JP2006224599A - Liquid jetting recording head and liquid jetting recording device - Google Patents

Liquid jetting recording head and liquid jetting recording device Download PDF

Info

Publication number
JP2006224599A
JP2006224599A JP2005043931A JP2005043931A JP2006224599A JP 2006224599 A JP2006224599 A JP 2006224599A JP 2005043931 A JP2005043931 A JP 2005043931A JP 2005043931 A JP2005043931 A JP 2005043931A JP 2006224599 A JP2006224599 A JP 2006224599A
Authority
JP
Japan
Prior art keywords
liquid
substrate
flow path
recording head
jet recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005043931A
Other languages
Japanese (ja)
Inventor
Koichi Kitagami
浩一 北上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005043931A priority Critical patent/JP2006224599A/en
Publication of JP2006224599A publication Critical patent/JP2006224599A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Particle Formation And Scattering Control In Inkjet Printers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inkjet printer which can prevent printing omission during printing from occurring, caused by sudden non-delivering of ink triggered by presence of residual bubbles. <P>SOLUTION: A liquid jetting recording head or an inkjet head of the inkjet printer comprises delivering ports from which liquid is delivered, a delivering energy generating section for applying energy for delivering the liquid from the delivering ports, a substrate on which the delivering energy generating section is arranged, a second liquid storing section arranged adjacently to the substrate and containing no liquid absorber etc. therein, and a liquid storing section for mainly storing therein the liquid. Herein, the inkjet head has projections formed on a surface of a flow channel in the substrate. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、被記録媒体上に高品位の画像を記録することができる液体噴射記録ヘッドおよび液体噴射記録装置に関する。   The present invention relates to a liquid jet recording head and a liquid jet recording apparatus capable of recording a high-quality image on a recording medium.

本発明は、紙や布、革、不織布、OHP用紙等の被記録媒体に記録する機器のすべてに適用可能である。具体的な適用機器としては、プリンタ、複写機、ファクシミリ等の事務機器等を挙げることができる。   The present invention is applicable to all devices that record on a recording medium such as paper, cloth, leather, nonwoven fabric, and OHP paper. Specific examples of applicable equipment include office equipment such as printers, copiers, and facsimiles.

従来より液体噴射記録装置は、低騒音、低ランニングコスト、装置の小型化およびカラー化が容易である等の理由から、プリンタやファクシミリ等の記録装置として広く利用されている。   Conventionally, liquid jet recording apparatuses have been widely used as recording apparatuses for printers, facsimiles, and the like because of low noise, low running cost, and easy size reduction and colorization of the apparatus.

現在、インクジェットプリンターは、より高品位な画像を記録するためにノズルの高解像度化、インク液滴の小液滴化が進んでいる。また印刷の高速化のために駆動周波数の高速化、ノズルの高密度化、ノズル数の増加が図られている。このようなインクジェットプリンターとしては、例えば特開平11−198394号に記載されような構成が知られている。
特開平11−198394号公報
Currently, in order to record higher-quality images, inkjet printers are becoming higher in nozzle resolution and smaller in ink droplets. In order to increase the printing speed, the drive frequency is increased, the nozzle density is increased, and the number of nozzles is increased. As such an ink jet printer, for example, a configuration as described in JP-A-11-198394 is known.
JP-A-11-198394

インクジェットプリンターは、近年においては写真画質をめざして更なる改良が続けられているが、利用するインク各色ともほぼベタ塗り印刷に近い形態で液体噴射記録ヘッドを稼働させるのが写真画質印刷の特徴である。これに加え印刷速度の更なる向上も図られている。本発明者は、液体噴射記録ヘッドを写真画質対応および高速化対応とするために検討した中において、以下のような課題を認識した。   Inkjet printers have continued to be improved in recent years with the aim of improving photographic image quality.However, a feature of photographic image quality printing is that the liquid jet recording head is operated in a form that is almost similar to solid printing for each ink color used. is there. In addition to this, the printing speed is further improved. The present inventor has recognized the following problems while studying the liquid jet recording head in order to cope with photographic image quality and high speed.

すなわち、印刷速度の向上を図るために単位時間当たりに吐出する液滴数を増加させた結果、インク中の残留気体が原因である不吐による印刷途中での印刷ぬけが発生するという課題が出てきた。   In other words, as a result of increasing the number of droplets ejected per unit time in order to improve the printing speed, there arises a problem that printing omission occurs during printing due to undischarge due to residual gas in the ink. I came.

残留気体の発生は、液体噴射動作から生じる圧力変動による液体噴射記録ヘッド内のインクからの気体の放出が原因の1つであるため、印刷速度の向上による単位時間当たりの噴射動作の増加は残留気体発生を増長する。またこの残留気体の放出は温度上昇によっても誘発される。温度が上昇するにつれて水中の気体溶解度が急速に減少することから明らかである。   Since the generation of residual gas is one of the causes of the release of gas from the ink in the liquid jet recording head due to pressure fluctuations resulting from the liquid jet operation, the increase in jetting operation per unit time due to the improvement in printing speed remains. Increase gas evolution. This release of residual gas is also triggered by a temperature rise. This is evident from the rapid decrease in water solubility in water as the temperature increases.

液体噴射記録ヘッドが写真画質印刷や大版印刷など噴射動作率の高い環境で使用される場合、残留気体から生じる不吐問題は更に厳しくなる。   When the liquid jet recording head is used in an environment with a high jetting operation rate such as photographic image printing or large plate printing, the problem of undischarge caused by residual gas becomes more severe.

図5に従来例の液体噴射記録ヘッドの断面図(図5(b))および発熱素子配設位置での平面図(図5(a))を示す。液体噴射記録ヘッドを構成する基板430は、コネクト部材46により液体貯蔵部48と接続する。接続部分には一般にフィルタ47等が設置されている。インクは液体貯蔵部48からフィルタ部47、液体第2貯蔵部45(コネクト部材46により形成)を通して基板部の流路44へ導かれる。その後各吐出口41へ通じているノズル流路43を介して吐出口41まで充填される。   FIG. 5 shows a cross-sectional view (FIG. 5 (b)) of a conventional liquid jet recording head and a plan view (FIG. 5 (a)) at a position where a heating element is provided. The substrate 430 constituting the liquid jet recording head is connected to the liquid storage unit 48 by the connecting member 46. A filter 47 or the like is generally installed at the connection portion. The ink is guided from the liquid storage section 48 to the flow path 44 of the substrate section through the filter section 47 and the liquid second storage section 45 (formed by the connecting member 46). Thereafter, the nozzles 43 are filled up to the discharge ports 41 through the nozzle channels 43 communicating with the discharge ports 41.

残留気体は、小さな気泡として存在したりまたそれらが合体してさらに大きな気泡11として存在したりする。気泡の形状としては球形であったり空間の形状に即した形であったりする(図5(b))。いずれにしても残留気体は液流路屈曲部や液流路狭窄部に蓄積することが種々の実機観察により判明している。残留気体が液流路屈曲部や液流路狭窄部に大量に蓄積した場合、残留気体は液体貯蔵部48から供給されるインクの流れを遮断してしまう。その結果吐出口41へのインクの供給を断ち、インクが吐出されずに突如、不吐状態になる。   Residual gas may exist as small bubbles or may be combined to exist as larger bubbles 11. The shape of the bubble may be a spherical shape or a shape that conforms to the shape of the space (FIG. 5B). In any case, it has been clarified by various actual machine observations that the residual gas accumulates in the liquid channel bend and the liquid channel constriction. When a large amount of residual gas accumulates in the liquid flow path bending portion or the liquid flow path narrowing portion, the residual gas blocks the flow of ink supplied from the liquid storage section 48. As a result, the supply of ink to the discharge port 41 is cut off, and the ink is suddenly discharged without being discharged.

