JP2006223925A - Honeycomb base material for exhaust gas cleaning catalytic converter having excellent oxidation resistance at high temperature and catalytic converter for cleaning exhaust gas - Google Patents

Honeycomb base material for exhaust gas cleaning catalytic converter having excellent oxidation resistance at high temperature and catalytic converter for cleaning exhaust gas Download PDF

Info

Publication number
JP2006223925A
JP2006223925A JP2005037446A JP2005037446A JP2006223925A JP 2006223925 A JP2006223925 A JP 2006223925A JP 2005037446 A JP2005037446 A JP 2005037446A JP 2005037446 A JP2005037446 A JP 2005037446A JP 2006223925 A JP2006223925 A JP 2006223925A
Authority
JP
Japan
Prior art keywords
precursor film
stainless steel
exhaust gas
catalytic converter
foil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005037446A
Other languages
Japanese (ja)
Other versions
JP4694220B2 (en
Inventor
Toru Inaguma
徹 稲熊
Takeshi Yamauchi
剛 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2005037446A priority Critical patent/JP4694220B2/en
Publication of JP2006223925A publication Critical patent/JP2006223925A/en
Application granted granted Critical
Publication of JP4694220B2 publication Critical patent/JP4694220B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a metallic honeycomb base material for an exhaust gas cleaning catalytic converter having excellent oxidation resistance at high temperature, the durability of which can be improved at higher temperature even when a rare earth metal component, an alkaline-earth metal component, a group 4A metal component or a group 5A metal component is added to a catalyst layer and to provide the catalytic converter for cleaning exhaust gas. <P>SOLUTION: The honeycomb base material for the exhaust gas cleaning catalytic converter having excellent oxidation resistance at high temperature is a metallic honeycomb base material obtained by fabricating stainless steel foil on the surface of which a film of a precursor is formed. This metallic honeycomb base material is used in the catalytic converter for cleaning exhaust gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、排気ガス中に含まれるHC、CO、NOx成分を浄化する排気ガス浄化用触媒コンバータに関し、特に触媒を担持するためのメタルハニカム基材の高温耐久性に関するものである。 The present invention relates to an exhaust gas purifying catalytic converter that purifies HC, CO, and NO x components contained in exhaust gas, and particularly to high temperature durability of a metal honeycomb substrate for supporting a catalyst.

内燃機関の排気ガスを浄化する目的で、排気ガス経路に触媒を担持した触媒コンバータが配置される。また、メタノール等の炭化水素化合物を水蒸気改質して水素リッチなガスを生成するメタノール改質装置やCOをCO2に改質して除去するCO除去装置、あるいは、H2をH2Oに燃焼して除去するH2燃焼装置においても、同様に触媒を担持したハニカム基材が用いられる。これらハニカム基材は、ガスが通過する多数のセル状の流路を有し、各セルの壁面に触媒をコーティングして触媒コンバータとする。このような構造にすることによって通過するガスと触媒が広い接触面積で接触することを可能にしている。 For the purpose of purifying the exhaust gas of the internal combustion engine, a catalytic converter carrying a catalyst is disposed in the exhaust gas path. Also, a methanol reformer that steam-reforms hydrocarbon compounds such as methanol to produce a hydrogen-rich gas, a CO remover that reforms and removes CO to CO 2 , or H 2 to H 2 O Similarly, a honeycomb substrate carrying a catalyst is also used in an H 2 combustion apparatus that removes by combustion. These honeycomb base materials have a large number of cellular channels through which gas passes, and a catalyst is coated on the wall of each cell to form a catalytic converter. With such a structure, the passing gas and the catalyst can be brought into contact with each other with a wide contact area.

これらの目的で用いられるハニカム基材としては、セラミックスハニカム基材とメタルハニカム基材とがある。メタル基材は、耐熱合金を用いた厚み数十μmの平箔と波箔とを交互に巻き回し、あるいは積層することによって円筒形のメタルハニカム体とし、このハニカム体を円筒形の金属製の外筒に装入してメタルハニカム基材とする。このメタルハニカム基材のガス流路となるハニカム体のセルの金属箔の表面に、触媒をしみ込ませた触媒担持層を形成し、触媒コンバータとする。平箔と波箔とを巻き回し積層したハニカム体の該平箔と波箔との接触部は、ろう付け等の手段によって接合し、ハニカム体を強度のある構造体とする。   As the honeycomb substrate used for these purposes, there are a ceramic honeycomb substrate and a metal honeycomb substrate. The metal base material is a cylindrical metal honeycomb body formed by alternately winding or laminating flat foils and corrugated foils each having a thickness of several tens of μm using a heat-resistant alloy, and this honeycomb body is made of a cylindrical metal. A metal honeycomb substrate is inserted into the outer cylinder. A catalyst supporting layer impregnated with a catalyst is formed on the surface of the metal foil of the cell of the honeycomb body that becomes the gas flow path of the metal honeycomb base material to obtain a catalytic converter. The contact portion between the flat foil and the corrugated foil of the honeycomb body obtained by winding and laminating the flat foil and the corrugated foil is joined by means such as brazing to make the honeycomb body a strong structural body.

ここで、耐熱合金としては、Al含有ステンレス箔を用いることが一般的となっている。このステンレスは、高温大気中で表面に酸素透過性の低い酸化皮膜が形成され、優れた耐酸化特性が得られることを特徴としている。   Here, it is common to use an Al-containing stainless steel foil as the heat-resistant alloy. This stainless steel is characterized in that an oxide film having low oxygen permeability is formed on the surface in high-temperature air, and excellent oxidation resistance characteristics can be obtained.

ハニカム基材の表面には、γアルミナ粉末等を塗布して形成された多孔質の層が設けられ、ここに、触媒主金属の白金、パラジウムやロジウム等の貴金属が担持され、触媒層が形成される。排気ガスに含まれるHC、CO、NOx等はこれら貴金属の触媒効果で酸化、還元反応を起こし、浄化される。 A porous layer formed by applying γ-alumina powder or the like is provided on the surface of the honeycomb substrate, and a catalyst layer is formed by supporting a precious metal such as platinum, palladium, or rhodium as a main catalyst metal. Is done. HC, CO, NO x and the like contained in the exhaust gas are purified by causing oxidation and reduction reaction by the catalytic effect of these noble metals.

この浄化に関わる反応をより効率的に進めるために、各セルの壁面には、貴金属触媒に加えて、助触媒を塗布することが一般的になっている。例えば、HC、CO等の還元物質を酸化させる際に、触媒付近により多くの酸素が存在すると反応を促進させられるので、酸素を大量にストレージできるセリウムやランタン等の希土類金属成分を有する酸化物を担持する。   In order to advance the reaction related to this purification more efficiently, it is common to apply a promoter to the wall of each cell in addition to the noble metal catalyst. For example, when oxidizing a reducing substance such as HC and CO, the reaction is promoted if more oxygen is present in the vicinity of the catalyst. Therefore, an oxide having a rare earth metal component such as cerium or lanthanum that can store a large amount of oxygen is used. Carry.

また、特許文献1や特許文献2に示された排ガス浄化用触媒では、高温時における貴金属の結晶粒成長を抑制するために、セリウムの酸化物CeO2にZrO2を固溶させて、触媒層に含有させている。これらには、この他にLa、Nd、Y等の希土類金属成分が酸化物の形態で触媒層に含有されることが示されている。 Further, in the exhaust gas purifying catalyst shown in Patent Document 1 or Patent Document 2, in order to suppress the growth of noble metal crystal grains at high temperatures, ZrO 2 is dissolved in cerium oxide CeO 2 to form a catalyst layer. Is included. In addition to these, it is shown that rare earth metal components such as La, Nd, and Y are contained in the catalyst layer in the form of oxides.

近年、エンジン性能の向上と高速走行の増加に伴い、排ガス温度が著しく上昇している。このため、排気ガスに晒される触媒コンバータにおいては、より高温での耐久性が求められるようになってきた。   In recent years, the exhaust gas temperature has risen remarkably with the improvement in engine performance and the increase in high-speed driving. For this reason, the catalytic converter exposed to the exhaust gas has been required to have durability at a higher temperature.

特開2004−243177号公報JP 2004-243177 A 特開2004−261641号公報JP 2004-261541 A

燃費改善の目的で排気ガス温度が上昇する傾向の中、ステンレス箔から構成されるハニカム基材において、触媒層に希土類金属成分、アルカリ土類金属成分、第4A族元素金属、第5A族元素金属成分を含有する助触媒を担持すると、ステンレス箔の高温耐酸化性が低下し、基材の高温での耐久性が劣化することがわかってきた。   In the tendency of exhaust gas temperature to rise for the purpose of improving fuel efficiency, in a honeycomb substrate composed of stainless steel foil, the catalyst layer is made of rare earth metal component, alkaline earth metal component, Group 4A element metal, Group 5A element metal It has been found that when a co-catalyst containing a component is supported, the high-temperature oxidation resistance of the stainless steel foil decreases, and the durability of the base material at high temperatures deteriorates.

そこで、本発明では、触媒層に希土類金属成分、アルカリ土類金属成分、第4A族元素金属、第5A族元素金属成分を添加した場合でも、より高温での耐久性が向上できるよう、優れた高温耐酸化性を有する排気ガス浄化触媒コンバータ用メタルハニカム基材、及び、排気ガス浄化用触媒コンバータを提供することを目的とする。   Therefore, in the present invention, even when a rare earth metal component, an alkaline earth metal component, a Group 4A element metal, or a Group 5A element metal component is added to the catalyst layer, it is excellent so that durability at a higher temperature can be improved. An object of the present invention is to provide a metal honeycomb substrate for an exhaust gas purification catalytic converter having high-temperature oxidation resistance, and an exhaust gas purification catalytic converter.

本発明の要旨とするところは以下の通りである。
(1) ステンレス箔を加工してなるメタルハニカム基材であって、前記ステンレス箔の表面に前駆体皮膜が形成されてなることを特徴とする優れた高温耐酸化性を有する排気ガス浄化触媒コンバータ用ハニカム基材。
(2) 前記前駆体皮膜が酸化物から構成されており、該酸化物が結晶構造による分類でα、γ、θ、χ、δ、η、κアルミナのうち、少なくとも1種類以上のアルミナを含有している(1)に記載のハニカム基材。
(3) 前記前駆体皮膜の全体積に対するγ、θ、χ、δ、η、κアルミナの総和体積の割合をa%とすると、aが5%以上95%以下である(2)に記載のハニカム基材。
(4) 前記前駆体皮膜が酸化物から構成されており、少なくとも1種類以上のスピネルが含有されている(1)に記載のハニカム基材。
(5) 前記前駆体皮膜の全体積に対する該スピネルの体積率をb%すると、bが5%以上95%以下である(4)に記載のハニカム基材。
(6) 前記ステンレス箔中のAl濃度が質量%で6.5%超13%以下である(1)に記載のハニカム基材。
(7) (1)〜(6)のいずれかに記載のハニカム基材が組み込まれてなる触媒コンバータであって、前記ハニカム基材に触媒層が形成されてなることを特徴とする優れた高温耐酸化性を有する排気ガス浄化用触媒コンバータ。
(8) 前記触媒層が希土類金属成分を含有する(7)に記載の排気ガス浄化用触媒コンバータ。
(9) 前記触媒層がアルカリ土類金属成分を含有する(7)に記載の排気ガス浄化用触媒コンバータ。
(10) 前記触媒層が第4A族元素の金属成分を含有する(7)に記載の排気ガス浄化用触媒コンバータ。
(11) 前記触媒層が第5A族元素の金属成分を含有する(7)に記載の排気ガス浄化用触媒コンバータ。
The gist of the present invention is as follows.
(1) An exhaust gas purifying catalytic converter having excellent high-temperature oxidation resistance, which is a metal honeycomb substrate obtained by processing a stainless steel foil, wherein a precursor film is formed on the surface of the stainless steel foil. Honeycomb base material.
(2) The precursor film is composed of an oxide, and the oxide contains at least one kind of alumina among α, γ, θ, χ, δ, η, and κ alumina according to crystal structure. The honeycomb substrate according to (1).
(3) When the ratio of the total volume of γ, θ, χ, δ, η, and κ alumina to the total volume of the precursor film is a%, a is 5% or more and 95% or less. Honeycomb substrate.
(4) The honeycomb substrate according to (1), wherein the precursor film is made of an oxide and contains at least one kind of spinel.
(5) The honeycomb substrate according to (4), wherein b is 5% or more and 95% or less when the volume ratio of the spinel to the total volume of the precursor film is b%.
(6) The honeycomb substrate according to (1), wherein an Al concentration in the stainless steel foil is 6.5% to 13% by mass.
(7) An excellent high temperature characterized by being a catalytic converter in which the honeycomb substrate according to any one of (1) to (6) is incorporated, wherein a catalyst layer is formed on the honeycomb substrate. Catalytic converter for exhaust gas purification having oxidation resistance.
(8) The catalytic converter for exhaust gas purification according to (7), wherein the catalyst layer contains a rare earth metal component.
(9) The exhaust gas purifying catalytic converter according to (7), wherein the catalyst layer contains an alkaline earth metal component.
(10) The catalytic converter for exhaust gas purification according to (7), wherein the catalyst layer contains a metal component of a Group 4A element.
(11) The exhaust gas purifying catalytic converter according to (7), wherein the catalyst layer contains a metal component of a Group 5A element.

本発明の排気ガス浄化触媒コンバータ用メタルハニカム基材は、ステンレス箔の表面に前駆体皮膜が形成されており、触媒層を形成させたコンバータにおいて優れた高温耐酸化性を発現する。触媒層に希土類金属、アルカリ土類金属、第4A族元素金属、第5A族元素金属を主体とする酸化物を含有させた場合の効果は大きく、酸素ストレージや貴金属粒粗大化抑制機能を応用した排気ガス浄化システムへの適用が好適となる。その結果、高燃費、かつ、クリーンな排気ガスの内燃機関が実現でき、例えば、ディーゼル、ガソリン自動車等への応用が期待される。   The metal honeycomb substrate for an exhaust gas purification catalytic converter of the present invention has a precursor film formed on the surface of a stainless steel foil, and exhibits excellent high-temperature oxidation resistance in a converter having a catalyst layer formed. When the catalyst layer contains an oxide mainly composed of a rare earth metal, an alkaline earth metal, a Group 4A element metal, or a Group 5A element metal, an effect of suppressing oxygen storage and coarsening of noble metal grains is applied. Application to an exhaust gas purification system is preferable. As a result, it is possible to realize a high-fuel-consumption and clean exhaust gas internal combustion engine, which is expected to be applied to, for example, diesel and gasoline automobiles.

