation method)
Table 1 shows the results of evaluating the laminates of the above Examples and Comparative Examples by the following evaluation methods.
<Coefficient of thermal expansion of laminate>
TMA was used for measurement of the thermal expansion coefficient. After removing the copper foil of the double-sided copper-clad laminate by etching, cut it into 5mm width and 25mm length, and calculate the thermal expansion coefficient by the tensile load method under the conditions of heating / cooling speed 5 ° C / min, tensile load 10g, span 20mm. It was measured. The measurement was performed in nitrogen, and the average coefficient of thermal expansion at 30 ° C. to 80 ° C. during the second temperature increase in the repeated measurement of 20 ° C. → 180 ° C. → 20 ° C. → 100 ° C. was obtained. In addition, the sample was cut out in two ways so that the length direction was the sheet passing direction during thermal calendering of the nonwoven fabric and the direction perpendicular thereto, and the average value of both was calculated.

<積層板の半田耐熱性>
半田耐熱性の評価はJIS C6481に準拠し、所定時間煮沸後の半田耐熱性を評価した。ただし、半田浴の温度は260℃とし、30秒間浸漬後の外観を目視観察し、下記の基準で評価した。
◎:膨れ、剥がれ等の外観異常が全くない。
○:膨れ、剥がれ等の外観異常が僅かにある。
×:膨れ、剥がれ等の外観異常がある。
<Solder heat resistance of laminates>
The solder heat resistance was evaluated in accordance with JIS C6481, and the solder heat resistance after boiling for a predetermined time was evaluated. However, the temperature of the solder bath was 260 ° C., and the appearance after immersion for 30 seconds was visually observed and evaluated according to the following criteria.
A: There is no abnormality in appearance such as swelling and peeling.
○: There are slight appearance abnormalities such as swelling and peeling.
X: Appearance abnormality such as swelling and peeling.

<積層板の機械加工性>
両面銅張り積層板の銅箔を全面エッチング後、ダイヤモンドカッターで切断して断面に生じたケバの度合いを目視観察し、以下の基準で判定した。
◎:断面にケバがほとんどない。
○:断面にケバが僅かにある。
×:断面にケバが多い。
<Machinability of laminated sheet>
After etching the entire surface of the copper foil of the double-sided copper-clad laminate, it was cut with a diamond cutter and visually observed for the degree of marking on the cross section, and judged according to the following criteria.
A: There is almost no flare in the cross section.
○: Slightly flaked on the cross section.
X: There are many burns in the cross section.

Figure 2006224636
Figure 2006224636

本発明の積層板は熱膨張係数が小さく、半田耐熱性も良好であり、かつ機械加工適性も備えたものであり、プリント配線板の薄物化という点で産業上有用である。
The laminate of the present invention has a small coefficient of thermal expansion, good solder heat resistance, and suitability for machining, and is industrially useful in terms of thinned printed wiring boards.

Claims (5)