とくにこのような原因に基づく不吐は記録装置の稼働中のいつ発生するか予測できず、印刷中に発生するわけであるからこの課題は記録装置として致命的である。またこのような不吐の発生を嫌って頻繁に回復動作(残留気体の吸引除去)を実行すれば多くのインクを無駄にする。   In particular, it is impossible to predict when the discharge failure due to such a cause will occur during operation of the recording apparatus, and this problem will be fatal as the recording apparatus because it occurs during printing. In addition, if the recovery operation (removal of residual gas by suction) is frequently performed in consideration of such undischarge, a lot of ink is wasted.

本発明の目的は、残留気体が原因である不吐による印刷途中での印刷ぬけを発生しない液体噴射記録ヘッドを提供することであり、さらにこれを搭載する液体噴射記録装置を提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a liquid jet recording head that does not cause printing failure during printing due to undischarge due to residual gas, and further to provide a liquid jet recording apparatus equipped with the liquid jet recording head. .

そこで本発明による液体噴射記録ヘッドは、液体が吐出する吐出口と、該吐出口から前記液体を吐出させるためのエネルギーを加える吐出エネルギー発生部と、該吐出エネルギー発生部を設けた基板と、該基板に隣接してなり液体吸収体等を内蔵しない液体第2貯蔵部と、前記液体を主に貯蔵する液体貯蔵部とを備え、前記基板と前記液体第2貯蔵部との接続位置での前記液体第2貯蔵部の流路幅Bと前記基板部の流路幅Wとの関係にて、
W<B
を満たす液体噴射記録ヘッドにおいて、
前記基板部の流路面に突起部を設けたことを特徴とする。
Therefore, a liquid jet recording head according to the present invention includes a discharge port for discharging a liquid, a discharge energy generation unit for applying energy for discharging the liquid from the discharge port, a substrate provided with the discharge energy generation unit, A liquid second storage part that is adjacent to the substrate and does not contain a liquid absorber and the like; and a liquid storage part that mainly stores the liquid, and the connection position between the substrate and the liquid second storage part In the relationship between the channel width B of the liquid second storage unit and the channel width W of the substrate unit,
W <B
In a liquid jet recording head satisfying
A protrusion is provided on the flow path surface of the substrate portion.

また他の発明による液体噴射記録ヘッドは、液体が吐出する吐出口と、該吐出口から前記液体を吐出させるためのエネルギーを加える吐出エネルギー発生部と、該吐出エネルギー発生部を設けた基板と、該基板に隣接してなり液体吸収体等を内蔵しない液体第2貯蔵部と、前記液体を主に貯蔵する液体貯蔵部とを備え、前記基板と前記液体第2貯蔵部との接続位置での前記液体第2貯蔵部の流路幅Bと前記基板部の流路幅Wとの関係にて、
W<B
を満たす液体噴射記録ヘッドにおいて、
前記基板部の流路面に仕切り部を設けたことを特徴とする。
According to another aspect of the invention, a liquid jet recording head includes a discharge port from which a liquid is discharged, a discharge energy generation unit that applies energy for discharging the liquid from the discharge port, a substrate provided with the discharge energy generation unit, A liquid second storage section that is adjacent to the substrate and does not contain a liquid absorber or the like; and a liquid storage section that mainly stores the liquid, at a connection position between the substrate and the liquid second storage section. In the relationship between the channel width B of the liquid second storage unit and the channel width W of the substrate unit,
W <B
In a liquid jet recording head satisfying
A partition portion is provided on the flow path surface of the substrate portion.

上述のように本発明の液体噴射記録ヘッドおよびその装置は、基板部の流路部分に仕切りまたは突起を導入したので、残留気泡は基板部の流路部にて長手方向へ成長することが抑制されて液体第2貯蔵部側へと急速に拡大する。その結果基板部の流路部分の残留気体の体積に比べて液体第2貯蔵部へ突き出した部分の残留気泡の体積が大きくなり、気泡は領域的に広い液体第2貯蔵部内で球形になろうとし、基板部の流路部分に挟まれた部分の残留気体をも引きずり出して液体第2貯蔵部内で球形になる。この結果吐出口へのインクの供給経路が広く確保されるために、残留気泡が原因である突然の不吐による印刷途中の印刷ぬけを確実に回避できる。   As described above, the liquid jet recording head and the apparatus of the present invention introduce partitions or protrusions into the flow path portion of the substrate portion, so that residual bubbles are prevented from growing in the longitudinal direction in the flow path portion of the substrate portion. And rapidly expands toward the liquid second reservoir. As a result, the volume of residual bubbles in the portion protruding to the liquid second storage portion becomes larger than the volume of residual gas in the flow path portion of the substrate portion, and the bubbles try to be spherical in the region-wide liquid second storage portion. And the residual gas of the part pinched | interposed into the flow-path part of a board | substrate part is also dragged out, and it becomes a spherical shape in a liquid 2nd storage part. As a result, a wide ink supply path to the ejection port is ensured, so that it is possible to reliably avoid printing skipping during printing due to sudden non-discharge due to residual bubbles.

図7は、本発明に適用可能な液体噴射記録装置の斜視図である。記録装置100の給紙位置に挿入された被記録媒体106は、送りローラ109によって記録ヘッドユニット103の記録可能領域へ搬送される。その記録可能領域における被記録媒体106の下部位置には、プラテン108が設けられている。キャリッジ101は、2つのガイド軸104,105によって、それらの延在方向(主走査方向)に沿って移動可能にガイドされており、記録領域を往復走査する。キャリッジ101の走査方向が主走査方向であり、被記録媒体106の搬送方向が副走査方向となる。キャリッジ101には、複数色のインク液滴を吐出するため記録ヘッドと、それぞれの記録ヘッドにインクを供給するための液体貯蔵部とを含む記録ヘッドユニット103が搭載されている。この例の液体噴射記録装置における複数色のインクは、ブラック(Bk)、シアン(C)、マゼンタ(M)、イエロー(Y)の4色である。各色の位置は順不同である。   FIG. 7 is a perspective view of a liquid jet recording apparatus applicable to the present invention. The recording medium 106 inserted into the paper feeding position of the recording apparatus 100 is conveyed to a recordable area of the recording head unit 103 by a feed roller 109. A platen 108 is provided at a lower position of the recording medium 106 in the recordable area. The carriage 101 is guided by two guide shafts 104 and 105 so as to be movable along their extending direction (main scanning direction), and reciprocally scans the recording area. The scanning direction of the carriage 101 is the main scanning direction, and the conveyance direction of the recording medium 106 is the sub-scanning direction. Mounted on the carriage 101 is a recording head unit 103 including a recording head for ejecting ink droplets of a plurality of colors and a liquid storage unit for supplying ink to each recording head. The inks of a plurality of colors in the liquid jet recording apparatus of this example are four colors of black (Bk), cyan (C), magenta (M), and yellow (Y). The position of each color is in no particular order.

キャリッジ101が移動可能な領域の左端の下部には、回復系ユニット110が配備されており、非記録動作時に記録ヘッドの吐出口部をキャッピングしたりする。この左端位置を記録ヘッドのホームポジションという。107はスイッチ部と表示素子部であり、スイッチ部は記録装置の電源のオン/オフや各種記録モードの設定時等に使用され、表示素子部は記録装置の状態を表示する役割をする。   A recovery system unit 110 is arranged at the lower left end of the area where the carriage 101 can move, and capping the ejection port of the recording head during non-recording operations. This left end position is called the home position of the recording head. Reference numeral 107 denotes a switch unit and a display element unit. The switch unit is used when turning on / off the power of the recording apparatus or setting various recording modes. The display element unit plays a role of displaying the state of the recording apparatus.