本発明者らは、Ce、La等の希土類金属を主体とする酸化物、Ti、Zr等の第4A族元素の金属成分を主体とする酸化物、Ba、Sr等のアルカリ土類金属、V、Nb等の第5A族元素の金属成分を主体とする酸化物を触媒層に含有させた場合に、該触媒層を表面に形成させたステンレス箔の高温耐酸化性が、触媒層を形成しない場合に比べて著しく低下することを見出し、その原因について詳しく解析した。その結果、該触媒層の存在下においては、直下のステンレス箔表面に保護皮膜として生成される酸化皮膜の酸素透過性が高くなり、触媒層のない場合に比べて、高温耐酸化性は低下することが判明した。例えば、20%Cr−5%Alフェライト系ステンレスの場合には、アルミナ系の保護酸化皮膜が形成されるが、触媒層が存在する場合には、形成される保護皮膜の酸素透過性は高くなり、含有されるAlが短時間で酸化されて、消費されてしまった。このような酸素透過性の高い酸化皮膜が形成されるのは、触媒層に含有される希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分の影響であるものと考えている。   The present inventors include oxides mainly composed of rare earth metals such as Ce and La, oxides mainly composed of metal components of Group 4A elements such as Ti and Zr, alkaline earth metals such as Ba and Sr, V When an oxide mainly composed of a metal component of Group 5A element such as Nb is contained in the catalyst layer, the high temperature oxidation resistance of the stainless steel foil having the catalyst layer formed on the surface does not form the catalyst layer. We found that it was significantly lower than the case, and analyzed the cause in detail. As a result, in the presence of the catalyst layer, the oxygen permeability of the oxide film produced as a protective film on the surface of the stainless steel foil immediately below increases, and the high-temperature oxidation resistance decreases compared to the case without the catalyst layer. It has been found. For example, in the case of 20% Cr-5% Al ferrite-based stainless steel, an alumina-based protective oxide film is formed. However, when a catalyst layer is present, the formed protective film has high oxygen permeability. The contained Al was oxidized and consumed in a short time. The formation of such an oxide film having high oxygen permeability is considered to be due to the influence of rare earth metal, Group 4A element metal, alkaline earth metal, and Group 5A element metal component contained in the catalyst layer. ing.

そこで、本発明者らは、様々な手法で高温耐酸化性の改善を試み、その結果、触媒層に希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分が存在しても、高温大気中において酸素透過性の低い保護皮膜が生成でき、優れた高温耐酸化性を確保できる手法を見出した。   Therefore, the present inventors tried to improve the high temperature oxidation resistance by various methods, and as a result, rare earth metal, Group 4A element metal, alkaline earth metal, and Group 5A element metal component existed in the catalyst layer. However, the present inventors have found a method capable of producing a protective film having low oxygen permeability in high-temperature air and ensuring excellent high-temperature oxidation resistance.

その手法とは、触媒層を形成させる前にステンレス表面に特定の前駆体皮膜を付与させ、該触媒層下でもこの前駆体皮膜の下部あるいは上部に、酸素透過性の低い酸化膜を形成させるように制御するのである。この前駆体皮膜の役割は、下部酸化皮膜への触媒層中の希土類金属や第4A族元素の金属成分の影響を物理的にシールドするばかりでなく、前駆体皮膜の結晶構造、組織構造によって、下部あるいは上部の酸化皮膜の生成をコントロールして、酸素透過性が低くなるような結晶構造・組織構造へ誘導するものである。このため、前駆体皮膜はステンレス表面と原子レベルで密着している必要があり、例えば、前駆体皮膜としては、ステンレス自体を酸化させて付与した酸化物皮膜であることが望ましい。この前駆体皮膜は、必ずしもステンレス箔表面を一様に覆う必要は無く、島状に存在してもその機能は十分に発揮される。加えて、それ自体の酸素透過性は、必ずしも高くなくても良く、その下部あるいは上部に形成される酸化皮膜の酸素透過性が十分に低ければ良い。   The method is to apply a specific precursor film to the stainless steel surface before forming the catalyst layer, and to form an oxide film with low oxygen permeability under or on the precursor film under the catalyst layer. To control. The role of this precursor film not only physically shields the influence of the rare earth metal in the catalyst layer and the metal component of the Group 4A element on the lower oxide film, but also depends on the crystal structure and structure structure of the precursor film, The formation of a lower or upper oxide film is controlled to induce a crystal structure / texture structure with low oxygen permeability. For this reason, the precursor film needs to be in close contact with the stainless steel surface at an atomic level. For example, the precursor film is preferably an oxide film provided by oxidizing stainless steel itself. This precursor film does not necessarily need to cover the stainless steel foil surface uniformly, and even if it exists in an island shape, its function is sufficiently exhibited. In addition, the oxygen permeability of itself is not necessarily high, and it is sufficient that the oxygen permeability of the oxide film formed on the lower part or the upper part thereof is sufficiently low.

以下に、本発明の詳細な範囲について記述する。   The detailed scope of the present invention will be described below.

本発明の前駆体皮膜の一つは、酸化物から構成されており、該酸化物が結晶構造による分類でα、γ、θ、χ、δ、η、κアルミナの内、少なくとも1種類以上のアルミナを含有していることを特徴とする。アルミナはAl23の分子式で表され、代表的なコランダム結晶構造(六方晶)を有するαアルミナと、その他の結晶構造を有するγ、θ、χ、δ、η、κアルミナが存在する。本発明の前駆体皮膜には、α、γ、θ、χ、δ、η、κアルミナの内、少なくとも1種類以上のアルミナが含まれる必要があり、これらのアルミナが存在すると、触媒層の存在下でも酸素透過性の低い酸化膜を形成させることができる。ここで、表1には、各アルミナの結晶構造と、X線回折反射に関する情報が得られるASTMカードの番号を記しておく。ここで、アルミナとしては、構成元素が遷移元素等の他元素で一部置換されたアルミナでも本発明の範囲に含まれる。 One of the precursor films of the present invention is composed of an oxide, and the oxide is classified according to crystal structure, and is at least one of α, γ, θ, χ, δ, η, and κ alumina. It is characterized by containing alumina. Alumina is represented by the molecular formula of Al 2 O 3 , and there are α alumina having a typical corundum crystal structure (hexagonal crystal) and γ, θ, χ, δ, η, and κ alumina having other crystal structures. The precursor film of the present invention needs to contain at least one kind of alumina among α, γ, θ, χ, δ, η, and κ alumina, and when these aluminas are present, the presence of the catalyst layer is present. Even under this, an oxide film having low oxygen permeability can be formed. Here, Table 1 shows the crystal structure of each alumina and the number of the ASTM card from which information on X-ray diffraction reflection can be obtained. Here, as the alumina, alumina whose constituent elements are partially substituted with other elements such as transition elements is also included in the scope of the present invention.

Figure 2006223925
Figure 2006223925

前記前駆体皮膜の全体積に対するγ、θ、χ、δ、η、κアルミナの総和体積の割合をa%とすると、より望ましいaの範囲は5%以上95%以下である。この範囲ならば、希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分が含有される触媒層下においても、前駆体皮膜の下部あるいは上部に生成される酸化皮膜の酸素透過性は著しく低く、優れた高温耐酸化性が得られる。5%未満の前駆体皮膜を得るためには、より高温でハニカム基材を処理しなくてはならず、構造体としての強度や寸法精度を維持することが難しくなるため、5%以上とした。95%超では前駆体皮膜を製造する時間が著しく長くなり、コスト高になるため、95%以下にした。ここで、前駆体皮膜の体積や各アルミナの体積比は、X線回折による各相のピーク強度を比較して求めたり、詳細には電子顕微鏡観察して各相の体積を見積もることによって確認可能である。   When the ratio of the total volume of γ, θ, χ, δ, η, and κ alumina to the total volume of the precursor film is a%, a more desirable range of a is 5% or more and 95% or less. Within this range, oxygen in the oxide film formed below or above the precursor film even under the catalyst layer containing the rare earth metal, Group 4A element metal, alkaline earth metal, and Group 5A element metal component The permeability is remarkably low, and excellent high temperature oxidation resistance is obtained. In order to obtain a precursor film of less than 5%, the honeycomb base material must be processed at a higher temperature, and it is difficult to maintain the strength and dimensional accuracy as a structure, so the content is set to 5% or more. . If it exceeds 95%, the time for producing the precursor film becomes remarkably long and the cost becomes high. Here, the volume of the precursor film and the volume ratio of each alumina can be confirmed by comparing the peak intensities of each phase by X-ray diffraction, or in detail by estimating the volume of each phase by observation with an electron microscope. It is.

他の前駆体皮膜としては、少なくとも1種類以上のスピネルを含有することを特徴とする。スピネルはM・Al24の分子式で表され、Mは、Mg、Fe、Zn、Mn、Cr、Niのいずれかである。本発明の前駆体皮膜には、特に、MがMg、Mn、Niであるスピネルが存在すると、希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分を含んだ触媒層の存在下でも、酸素透過性の低い酸化膜を形成させることができる。したがって、これらスピネルを1種類以上含有させることが、本発明の前駆体皮膜の好ましい条件である。 Another precursor film is characterized by containing at least one kind of spinel. Spinel is represented by a molecular formula of M · Al 2 O 4 , where M is any one of Mg, Fe, Zn, Mn, Cr, and Ni. In the precursor film of the present invention, in particular, when a spinel in which M is Mg, Mn, or Ni exists, a catalyst layer containing a rare earth metal, a Group 4A element metal, an alkaline earth metal, and a Group 5A element metal component Even in the presence of oxygen, an oxide film having low oxygen permeability can be formed. Therefore, it is a preferable condition for the precursor film of the present invention to contain one or more of these spinels.

該前駆体皮膜の全体積に対するスピネルの体積率をb%とすると、望ましい体積率bの範囲は5%以上95%以下である。この範囲ならば、希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分が含有される触媒層下においても、前駆体皮膜の下部あるいは上部に生成される酸化皮膜の酸素透過性は著しく低く、優れた高温耐酸化性が得られる。5%未満の前駆体皮膜を得るためには、より高温でハニカム基材を処理しなくてはならず、構造体としての強度や寸法精度を維持することが難しくなるため、5%以上とした。95%超では前駆体皮膜を製造する時間が著しく長くなり、コスト高になるため、95%以下にした。ここで、前駆体皮膜や、スピネルの体積比は、X線回折による各相のピーク強度を比較して求めたり、詳細には電子顕微鏡観察して各相の体積を見積もることによって確認可能である。   If the spinel volume fraction relative to the total volume of the precursor coating is b%, the desirable range of the volume fraction b is 5% or more and 95% or less. Within this range, oxygen in the oxide film formed below or above the precursor film even under the catalyst layer containing the rare earth metal, Group 4A element metal, alkaline earth metal, and Group 5A element metal component The permeability is remarkably low, and excellent high temperature oxidation resistance is obtained. In order to obtain a precursor film of less than 5%, the honeycomb base material must be processed at a higher temperature, and it is difficult to maintain the strength and dimensional accuracy as a structure, so the content is set to 5% or more. . If it exceeds 95%, the time for producing the precursor film becomes remarkably long and the cost becomes high. Here, the volume ratio of the precursor film and spinel can be confirmed by comparing the peak intensities of each phase by X-ray diffraction or by estimating the volume of each phase by observation with an electron microscope in detail. .

ここで、本発明の前駆体皮膜を付与する方法について記載する。先にも述べたように、前駆体皮膜はステンレス箔の表面に密着させて付与する必要がある。例えば、特定雰囲気中でステンレス箔を焼成して、ステンレス中の構成元素と雰囲気元素との化学反応を利用して、酸化物の前駆体皮膜を表面に付与でき、この方法で得られる前駆体皮膜とステンレス箔の密着性は非常に良好である。この際、必要に応じてステンレス表面には助剤を塗布して、ステンレス、雰囲気以外から所望の成分元素を添加して、前駆体皮膜を生成付与させることも可能である。   Here, it describes about the method of providing the precursor membrane | film | coat of this invention. As described above, the precursor film needs to be applied in close contact with the surface of the stainless steel foil. For example, a precursor foil obtained by this method can be obtained by firing a stainless steel foil in a specific atmosphere and applying a chemical reaction between constituent elements in the stainless steel and an atmospheric element to provide an oxide precursor film on the surface. And the adhesion of stainless steel foil is very good. At this time, if necessary, an auxiliary agent may be applied to the surface of the stainless steel, and a desired component element may be added from other than the stainless steel and atmosphere to generate and impart a precursor film.

アルミナを含有する前駆体皮膜は、Alを含有するステンレス箔を特定の雰囲気、温度条件で焼成することによって箔表面に付与できる。基本的には、酸素分圧が10Pa〜大気圧程度の雰囲気や水蒸気露点を制御した酸化性雰囲気中にステンレス箔を暴露して、300〜1200℃程度に加熱することによって、所望の結晶構造のアルミナを含有する前駆体皮膜は付与できる。また、酸化性雰囲気における焼成前に、予め酸素分圧10-2Pa程度の真空中や、水素、一酸化炭素等の還元雰囲気中で焼成して、ステンレス箔の表面状態を整えておくと、さらに前駆体皮膜の付与を効率的に実施できる場合がある。 The precursor film containing alumina can be applied to the foil surface by baking a stainless steel foil containing Al in a specific atmosphere and temperature condition. Basically, the stainless steel foil is exposed in an atmosphere having an oxygen partial pressure of 10 Pa to atmospheric pressure or an oxidizing atmosphere in which the water vapor dew point is controlled, and heated to about 300 to 1200 ° C. A precursor film containing alumina can be applied. In addition, before firing in an oxidizing atmosphere, firing in a vacuum at an oxygen partial pressure of about 10 −2 Pa or in a reducing atmosphere such as hydrogen or carbon monoxide to prepare the surface state of the stainless steel foil, Furthermore, the application of the precursor film may be performed efficiently.

