JP2006222512A - Surface acoustic wave device - Google Patents

Surface acoustic wave device Download PDF

Info

Publication number
JP2006222512A
JP2006222512A JP2005031539A JP2005031539A JP2006222512A JP 2006222512 A JP2006222512 A JP 2006222512A JP 2005031539 A JP2005031539 A JP 2005031539A JP 2005031539 A JP2005031539 A JP 2005031539A JP 2006222512 A JP2006222512 A JP 2006222512A
Authority
JP
Japan
Prior art keywords
thermal expansion
acoustic wave
substrate
surface acoustic
piezoelectric layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005031539A
Other languages
Japanese (ja)
Other versions
JP4609096B2 (en
Inventor
Makoto Furuhata
誠 古畑
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2005031539A priority Critical patent/JP4609096B2/en
Publication of JP2006222512A publication Critical patent/JP2006222512A/en
Application granted granted Critical
Publication of JP4609096B2 publication Critical patent/JP4609096B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface acoustic wave device capable of eliminating its warpage, maintaining a desired inter-IDT-electrode distance and a propagation distance of a surface acoustic wave, and obtaining a desired sound velocity of the surface acoustic wave, thereby obtaining a desired frequency. <P>SOLUTION: The surface acoustic wave device 10 is configured such that a piezoelectric layer 30 is formed on a front side of a substrate 20, and IDTs 40 are formed on the surface of the piezoelectric layer 30, when the thermal expansion coefficient of the substrate 20 differs from the thermal expansion coefficient of the piezoelectric layer 30, an intermediate layer 60 is provided between the substrate 20 and the piezoelectric layer 30 so as to hold a condition of the thermal expansion coefficient of the substrate 20<the thermal expansion coefficient of the intermediate layer 60<the thermal expansion coefficient of the piezoelectric layer 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、弾性表面波素子の構造に関する。   The present invention relates to the structure of a surface acoustic wave element.

従来、半導体基板と、半導体基板表面側に設けられた圧電膜と、圧電膜に接して形成されたIDT(トランスデユーサー)と、半導体基板の裏面側に形成され圧電膜とIDTとを含む弾性表面波素子を駆動するための周辺回路素子と、から形成された弾性表面波素子というものが知られている(例えば、特許文献1参照)。   Conventionally, a semiconductor substrate, a piezoelectric film provided on the front surface side of the semiconductor substrate, an IDT (transducer) formed in contact with the piezoelectric film, and an elastic film including the piezoelectric film and IDT formed on the back surface side of the semiconductor substrate. A surface acoustic wave element formed from a peripheral circuit element for driving a surface acoustic wave element is known (see, for example, Patent Document 1).

実開平3−24719号公報(図3)Japanese Utility Model Publication No. 3-24719 (FIG. 3)

このような特許文献1では、半導体基板の表面に圧電膜が成膜されており、一般に半導体基板の材料としてSi(シリコン)で形成され、圧電膜としての材料がZnO(酸化亜鉛)で形成されるが、SiとZnOとは熱膨張係数が異なり、成膜時に加熱され、常温に戻す際に、熱膨張係数の差から弾性表面波素子が反ってしまうことがある。弾性表面波素子が反ると、IDTの電極間距離が変化し、または、音波の伝播距離が変化することから所望の弾性表面波の音速が得られず、また所望の周波数が得られないというような課題がある。   In such Patent Document 1, a piezoelectric film is formed on the surface of a semiconductor substrate, and generally formed of Si (silicon) as a material of the semiconductor substrate, and a material as a piezoelectric film is formed of ZnO (zinc oxide). However, Si and ZnO have different thermal expansion coefficients. When heated to the room temperature and returned to room temperature, the surface acoustic wave element may warp due to the difference in thermal expansion coefficient. If the surface acoustic wave element is warped, the distance between the electrodes of the IDT changes or the propagation distance of the sound wave changes, so that the desired sound velocity of the surface acoustic wave cannot be obtained and the desired frequency cannot be obtained. There is a problem like this.