図8は、記録ヘッドユニット103の斜視図である。本例の場合、ブラック、シアン、マゼンタ、イエローの各色インク(Bk,C,M,Y)の液体貯蔵部が全て独立に交換可能な構成となっている。キャリッジ101には、Bkのインク液滴、Cのインク液滴、Mのインク液滴、Yのインク液滴を吐出する記録ヘッド群102と、Bk用液体貯蔵部20K、C用液体貯蔵部20C、M用液体貯蔵部20M、Y用液体貯蔵部20Yが搭載される。各液体貯蔵部は記録ヘッド群102と接続され、記録ヘッド群102の吐出口に連通するノズル流路内にインクを供給する。この例以外にも例えば、各色用の液体貯蔵部を任意の組み合わせで一体構造としてもよい。   FIG. 8 is a perspective view of the recording head unit 103. In the case of this example, the liquid storage portions of the respective color inks (Bk, C, M, Y) of black, cyan, magenta, and yellow are configured to be independently replaceable. The carriage 101 includes a recording head group 102 that ejects Bk ink droplets, C ink droplets, M ink droplets, and Y ink droplets, a Bk liquid storage unit 20K, and a C liquid storage unit 20C. The liquid storage unit 20M for M and the liquid storage unit 20Y for Y are mounted. Each liquid storage unit is connected to the recording head group 102 and supplies ink into a nozzle flow path communicating with the ejection port of the recording head group 102. In addition to this example, for example, the liquid storage portions for the respective colors may be combined into an integral structure in any combination.

図3(a)は記録ヘッド102の平面図、図3(b)は記録ヘッド102内の発熱体位置の断面図である(図3(a)中の一点鎖線BB’位置)。   FIG. 3A is a plan view of the recording head 102, and FIG. 3B is a cross-sectional view of the position of the heating element in the recording head 102 (the position indicated by the one-dot chain line BB 'in FIG. 3A).

この例の液体噴射記録装置は、記録ヘッド102の各吐出口1に対応して電気熱変換体としての発熱体2を配置し、その発熱体2に記録情報に対応する駆動信号を印加することによって吐出口1からインク液滴を吐出させる記録方式を採用している。吐出口1のそれぞれに対応する発熱体2は、それぞれ独立に発熱可能な構成となっている。   In the liquid jet recording apparatus of this example, a heating element 2 as an electrothermal converter is disposed corresponding to each ejection port 1 of the recording head 102, and a driving signal corresponding to recording information is applied to the heating element 2. A recording method in which ink droplets are ejected from the ejection port 1 is adopted. The heating element 2 corresponding to each of the discharge ports 1 is configured to be able to generate heat independently.

発熱体2の発熱により急速に加熱されたノズル内のインクは膜沸騰により気泡を発生し、この生成気泡の体積変化により図4に示すようにインク液滴111が被記録媒体106に向かって吐出され、被記録媒体106上に文字や画像を形成する。吐出口1の各々には吐出口1に連通するインクのノズル流路3が設けられており、このノズル流路3の後方にはこれらノズル流路3にインクを供給するために基板部の流路4が形成されている(図4参照)。吐出口1の各々に対応するノズル流路3には前述したようにこれら吐出口1からインク液滴を吐出するために利用される熱エネルギーを発生する電気熱変換体としての発熱体2や、これに電力を供給するための電極配線(不図示)が設けられている。これらの発熱体2や電極配線はシリコン等からなる基板30表面に成膜技術によって形成される。発熱体2の上にはインクと発熱体2とが直接接触しないように保護膜(不図示)が形成されている。さらにこの基板30上に樹脂やガラス材よりなる隔壁10を積層することによって上記吐出口1、ノズル流路3、基板部の流路4等が構成される。   The ink in the nozzle rapidly heated by the heat generated by the heating element 2 generates bubbles due to film boiling, and the ink droplet 111 is ejected toward the recording medium 106 as shown in FIG. Then, characters and images are formed on the recording medium 106. Each of the ejection ports 1 is provided with an ink nozzle channel 3 communicating with the ejection port 1, and behind the nozzle channel 3, a flow of a substrate portion is supplied to supply the ink to the nozzle channel 3. A path 4 is formed (see FIG. 4). As described above, the nozzle flow path 3 corresponding to each of the discharge ports 1 has a heating element 2 as an electrothermal converter that generates thermal energy used to discharge ink droplets from these discharge ports 1, and Electrode wiring (not shown) for supplying electric power to this is provided. The heating element 2 and the electrode wiring are formed on the surface of the substrate 30 made of silicon or the like by a film forming technique. A protective film (not shown) is formed on the heating element 2 so that the ink and the heating element 2 are not in direct contact with each other. Further, the discharge port 1, the nozzle flow path 3, the flow path 4 of the substrate section, and the like are configured by laminating a partition wall 10 made of resin or glass material on the substrate 30.

図6に記録ヘッドユニットを示す。このユニットの構成は、Bkチップ2302と、Cチップ2303と、Mチップ2304と、Yチップ2305をフレーム2306に固定した構成である。それぞれのチップ2302,2303,2304,2305は、図3の記録ヘッド102と同様の構成となっている。各チップ2302〜2305の間隔は1/2インチとされ、図6中の主走査方向に等間隔に配置されている。各チップ2302〜2305の吐出口1(図3(a)参照)の数、つまりノズル数はそれぞれ256個であり、それらのノズル列は主走査方向に対しほぼ直交するように配置されている。   FIG. 6 shows the recording head unit. The configuration of this unit is a configuration in which a Bk chip 2302, a C chip 2303, an M chip 2304, and a Y chip 2305 are fixed to a frame 2306. Each of the chips 2302, 2303, 2304, and 2305 has the same configuration as that of the recording head 102 in FIG. The intervals between the chips 2302 to 2305 are ½ inch, and are arranged at equal intervals in the main scanning direction in FIG. Each of the chips 2302 to 2305 has 256 ejection ports 1 (see FIG. 3A), that is, 256 nozzles, and these nozzle rows are arranged so as to be substantially orthogonal to the main scanning direction.

各ノズルは、約84μmのノズルピッチで128個のノズルが2列に配置されており、更にこの2列が「千鳥状」と呼ぶ形態(すなわち2列が半ピッチの約42μmずらしてある)で作製されている(図3(a))。これにより一度の主走査で256ノズル分のバンドを600dpiの解像度で記録できる。なお、前述した各部寸法およびノズル数等は本発明を限定するものではない。   Each nozzle has 128 nozzles arranged in two rows at a nozzle pitch of about 84 μm, and the two rows are called “staggered” (that is, the two rows are shifted by about 42 μm, which is a half pitch). It has been fabricated (FIG. 3A). As a result, a band for 256 nozzles can be recorded at a resolution of 600 dpi in one main scan. In addition, each part dimension mentioned above, the number of nozzles, etc. do not limit this invention.