その他、前記アルミナを含有する前駆体皮膜を付与する方法としては、ステンレス表面に予め金属Alをめっき法や粉末塗布法で富化させておき、酸化雰囲気中で焼成する方法が挙げられる。この方法は、ステンレス箔中に含有するAlが少量でも前駆体皮膜を付与することができる。また、Alを主成分とする酸化物をステンレス表面に塗布して、酸化、還元、拡散反応を利用して、所望の前駆体皮膜を表面に付与することも可能である。   In addition, as a method for providing the precursor film containing alumina, a method in which metal Al is enriched in advance on a stainless steel surface by a plating method or a powder coating method and fired in an oxidizing atmosphere can be given. This method can provide the precursor film even with a small amount of Al contained in the stainless steel foil. It is also possible to apply an oxide containing Al as a main component to the stainless steel surface and apply a desired precursor film to the surface using oxidation, reduction and diffusion reactions.

スピネルを含有する前駆体皮膜は、Alを含有するステンレス箔表面に、Mg、Mn、Niの金属成分を付着させ、酸化性もしくは不活性雰囲気中で焼成することによって、生成できる。基本的には、酸素分圧が10Pa〜大気圧程度の雰囲気や水蒸気露点を制御した酸化性雰囲気中にステンレス箔を暴露して、300〜1200℃程度に加熱させればよい。ここで、Mg、Mnの金属成分は、酸化物や塩、例えば、硝酸Mg、酸化Mgや酸化Mnの形でステンレス箔の表面に付着させて、添加させることが可能である。   A precursor film containing spinel can be produced by attaching metal components of Mg, Mn, and Ni to the surface of a stainless steel foil containing Al and firing in an oxidizing or inert atmosphere. Basically, the stainless steel foil may be exposed to an atmosphere having an oxygen partial pressure of about 10 Pa to atmospheric pressure or an oxidizing atmosphere in which the water vapor dew point is controlled, and heated to about 300 to 1200 ° C. Here, the metal components of Mg and Mn can be added by being attached to the surface of the stainless steel foil in the form of an oxide or salt, for example, Mg nitrate, Mg oxide or Mn oxide.

ハニカム基材は、ステンレス箔に波付け加工を施した波箔と平箔を組み合わせて捲き回し、波箔と平箔を部分的に接合して製造している。その中で、前駆体皮膜の付与は、ハニカム基材に加工する前のステンレス箔に行っても、ステンレス箔をハニカム基材に製造した後に行っても良い。接合部には、例えば、ろう材を使用する場合がある。前駆体皮膜は、ろう材表面にも付与させる必要があるが、必ずしもその下部あるいは上部に酸素透過性の低い酸化皮膜が形成されない場合がある。このような場合には、接合は、ろう付け法を用いず、箔同士の拡散接合法を利用すれば良い。   The honeycomb substrate is manufactured by combining a corrugated foil obtained by corrugating a stainless steel foil and a flat foil, and winding the corrugated foil and the flat foil partially. Among them, the application of the precursor film may be performed on the stainless steel foil before being processed into the honeycomb base material or after the stainless steel foil is manufactured on the honeycomb base material. For example, a brazing material may be used for the joint portion. Although it is necessary to give a precursor film | membrane also to the brazing | wax material surface, the oxide film with low oxygen permeability may not necessarily be formed in the lower part or upper part. In such a case, the bonding may be performed by using a diffusion bonding method between foils without using a brazing method.

本発明の前駆体皮膜を付与させた後の前駆体皮膜とステンレス箔に含有する全Al濃度の望ましい範囲は、質量%で6.5%超13%以下である。Al濃度が6.5%超であると、前駆体皮膜の下部あるいは上部に生成される酸化皮膜の酸素透過性がより小さくなり、より優れた高温耐酸化性が得られる。このため、6.5%超が望ましい。また、13%超では、ステンレス箔の靭性が著しく低下し、排気ガスの圧力や振動によって箔の欠けや亀裂が発生して、構造信頼性が損なわれる。したがって、該前駆体皮膜とステンレス箔に含有する全Al濃度の最大値は13%以下が好ましい。   A desirable range of the total Al concentration contained in the precursor film and the stainless steel foil after applying the precursor film of the present invention is more than 6.5% and less than 13% by mass. When the Al concentration is more than 6.5%, the oxygen permeability of the oxide film formed at the lower part or the upper part of the precursor film becomes smaller, and more excellent high-temperature oxidation resistance can be obtained. For this reason, more than 6.5% is desirable. On the other hand, if it exceeds 13%, the toughness of the stainless steel foil is remarkably reduced, and the chip reliability and structural reliability are impaired due to the occurrence of cracks and cracks in the foil due to the pressure and vibration of exhaust gas. Accordingly, the maximum value of the total Al concentration contained in the precursor film and the stainless steel foil is preferably 13% or less.

前駆体皮膜を付与させた後のステンレス箔内部のAl濃度は、質量%で0.5%以上10%以下であることが望ましい。Al濃度が0.5%未満であると、前駆体皮膜があっても、下部あるいは上部に酸素透過性の低い酸化皮膜が生成され難くなるので、0.5%以上が好ましい。Al濃度が10%を超えると、ステンレス箔の靭性が著しく低下し、排気ガスの圧力や振動によって箔の欠けや亀裂が発生して、構造信頼性が損なわれる惧れが高まる。したがって、該前駆体皮膜を除いたステンレス箔部位におけるAl濃度の最大値は10%が好ましい。   The Al concentration inside the stainless steel foil after applying the precursor film is preferably 0.5% or more and 10% or less by mass%. If the Al concentration is less than 0.5%, even if there is a precursor film, an oxide film having low oxygen permeability is hardly formed on the lower part or the upper part, so 0.5% or more is preferable. When the Al concentration exceeds 10%, the toughness of the stainless steel foil is remarkably lowered, and the possibility of structural reliability being impaired due to the occurrence of chipping or cracking of the foil due to the pressure or vibration of the exhaust gas increases. Therefore, the maximum value of Al concentration in the stainless steel foil part excluding the precursor film is preferably 10%.

次に、より好ましいステンレス箔のAl濃度を除く成分系について言及する。   Next, the component system excluding the Al concentration of the more preferable stainless steel foil will be mentioned.

Cは、不可避的に混入し、ステンレス箔の靭性、延性、耐酸化性に悪影響するので、低い方が望ましいが、本発明においては0.1%以下であれば実害が許容できるので、上限は0.1%であることが望ましい。   C is inevitably mixed and adversely affects the toughness, ductility, and oxidation resistance of the stainless steel foil, so it is desirable that C be lower. It is desirable to be 0.1%.

Siも不可避的に混入し、ステンレス箔の靭性、延性を低下させ、一般には耐酸化性を向上させるが、2%を超えると、効果が少なくなるばかりでなく、靱性が低下する問題を生じる。したがって、2%以下が好ましい。   Si is inevitably mixed, and the toughness and ductility of the stainless steel foil are lowered, and generally the oxidation resistance is improved. However, when it exceeds 2%, not only the effect is reduced, but also the toughness is lowered. Therefore, 2% or less is preferable.

Mnも不可避的に混入し、これが2%を超えて含有すると、ステンレス箔の耐酸化性が劣化するので、その上限は2%であることが好ましい。   If Mn is inevitably mixed and contained in excess of 2%, the oxidation resistance of the stainless steel foil deteriorates, so the upper limit is preferably 2%.

Crは、本発明においてアルミナを安定にして、耐酸化性を向上させるために添加するが、9%未満ではその効果は不十分で、また、25%を超えると鋼が脆くなり、冷間圧延や加工に耐えなくなるので、その範囲は9%以上25%以下であることが好ましい。   Cr is added to stabilize the alumina and improve the oxidation resistance in the present invention. However, if it is less than 9%, the effect is insufficient, and if it exceeds 25%, the steel becomes brittle, and cold rolling is performed. In this case, the range is preferably 9% or more and 25% or less.

Ti、Zr、Nb、Hfは、前駆体皮膜の下部あるいは上部に生成されるアルミナの酸素透過性を低下させ、酸化速度を著しく減少させる効果があるため、必要な添加元素である。しかしながら、合計で2.0%を超えると、箔中に金属間化合物の析出が増えて箔を脆くするため、それらの合計は2.0%以下であることが好ましい。   Ti, Zr, Nb, and Hf are necessary additional elements because they have the effect of lowering the oxygen permeability of alumina produced at the lower part or the upper part of the precursor film and significantly reducing the oxidation rate. However, if the total exceeds 2.0%, precipitation of intermetallic compounds in the foil increases and the foil becomes brittle. Therefore, the total is preferably 2.0% or less.

Mg、Ca、Baもアルミナに固溶し、ステンレス箔の高温耐酸化性を向上させる場合がある。合計で0.01%を超えると、箔の靭性が低下するため、0.01%以下であることが好ましい。   Mg, Ca and Ba may also be dissolved in alumina to improve the high temperature oxidation resistance of the stainless steel foil. If it exceeds 0.01% in total, the toughness of the foil is lowered, so 0.01% or less is preferable.

Y、希土類元素は、酸化皮膜の密着性を確保する元素として添加は必要である。但し、合計で0.5%を超えると、箔中に金属間化合物の析出が増加し、靭性が低下するので、0.5%以下であることが好ましい。   Y and rare earth elements need to be added as elements for ensuring the adhesion of the oxide film. However, if it exceeds 0.5% in total, the precipitation of intermetallic compounds in the foil increases and the toughness decreases, so it is preferably 0.5% or less.

本発明のメタルハニカム基材を構成するステンレス箔の製造方法は、当該成分を有する鋳片から直接熱間圧延及び冷間圧延を経て製造する方法と、Al濃度が6%を超えると靭性低下により通常の製造が困難になることから、次に示す方法がある。即ち、製造が容易な低レベルのAl濃度でステンレス箔を製造し、冷延板表面に溶融Alめっき法やドライプロセス等によってAlを付着させ、熱処理によってAlを鋼中に拡散させ、Al濃度を増加させることで製造が可能である。   The manufacturing method of the stainless steel foil constituting the metal honeycomb substrate of the present invention is a method of manufacturing directly from the slab having the component through hot rolling and cold rolling, and a decrease in toughness when the Al concentration exceeds 6%. Since normal manufacturing becomes difficult, there are the following methods. That is, a stainless steel foil is manufactured at a low level of Al concentration that is easy to manufacture, Al is adhered to the surface of the cold rolled plate by a hot Al plating method or a dry process, Al is diffused into the steel by heat treatment, and the Al concentration is reduced. Manufacturing is possible by increasing the number.

本発明のハニカム基材を構成するステンレス箔の厚みは、5μm以上150μm以下が望ましい。5μmを下回ると、箔の強度が低くなり過ぎて、変形等が生じ易くなるからである。また、150μmを超えると、排気ガスの通気性が低下し易いためである。   As for the thickness of the stainless steel foil which comprises the honeycomb base material of this invention, 5 micrometers or more and 150 micrometers or less are desirable. If the thickness is less than 5 μm, the strength of the foil becomes too low and deformation or the like is likely to occur. Further, if it exceeds 150 μm, the breathability of the exhaust gas tends to be lowered.

本発明には、上記で説明したハニカム基材に触媒層を形成させた排気ガス浄化用触媒コンバータも含まれる。触媒層は、多孔質のγアルミナ焼成体をベースにし、そこに主触媒である白金、パラジウムやロジウム等の貴金属が担持されている。   The present invention also includes an exhaust gas purifying catalytic converter in which a catalyst layer is formed on the honeycomb substrate described above. The catalyst layer is based on a porous γ-alumina fired body on which a main catalyst, such as platinum, palladium, or rhodium, is supported.

さらに、助触媒としては、次に挙げる各金属元素を主体とした酸化物、炭酸塩、硝酸塩等の酸化物を用いることが多く、多孔質のγアルミナ粉末焼結体の担持材に混合して用いられる。   Further, as the cocatalyst, oxides such as oxides, carbonates, nitrates and the like mainly composed of the following metal elements are often used and mixed with the support material of the porous γ-alumina powder sintered body. Used.

本発明の範囲の助触媒元素としては、酸素ストレージ機能を有する酸化物を形成できる希土類金属元素、第4A族元素あるいは第5A族元素が挙げられる。希土類金属元素には、La、Ce、Nd、Pr、Sm、Yが挙げられる。第4A族元素には、Ti、ZrあるいはHf金属が挙げられる。第5A族元素には、V、NbあるいはTa金属が挙げられる。   Examples of the promoter element within the scope of the present invention include rare earth metal elements, Group 4A elements, and Group 5A elements that can form oxides having an oxygen storage function. Examples of rare earth metal elements include La, Ce, Nd, Pr, Sm, and Y. The Group 4A element includes Ti, Zr, or Hf metal. Group 5A elements include V, Nb, or Ta metals.

その他の助触媒元素としては、触媒層の高温劣化を抑制する機能を有する酸化物を形成できるアルカリ土類金属元素が挙げられる。これには、Ca、Sr、Ba、Mgが含まれている。   Examples of other promoter elements include alkaline earth metal elements that can form oxides having a function of suppressing high temperature deterioration of the catalyst layer. This includes Ca, Sr, Ba, and Mg.