本発明の目的は、弾性表面波素子の反りをなくし、所望のIDT電極間距離と弾性表面波の伝播距離を保持し、且つ、所望の弾性表面波の音速を得ることができ、このことによって所望の周波数を得ることができる弾性表面波素子を提供することである。   The object of the present invention is to eliminate the warpage of the surface acoustic wave element, maintain the desired distance between the IDT electrodes and the propagation distance of the surface acoustic wave, and obtain the desired acoustic velocity of the surface acoustic wave. To provide a surface acoustic wave element capable of obtaining a desired frequency.

本発明の弾性表面波素子は、基板の表面に圧電体層を形成し、前記圧電体層の表面にIDTを形成する弾性表面波素子であって、前記基板と前記圧電体層の熱膨張係数が異なるとき、前記基板と前記圧電体層との間に中間層を設け、前記基板の熱膨張係数<前記中間層の熱膨張係数<前記圧電体層の熱膨張係数、となる条件を満たしていることを特徴とする。   A surface acoustic wave device according to the present invention is a surface acoustic wave device in which a piezoelectric layer is formed on a surface of a substrate and an IDT is formed on the surface of the piezoelectric layer, and the thermal expansion coefficient of the substrate and the piezoelectric layer is Are different from each other, an intermediate layer is provided between the substrate and the piezoelectric layer, and the following condition is satisfied: thermal expansion coefficient of the substrate <thermal expansion coefficient of the intermediate layer <thermal expansion coefficient of the piezoelectric layer It is characterized by being.

基板と圧電体層の熱膨張係数が異なるとき、弾性表面波素子の製造過程で加熱処理された際に、弾性表面波素子に反りが発生することが考えられる。本発明によれば、基板と圧電体層との間に、それぞれの熱膨張係数の中間の熱膨張係数を有する中間層を設けることにより、反りを抑制し、反りによって生じるIDT(Interdigital Transducer)の電極間距離の変化、弾性表面波の伝播距離の変化を低減し、所望の周波数を得ることができる。   When the thermal expansion coefficients of the substrate and the piezoelectric layer are different, it is conceivable that the surface acoustic wave element is warped when heat treatment is performed in the process of manufacturing the surface acoustic wave element. According to the present invention, by providing an intermediate layer having a thermal expansion coefficient intermediate between the respective thermal expansion coefficients between the substrate and the piezoelectric layer, the warpage is suppressed and the IDT (Interdigital Transducer) generated by the warpage is suppressed. A change in the distance between the electrodes and a change in the propagation distance of the surface acoustic wave can be reduced to obtain a desired frequency.

また、前記圧電体層に、前記基板の熱膨張係数よりも小さい熱膨張係数を有するダミー領域が設けられ、前記基板と前記圧電体層とが、等価的な熱膨張・収縮を振舞うよう構成されていることが好ましい。   In addition, a dummy region having a thermal expansion coefficient smaller than that of the substrate is provided in the piezoelectric layer, and the substrate and the piezoelectric layer are configured to behave in equivalent thermal expansion / contraction. It is preferable.

このようにすれば、基板の熱膨張係数よりも小さい材料でダミー領域を圧電体層に設けているため、あたかも圧電体層と基板とが等価的な熱膨張・収縮を振舞うので、弾性表面波素子の反りを抑制することができる。   In this case, since the dummy region is provided in the piezoelectric layer with a material smaller than the thermal expansion coefficient of the substrate, the piezoelectric layer and the substrate behave as equivalent thermal expansion / contraction. The warpage of the element can be suppressed.

また、本発明の弾性表面波素子は、基板の表裏両面に圧電体層が形成され、前記圧電体層の一方の表面にIDTが形成され、前記基板の表裏両面において、等価的な熱膨張・収縮を振舞うよう構成されていることを特徴とする。   In the surface acoustic wave device of the present invention, piezoelectric layers are formed on both surfaces of the substrate, IDT is formed on one surface of the piezoelectric layer, and equivalent thermal expansion / It is configured to behave as contraction.

この発明によれば、基板の表裏両面に、熱膨張係数がほぼ同じ圧電体層を形成するため、基板の表裏両面において、等価的な熱膨張・収縮を振舞い、弾性表面波素子の反りを抑制することができる。このことによって、IDTの電極間距離の変化、弾性表面波の伝播距離の変化を低減し、所望の周波数を得ることができる。   According to the present invention, the piezoelectric layers having substantially the same thermal expansion coefficient are formed on both the front and back surfaces of the substrate, so that equivalent thermal expansion and contraction behave on both the front and back surfaces of the substrate and the warpage of the surface acoustic wave element is suppressed. can do. As a result, a change in the distance between the electrodes of the IDT and a change in the propagation distance of the surface acoustic wave can be reduced, and a desired frequency can be obtained.