(従来例1)
従来例の液体噴射記録ヘッドを図5に示す。液体噴射記録ヘッドとして、吐出量8.5×(10のマイナス15乗)立方メートル、600dpiのものを作製した。従来例1では基板部の流路44の断面形状(図5参照)は面方位<100>の異方性エッチングを実施して作製しているために台形である。ここで基板の厚さは625ミクロンで、基板部の最小流路幅を155ミクロン、基板部の最大流路幅を800ミクロンとした。また、液体第2貯蔵部45の流路幅Bを2mmとした。
(Conventional example 1)
A conventional liquid jet recording head is shown in FIG. A liquid jet recording head having a discharge amount of 8.5 × (10 to the power of 15) cubic meters and 600 dpi was manufactured. In Conventional Example 1, the cross-sectional shape (see FIG. 5) of the channel 44 in the substrate portion is a trapezoid because it is fabricated by performing anisotropic etching with a plane orientation <100>. Here, the thickness of the substrate was 625 microns, the minimum channel width of the substrate unit was 155 microns, and the maximum channel width of the substrate unit was 800 microns. Moreover, the flow path width B of the liquid 2nd storage part 45 was 2 mm.

通常、記録ヘッドの稼働では吐出液滴数やこれに関わる数値をカウントすることによって液滴の不吐を未然に防ぐ目的で、あるカウント数に達すると記録ヘッド内の残留気体を除去すべく吸引回復動作へ移行するようにプログラムされているが、ここでは不吐の発生が実際にいつ生じるかを明確にするために、吸引回復動作への移行制御を解除した。   Normally, in order to prevent the discharge failure of the liquid droplets by counting the number of liquid droplets to be discharged and the numerical values related to them during the operation of the print head, suction is performed to remove the residual gas in the print head when a certain count number is reached. Although it is programmed to shift to the recovery operation, here, in order to clarify when the occurrence of discharge failure actually occurs, the shift control to the suction recovery operation is released.

A3サイズの用紙にシアン(C)色のベタ塗り印刷を実施したところ3枚程度にて残留気体(泡)が原因である不吐によって印刷に抜けが生じた。この状態直後にインクジェットヘッド内部を観察したところ、基板部の流路44の部分および液体第2貯蔵部45にわたり空気が入り込んでいる(占有している)のが確認された。   When solid printing of cyan (C) color was performed on A3 size paper, printing was lost in about 3 sheets due to undischarge caused by residual gas (bubbles). When the inside of the ink jet head was observed immediately after this state, it was confirmed that air had entered (occupied) the flow path 44 portion of the substrate section and the liquid second storage section 45.

詳細な観察実験を行ったところ、吐出動作が回を重ねると同時にノズル流路43を通じて基板部の流路44の部分(面方位<100>の異方性エッチングした面)に小さな気泡が付着して蓄積し始めることがわかった。さらにこれらの小さな気泡は合体を始めていくつかのものは浮力によって液体第2貯蔵部45の方へ移動するが、いくつかのものは基板部の流路44部分で合体・成長を繰り返しながらも付着したままとなることが観察された(図5(b))。この付着したまま拡大する気泡は液体貯蔵部48からの液体(インク)の吐出口41への供給を遮断し、不吐を引き起こして印刷に抜けを生じさせていた。   When a detailed observation experiment was conducted, as the discharge operation repeated, small bubbles adhered to the portion of the channel 44 of the substrate portion (surface subjected to anisotropic etching with a plane orientation <100>) through the nozzle channel 43. And found that it started to accumulate. In addition, these small bubbles start to merge and some of them move toward the liquid second storage part 45 by buoyancy, but some adhere to them while repeating coalescence and growth in the channel 44 part of the substrate part. It was observed that it remained as it was (FIG. 5 (b)). The bubbles that expand while adhering to the liquid block the supply of the liquid (ink) from the liquid storage unit 48 to the discharge port 41, causing non-discharge and causing printing to be lost.

この観察結果から基板部の流路部44の濡れ性を良くすることによって気泡の剥がれやすさを促進して浮力によって液体貯蔵部48方向へ移動を促すことなどが試みられているが、劇的な改善効果は得られていない。   From this observation result, it has been attempted to improve the wettability of the flow path portion 44 of the substrate portion to promote the ease of bubble separation and to promote the movement toward the liquid storage portion 48 by buoyancy. The improvement effect is not obtained.

そこで本発明者は鋭意検討を重ねた結果、液体中の気体(気泡)は表面張力によって球形になりたがるという現象を積極的に利用することによって効果的に不要な泡を吐出口に近い位置から遠ざける方法を見い出した。またこの現象を効果的に引き起こさせる方法としては、基板の流路部44の面に即して長手方向への残留泡の成長拡大をせき止めることが有効であることがわかった。以下実施例をもとに具体的にその方法を説明する。   Therefore, as a result of extensive studies, the present inventor has effectively removed unnecessary bubbles close to the discharge port by actively utilizing the phenomenon that the gas (bubbles) in the liquid wants to become spherical due to surface tension. I found a way away from the position. Moreover, as a method for effectively causing this phenomenon, it has been found effective to stop the growth and expansion of residual bubbles in the longitudinal direction in accordance with the surface of the flow path portion 44 of the substrate. The method will be specifically described below based on examples.

図9は本発明の具体的な実施例を示したものである。   FIG. 9 shows a specific embodiment of the present invention.

実施例1では液体噴射記録ヘッドとして、吐出量8.5×(10のマイナス15乗)立方メートル、600dpiのものを作製した。基板部の流路64の断面形状(図9(a)参照)は面方位<100>の異方性エッチングを実施して作製しているために台形である。ここで基板の厚さは625ミクロンで、基板部の最小流路幅を155ミクロン、基板部の最大流路幅を800ミクロンとした。また、液体第2貯蔵部65の流路幅Bを2mmとした。   In Example 1, a liquid jet recording head having a discharge amount of 8.5 × (10 to the 15th power) cubic meter and 600 dpi was manufactured. The cross-sectional shape (see FIG. 9A) of the channel 64 in the substrate portion is a trapezoid because it is fabricated by performing anisotropic etching with a plane orientation <100>. Here, the thickness of the substrate was 625 microns, the minimum channel width of the substrate unit was 155 microns, and the maximum channel width of the substrate unit was 800 microns. Moreover, the flow path width B of the liquid 2nd storage part 65 was 2 mm.

本実施例1では図9(c)〜(d)に示した仕切り構造物70を作製し、基板630とコネクト部材66のあいだに挟み込んで接続することにより仕切り70を形成した(図9(b)参照。仕切りの厚みeは一様)。配列ピッチLは基板部の流路幅mと等しい300ミクロンとした(図9(b)参照)。また、液体第2貯蔵部5の流路幅Bを2mmとした。   In Example 1, the partition structure 70 shown in FIGS. 9C to 9D is manufactured, and the partition 70 is formed by being sandwiched and connected between the substrate 630 and the connecting member 66 (FIG. 9B). (Refer to the above) The partition thickness e is uniform). The arrangement pitch L was 300 microns, which is equal to the channel width m of the substrate portion (see FIG. 9B). Moreover, the flow path width B of the liquid 2nd storage part 5 was 2 mm.

通常、記録ヘッドの稼働では吐出液滴数やこれに関わる数値をカウントすることによって液滴の不吐を未然に防ぐ目的で、あるカウント数に達すると記録ヘッド内の残留気体を除去すべく吸引回復動作へ移行するようにプログラムされているが、ここでは不吐の発生が実際にいつ生じるかを明確にするために、吸引回復動作への移行制御を解除した。   Normally, in order to prevent the discharge failure of the liquid droplets by counting the number of liquid droplets to be discharged and the numerical values related to them during the operation of the print head, suction is performed to remove the residual gas in the print head when a certain count number is reached. Although it is programmed to shift to the recovery operation, here, in order to clarify when the occurrence of discharge failure actually occurs, the shift control to the suction recovery operation is released.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路64の部分(面方位<100>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were found on the portion of the flow path 64 of the substrate portion (surface subjected to anisotropic etching with a plane orientation <100>).