(実施例1)
ハニカム基材を構成する三種類のステンレス箔(A箔、B箔、C箔)を用意して、各種の前駆体皮膜をステンレス箔表面に付与した後に、希土類金属、第4A族元素金属、第5A族元素金属、アルカリ土類金属成分を含有する触媒層を形成させて、この状態における1050℃の高温耐酸化性を調べた。
Example 1
After preparing three types of stainless steel foil (A foil, B foil, C foil) constituting the honeycomb base material and applying various precursor films to the surface of the stainless steel foil, a rare earth metal, a group 4A element metal, A catalyst layer containing a Group 5A element metal and an alkaline earth metal component was formed, and the high-temperature oxidation resistance at 1050 ° C. in this state was examined.

A箔、C箔は、溶製、圧延によって製造したものであり、特に、C箔については、工程の途中でAlめっきによるAl富化工程を経て製造を行なった。成分系は、質量%で、
A箔:20%Cr−5.0%Al−0.06%Ti−0.1%(La,Ce)−bal.Fe、
C箔:20%Cr−7.5%Al−0.06%Ti−0.1%(La,Ce)−bal.Fe
であった。箔の厚みは、A箔で30μm、C箔で20μmである。B箔は、溶製、圧延によって製造した20%Cr−2.5%Al−0.06%Ti−0.1%REM−bal.Feの箔に、蒸着法によって表裏表面にAlを皮膜したものである。その結果、B箔の厚みは30μmとなり、平均Al濃度は5.0%となるようにした。
A foil and C foil were manufactured by melting and rolling, and in particular, C foil was manufactured through an Al enrichment step by Al plating in the middle of the process. The component system is mass%,
A foil: 20% Cr-5.0% Al-0.06% Ti-0.1% (La, Ce) -bal. Fe,
C foil: 20% Cr-7.5% Al-0.06% Ti-0.1% (La, Ce) -bal. Fe
Met. The thickness of the foil is 30 μm for the A foil and 20 μm for the C foil. B foil is made of 20% Cr-2.5% Al-0.06% Ti-0.1% REM-bal. A Fe foil is coated with Al on the front and back surfaces by vapor deposition. As a result, the thickness of the B foil was 30 μm, and the average Al concentration was 5.0%.

次に、それぞれの箔の表面に前駆体皮膜を付与するために、各種の熱処理を施して、表面に酸化物を形成させた。なお、比較のため、前駆体皮膜を付与しない試験片も作製した。   Next, in order to give a precursor film to the surface of each foil, various heat treatments were performed to form oxides on the surface. In addition, the test piece which does not provide a precursor film | membrane was also produced for the comparison.

A箔及びC箔については、10-2Paの真空中で1180℃×20分の熱処理を施した後に、大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。ここで、酸化物の種類と体積率を制御は、熱処理温度と時間を変化させて行なった。熱処理温度の範囲は500〜1050℃の間であり、熱処理時間の範囲は1分〜10時間の間であった。 About A foil and C foil, after heat-processing in a vacuum of 10 <-2 > Pa for 1180 degreeC x 20 minutes, it heat-processed in air | atmosphere and provided the oxide of the precursor film | membrane on both surfaces of foil. . Here, the type and volume ratio of the oxide were controlled by changing the heat treatment temperature and time. The range of heat treatment temperature was between 500 and 1050 ° C., and the range of heat treatment time was between 1 minute and 10 hours.

B箔については、大気中熱処理を行ない、熱処理温度の範囲は700〜950℃の間で、前駆体皮膜を付与させた。熱処理時間の範囲は1分〜10時間の間であった。ここで、酸化物の種類と体積率を制御は、熱処理温度と時間を変化させて行なった。   About B foil, the heat processing in air | atmosphere was performed, the range of heat processing temperature was 700-950 degreeC, and the precursor film | membrane was provided. The range of heat treatment time was between 1 minute and 10 hours. Here, the type and volume ratio of the oxide were controlled by changing the heat treatment temperature and time.

X線回折法を用いて、ステンレス箔表面に付与された酸化物皮膜の相同定を行なった。引き続き、走査型、透過型電子顕微鏡を用いて酸化物を直接観察して、本発明の前駆体皮膜に必要なα、γ、θ、χ、δ、η、κアルミナの前駆体皮膜に占める体積率を求めた。直接観察は、立体的に体積率を求めるために、ステンレス箔表面の垂直方向と箔厚み断面の垂直方向から観察した複数視野で行い、これらの結果から算出した。表2に、各ステンレス箔の表面に付与された前駆体皮膜の状態を示した。   The phase identification of the oxide film provided on the surface of the stainless steel foil was performed using an X-ray diffraction method. Subsequently, the volume of the α, γ, θ, χ, δ, η, and κ alumina precursor film necessary for the precursor film of the present invention is directly observed by using a scanning electron microscope and a transmission electron microscope. The rate was determined. In order to obtain the volume ratio three-dimensionally, direct observation was performed in a plurality of visual fields observed from the vertical direction of the stainless steel foil surface and the vertical direction of the foil thickness cross section, and was calculated from these results. Table 2 shows the state of the precursor film applied to the surface of each stainless steel foil.

Figure 2006223925
Figure 2006223925

触媒1については、γアルミナ粉末、CeO2粉末、La2(CO33粉末を水と混錬して得たスラリーを、ステンレス箔の両表面に塗布し、乾燥させた。この時、CeO2粉末、La2(CO33粉末は、γアルミナ粉末に対する質量比率で、40%、30%とした。また、塗布量は、ステンレス箔の表面積平方センチメートル当りで固形物質量で、7mgになるようにした。 For catalyst 1, slurry obtained by kneading γ-alumina powder, CeO 2 powder, La 2 (CO 3 ) 3 powder with water was applied to both surfaces of the stainless steel foil and dried. At this time, CeO 2 powder and La 2 (CO 3 ) 3 powder were 40% and 30% in mass ratio with respect to γ-alumina powder. The coating amount was set to 7 mg as a solid substance amount per square centimeter of the surface area of the stainless steel foil.

触媒2については、γアルミナ粉末、ZrO2粉末を水と混錬して得たスラリーを、ステンレス箔の両表面に塗布し、乾燥させた。この時、ZrO2粉末は、γアルミナ粉末に対する質量比率で、40%とした。また、塗布量は、ステンレス箔の表面積平方センチメートル当りで固形物質量で、7mgになるようにした。 For the catalyst 2, a slurry obtained by kneading γ alumina powder and ZrO 2 powder with water was applied to both surfaces of the stainless steel foil and dried. At this time, the ZrO 2 powder was 40% by mass ratio with respect to the γ-alumina powder. The coating amount was set to 7 mg as a solid substance amount per square centimeter of the surface area of the stainless steel foil.

触媒3については、γアルミナ粉末、BaCO3粉末を水と混錬して得たスラリーを、ステンレス箔の両表面に塗布し、乾燥させた。この時、BaCO3粉末は、γアルミナ粉末に対する質量比率で、10%とした。また、塗布量は、ステンレス箔の表面積平方センチメートル当りで固形物質量で、7mgになるようにした。 For catalyst 3, a slurry obtained by kneading γ-alumina powder and BaCO 3 powder with water was applied to both surfaces of the stainless steel foil and dried. At this time, the BaCO 3 powder was 10% by mass ratio with respect to the γ-alumina powder. The coating amount was set to 7 mg as a solid substance amount per square centimeter of the surface area of the stainless steel foil.

触媒4については、γアルミナ粉末、Nb25粉末を水と混錬して得たスラリーを、ステンレス箔の両表面に塗布し、乾燥させた。この時、Nb25粉末は、γアルミナ粉末に対する質量比率で、10%とした。また、塗布量は、ステンレス箔の表面積平方センチメートル当りで固形物質量で、7mgになるようにした。 For the catalyst 4, a slurry obtained by kneading γ alumina powder and Nb 2 O 5 powder with water was applied to both surfaces of the stainless steel foil and dried. At this time, the Nb 2 O 5 powder was 10% by mass ratio with respect to the γ-alumina powder. The coating amount was set to 7 mg as a solid substance amount per square centimeter of the surface area of the stainless steel foil.

引き続き、高温耐酸化性の評価を行なった。この評価は、大気雰囲気で1050℃に保定した電気炉の中で各試験片を高温酸化させ、異常酸化が開始する時間を測定して、比較するものである。異常酸化開始時間は、25時間毎に酸化による質量増加を測定し、質量増加の合計が、箔の表面積平方センチメートル当りで0.6mgを超えた場合の時間とした。   Subsequently, high temperature oxidation resistance was evaluated. In this evaluation, each test piece is oxidized at a high temperature in an electric furnace maintained at 1050 ° C. in an air atmosphere, and the time when abnormal oxidation starts is measured and compared. The abnormal oxidation start time was defined as the time when the increase in mass due to oxidation was measured every 25 hours, and the total mass increase exceeded 0.6 mg per square centimeter of the surface area of the foil.

希土類金属のLa、Ceを含有する触媒1の場合には、前駆体皮膜を付与しなかった比較例のNo.1と8の試験片では、暴露300時間で異常酸化していた。   In the case of the catalyst 1 containing the rare earth metals La and Ce, the comparative example No. The specimens 1 and 8 were abnormally oxidized after 300 hours of exposure.

本発明の前駆体皮膜を付与させたNo.2〜7、No.9〜11の試験片の異常酸化開始時間は、比較例に比べて著しく増加し、高温耐酸化性が向上していた。   No. provided with the precursor film of the present invention. 2-7, no. The abnormal oxidation start times of the test pieces 9 to 11 were significantly increased as compared with the comparative examples, and the high temperature oxidation resistance was improved.

No.2〜4のA箔に付与された前駆体皮膜には、α、γ、θ、δアルミナが含有され、前駆体皮膜の全体積に対するγ、θ、δアルミナの体積率は3〜50%であった。何れの試験片においても、優れた高温耐酸化性が得られた。体積率が5%を下回ったNo.2の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. The precursor coating applied to 2 to 4 A foils contains α, γ, θ, δ alumina, and the volume ratio of γ, θ, δ alumina with respect to the total volume of the precursor coating is 3 to 50%. there were. In any of the test pieces, excellent high-temperature oxidation resistance was obtained. No. whose volume ratio was less than 5%. The test piece 2 was deformed because the treatment temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to a honeycomb substrate.

No.5〜7のB箔では、α、γ、θ、δアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は60〜98%であった。体積率98%のNo.7の試験片では、前駆体皮膜の付与に長時間の熱処理を施した。該アルミナ皮膜の体積率が95%未満ならば、長時間の熱処理を必要としないので、工業的には有利になると考えられる。   No. In the B foils 5 to 7, α, γ, θ, and δ alumina were included in the precursor film, and the volume ratio was 60 to 98% with respect to the total volume of the precursor film. No. with a volume ratio of 98%. In the test piece of No. 7, heat treatment was performed for a long time for applying the precursor film. If the volume ratio of the alumina film is less than 95%, it is considered industrially advantageous because a long-time heat treatment is not required.

No.9〜11のC箔では、χ、κ、ηアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は2〜81%であった。体積率が5%を下回ったNo.9の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. In C foils 9 to 11, χ, κ, and η alumina were contained in the precursor film, and the volume ratio was 2 to 81% with respect to the total volume of the precursor film. No. whose volume ratio was less than 5%. The test piece 9 was deformed because the treatment temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to the honeycomb substrate.

第4A族元素のZrを含有する触媒2の場合には、前駆体皮膜を付与しなかった比較例のNo.12と19の試験片では、暴露275時間で異常酸化していた。   In the case of the catalyst 2 containing the group 4A element Zr, No. of the comparative example in which the precursor film was not provided. Samples 12 and 19 were abnormally oxidized after exposure at 275 hours.

本発明の前駆体皮膜を付与させたNo.13〜18、No.20〜22の試験片の異常酸化開始時間は、比較例に比べて著しく増加し、高温耐酸化性が向上していた。   No. provided with the precursor film of the present invention. 13-18, no. The abnormal oxidation start time of the test pieces 20 to 22 was remarkably increased as compared with the comparative example, and the high temperature oxidation resistance was improved.

No.13〜15のA箔に付与された前駆体皮膜には、α、γ、θ、δアルミナが含有され、前駆体皮膜の全体積に対するγ、θ、δアルミナの体積率は3〜50%であった。何れの試験片においても優れた高温耐酸化性が得られた。体積率が5%を下回ったNo.13の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. The precursor coating applied to the 13-15 A foils contains α, γ, θ, δ alumina, and the volume ratio of γ, θ, δ alumina with respect to the total volume of the precursor coating is 3-50%. there were. In any test piece, excellent high-temperature oxidation resistance was obtained. No. whose volume ratio was less than 5%. The test piece 13 was deformed because the processing temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to the honeycomb substrate.

No.16〜18のB箔では、α、γ、θ、δアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は60〜98%であった。体積率98%のNo.18の試験片では、前駆体皮膜の付与に長時間の熱処理を施した。該アルミナ皮膜の体積率が95%未満ならば、長時間の熱処理を必要としないので、工業的には有利になると考えられる。   No. In the 16-18 B foils, α, γ, θ, δ alumina was included in the precursor film, and the volume ratio was 60 to 98% with respect to the total volume of the precursor film. No. with a volume ratio of 98%. In 18 test pieces, the heat treatment for a long time was applied to the application of the precursor film. If the volume ratio of the alumina film is less than 95%, it is considered industrially advantageous because a long-time heat treatment is not required.

No.20〜22のC箔では、χ、κ、ηアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は2〜81%であった。体積率が5%を下回ったNo.20の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. In C foils 20 to 22, χ, κ, and η alumina were included in the precursor film, and the volume ratio was 2 to 81% with respect to the total volume of the precursor film. No. whose volume ratio was less than 5%. The test piece No. 20 was deformed because the processing temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to the honeycomb substrate.

アルカリ土類金属のBaを含有する触媒3の場合には、前駆体皮膜を付与しなかった比較例のNo.23と30の試験片では、暴露300時間で異常酸化していた。   In the case of the catalyst 3 containing the alkaline earth metal Ba, No. of the comparative example in which the precursor film was not applied. Samples 23 and 30 were abnormally oxidized after 300 hours of exposure.