三層以上の絶縁層から構成される積層板であって、最外層以外の少なくとも一層に、ポリベンザゾール繊維不織布を基材としたプリプレグを用いた積層板。 A laminate comprising three or more insulating layers, wherein a prepreg based on a polybenzazole fiber nonwoven fabric is used for at least one layer other than the outermost layer. ポリベンザゾール繊維不織布が、あらかじめ部分扁平化または全扁平化したポリベンザゾール繊維をバインダー成分で結着した湿式不織布であることを特徴とする請求項1記載の積層板。 The laminate according to claim 1, wherein the polybenzazole fiber nonwoven fabric is a wet nonwoven fabric obtained by binding a partially flattened or fully flattened polybenzazole fiber with a binder component. 最外層にパラ系アラミド繊維不織布を基材としたプリプレグを使用することを特徴とする請求項1または2記載の積層板。 The laminate according to claim 1 or 2, wherein a prepreg based on a para-aramid fiber nonwoven fabric is used for the outermost layer. パラ系アラミド繊維不織布がポリ−p−フェニレンジフェニルエーテルテレフタラミド繊維をバインダー成分で結着した湿式不織布であることを特徴とする請求項3記載の積層板。 The laminate according to claim 3, wherein the para-aramid fiber nonwoven fabric is a wet nonwoven fabric obtained by binding poly-p-phenylenediphenyl ether terephthalamide fibers with a binder component. コア基板の両面にプリプレグを積層してビルドアップ層を形成した積層板であって、最外層以外のビルドアップ層にはポリベンザゾール繊維不織布を基材としたプリプレグを使用し、最外層にはパラ系アラミド繊維不織布を基材としたプリプレグを使用することを特徴とする積層板。
It is a laminated board in which a prepreg is laminated on both sides of the core substrate to form a buildup layer, and a prepreg based on a polybenzazole fiber nonwoven fabric is used for the buildup layer other than the outermost layer, and the outermost layer is used for the outermost layer. A laminate comprising a prepreg based on a para-aramid fiber nonwoven fabric.
JP2005044739A 2005-02-21 2005-02-21 Laminated plate Pending JP2006224636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005044739A JP2006224636A (en) 2005-02-21 2005-02-21 Laminated plate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005044739A JP2006224636A (en) 2005-02-21 2005-02-21 Laminated plate

Publications (1)

Publication Number Publication Date
JP2006224636A true JP2006224636A (en) 2006-08-31

Family

ID=36986382

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005044739A Pending JP2006224636A (en) 2005-02-21 2005-02-21 Laminated plate

Country Status (1)

Country Link
JP (1) JP2006224636A (en)

Similar Documents

Publication Publication Date Title
KR100722626B1 (en) Laminate for printed circuit board and preparing method thereof
JP3631385B2 (en) Laminate substrate and method for producing the same
JP2009246333A (en) Insulating sheet and manufacturing method therefor, and printed circuit board using the sheet, and manufacturing method for the printed circuit board
CA2455078C (en) Solid sheet material especially useful for circuit boards
JP2011504523A (en) Prepreg with uniform dielectric constant, and metal foil laminate and printed wiring board using this prepreg
WO2014034112A1 (en) Exfoliable copper foil attached substrate and circuit board producing method
WO2003047323A1 (en) Method for preparing copper foil with insulating layer and copper foil with insulating layer prepared by the method, and printed wiring board using the copper foil with insulating layer
JP6836313B2 (en) Laminated board for insulation
JPWO2008099596A1 (en) Interlayer insulating film with carrier material and multilayer printed circuit board using the same
JP2006057074A (en) Prepreg and laminated sheet, and printed wiring board
JP2006224636A (en) Laminated plate
JP2006315391A (en) Laminated plate and printed circuit board using the same
US20040132372A1 (en) Solid sheet material especially useful for circuit boards
JP3806200B2 (en) Prepreg and laminate
JP2000334871A (en) Base material for laminated sheet, prepreg and production thereof
JPH11222798A (en) Substrate for printed circuit board, laminated sheet and their production
JP4517280B2 (en) Prepreg, wiring board material and manufacturing method thereof
JP2003191377A (en) Fibrous base material with copper foil, prepreg with copper foil and method of manufacture thereof
JP3263173B2 (en) Method for producing resin laminate and method for producing metal-clad laminate
JP4778833B2 (en) Laminate substrate and prepreg, and laminate
JP2002319748A (en) Base for printed-wiring board and prepreg and printed- wiring board using the prepreg
JP2001244588A (en) Composite sheet and laminated board using it
JP2002192522A (en) Prepreg, laminated sheet and multilayered wiring board
JP2004284192A (en) Insulating sheet with metal foil and its manufacturing method
JP2003324282A (en) Bonding sheet for laminated layer plate including internal layer circuit, laminated layer plate including internal layer circuit formed using the bonding sheet and method of manufacturing the bonding sheet