以上に示した従来例1および実施例1の結果をもとに考察してみる。詳細な実験観察によれば、面方位<100>の異方性エッチングによって作製した基板部の流路4の部分は重力の反対方向(上方向)に対して末広がり状に広がっているにもかかわらず球形の残留気泡のほとんどが付着したままとなっており、つまり浮力による残留泡の剥離除去は期待できない。但し、図2(a)に示すようにB>Wという関係が成り立つ場合にてtがWよりも十分に小さい場合にはある程度の大きさになった残留気泡が異方性エッチング面にいつまでも付着していることはなく、浮力による剥離浮上が期待できる。しかし基板の強度確保という点で限界があり際限なく(t/(W/2))を小さくすることはできない。   Consideration will be made based on the results of Conventional Example 1 and Example 1 described above. According to detailed experimental observation, although the flow path 4 portion of the substrate portion produced by anisotropic etching with a plane orientation <100> spreads in a divergent shape in the opposite direction (upward direction) of gravity. Most of the remaining spherical spherical bubbles remain attached, that is, it cannot be expected that the residual bubbles are peeled and removed by buoyancy. However, as shown in FIG. 2 (a), when the relationship B> W is established, if t is sufficiently smaller than W, residual bubbles having a certain size will adhere to the anisotropic etching surface forever. No separation and levitation due to buoyancy can be expected. However, there is a limit in securing the strength of the substrate, and (t / (W / 2)) cannot be reduced without limit.

一方、パラメータ比(t/(W/2))が“1”を超えるあたりから(図2(b))状況が変わってくる。すなわち面方位<100>の異方性エッチング面に付着しながら拡大してきたほぼ球形の残留泡は両側のエッチング面に挟まれ、この場合両面への固着力が浮力に勝るため、浮力による剥離浮上は困難になる(図2(c))。   On the other hand, the situation changes when the parameter ratio (t / (W / 2)) exceeds “1” (FIG. 2B). That is, the substantially spherical residual bubbles that have expanded while adhering to the anisotropic etching surface with a surface orientation of <100> are sandwiched between the etching surfaces on both sides, and in this case, the adhering force to both surfaces is superior to buoyancy. Becomes difficult (FIG. 2C).

この状態の後にさらに残留気体の合体が進行して残留気泡の体積が増加してくると、残留気泡は基板部の流路4の末広がり面に即した状態で基板部の流路4の長手方向へ成長し始める(図5(b))と同時に、吐出口側および液体貯蔵部側の両方向へと拡大し(図2(c))、このうち吐出口側に近い残留気泡の最前面が不幸にも吐出口を通じて外気と連通すると不吐状態となってしまう。   When the residual gas coalesced further after this state and the volume of the residual bubbles increases, the residual bubbles are in the longitudinal direction of the flow path 4 of the substrate portion in a state of conforming to the end spreading surface of the flow path 4 of the substrate portion. At the same time as starting to grow (FIG. 5 (b)), it expands in both directions on the discharge port side and the liquid storage unit side (FIG. 2 (c)). Of these, the forefront of residual bubbles near the discharge port side is unfortunate In addition, if it communicates with the outside air through the discharge port, a discharge failure occurs.

一方、実施例1に示した仕切り構造物70を導入した場合は平行な2つの仕切り面に挟まれた部分の残留気体は、基板部の流路64の長手方向へ成長することが抑制されて(図9(b))液体第2貯蔵部側へと急速に拡大する(図2(d))。その結果基板部の流路64内の残留気体体積(図2(d)中のD−D線より下の気体体積)に比べて、液体第2貯蔵部へ突き出した部分の残留気体の体積(図2(d)中のD−D線より上の気体体積)が大きくなると、気泡は領域的に広い液体第2貯蔵部内で球形になろうとし、基板部の流路64内の残留気体をも引きずり出して液体第2貯蔵部内で球形になる(図2(e))。またこのように一旦液体第2貯蔵部へ抜けて球形になった残留気泡は吸引回復動作時以外には、もう二度と基板部の流路部64へ入り込むことはない。この結果、吐出口へのインクの供給経路が広く確保され不吐が回避されると考えられる。   On the other hand, when the partition structure 70 shown in the first embodiment is introduced, the residual gas in the portion sandwiched between the two parallel partition surfaces is prevented from growing in the longitudinal direction of the flow path 64 of the substrate portion. (FIG. 9B) The liquid rapidly expands toward the liquid second storage part (FIG. 2D). As a result, compared with the residual gas volume (the gas volume below the DD line in FIG. 2D) in the flow path 64 of the substrate part, the volume of the residual gas in the portion protruding to the liquid second storage part ( When the gas volume above the line D-D in FIG. 2D increases, the bubbles tend to be spherical in the region-wide liquid second reservoir, and the residual gas in the channel 64 of the substrate portion is removed. It drags out and becomes spherical in the liquid second reservoir (FIG. 2 (e)). In addition, the residual bubbles that have once passed through the second liquid storage section and turned into a spherical shape do not enter the flow path section 64 of the substrate section again except during the suction recovery operation. As a result, it is considered that a wide ink supply path to the ejection port is ensured and discharge failure is avoided.

本実施例2では基板部の流路4の作製にあたっては面方位<100>の異方性エッチングを実施して作製した。この場合基板部の流路4の断面形状(図1(a)参照)は矩形となり、基板部の流路4部分には仕切りの厚みeが一様である仕切り12も同時に形成できる(図1(b)参照)。ここで基板の厚さtは625ミクロンとし、基板部の流路幅を300ミクロンとした。配列ピッチLは基板部の流路幅mと等しい300ミクロンとした(図1(b)参照)。   In Example 2, the flow path 4 of the substrate part was manufactured by performing anisotropic etching with a plane orientation <100>. In this case, the cross-sectional shape (see FIG. 1A) of the flow path 4 in the substrate portion is rectangular, and a partition 12 having a uniform partition thickness e can be formed simultaneously in the flow path 4 portion of the substrate portion (FIG. 1). (See (b)). Here, the thickness t of the substrate was 625 microns, and the flow path width of the substrate portion was 300 microns. The arrangement pitch L was 300 microns, which is equal to the channel width m of the substrate portion (see FIG. 1B).

本実施例2のヘッドとして、吐出量8.5×(10のマイナス15乗)立方メートル、600dpiの液体噴射記録ヘッドを用意した。また、液体第2貯蔵部5の流路幅Bを2mmとした。   As a head of Example 2, a liquid jet recording head having a discharge amount of 8.5 × (10 to the 15th power) cubic meter and 600 dpi was prepared. Moreover, the flow path width B of the liquid 2nd storage part 5 was 2 mm.

通常、記録ヘッドの稼働では吐出液滴数やこれに関わる数値をカウントすることによって液滴の不吐を未然に防ぐ目的で、あるカウント数に達すると記録ヘッド内の残留気体を除去すべく吸引回復動作へ移行するようにプログラムされているが、ここでは不吐の発生が実際にいつ生じるかを明確にするために、本例でも従来例1同様、吸引回復動作への移行制御を解除した。   Normally, in order to prevent the discharge failure of the liquid droplets by counting the number of liquid droplets to be discharged and the numerical values related to them during the operation of the print head, suction is performed to remove the residual gas in the print head when a certain count number is reached. Although it is programmed to shift to the recovery operation, here, in order to clarify when the occurrence of non-discharge occurs, the shift control to the suction recovery operation is canceled in this example as well as in the conventional example 1. .