本発明の前駆体皮膜を付与させたNo.24〜29、No.31〜33の試験片の異常酸化開始時間は、比較例に比べて著しく増加し、高温耐酸化性が向上していた。   No. provided with the precursor film of the present invention. 24-29, no. The abnormal oxidation start times of the test pieces 31 to 33 were significantly increased as compared with the comparative example, and the high temperature oxidation resistance was improved.

No.24〜26のA箔に付与された前駆体皮膜には、α、γ、θ、δアルミナが含有され、前駆体皮膜の全体積に対するγ、θ、δアルミナの体積率は3〜50%であった。何れの試験片においても優れた高温耐酸化性が得られた。体積率が5%を下回ったNo.24の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. The precursor film applied to 24-26 A foil contains α, γ, θ, and δ alumina, and the volume ratio of γ, θ, and δ alumina with respect to the total volume of the precursor film is 3 to 50%. there were. In any test piece, excellent high-temperature oxidation resistance was obtained. No. whose volume ratio was less than 5%. The test piece 24 was deformed because the treatment temperature for applying the precursor film was higher than 1000 ° C., and was slightly inappropriate for application to the honeycomb substrate.

No.27〜29のB箔では、α、γ、θ、δアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は60〜98%であった。体積率98%のNo.29の試験片では、前駆体皮膜の付与に長時間の熱処理を施した。該アルミナ皮膜の体積率が95%未満ならば、長時間の熱処理を必要としないので、工業的には有利になると考えられる。   No. In the B foils of 27 to 29, α, γ, θ, and δ alumina were included in the precursor film, and the volume ratio was 60 to 98% with respect to the total volume of the precursor film. No. with a volume ratio of 98%. In 29 test pieces, the heat treatment for a long time was applied to the application of the precursor film. If the volume ratio of the alumina film is less than 95%, it is considered industrially advantageous because a long-time heat treatment is not required.

No.31〜33のC箔では、χ、κ、ηアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は2〜81%であった。体積率が5%を下回ったNo.31の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. In C foils 31 to 33, χ, κ, and η alumina were contained in the precursor film, and the volume ratio was 2 to 81% with respect to the total volume of the precursor film. No. whose volume ratio was less than 5%. The test piece 31 was deformed because the treatment temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to the honeycomb substrate.

第5A族元素のNbを含有する触媒4の場合には、前駆体皮膜を付与しなかった比較例のNo.34と41の試験片では、暴露300時間で異常酸化していた。   In the case of the catalyst 4 containing Nb of the Group 5A element, No. of the comparative example in which the precursor film was not provided. The specimens 34 and 41 were abnormally oxidized after 300 hours of exposure.

本発明の前駆体皮膜を付与させたNo.35〜40、No.42〜44の試験片の異常酸化開始時間は、比較例に比べて著しく増加し、高温耐酸化性が向上していた。   No. provided with the precursor film of the present invention. 35-40, no. The abnormal oxidation start times of the test pieces 42 to 44 were remarkably increased as compared with the comparative examples, and the high temperature oxidation resistance was improved.

No.35〜37のA箔に付与された前駆体皮膜には、α、γ、θ、δアルミナが含有され、前駆体皮膜の全体積に対するγ、θ、δアルミナの体積率は3〜50%であった。何れの試験片においても優れた高温耐酸化性が得られた。体積率が5%を下回ったNo.35の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. The precursor film applied to the A foil of 35 to 37 contains α, γ, θ, and δ alumina, and the volume ratio of γ, θ, and δ alumina with respect to the total volume of the precursor film is 3 to 50%. there were. In any test piece, excellent high-temperature oxidation resistance was obtained. No. whose volume ratio was less than 5%. The test piece No. 35 was deformed because the processing temperature for applying the precursor film was higher than 1000 ° C., and was somewhat inappropriate for application to a honeycomb substrate.

No.38〜40のB箔では、α、γ、θ、δアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は60〜98%であった。体積率98%のNo.40の試験片では、前駆体皮膜の付与に長時間の熱処理を施した。該アルミナ皮膜の体積率が95%未満ならば、長時間の熱処理を必要としないので、工業的には有利になると考えられる。   No. In the B-40 foil of 40 to 40, α, γ, θ, and δ alumina were included in the precursor film, and the volume ratio was 60 to 98% with respect to the total volume of the precursor film. No. with a volume ratio of 98%. In 40 test pieces, the heat treatment for a long time was applied to the application of the precursor film. If the volume ratio of the alumina film is less than 95%, it is considered industrially advantageous because a long-time heat treatment is not required.

No.42〜44のC箔では、χ、κ、ηアルミナが前駆体皮膜に含まれ、前駆体皮膜の全体積に対して体積率は2〜81%であった。体積率が5%を下回ったNo.42の試験片は、前駆体皮膜を付与するための処理温度が1000℃を超える高温だったため変形が認められ、ハニカム基材に適用するためには、やや不適切であった。   No. In C foils 42 to 44, χ, κ, and η alumina were contained in the precursor film, and the volume ratio was 2 to 81% with respect to the total volume of the precursor film. No. whose volume ratio was less than 5%. The test piece No. 42 was deformed because the processing temperature for applying the precursor film was higher than 1000 ° C., and was slightly inappropriate for application to the honeycomb substrate.

以上示したように、ステンレス箔の表面に前駆体皮膜が形成されていれば、その上に希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属を含有する触媒層が形成されても、優れた高温耐酸化性が得られることが明らかになった。   As described above, if a precursor film is formed on the surface of the stainless steel foil, a catalyst layer containing a rare earth metal, a Group 4A element metal, an alkaline earth metal, and a Group 5A element metal is formed thereon. However, it has become clear that excellent high-temperature oxidation resistance can be obtained.

(実施例2)
実施例1に示したNo.1、4、8、10の触媒層を形成しない箔を利用してメタルハニカム基材を製造、さらに触媒層を形成して排気ガス浄化用触媒コンバータを製造し、本発明の効果を確認する実験を行なった。
(Example 2)
No. 1 shown in Example 1. Experiments to confirm the effect of the present invention by manufacturing a metal honeycomb substrate using a foil that does not form a catalyst layer of 1, 4, 8, 10 and further forming a catalyst converter for forming an exhaust gas purification by forming a catalyst layer Was done.

これらのステンレス箔に波付け加工を施した波箔と、平箔を組み合わせて捲き回して円筒形のハニカム体を作製した。この時、波箔の頂点と平箔の接点において、Ni系のろう材を用いてろう付け接合したハニカム体と、ろう材を使用せず拡散接合で接合したハニカム体を用いた。これらの接合は、何れも真空中で1200℃前後の熱処理で行い、接合部の強度は十分であった。従来、この接合と同時にハニカム体にステンレス製の外筒を接合してメタルハニカム基材とするが、今回の試験では、ステンレス箔の高温耐酸化性を評価するため外筒は接合せず、これをハニカム基材とした。ここで、いずれのハニカム基材は寸法、容積は同じであった。   A cylindrical honeycomb body was manufactured by combining a corrugated foil obtained by corrugating these stainless steel foils and a flat foil. At this time, a honeycomb body joined by brazing using a Ni-based brazing material and a honeycomb body joined by diffusion joining without using a brazing material were used at the contact point between the top of the corrugated foil and the flat foil. All of these bondings were performed by heat treatment at around 1200 ° C. in a vacuum, and the strength of the bonded portions was sufficient. Conventionally, a stainless steel outer cylinder is joined to the honeycomb body at the same time as this joining to form a metal honeycomb substrate. However, in this test, the outer cylinder was not joined to evaluate the high temperature oxidation resistance of the stainless steel foil. Was used as a honeycomb substrate. Here, all the honeycomb substrates had the same size and volume.

次に、それぞれのステンレス箔の表面に前駆体皮膜を付与するために、大気中で熱処理を施して、ステンレス箔の表面に前駆体皮膜となる酸化物を形成させた。ここで、500〜950℃の温度範囲で熱処理時間を変えて、酸化物の種類と体積率の制御を行なった。   Next, in order to give a precursor film to the surface of each stainless steel foil, heat treatment was performed in the air to form an oxide to be a precursor film on the surface of the stainless steel foil. Here, the kind and volume ratio of the oxide were controlled by changing the heat treatment time in a temperature range of 500 to 950 ° C.

全く同じ条件で製造したハニカム基材を解体して、ステンレス箔表面に付与された酸化物皮膜の同定をX線回折法を用いて行なった。引き続き、走査型、透過型電子顕微鏡を用いて酸化物を直接観察して、本発明の前駆体皮膜に必要なα、γ、θ、χ、δ、η、κアルミナの前駆体皮膜に占める体積率を求めた。直接観察は、立体的に体積率を求めるために、ステンレス箔表面の垂直方向と箔厚み断面の垂直方向から観察した複数視野で行い、これらの結果から算出した。表3に、各ステンレス箔の表面に付与された前駆体皮膜の状態を示した。   The honeycomb base material manufactured under exactly the same conditions was disassembled, and the oxide film provided on the surface of the stainless steel foil was identified using the X-ray diffraction method. Subsequently, the volume of the α, γ, θ, χ, δ, η, and κ alumina precursor film necessary for the precursor film of the present invention is directly observed by using a scanning electron microscope and a transmission electron microscope. The rate was determined. In order to obtain the volume ratio three-dimensionally, direct observation was performed in a plurality of visual fields observed from the vertical direction of the stainless steel foil surface and the vertical direction of the foil thickness cross section, and was calculated from these results. Table 3 shows the state of the precursor film applied to the surface of each stainless steel foil.

Figure 2006223925
Figure 2006223925

前駆体皮膜を付与させた後、以下の手順でステンレス箔表面への触媒層の形成を行なった。γアルミナ粉末、白金等の貴金属を含ませたLaO2−CeO2−ZrO2の複合酸化物粉末、BaCO3粉末を水と混錬して触媒スラリーを得た。LaO2−CeO2−ZiO2の複合酸化物粉末の質量比率は、γアルミナ粉末に対して50%とし、BaCO3粉末は3%とした。このスラリーをメタルハニカム基材に吸い上げて、ステンレス箔に塗布し、乾燥させた。固形物の塗布量が、箔表面積平方センチメートル当りで7mgになるように、この工程を繰り返した。これにより、La、Ce、Zr、Baを複合含有する触媒層を有する、各種の触媒コンバータを得ることができた。 After providing the precursor film, a catalyst layer was formed on the surface of the stainless steel foil by the following procedure. γ-alumina powder, composite oxide powders of LaO 2 -CeO 2 -ZrO 2 in which the noble metal impregnated with the platinum or the like, BaCO 3 powder was water and kneaded to obtain a catalyst slurry. The mass ratio of the composite oxide powder of LaO 2 —CeO 2 —ZiO 2 was 50% with respect to the γ-alumina powder, and the BaCO 3 powder was 3%. This slurry was sucked up onto a metal honeycomb substrate, applied to a stainless steel foil, and dried. This process was repeated so that the amount of solid applied was 7 mg per square centimeter of foil surface area. As a result, various catalytic converters having a catalyst layer containing La, Ce, Zr, and Ba were obtained.

前駆体皮膜を付与しない触媒コンバータも作製して、高温耐酸化性の評価を行なった。この評価は、大気雰囲気で1050℃に保定した電気炉の中で、各触媒コンバータを高温酸化させ、ステンレス箔の異常酸化が開始する時間を測定して、比較するものである。異常酸化開始時間は25時間毎に酸化による質量増加を測定し、質量増加の合計が、ステンレス箔の表面積平方センチメートル当りで0.6mgを超えた場合の時間とした。その結果を表3に示した。   A catalytic converter not provided with a precursor film was also prepared and evaluated for high temperature oxidation resistance. In this evaluation, each catalytic converter is oxidized at a high temperature in an electric furnace maintained at 1050 ° C. in an air atmosphere, and the time when the abnormal oxidation of the stainless steel foil starts is measured and compared. The abnormal oxidation start time was determined as the time when the total mass increase exceeded 0.6 mg per square centimeter of the surface area of the stainless steel foil. The results are shown in Table 3.

前駆体皮膜を付与しなかった比較例のNo.45、46、49、50の触媒コンバータでは、酸化速度が大きく、異常酸化は暴露300時間で発生していた。   No. of the comparative example which did not provide the precursor film. In the catalytic converters of 45, 46, 49, and 50, the oxidation rate was high, and abnormal oxidation occurred in 300 hours of exposure.

No.47、48のA箔を用いたハニカム基材では、ステンレス箔表面にα、γ、θ、δアルミナを含有する前駆体皮膜が付与されており、前駆体皮膜の全体積に対してγ、θ、δアルミナの体積率は50%であった。触媒層を有する触媒コンバータでは、いずれも比較例のコンバータに比べて異常酸化開始時間が長く、優れた高温耐酸化性を有していた。特に、波箔と平箔の接合様式がろう材を用いない拡散接合の基材の場合に、より優れた高温耐酸化性が得られた。これは、接合部のろう材付近には本発明の前駆体皮膜が付与され難く、この領域において酸化速度が大きくなって、異常酸化開始時間が短くなったものと考えている。   No. In the honeycomb base material using 47 and 48 A foils, a precursor film containing α, γ, θ, and δ alumina is provided on the surface of the stainless steel foil, and γ, θ with respect to the total volume of the precursor film. The volume ratio of δ alumina was 50%. In the catalytic converter having the catalyst layer, the abnormal oxidation start time was longer than that of the converter of the comparative example, and the high-temperature oxidation resistance was excellent. In particular, in the case of a diffusion-bonded base material that does not use a brazing material as the bonding mode between the corrugated foil and the flat foil, better high temperature oxidation resistance was obtained. This is considered to be because the precursor coating of the present invention is hardly applied in the vicinity of the brazing filler metal at the joint, and the oxidation rate is increased in this region and the abnormal oxidation start time is shortened.