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例3のヘッドにおいては、実施例2で説明した方法と同様にしてヘッドを作製し、このうちの仕切り12に対してレーザーによる追加工を施した。これにより、基板部の流路54を構成する2つのエッチング面のうち一方の面にのみ突起512を形成した(図10参照)。この突起512の高さhは150ミクロン、配列ピッチLは基板部の流路幅mと等しい300ミクロンとした(図10参照)。その他の条件等はすべて実施例2に同じである。この場合もA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   In the head of this Example 3, a head was produced in the same manner as the method described in Example 2, and an additional process using a laser was performed on the partition 12 among them. Thereby, the protrusion 512 was formed only on one of the two etching surfaces constituting the flow path 54 of the substrate portion (see FIG. 10). The height h of the projections 512 is 150 microns, and the arrangement pitch L is 300 microns, which is equal to the flow path width m of the substrate portion (see FIG. 10). All other conditions are the same as in Example 2. In this case as well, when an attempt was made to perform cyan (C) solid color printing on A3 size paper, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例4のヘッドにおいては、実施例2で説明した方法と同様にしてヘッドを作製し、このうちの仕切り12に対してレーザーによる追加工を施した(図11参照)。これにより、基板部の流路84を構成する2つのエッチング面に千鳥状に突起812を形成した。この突起812の高さhは150ミクロン、配列ピッチLは基板部の流路幅mと等しい300ミクロンとした(図11参照)。その他の条件等はすべて実施例2に同じである。この場合もA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   In the head of the fourth embodiment, a head was manufactured in the same manner as described in the second embodiment, and an additional process using a laser was performed on the partition 12 (see FIG. 11). Thereby, the protrusions 812 were formed in a staggered pattern on the two etching surfaces constituting the flow path 84 of the substrate portion. The height h of the protrusions 812 was 150 microns, and the arrangement pitch L was 300 microns, which is equal to the channel width m of the substrate portion (see FIG. 11). All other conditions are the same as in Example 2. In this case as well, when an attempt was made to perform cyan (C) solid color printing on A3 size paper, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

以上に示した実施例3および実施例4の結果をもとに考察してみる。詳細な観察実験によれば、実施例3および実施例4に示した突起512,812の導入によっても、基板部の流路54,84の長手方向へ成長することが抑制されて液体貯蔵部側へと急速に拡大する。その結果基板部の流路54,84内の残留気体体積(図2(d)中のD−D線より下の気体体積)に比べて、液体第2貯蔵部55,85へ突き出した部分の残留気体の体積(図2(d)中のD−D線より上の気体体積)が大きくなると、気泡は領域的に広い液体第2貯蔵部内55,85で球形になろうとし、基板部の流路54,84内の残留気体を引きずり出して液体第2貯蔵部内55,85で球形になる(図2(e))。またこのように一旦液体第2貯蔵部55,85へ抜けて球形になった残留気泡は吸引回復動作時以外には、もう二度と基板部の流路部54,84へ入り込むことはない。この結果、吐出口へのインクの供給経路が広く確保され不吐が回避されると考えられる。   Consideration will be made based on the results of Example 3 and Example 4 shown above. According to the detailed observation experiment, the introduction of the protrusions 512 and 812 shown in the third and fourth embodiments also suppresses the growth in the longitudinal direction of the flow paths 54 and 84 of the substrate part, and the liquid storage part side Expand rapidly. As a result, compared with the residual gas volume (the gas volume below the line DD in FIG. 2D) in the flow paths 54 and 84 of the substrate portion, the portion of the portion protruding to the liquid second storage portion 55 and 85 When the volume of the residual gas (the gas volume above the line DD in FIG. 2D) increases, the bubbles tend to be spherical in the region-wide liquid second reservoir 55, 85, Residual gas in the flow paths 54 and 84 is dragged to form a spherical shape in the liquid second storage section 55 and 85 (FIG. 2E). In addition, the residual bubbles that have once passed through the liquid second storage portions 55 and 85 and become spherical as described above will not enter the flow path portions 54 and 84 of the substrate portion again except during the suction recovery operation. As a result, it is considered that a wide ink supply path to the ejection port is ensured and discharge failure is avoided.

また、実施例3および実施例4における突起512,812の占有体積は実施例2における仕切り70の占有体積に比べ小さくできるために、液体貯蔵部から吐出口へのインクの供給にて有利となり、吐出駆動周波数を高くできる。   In addition, since the occupied volume of the protrusions 512 and 812 in the third and fourth embodiments can be made smaller than the occupied volume of the partition 70 in the second embodiment, it is advantageous in supplying ink from the liquid storage unit to the ejection port. The ejection driving frequency can be increased.

本実施例5では、配列ピッチLのみを500ミクロンに変更し(図1(b)参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例2と同じとした。   In Example 5, only the arrangement pitch L was changed to 500 microns (see FIG. 1B), and the manufacturing method and other dimensions and the printing test method were the same as those in Example 2 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着を見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing continued without any missing prints until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例6では、配列ピッチLのみを700ミクロンに変更し(図1(b)参照)、作製方法およびその他の各寸法および印字テスト方法は実施例2と同じとした。   In Example 6, only the arrangement pitch L was changed to 700 microns (see FIG. 1B), and the manufacturing method and other dimensions and printing test methods were the same as those in Example 2.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例7では、配列ヒッチLのみを500ミクロンに変更し(図10参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例3と同じとした。   In Example 7, only the arrangement hitch L was changed to 500 microns (see FIG. 10), and the manufacturing method and other dimensions and printing test methods were the same as those in Example 3 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例8では、配列ピッチLのみを700ミクロンに変更し(図10参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例3と同じとした。   In Example 8, only the arrangement pitch L was changed to 700 microns (see FIG. 10), and the manufacturing method and other dimensions and printing test methods were the same as those in Example 3 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例9では、配列ピッチLのみを500ミクロンに変更し(図11参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例4と同じとした。   In Example 9, only the arrangement pitch L was changed to 500 microns (see FIG. 11), and the manufacturing method and other dimensions and printing test methods were the same as those in Example 4 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例10では、配列ピッチLのみを700ミクロンに変更し(図11参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例4と同じとした。   In Example 10, only the arrangement pitch L was changed to 700 microns (see FIG. 11), and the manufacturing method and other dimensions and printing test methods were the same as those in Example 4 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例11では、突起812の高さhのみを200ミクロンに変更し(図11参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例4と同じとした。   In Example 11, only the height h of the protrusion 812 was changed to 200 microns (see FIG. 11), and the manufacturing method and other dimensions and the printing test method were the same as those in Example 4 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

本実施例12では、突起812の高さhのみを100ミクロンに変更し(図11参照)、作製方法およびその他の各寸法および印字テスト方法は前述した実施例4と同じとした。   In Example 12, only the height h of the protrusion 812 was changed to 100 microns (see FIG. 11), and the manufacturing method and other dimensions and the printing test method were the same as those in Example 4 described above.

本ヘッドを用いてA3サイズの用紙にシアン(C)色のベタ塗り印刷の実施を試みたところ内蔵したインクを使い切るまで、印刷に抜けを生じることなく印刷が続けられた(A3用紙19枚)。この直後にインクジェットヘッド内部を観察したところ、基板部の流路4の部分(面方位<110>の異方性エッチングした面)に大きな気泡等の付着は見られなかった。   Attempting to perform cyan (C) solid color printing on A3 size paper using this head, printing was continued without causing any omission until the built-in ink was used up (19 sheets of A3 paper). . Immediately after this, the inside of the ink jet head was observed, and no large bubbles or the like were observed on the portion of the channel 4 of the substrate portion (surface subjected to anisotropic etching with a surface orientation <110>).