No.51、52のC箔を用いたハニカム基材では、ステンレス表面にα、χ、κ、ηアルミナを含有する前駆体皮膜が付与されており、前駆体皮膜の全体積に対してχ、κ、ηアルミナの体積率は40%であった。触媒層を有する触媒コンバータでは、いずれも比較例のコンバータに比べて異常酸化開始時間が長く、優れた高温耐酸化性を有していた。また、接合様式が拡散接合の触媒コンバータがより優れた高温耐酸化性を有していた。   No. In the honeycomb substrate using C foils 51 and 52, a precursor film containing α, χ, κ, and η alumina is provided on the stainless steel surface, and χ, κ, The volume fraction of η alumina was 40%. In the catalytic converter having the catalyst layer, the abnormal oxidation start time was longer than that of the converter of the comparative example, and the high-temperature oxidation resistance was excellent. Moreover, the catalytic converter having the diffusion mode of diffusion bonding had better high-temperature oxidation resistance.

以上示したように、ステンレス箔の表面に前駆体皮膜が形成されていれば、その上に希土類金属、第4A族元素金属、アルカリ土類金属、第5A族元素金属成分を含有する触媒層が形成されても、優れた高温耐酸化性が得られることが明らかになった。即ち、本発明の排気ガス浄化用触媒コンバータは優れた高温耐酸化性を有することが確認できた。   As described above, if a precursor film is formed on the surface of the stainless steel foil, a catalyst layer containing a rare earth metal, a Group 4A element metal, an alkaline earth metal, and a Group 5A element metal component is formed thereon. Even when formed, it has been found that excellent high-temperature oxidation resistance can be obtained. That is, it was confirmed that the exhaust gas purifying catalytic converter of the present invention has excellent high temperature oxidation resistance.

なお、これら本発明の触媒コンバータの排気ガス浄化性能は、高温耐酸化性評価の後も全く問題無かった。   The exhaust gas purification performance of these catalytic converters of the present invention was completely satisfactory even after the high temperature oxidation resistance evaluation.

(実施例3)
ハニカム基材を構成するステンレス箔(D箔)を用意して、各種の前駆体皮膜をステンレス箔表面に付与した後に、希土類金属、Zr、アルカリ土類金属成分を含有する触媒層を形成させて、1150℃における高温耐酸化性を調べた。
(Example 3)
After preparing a stainless steel foil (D foil) constituting the honeycomb base material and applying various precursor films to the surface of the stainless steel foil, a catalyst layer containing rare earth metal, Zr, and alkaline earth metal components was formed. The high temperature oxidation resistance at 1150 ° C. was examined.

D箔は、溶製、圧延によって製造したものであり、工程途中にAlめっきによるAl富化工程を入れて製造した。成分系は、質量%で、
D箔:20%Cr−8.0%Al−0.05%Zr−0.1%La−bal.Fe
であった。箔の厚みは、25μmである。
The D foil was manufactured by melting and rolling, and was manufactured by putting an Al enrichment step by Al plating in the middle of the process. The component system is mass%,
D foil: 20% Cr-8.0% Al-0.05% Zr-0.1% La-bal. Fe
Met. The thickness of the foil is 25 μm.

前駆体皮膜の付与方法としては、大気中で熱処理を施して箔成分を酸化させる方法、及び、ステンレス表面に助剤を塗布して箔や雰囲気成分以外の成分元素を取り入れて表面を酸化させる方法を適用した。   As a method for applying the precursor film, a method of oxidizing the foil component by performing a heat treatment in the atmosphere, and a method of oxidizing the surface by applying an auxiliary agent to the stainless steel surface and incorporating a component element other than the foil or the atmosphere component Applied.

皮膜1では、10-2Paの真空中で1180℃×20分の熱処理を施した後、ステンレス箔表面にMg(NO32を塗布し、さらに大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。ここで、酸化物の種類と体積率を制御は、Mg(NO32の塗布量と熱処理温度と時間を変化させて行なった。熱処理温度の範囲は500〜1050℃の間で前駆体皮膜の付与を行なった。 In film 1, after heat treatment at 1180 ° C. for 20 minutes in a vacuum of 10 −2 Pa, Mg (NO 3 ) 2 is applied to the surface of the stainless steel foil, and further heat treatment is performed in the atmosphere to produce a precursor film. Was applied to both surfaces of the foil. Here, the kind and volume ratio of the oxide were controlled by changing the application amount of Mg (NO 3 ) 2 , the heat treatment temperature, and the time. The heat treatment temperature range was 500 to 1050 ° C., and the precursor film was applied.

皮膜2では、10-2Paの真空中で1180℃×20分の熱処理を施した後、ステンレス箔表面にNi(NO32とMg(NO32を質量比率で1:10に混合して塗布し、さらに大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。ここで、酸化物の種類と体積率を制御は、Ni・Mg(NO32の塗布量と熱処理温度と時間を変化させて行なった。熱処理温度の範囲は500〜1050℃の間で前駆体皮膜の付与を行なった。 In film 2, after heat treatment at 1180 ° C. for 20 minutes in a vacuum of 10 −2 Pa, Ni (NO 3 ) 2 and Mg (NO 3 ) 2 were mixed at a mass ratio of 1:10 on the stainless steel foil surface. Then, heat treatment was performed in the air to give the oxide of the precursor film to both surfaces of the foil. Here, the type and volume ratio of the oxide were controlled by changing the application amount of Ni · Mg (NO 3 ) 2 , the heat treatment temperature, and the time. The heat treatment temperature range was 500 to 1050 ° C., and the precursor film was applied.

X線回折法を用いて、ステンレス箔表面に付与された酸化物皮膜の相同定を行なった。引き続き、走査型、透過型電子顕微鏡を用いて酸化物を直接観察して、α、γ、θ、χ、δ、η、κアルミナ、及びスピネルが前駆体皮膜に占める体積率を求めた。表4に、各ステンレス箔の表面に付与された前駆体皮膜の状態を示した。   The phase identification of the oxide film provided on the surface of the stainless steel foil was performed using an X-ray diffraction method. Subsequently, the oxide was directly observed using a scanning and transmission electron microscope, and the volume ratio of α, γ, θ, χ, δ, η, κ alumina, and spinel in the precursor film was determined. Table 4 shows the state of the precursor film applied to the surface of each stainless steel foil.

Figure 2006223925
Figure 2006223925

触媒層の形成は、実施例1に示した触媒1〜4を用いて、同様に行なった。   Formation of the catalyst layer was carried out in the same manner using the catalysts 1 to 4 shown in Example 1.

引き続き、前駆体皮膜を付与しない試験片も作製して、高温耐酸化性の評価を行なった。この評価は、大気雰囲気で1150℃に保定した電気炉の中で各試験片を高温酸化させ、異常酸化が開始する時間を測定して、比較するものである。異常酸化開始時間は、25時間毎に酸化による質量増加を測定し、質量増加の合計が、箔の表面積平方センチメートル当りで1mgを超えた場合の時間とした。   Subsequently, a test piece to which the precursor film was not applied was also prepared, and the high temperature oxidation resistance was evaluated. In this evaluation, each test piece is oxidized at a high temperature in an electric furnace maintained at 1150 ° C. in an air atmosphere, and the time when abnormal oxidation starts is measured and compared. The abnormal oxidation start time was defined as the time when the increase in mass due to oxidation was measured every 25 hours, and the total mass increase exceeded 1 mg per square centimeter of the surface area of the foil.

触媒層にLa、Ceの希土類金属成分が含有された試験片はNo.53〜61であり、前駆体皮膜を付与していない比較例のNo.53の試験片では、1150℃における異常酸化開始時間は300時間であった。これに対して、皮膜1によって前駆体皮膜を付与した場合には、αアルミナとMgAl24スピネルが前駆体皮膜に含有されており、No.54〜57で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.54の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.57の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 The test piece containing the rare earth metal component of La and Ce in the catalyst layer was No. 53 to 61, No. of the comparative example to which the precursor film was not applied. In 53 test pieces, the abnormal oxidation start time at 1150 ° C. was 300 hours. On the other hand, when the precursor film is applied by the film 1, α-alumina and MgAl 2 O 4 spinel are contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different between 54 and 57. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the 54 test piece, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. In the test piece of 57, since the heat treatment time for applying the precursor film was long, an efficient operation could not be performed.

皮膜2によって前駆体皮膜を付与した場合には、αアルミナと(Mg,Ni)Al24スピネルが前駆体皮膜に含有されており、No.58〜61で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.58の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.61の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 When the precursor film is applied by the film 2, α-alumina and (Mg, Ni) Al 2 O 4 spinel are contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different between 58 and 61. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the 58 test piece, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. In the 61 test piece, since the heat treatment time for applying the precursor film was long, an efficient operation could not be performed.

触媒層に第4A族元素のZrの金属成分が含有された試験片はNo.62〜70であり、前駆体皮膜を付与していない比較例のNo.62の試験片では、1150℃における異常酸化開始時間は325時間であった。これに対して、皮膜1によって前駆体皮膜を付与した場合には、αアルミナとMgAl24スピネルが前駆体皮膜に含有されており、No.63〜66で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.63の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.66の試験片では前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 A test piece containing a Zr metal component of Group 4A element in the catalyst layer was No. No. 62 of Comparative Example No. 62-70 and no precursor film was applied. In 62 test pieces, the abnormal oxidation start time at 1150 ° C. was 325 hours. On the other hand, when the precursor film is applied by the film 1, α-alumina and MgAl 2 O 4 spinel are contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different between 63 and 66. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the 63 test piece, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, the deformation | transformation was recognized. No. In the test piece 66, the heat treatment time for applying the precursor film was long, so that an efficient operation could not be performed.

皮膜法2によって前駆体皮膜を付与した場合には、αアルミナと(Mg,Ni)Al24スピネルが前駆体皮膜に含有されており、No.67〜70で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.67の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.70の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 When the precursor film was applied by the film method 2, α-alumina and (Mg, Ni) Al 2 O 4 spinel were contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different from 67 to 70. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the test piece of 67, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. With the test piece of 70, since the heat treatment time for applying the precursor film was long, an efficient operation could not be performed.

触媒層にアルカリ土類金属のBaの金属成分が含有された試験片はNo.71〜79であり、前駆体皮膜を付与していない比較例のNo.71の試験片では、1150℃における異常酸化開始時間は300時間であった。これに対して、皮膜1によって前駆体皮膜を付与した場合には、αアルミナとMgAl24スピネルが前駆体皮膜に含有されており、No.72〜75で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.72の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.75の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 The test piece containing the alkaline earth metal Ba metal component in the catalyst layer was No. No. 71 to Comparative Example No. 71 in which no precursor film was applied. In the 71 test piece, the abnormal oxidation start time at 1150 ° C. was 300 hours. On the other hand, when the precursor film is applied by the film 1, α-alumina and MgAl 2 O 4 spinel are contained in the precursor film. From 72 to 75, the volume ratio of the spinel to the volume of the precursor film was different. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About 72 test pieces, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. With 75 test pieces, the heat treatment time for applying the precursor film was long, so that efficient work could not be performed.

皮膜2によって前駆体皮膜を付与した場合には、αアルミナと(Mg,Ni)Al24スピネルが前駆体皮膜に含有されており、No.76〜79で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.76の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.79の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 When the precursor film is applied by the film 2, α-alumina and (Mg, Ni) Al 2 O 4 spinel are contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different from 76 to 79. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the test piece of 76, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. With the test piece 79, the heat treatment time for applying the precursor film was long, so that an efficient operation could not be performed.

触媒層に第5A族元素のNbの金属成分が含有された試験片はNo.80〜88であり、前駆体皮膜を付与していない比較例のNo.80の試験片では、1150℃における異常酸化開始時間は300時間であった。これに対して、皮膜1によって前駆体皮膜を付与した場合には、αアルミナとMgAl24スピネルが前駆体皮膜に含有されており、No.81〜84で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.81の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.84の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 The test piece containing the Nb metal component of the Group 5A element in the catalyst layer was No. 80 to 88, No. of the comparative example to which the precursor film is not applied. In 80 test pieces, the abnormal oxidation start time at 1150 ° C. was 300 hours. On the other hand, when the precursor film is applied by the film 1, α-alumina and MgAl 2 O 4 spinel are contained in the precursor film. In 81 to 84, the volume ratio of the spinel to the volume of the precursor film was different. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About the test piece of 81, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. In the 84 test piece, the heat treatment time for applying the precursor film was long, so that an efficient operation could not be performed.

皮膜2によって前駆体皮膜を付与した場合には、αアルミナと(Mg,Ni)Al24スピネルが前駆体皮膜に含有されており、No.85〜88で前駆体皮膜の体積に対するスピネルの体積率が異なっていた。何れの試験片でも、比較例に比べて異常酸化開始時間は増加しており、優れた高温耐酸化性が得られていた。ここで、No.85の試験片については、前駆体皮膜を付与する熱処理が1000℃を超える高温であったため、変形が認められた。また、No.88の試験片では、前駆体皮膜を付与する熱処理時間が長いため、効率的な作業はできなかった。 When the precursor film is applied by the film 2, α-alumina and (Mg, Ni) Al 2 O 4 spinel are contained in the precursor film. The volume ratio of the spinel with respect to the volume of the precursor film was different from 85 to 88. In any of the test pieces, the abnormal oxidation start time increased compared to the comparative example, and excellent high-temperature oxidation resistance was obtained. Here, no. About 85 test piece, since the heat processing which provides a precursor film | membrane was high temperature exceeding 1000 degreeC, a deformation | transformation was recognized. No. With 88 test pieces, the heat treatment time for applying the precursor film was long, so that efficient work could not be performed.

以上示したように、ステンレス箔の表面に前駆体皮膜が形成されていれば、その上に希土類金属、アルカリ土類金属、第4A族元素金属、第5A族元素金属成分を含有する触媒層が形成されても、優れた高温耐酸化性が得られることが明らかになった。   As described above, if a precursor film is formed on the surface of the stainless steel foil, a catalyst layer containing a rare earth metal, an alkaline earth metal, a Group 4A element metal, and a Group 5A element metal component is formed thereon. Even when formed, it has been found that excellent high-temperature oxidation resistance can be obtained.