また、以上に示した従来例1および実施例1乃至4においては液体第2貯蔵部の流路幅を2mmに固定した。これに対して、インクジェットヘッドの実装性向上の目的で上記液体第2貯蔵部の流路幅を小さくすることが画策される場合がある。この点に関する詳細な検討では、以下の条件が判明している。   Further, in the conventional example 1 and the examples 1 to 4 described above, the flow path width of the liquid second storage unit is fixed to 2 mm. On the other hand, in order to improve the mountability of the inkjet head, there is a case where an attempt is made to reduce the channel width of the liquid second storage unit. In a detailed study on this point, the following conditions have been found.

2×t×W^2<4π/3)×(B/2)^3
すなわち、この条件を満足するtとWとの組み合わせ寸法にて基板部の流路形状を形成すれば、液体第2貯蔵部内で球形となった残留気泡は液体第2貯蔵部の壁面両面に付着することなく、浮力により浮上してさらに吐出口から遠ざかり、吐出口側に近い残留気泡の最前面が不幸にも吐出口を通じて外気と連通して不吐状態となってしまうことがなくなり、なお好適である。
2 × t × W ^ 2 <4π / 3) × (B / 2) ^ 3
That is, if the flow path shape of the substrate portion is formed with a combination dimension of t and W that satisfies this condition, the remaining bubbles that are spherical in the liquid second storage portion adhere to both wall surfaces of the liquid second storage portion. Without buoyancy and further away from the discharge port, the forefront of residual bubbles close to the discharge port side will not unfortunately communicate with the outside air through the discharge port, and will not be discharged, it is more preferable It is.

また、基板部の流路94を設ける位置が図12に示すように中央ではなくエッジ部とした構成においても本発明は好適である。   Further, the present invention is also suitable in a configuration in which the position where the flow path 94 of the substrate part is provided is not the center but the edge part as shown in FIG.

(a)は本発明におけるインクジェットヘッドの断面図、(b)は本発明におけるインクジェットヘッドの発熱素子配設位置での平面図。(A) is sectional drawing of the inkjet head in this invention, (b) is a top view in the heating element arrangement position of the inkjet head in this invention. 本発明におけるインクジェットヘッドでの基板の厚さと基板部の流路幅と残留気泡の関係を説明するための断面図。Sectional drawing for demonstrating the relationship between the thickness of the board | substrate in the inkjet head in this invention, the flow path width of a board | substrate part, and a residual bubble. 本発明におけるインクジェットヘッドの平面図。FIG. 2 is a plan view of the ink jet head in the present invention. 本発明におけるインクジェットヘッドによる印字状態を説明するための図。The figure for demonstrating the printing state by the inkjet head in this invention. (a)は従来例のインクジェットヘッドの断面図、(b)は従来例のインクジェットヘッドの発熱素子配設位置での平面図。(A) is sectional drawing of the inkjet head of a prior art example, (b) is a top view in the heating element arrangement position of the inkjet head of a prior art example. 各色用のチップをフレームに搭載した状態を説明するための図。The figure for demonstrating the state which mounted the chip | tip for each color in the flame | frame. 本発明に適用可能な液体噴射記録装置の概略斜視図。1 is a schematic perspective view of a liquid jet recording apparatus applicable to the present invention. 本発明に適用可能な液体噴射記録ヘッドの概略斜視図。1 is a schematic perspective view of a liquid jet recording head applicable to the present invention. (a)は本発明における他の実施例であるインクジェットヘッドの断面図、(b)は本発明における他の実施例であるインクジェットヘッドの発熱素子配設位置での平面図、(c)〜(d)は仕切り構造物を説明するための図。(A) is sectional drawing of the inkjet head which is another Example in this invention, (b) is a top view in the heating element arrangement position of the inkjet head which is another Example in this invention, (c)-( d) The figure for demonstrating a partition structure. 本発明における他の実施例であるインクジェットヘッドの発熱素子配設位置での平面図。The top view in the heat generating element arrangement | positioning position of the inkjet head which is another Example in this invention. 本発明における他の実施例であるインクジェットヘッドの発熱素子配設位置での平面図。The top view in the heat generating element arrangement | positioning position of the inkjet head which is another Example in this invention. 本発明における他の実施例であるインクジェットヘッドの断面図。Sectional drawing of the inkjet head which is another Example in this invention.

符号の説明Explanation of symbols

1 吐出口
2 発熱体
3 ノズル流路
4 基板部の流路
5 液体第2貯蔵部
6 コネクト部材
7 フィルタ部
8 液体貯蔵部
9 インク吸収体
10 隔壁
11 残留気体(泡)
12 仕切り
20K Bk用タンク
20C C用タンク
20M M用タンク
20Y Y用タンク
30 基板
41 吐出口
42 発熱体
43 ノズル流路
44 基板部の流路
45 液体第2貯蔵部
46 コネクト部材
47 フィルタ部
48 液体貯蔵部
49 インク吸収体
51 吐出口
52 発熱体
53 ノズル流路
54 基板部の流路
55 液体第2貯蔵部
56 コネクト部材
57 フィルタ部
58 液体貯蔵部
59 インク吸収体
70 仕切り構造物
100 記録装置
101 キャリッジ
102 記録ヘッド群
103 記録ヘッドユニット
104 ガイド軸
105 ガイド軸
106 被記録媒体
107 スイッチ部/表示素子部
108 プラテン
109 送りローラ
110 回復系ユニット
111 インク液滴
430 基板
512 突起
530 基板
812 突起
2302 Bkチップ
2303 Cチップ
2304 Mチップ
2305 Yチップ
2306 フレーム
DESCRIPTION OF SYMBOLS 1 Ejection port 2 Heat generating body 3 Nozzle flow path 4 Substrate part flow path 5 Liquid 2nd storage part 6 Connect member 7 Filter part 8 Liquid storage part 9 Ink absorber 10 Partition 11 Residual gas (bubble)
12 partition 20K Bk tank 20C C tank 20M M tank 20Y Y tank 30 Substrate 41 Discharge port 42 Heating element 43 Nozzle channel 44 Substrate channel 45 Liquid second storage unit 46 Connect member 47 Filter unit 48 Liquid Storage part 49 Ink absorber 51 Discharge port 52 Heat generating element 53 Nozzle flow path 54 Substrate part flow path 55 Liquid second storage part 56 Connect member 57 Filter part 58 Liquid storage part 59 Ink absorber 70 Partition structure 100 Recording apparatus 101 Carriage 102 Recording head group 103 Recording head unit 104 Guide shaft 105 Guide shaft 106 Recording medium 107 Switch / display element portion 108 Platen 109 Feed roller 110 Recovery system unit 111 Ink droplet 430 Substrate 512 Protrusion 530 Substrate 812 Protrusion 230 2 Bk chip 2303 C chip 2304 M chip 2305 Y chip 2306 Frame

Claims (12)