(実施例4)
実施例3に示したNo.53、55、60の触媒層を形成していないD箔を利用してメタルハニカム基材を製造、さらに触媒層を形成して排気ガス浄化用触媒コンバータを製造し、本発明の効果を確認する実験を行なった。
Example 4
No. 1 shown in Example 3. A metal honeycomb base material is manufactured using D foils 53, 55, and 60 in which a catalyst layer is not formed, and a catalyst converter for exhaust gas purification is manufactured by further forming a catalyst layer to confirm the effect of the present invention. The experiment was conducted.

これらのステンレス箔に波付け加工を施した波箔と、平箔を組み合わせて捲き回して円筒形のハニカム体を作製した。この時、波箔の頂点と平箔の接点において、Ni系のろう材を用いてろう付け接合したハニカム体と、ろう材を使用せず拡散接合で接合したハニカム体を用いた。これらの接合は何れも真空中で1200℃前後の熱処理で行い、接合部の強度は十分であった。従来、この接合と同時にハニカム体を保護するステンレス製の外筒を接合してメタルハニカム基材とするが、今回の試験では、ステンレス箔の高温耐酸化性を評価するため外筒は接合せず、これをハニカム基材とした。ここで、いずれのハニカム基材も寸法、容積は同じであった。   A cylindrical honeycomb body was manufactured by combining a corrugated foil obtained by corrugating these stainless steel foils and a flat foil. At this time, a honeycomb body joined by brazing using a Ni-based brazing material and a honeycomb body joined by diffusion joining without using a brazing material were used at the contact point between the top of the corrugated foil and the flat foil. All of these joinings were performed by heat treatment at around 1200 ° C. in a vacuum, and the strength of the joining part was sufficient. Conventionally, a stainless steel outer cylinder that protects the honeycomb body is joined at the same time as this joining to form a metal honeycomb base material. However, in this test, the outer cylinder was not joined to evaluate the high temperature oxidation resistance of the stainless steel foil. This was used as a honeycomb substrate. Here, all the honeycomb substrates had the same size and volume.

前駆体皮膜の付与方法としては、下記に示すステンレス表面に助剤を塗布して、箔や雰囲気成分以外の成分元素を取り入れて、表面に皮膜を形成させる方法を適用した。   As a method for applying the precursor film, a method was applied in which an auxiliary agent was applied to the stainless steel surface shown below, and component elements other than foil and atmospheric components were incorporated to form a film on the surface.

皮膜1では、10-2Paの真空中で1180℃×20分の熱処理を施した後、ステンレス箔表面にMg(NO32を塗布し、さらに大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。ここで、酸化物の種類と体積率を制御は、Mg(NO32の塗布量と熱処理温度と時間を変化させて行なった。熱処理温度の範囲は500〜1050℃の間で前駆体皮膜の付与を行なった。 In film 1, after heat treatment at 1180 ° C. for 20 minutes in a vacuum of 10 −2 Pa, Mg (NO 3 ) 2 is applied to the surface of the stainless steel foil, and further heat treatment is performed in the atmosphere to produce a precursor film. Was applied to both surfaces of the foil. Here, the kind and volume ratio of the oxide were controlled by changing the application amount of Mg (NO 3 ) 2 , the heat treatment temperature, and the time. The heat treatment temperature range was 500 to 1050 ° C., and the precursor film was applied.

皮膜2では、10-2Paの真空中で1180℃×20分の熱処理を施した後、ステンレス箔表面にNi(NO32とMg(NO32を質量比率で1:10に混合して塗布し、さらに大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。ここで、酸化物の種類と体積率を制御は、Ni・Mg(NO32の塗布量と熱処理温度と時間を変化させて行なった。熱処理温度の範囲は500〜1050℃の間で前駆体皮膜の付与を行なった。 In film 2, after heat treatment at 1180 ° C. for 20 minutes in a vacuum of 10 −2 Pa, Ni (NO 3 ) 2 and Mg (NO 3 ) 2 were mixed at a mass ratio of 1:10 on the stainless steel foil surface. Then, heat treatment was performed in the air to give the oxide of the precursor film to both surfaces of the foil. Here, the type and volume ratio of the oxide were controlled by changing the application amount of Ni · Mg (NO 3 ) 2 , the heat treatment temperature, and the time. The heat treatment temperature range was 500 to 1050 ° C., and the precursor film was applied.

全く同じ条件で製造したハニカム基材を解体して、ステンレス箔表面に付与された酸化物皮膜の同定をX線回折法を用いて行なった。引き続き、走査型、透過型電子顕微鏡を用いて酸化物を直接観察して、スピネルの前駆体皮膜に占める体積率を求めた。表5に、各ハニカム基材のステンレス箔の表面に付与された前駆体皮膜の状態を示した。   The honeycomb base material manufactured under exactly the same conditions was disassembled, and the oxide film provided on the surface of the stainless steel foil was identified using the X-ray diffraction method. Subsequently, the oxide was directly observed using a scanning and transmission electron microscope to determine the volume ratio of the spinel precursor film. Table 5 shows the state of the precursor film applied to the surface of the stainless steel foil of each honeycomb substrate.

Figure 2006223925
Figure 2006223925

前駆体皮膜を付与させた後、以下の手順でステンレス箔表面への触媒層の形成を行なった。γアルミナ粉末、白金等の貴金属を含ませたLaO2−CeO2−ZrO2の複合酸化物粉末、BaCO3粉末を水と混錬して触媒スラリーを得た。LaO2−CeO2−ZrO2の複合酸化物粉末の質量比率は、γアルミナ粉末に対して25%とし、BaCO3粉末は3%とした。このスラリーをメタルハニカム基材に吸い上げて、ステンレス箔に塗布し、乾燥させた。固形物の塗布量が、箔表面積平方センチメートル当りで7mgになるように、この工程を繰り返した。これにより、La、Ce、Zr、Baを複合含有する触媒層を有する、各種の触媒コンバータを得ることができた。 After providing the precursor film, a catalyst layer was formed on the surface of the stainless steel foil by the following procedure. γ-alumina powder, composite oxide powders of LaO 2 -CeO 2 -ZrO 2 in which the noble metal impregnated with the platinum or the like, BaCO 3 powder was water and kneaded to obtain a catalyst slurry. LaO 2 -CeO 2 mass ratio of the composite oxide powder -ZrO 2 is set to 25% with respect to γ-alumina powder, BaCO 3 powder was 3%. This slurry was sucked up onto a metal honeycomb substrate, applied to a stainless steel foil, and dried. This process was repeated so that the amount of solid applied was 7 mg per square centimeter of foil surface area. As a result, various catalytic converters having a catalyst layer containing La, Ce, Zr, and Ba were obtained.

前駆体皮膜を付与しない触媒コンバータも作製して、高温耐酸化性の評価を行なった。この評価は、大気雰囲気で1150℃に保定した電気炉の中で各触媒コンバータを高温酸化させ、ステンレス箔の異常酸化が開始する時間を測定して、比較するものである。異常酸化開始時間は、25時間毎に酸化による質量増加を測定し、質量増加の合計が、ステンレス箔の表面積平方センチメートル当りで、0.8mgを超えた場合の時間とした。その結果を表5に示した。   A catalytic converter not provided with a precursor film was also prepared and evaluated for high temperature oxidation resistance. In this evaluation, each catalytic converter is oxidized at a high temperature in an electric furnace maintained at 1150 ° C. in an air atmosphere, and the time when the abnormal oxidation of the stainless steel foil starts is measured and compared. The abnormal oxidation start time was measured when the mass increase due to oxidation was measured every 25 hours, and the total mass increase was 0.8 mg per square centimeter of the surface area of the stainless steel foil. The results are shown in Table 5.

前駆体皮膜を付与していない比較例のNo.89、90の触媒コンバータでは、1150℃における異常酸化開始時間は、ろう付け品、拡散接合品とも300時間であった。これに対して、皮膜1によってαアルミナとMgAl24スピネルが含有される前駆体皮膜が形成されたNo.91、92の触媒コンバータでは、異常酸化開始時間は増加しており、優れた高温耐酸化性が得られた。また、拡散接合品の異常酸化開始時間がやや大きい結果となった。 No. of the comparative example which has not provided the precursor film | membrane. In the 89 and 90 catalytic converters, the abnormal oxidation start time at 1150 ° C. was 300 hours for both the brazed product and the diffusion bonded product. On the other hand, No. 1 in which a precursor film containing α-alumina and MgAl 2 O 4 spinel was formed by the film 1. In the catalytic converters 91 and 92, the abnormal oxidation start time was increased, and excellent high-temperature oxidation resistance was obtained. Also, the abnormal oxidation start time of the diffusion bonded product was slightly longer.

皮膜2によって前駆体皮膜を付与したNo.93、94には、αアルミナと(Mg,Ni)Al24スピネルが前駆体皮膜に含有されており、いずれの場合でも、1150℃における異常酸化開始時間は増加していた。比較例に比べて優れた高温耐酸化性が得られていた。この場合においても、ろう付け品に比べて、拡散接合品の高温耐酸化性が優れる結果となった。 No. 1 to which a precursor film was applied by the film 2 Nos. 93 and 94 contained α-alumina and (Mg, Ni) Al 2 O 4 spinel in the precursor film, and in any case, the abnormal oxidation start time at 1150 ° C. increased. Excellent high temperature oxidation resistance was obtained compared to the comparative example. In this case as well, the high temperature oxidation resistance of the diffusion bonded product was superior to that of the brazed product.

以上示したように、ステンレス箔の表面に前駆体皮膜が形成されていれば、その上に希土類金属成分、アルカリ土類金属、第4A族元素金属、第5A族元素金属成分を含有する触媒層が形成されても、優れた高温耐酸化性が得られることが明らかになった。即ち、本発明の排気ガス浄化用触媒コンバータは、優れた高温耐酸化性を有することが確認できた。   As described above, if a precursor film is formed on the surface of the stainless steel foil, a catalyst layer containing a rare earth metal component, an alkaline earth metal, a group 4A element metal, and a group 5A element metal component thereon It has been clarified that excellent high-temperature oxidation resistance can be obtained even when is formed. That is, it was confirmed that the exhaust gas purifying catalytic converter of the present invention has excellent high temperature oxidation resistance.

なお、これら本発明の触媒コンバータの排気ガス浄化性能は、高温耐酸化性評価の後も全く問題無かった。   The exhaust gas purification performance of these catalytic converters of the present invention was completely satisfactory even after the high temperature oxidation resistance evaluation.

(実施例5)
溶製、圧延法を用いて、成分系が20%Cr−ρ%Al−0.06%Ti−0.1%(La,Ce)−bal.Feであるステンレス箔を製造した。ここで、ρは5.0(A材)、6.0(E材)、7.0(F材)、8.0(G材)の四種類であり、何れの試験片も、厚みは30μmの箔形状であった。F、G材については、製造工程中にAlめっきを利用したAl富化工程を入れて製造した。
(Example 5)
Using a melting and rolling method, the component system is 20% Cr-ρ% Al-0.06% Ti-0.1% (La, Ce) -bal. A stainless steel foil made of Fe was produced. Here, ρ is four types of 5.0 (A material), 6.0 (E material), 7.0 (F material), and 8.0 (G material). The foil shape was 30 μm. F and G materials were manufactured by including an Al enrichment process using Al plating during the manufacturing process.

全ての試験片に10-2Paの真空中で1180℃×20分の熱処理を施した後に、大気中で熱処理を施して、前駆体皮膜の酸化物を箔の両表面に付与した。 All test pieces were subjected to heat treatment at 1180 ° C. for 20 minutes in a vacuum of 10 −2 Pa, and then heat treatment was performed in the air, so that the oxide of the precursor film was applied to both surfaces of the foil.

X線回折法を用いて、ステンレス箔表面に付与された酸化物皮膜の相同定を行なった。引き続き、走査型、透過型電子顕微鏡を用いて酸化物を直接観察して、本発明の前駆体皮膜に必要なα、γ、θ、χ、δ、η、κアルミナの前駆体皮膜に占める体積率を求めた。その結果、全ての箔の表面に付与された前駆体皮膜は、α、γ、θ、δアルミナが含有されており、γ、θ、δアルミナの体積率は50%であった。   The phase identification of the oxide film provided on the surface of the stainless steel foil was performed using an X-ray diffraction method. Subsequently, the volume of the α, γ, θ, χ, δ, η, and κ alumina precursor film necessary for the precursor film of the present invention is directly observed by using a scanning electron microscope and a transmission electron microscope. The rate was determined. As a result, the precursor coating applied to the surface of all the foils contained α, γ, θ, δ alumina, and the volume ratio of γ, θ, δ alumina was 50%.

引き続き、前駆体皮膜とステンレス箔に含有される全Al濃度をICP法で確認したところ、質量%で、A材:5.0%、E材:6.0%、F材:7.0%、G材:8.0%であることが確認できた。   Subsequently, when the total Al concentration contained in the precursor film and the stainless steel foil was confirmed by the ICP method, the material A was 5.0%, the material E was 6.0%, the material F was 7.0%. G material: It was confirmed that the content was 8.0%.

前駆体皮膜を付与させた後、以下の手順で、ステンレス箔表面への触媒層の形成を行なった。γアルミナ粉末、白金等の貴金属を含ませたLaO2−CeO2−ZrO2の複合酸化物粉末、BaCO3粉末を水と混錬して触媒スラリーを得た。LaO2−CeO2−ZrO2の複合酸化物粉末の質量比率は、γアルミナ粉末に対して50%とし、BaCO3粉末は3%とした。このスラリーをメタルハニカム基材に吸い上げて、ステンレス箔に塗布し、乾燥させた。固形物の塗布量が、箔表面積平方センチメートル当りで7mgになるように、この工程を繰り返した。これにより、La、Ce、Zr、Baを複合含有する触媒層を有する、各種の試験片を得ることができた。 After providing the precursor film, a catalyst layer was formed on the stainless steel foil surface by the following procedure. γ-alumina powder, composite oxide powders of LaO 2 -CeO 2 -ZrO 2 in which the noble metal impregnated with the platinum or the like, BaCO 3 powder was water and kneaded to obtain a catalyst slurry. LaO 2 -CeO 2 mass ratio of the composite oxide powder -ZrO 2 is set to 50% with respect to γ-alumina powder, BaCO 3 powder was 3%. This slurry was sucked up onto a metal honeycomb substrate, applied to a stainless steel foil, and dried. This process was repeated so that the amount of solid applied was 7 mg per square centimeter of foil surface area. Thereby, various test pieces having a catalyst layer containing La, Ce, Zr, and Ba were obtained.

引き続き、試験片を大気雰囲気で1050℃に保定した電気炉の中で高温酸化させ、25時間毎に酸化増量を測定した。そして、試験開始から200時間経過した際の全酸化増量を比較した結果、酸化増量の比率は、A材:E材:F材:G材=1.0:1.0:0.84:0.82であった。この結果は、A材、E材に比べて、F材、G材の酸化速度が低くなっていることを示したものであり、前駆体皮膜とステンレス箔に含有される全Al濃度が6.5%を超える場合に、形成される酸化皮膜の酸素透過性がより低いことを示唆している。   Subsequently, the test piece was oxidized at a high temperature in an electric furnace maintained at 1050 ° C. in an air atmosphere, and an increase in oxidation was measured every 25 hours. And as a result of comparing the total oxidation increase when 200 hours passed from the start of the test, the ratio of the oxidation increase was A material: E material: F material: G material = 1.0: 1.0: 0.84: 0. .82. This result shows that the oxidation rates of the F material and the G material are lower than those of the A material and the E material, and the total Al concentration contained in the precursor film and the stainless steel foil is 6. When it exceeds 5%, it is suggested that the oxygen permeability of the formed oxide film is lower.

以上示したように、ステンレス箔の表面に前駆体皮膜が形成されていれば、その上に希土類金属、アルカリ土類金属、第4A族元素金属、第5A族元素金属成分を含有する触媒層が形成されても、優れた高温耐酸化性が得られることが明らかになった。   As described above, if a precursor film is formed on the surface of the stainless steel foil, a catalyst layer containing a rare earth metal, an alkaline earth metal, a Group 4A element metal, and a Group 5A element metal component is formed thereon. Even when formed, it has been found that excellent high-temperature oxidation resistance can be obtained.

Claims (11)

ステンレス箔を加工してなるメタルハニカム基材であって、前記ステンレス箔の表面に前駆体皮膜が形成されてなることを特徴とする優れた高温耐酸化性を有する排気ガス浄化触媒コンバータ用ハニカム基材。   A honeycomb substrate for an exhaust gas purification catalytic converter having excellent high-temperature oxidation resistance, characterized in that a metal honeycomb substrate obtained by processing a stainless steel foil, wherein a precursor film is formed on the surface of the stainless steel foil Wood. 前記前駆体皮膜が酸化物から構成されており、該酸化物が結晶構造による分類でα、γ、θ、χ、δ、η、κアルミナの内、少なくとも一種類以上のアルミナを含有している請求項1に記載のハニカム基材。   The precursor film is composed of an oxide, and the oxide contains at least one kind of alumina among α, γ, θ, χ, δ, η, and κ alumina according to the classification by crystal structure. The honeycomb substrate according to claim 1. 前記前駆体皮膜の全体積に対するγ、θ、χ、δ、η、κアルミナの総和体積の割合をa%とすると、aが5%以上95%以下である請求項2に記載のハニカム基材。   The honeycomb substrate according to claim 2, wherein a is 5% or more and 95% or less, where a is the ratio of the total volume of γ, θ, χ, δ, η, and κ alumina to the total volume of the precursor coating. . 前記前駆体皮膜が酸化物から構成されており、少なくとも1種類以上のスピネルが含有されている請求項1に記載のハニカム基材。   The honeycomb substrate according to claim 1, wherein the precursor film is made of an oxide and contains at least one kind of spinel. 前記前駆体皮膜の全体積に対する該スピネルの体積率をb%すると、bが5%以上95%以下である請求項4に記載のハニカム基材。   The honeycomb substrate according to claim 4, wherein b is 5% or more and 95% or less when the volume ratio of the spinel to the total volume of the precursor film is b%. 前記前駆体皮膜とステンレス箔に含有する全Al濃度が質量%で6.5%超13%以下であることを特徴とする請求項1に記載のハニカム基材。   The honeycomb substrate according to claim 1, wherein the total Al concentration contained in the precursor film and the stainless steel foil is more than 6.5% and not more than 13% by mass%. 請求項1〜6のいずれかに記載のハニカム基材が組み込まれてなる触媒コンバータであって、前記ハニカム基材に触媒層が形成されてなることを特徴とする優れた高温耐酸化性を有する排気ガス浄化用触媒コンバータ。   A catalytic converter in which the honeycomb substrate according to any one of claims 1 to 6 is incorporated, wherein a catalyst layer is formed on the honeycomb substrate and has excellent high temperature oxidation resistance Catalytic converter for exhaust gas purification. 前記触媒層が希土類金属成分を含有する請求項7に記載の排気ガス浄化用触媒コンバータ。   The exhaust gas purifying catalytic converter according to claim 7, wherein the catalyst layer contains a rare earth metal component. 前記触媒層がアルカリ土類金属成分を含有する請求項7に記載の排気ガス浄化用触媒コンバータ。   The exhaust gas purifying catalytic converter according to claim 7, wherein the catalyst layer contains an alkaline earth metal component. 前記触媒層が第4A族元素の金属成分を含有する請求項7に記載の排気ガス浄化用触媒コンバータ。   The exhaust gas purifying catalytic converter according to claim 7, wherein the catalyst layer contains a metal component of a Group 4A element. 前記触媒層が第5A族元素の金属成分を含有する請求項7に記載の排気ガス浄化用触媒コンバータ。   The exhaust gas purifying catalytic converter according to claim 7, wherein the catalyst layer contains a metal component of a Group 5A element.
JP2005037446A 2005-02-15 2005-02-15 Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification Active JP4694220B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005037446A JP4694220B2 (en) 2005-02-15 2005-02-15 Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005037446A JP4694220B2 (en) 2005-02-15 2005-02-15 Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2010224525A Division JP5295196B2 (en) 2010-10-04 2010-10-04 Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification

Publications (2)

Publication Number Publication Date
JP2006223925A true JP2006223925A (en) 2006-08-31
JP4694220B2 JP4694220B2 (en) 2011-06-08

Family

ID=36985749

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005037446A Active JP4694220B2 (en) 2005-02-15 2005-02-15 Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification

Country Status (1)

Country Link
JP (1) JP4694220B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014831A (en) * 2005-07-05 2007-01-25 Nippon Steel Materials Co Ltd Catalytic converter for cleaning exhaust gas having excellent high temperature oxidation-resistance
WO2017061439A1 (en) * 2015-10-06 2017-04-13 新日鉄住金マテリアルズ株式会社 Base for supporting catalyst and catalyst support
JP6340101B1 (en) * 2017-02-28 2018-06-06 新日鉄住金マテリアルズ株式会社 Catalyst support substrate and catalyst support

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63232850A (en) * 1986-11-28 1988-09-28 Nisshin Steel Co Ltd Base material for catalytic converter
JPH0199647A (en) * 1986-01-30 1989-04-18 Nippon Steel Corp Foil for catalytic carrier for exhaust gas of automobile, carrier and production thereof
JPH0221946A (en) * 1987-07-24 1990-01-24 Beijing Univ Of Ind Making and product of rare earth metal catalyst with honey-comb type alloy as carrier
JPH04100544A (en) * 1990-08-20 1992-04-02 Daido Steel Co Ltd Material for catalyst carrier and preparation thereof
JPH04114743A (en) * 1990-09-05 1992-04-15 Mitsubishi Heavy Ind Ltd Metal catalyst and preparation thereof
JPH0543984A (en) * 1991-08-08 1993-02-23 Sumitomo Metal Mining Co Ltd Oxidation resisting metal foil and its production
JPH05200304A (en) * 1992-01-27 1993-08-10 Usui Internatl Ind Co Ltd Exhaust gas purifying device
JPH078806A (en) * 1993-05-14 1995-01-13 Inst Fr Petrole Preparation of catalyst used especially for treatment of exhaust gas of internal combustion engine
JPH07275715A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Metal honeycomb for catalyst
JPH08332394A (en) * 1995-06-07 1996-12-17 Calsonic Corp Exhaust gas-cleaning metal carrier catalyst, and its manufacture
JP2006009119A (en) * 2004-06-29 2006-01-12 Jfe Steel Kk STAINLESS STEEL SHEET SUPERIOR IN POTASSIUM-CORROSION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND CARRIER FOR NOx-OCCLUDING CATALYST

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0199647A (en) * 1986-01-30 1989-04-18 Nippon Steel Corp Foil for catalytic carrier for exhaust gas of automobile, carrier and production thereof
JPS63232850A (en) * 1986-11-28 1988-09-28 Nisshin Steel Co Ltd Base material for catalytic converter
JPH0221946A (en) * 1987-07-24 1990-01-24 Beijing Univ Of Ind Making and product of rare earth metal catalyst with honey-comb type alloy as carrier
JPH04100544A (en) * 1990-08-20 1992-04-02 Daido Steel Co Ltd Material for catalyst carrier and preparation thereof
JPH04114743A (en) * 1990-09-05 1992-04-15 Mitsubishi Heavy Ind Ltd Metal catalyst and preparation thereof
JPH0543984A (en) * 1991-08-08 1993-02-23 Sumitomo Metal Mining Co Ltd Oxidation resisting metal foil and its production
JPH05200304A (en) * 1992-01-27 1993-08-10 Usui Internatl Ind Co Ltd Exhaust gas purifying device
JPH078806A (en) * 1993-05-14 1995-01-13 Inst Fr Petrole Preparation of catalyst used especially for treatment of exhaust gas of internal combustion engine
JPH07275715A (en) * 1994-04-05 1995-10-24 Nippon Steel Corp Metal honeycomb for catalyst
JPH08332394A (en) * 1995-06-07 1996-12-17 Calsonic Corp Exhaust gas-cleaning metal carrier catalyst, and its manufacture
JP2006009119A (en) * 2004-06-29 2006-01-12 Jfe Steel Kk STAINLESS STEEL SHEET SUPERIOR IN POTASSIUM-CORROSION RESISTANCE, MANUFACTURING METHOD THEREFOR, AND CARRIER FOR NOx-OCCLUDING CATALYST

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007014831A (en) * 2005-07-05 2007-01-25 Nippon Steel Materials Co Ltd Catalytic converter for cleaning exhaust gas having excellent high temperature oxidation-resistance
JP4519725B2 (en) * 2005-07-05 2010-08-04 新日鉄マテリアルズ株式会社 Exhaust gas purification catalytic converter with excellent high-temperature oxidation resistance
WO2017061439A1 (en) * 2015-10-06 2017-04-13 新日鉄住金マテリアルズ株式会社 Base for supporting catalyst and catalyst support
JPWO2017061439A1 (en) * 2015-10-06 2018-02-01 新日鉄住金マテリアルズ株式会社 Catalyst support substrate and catalyst support
US10458305B2 (en) 2015-10-06 2019-10-29 Nippon Steel Chemical & Material Co., Ltd. Metal substrate for catalytic converter and catalyst carrier
JP6340101B1 (en) * 2017-02-28 2018-06-06 新日鉄住金マテリアルズ株式会社 Catalyst support substrate and catalyst support
WO2018159007A1 (en) * 2017-02-28 2018-09-07 新日鉄住金マテリアルズ株式会社 Base for supporting catalyst and catalyst support
US10378412B2 (en) 2017-02-28 2019-08-13 Nippon Steel Chemical & Material Co., Ltd. Metal substrate for catalytic converter and catalyst carrier
TWI742197B (en) * 2017-02-28 2021-10-11 日商日鐵化學材料股份有限公司 Base material and catalyst carrier for supporting catalyst

Also Published As

Publication number Publication date
JP4694220B2 (en) 2011-06-08

Similar Documents

Publication Publication Date Title
US5427601A (en) Sintered metal bodies and manufacturing method therefor
CN105705234B (en) Exhaust gas control catalyst
EP2692432A1 (en) Exhaust gas purification catalyst, exhaust gas purification monolith catalyst, and process for producing exhaust gas purification catalyst
JP6415738B2 (en) Exhaust gas purification catalyst, method for producing the same, and exhaust gas purification apparatus including the catalyst
JP5019753B2 (en) Exhaust gas purification catalytic converter
JP2002059009A (en) Ceramic carrier and ceramic catalyst
JP7026530B2 (en) Three-way catalyst for exhaust gas purification
JPWO2006103781A1 (en) Exhaust gas purification device and exhaust gas purification catalyst
JP2010099638A (en) Catalyst, catalyst for purifying exhaust gas, and method for manufacturing the catalyst
JP5295196B2 (en) Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification
JP4694220B2 (en) Honeycomb base material for exhaust gas purification catalytic converter having excellent high temperature oxidation resistance and catalytic converter for exhaust gas purification
JP4519725B2 (en) Exhaust gas purification catalytic converter with excellent high-temperature oxidation resistance
JP2010227799A (en) Exhaust gas purifying catalyst
JP2004169110A (en) Stainless steel sheet, and honeycomb structure obtained by using the same
EP3590599B1 (en) Honeycomb substrate for catalyst support, and catalytic converter for exhaust gas purification
CN109153013B (en) Catalyst-supporting base material and catalyst carrier
JP7226943B2 (en) Exhaust gas purification catalyst
JP7123698B2 (en) Exhaust gas purification catalyst
JP5761903B2 (en) Catalytic converter for fuel cell reformer with excellent high temperature durability
JP2010227873A (en) Exhaust gas purifying catalyst and method of manufacturing exhaust gas purifying catalyst
JP2011036740A (en) Catalyst for cleaning exhaust
JP4275781B2 (en) Metal carrier catalyst for exhaust gas purification
EP1651431A1 (en) Fecrai alloy foil for catalytic converters at medium high temperature and a method of making the material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20061019

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070124

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070914

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100803

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101004

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110222

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110223

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140304

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4694220

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250