液体が吐出する吐出口と、該吐出口から前記液体を吐出させるためのエネルギーを加える吐出エネルギー発生部と、該吐出エネルギー発生部を設けた基板と、該基板に隣接してなり液体吸収体等を内蔵しない液体第2貯蔵部と、前記液体を主に貯蔵する液体貯蔵部とを備え、前記基板と前記液体第2貯蔵部との接続位置での前記液体第2貯蔵部の流路幅Bと前記基板部の流路幅Wとの関係にて、
W<B
を満たす液体噴射記録ヘッドにおいて、
前記基板部の流路面に突起部を設けたことを特徴とする液体噴射記録ヘッド。
A discharge port from which liquid is discharged, a discharge energy generation unit for applying energy for discharging the liquid from the discharge port, a substrate provided with the discharge energy generation unit, a liquid absorber formed adjacent to the substrate, and the like A liquid second storage part that does not contain the liquid and a liquid storage part that mainly stores the liquid, and a flow path width B of the liquid second storage part at a connection position between the substrate and the liquid second storage part. And the flow path width W of the substrate part,
W <B
In a liquid jet recording head satisfying
A liquid jet recording head, wherein a projection is provided on a flow path surface of the substrate portion.
液体が吐出する吐出口と、該吐出口から前記液体を吐出させるためのエネルギーを加える吐出エネルギー発生部と、該吐出エネルギー発生部を設けた基板と、該基板に隣接してなり液体吸収体等を内蔵しない液体第2貯蔵部と、前記液体を主に貯蔵する液体貯蔵部とを備え、前記基板と前記液体第2貯蔵部との接続位置での前記液体第2貯蔵部の流路幅Bと前記基板部の流路幅Wとの関係にて、
W<B
を満たす液体噴射記録ヘッドにおいて、
前記基板部の流路面に仕切り部を設けたことを特徴とする液体噴射記録ヘッド。
A discharge port from which liquid is discharged, a discharge energy generation unit for applying energy for discharging the liquid from the discharge port, a substrate provided with the discharge energy generation unit, a liquid absorber formed adjacent to the substrate, and the like A liquid second storage part that does not contain the liquid and a liquid storage part that mainly stores the liquid, and a flow path width B of the liquid second storage part at a connection position between the substrate and the liquid second storage part. And the flow path width W of the substrate part,
W <B
In a liquid jet recording head satisfying
A liquid jet recording head, wherein a partition portion is provided on a flow path surface of the substrate portion.
前記基板部を流路の構成する対向している2つの面に対して千鳥状に前記突起部を設けたことを特徴とする前記請求項1に記載の液体噴射記録ヘッド。   The liquid jet recording head according to claim 1, wherein the protrusions are provided in a staggered manner on two opposing surfaces constituting the substrate portion of the flow path. 前記基板部の流路を構成する対向している2つの面のうち、一方の面にのみ前記突起部を設けたことを特徴とする前記請求項1に記載の液体噴射記録ヘッド。   2. The liquid jet recording head according to claim 1, wherein the protrusion is provided on only one of two opposing surfaces constituting the flow path of the substrate portion. 前記突起部の配設ピッチLは、前記吐出エネルギー発生部の配設ピッチpの整数倍である前記請求項1または請求項3乃至4に記載の液体噴射記録ヘッド。   5. The liquid jet recording head according to claim 1, wherein an arrangement pitch L of the protrusions is an integral multiple of an arrangement pitch p of the ejection energy generation unit. 前記仕切り部の配設ピッチLは、前記吐出エネルギー発生部の配設ピッチpの整数倍である前記請求項2に記載の液体噴射記録ヘッド。   3. The liquid jet recording head according to claim 2, wherein the arrangement pitch L of the partition portion is an integral multiple of the arrangement pitch p of the ejection energy generating portion. 前記基板部の流路中央位置における前記突起部の配設ピッチと、前記基板部の流路端部位置における前記突起部の配設ピッチが異なることを特徴とする前記請求項1または請求項3乃至5に記載の液体噴射記録ヘッド。   The arrangement pitch of the projections at the center position of the flow path of the substrate portion is different from the pitch of the projection sections at the position of the flow path end portion of the substrate section. The liquid jet recording head according to any one of Items 5 to 5. 前記基板部の流路中央位置における前記仕切り部の配設ピッチと、前記基板部の流路端部位置における前記突起部の配設ピッチが異なることを特徴とする前記請求項2または請求項6に記載の液体噴射記録ヘッド。   7. The arrangement pitch according to claim 2 or 6, wherein an arrangement pitch of the partitioning portion at a central position of the flow path of the substrate portion is different from an arrangement pitch of the protrusions at a flow path end position of the substrate portion. 2. A liquid jet recording head according to 1. 前記基板部の流路幅Wが前記基板の厚さt全体にわたり一様である請求項1乃至8に記載の液体噴射記録ヘッド。   The liquid jet recording head according to claim 1, wherein a flow path width W of the substrate portion is uniform over the entire thickness t of the substrate. 前記基板部の流路が前記各吐出口の列のあいだ乃至中央に配されている請求項1乃至9に記載の液体噴射記録ヘッド。   10. The liquid jet recording head according to claim 1, wherein the flow path of the substrate portion is disposed between or in the middle of the rows of the ejection ports. 前記吐出エネルギー発生部は、熱エネルギーを発生する電気熱変換体を有することを特徴とする請求項1乃至10に記載の液体噴射記録ヘッド。   The liquid jet recording head according to claim 1, wherein the ejection energy generation unit includes an electrothermal converter that generates thermal energy. 液体噴射記録ヘッドを移動させる移動手段と、被記録媒体を搬送する搬送手段とを備え、請求項1乃至11のいずれかに記載の液体噴射記録ヘッドを搭載した液体噴射記録装置。   12. A liquid jet recording apparatus equipped with a liquid jet recording head according to claim 1, comprising a moving means for moving the liquid jet recording head and a transport means for transporting a recording medium.
JP2005043931A 2005-02-21 2005-02-21 Liquid jetting recording head and liquid jetting recording device Withdrawn JP2006224599A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005043931A JP2006224599A (en) 2005-02-21 2005-02-21 Liquid jetting recording head and liquid jetting recording device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005043931A JP2006224599A (en) 2005-02-21 2005-02-21 Liquid jetting recording head and liquid jetting recording device

Publications (1)

Publication Number Publication Date
JP2006224599A true JP2006224599A (en) 2006-08-31

Family

ID=36986351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005043931A Withdrawn JP2006224599A (en) 2005-02-21 2005-02-21 Liquid jetting recording head and liquid jetting recording device

Country Status (1)

Country Link
JP (1) JP2006224599A (en)

Similar Documents

Publication Publication Date Title
US8342658B2 (en) Ink jet print head
US8201925B2 (en) Ink jet print head having board with varying heat resistance
KR100717027B1 (en) Ink supplying unit and Inkjet image forming apparatus using the same
US20110080453A1 (en) Liquid ejection head and image forming apparatus
JP2009056629A (en) Liquid discharge head and inkjet recording device
JP2006076010A (en) Liquid jetting recording head
JP4574385B2 (en) Ink jet recording head and recording apparatus
JP4921101B2 (en) Ink jet recording head and ink discharge method
JP2008149601A (en) Inkjet recording method
JP2006076011A (en) Liquid jetting recording head
US20070176976A1 (en) Print head
US20110292132A1 (en) Liquid discharge head
JP2013215917A (en) Printing apparatus and printing method
US20070247493A1 (en) Printing head, ink jet printing apparatus, and ink jet printing method
JP4553360B2 (en) Inkjet recording head
JP6272002B2 (en) Liquid discharge head and liquid discharge apparatus
JP2006224599A (en) Liquid jetting recording head and liquid jetting recording device
JP2006224600A (en) Liquid jetting recording head and liquid jetting recording device
JP5202748B2 (en) Ink jet recording head and ink discharge method
JP5464923B2 (en) Inkjet recording device
JP2005169949A (en) Ink-jet recording device and ink-jet recording method
JP2011143579A (en) Liquid ejection head
JP2023178609A (en) Liquid ejection head and liquid ejection device
JP2024007321A (en) Liquid ejection head and liquid ejection device
JP2007182015A (en) Liquid discharge head and liquid ejector

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513