また、本発明の弾性表面波素子は、基板の表裏両面に中間層を形成し、前記中間層の表面にさらに圧電体層を形成し、一方の圧電体層の表面にIDTが形成され、前記基板の熱膨張係数<前記中間層の熱膨張係数<前記圧電体層の熱膨張係数、となる条件を満たし、前記基板の表裏両面において、等価的な熱膨張・収縮を振舞うよう構成されていることを特徴とする。   In the surface acoustic wave device of the present invention, an intermediate layer is formed on both front and back surfaces of the substrate, a piezoelectric layer is further formed on the surface of the intermediate layer, and an IDT is formed on the surface of one of the piezoelectric layers. It is configured to satisfy the condition that the thermal expansion coefficient of the substrate <the thermal expansion coefficient of the intermediate layer <the thermal expansion coefficient of the piezoelectric layer, and behave equivalent thermal expansion / contraction on both the front and back surfaces of the substrate. It is characterized by that.

この発明によれば、基板の表裏両面に中間層と圧電体層が形成されるので、基板両面において、等価的な熱膨張・収縮を振舞い、また、中間層を設けることによって熱膨張、収縮を緩和し、弾性表面波素子の反りをより一層抑制し、IDTの電極間距離の変化、弾性表面波の伝播距離の変化を低減し、このことにより、所望の周波数を得ることができる。   According to this invention, since the intermediate layer and the piezoelectric layer are formed on both the front and back surfaces of the substrate, equivalent thermal expansion and contraction behave on both surfaces of the substrate, and thermal expansion and contraction can be achieved by providing the intermediate layer. It is mitigated, and the warpage of the surface acoustic wave element is further suppressed, and the change in the interelectrode distance of the IDT and the change in the propagation distance of the surface acoustic wave are reduced, whereby a desired frequency can be obtained.

以下、本発明の実施の形態を図面に基づいて説明する。
図1〜図3は本発明の実施形態1の弾性表面波素子が示され、図4には実施形態2、図5には実施形態3、図6,7には実施形態4が示され、図8には従来技術による弾性表面波素子が示されている。
(従来技術の課題)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 3 show a surface acoustic wave device according to Embodiment 1 of the present invention, FIG. 4 shows Embodiment 2, FIG. 5 shows Embodiment 3, and FIGS. FIG. 8 shows a surface acoustic wave device according to the prior art.
(Prior art issues)

まず、前述した特許文献1による従来技術と課題について図面を参照して説明する。図8は、従来技術による弾性表面波素子の構造と反り方向を模式的に示す断面図である。図8において、弾性表面波素子100は、基板110の表面に圧電体層120が形成され、圧電体層120の表面にIDT(トランスデユーサー電極)130,140が形成されている。さらに、基板110の裏面には、弾性表面波素子を駆動するための周辺回路素子150が設けられている。   First, the prior art and problems according to Patent Document 1 described above will be described with reference to the drawings. FIG. 8 is a cross-sectional view schematically showing the structure and the warping direction of a surface acoustic wave element according to the prior art. In FIG. 8, the surface acoustic wave element 100 has a piezoelectric layer 120 formed on the surface of a substrate 110, and IDTs (transducer electrodes) 130 and 140 formed on the surface of the piezoelectric layer 120. Further, a peripheral circuit element 150 for driving the surface acoustic wave element is provided on the back surface of the substrate 110.

ここで、一般的な材質として、基板110をSi(シリコン)、圧電体層120をZnO(酸化亜鉛)とすると、Siの熱膨張係数は3.55×10-6/℃、ZnOの熱膨張係数は4.0×10-6/℃であるため、ZnOの成膜時、あるいはIDTの電極形成時に加熱工程があるため、加熱したときには、ZnOの方がSiより大きく膨張し、初期状態E(反り発生前)から、C方向に反り、逆に常温に戻した時にはZnOがSiより大きく収縮して、D方向に反ることが知られている。
なお、以降、熱膨張係数としては体膨張係数を示している。
Here, as a general material, when the substrate 110 is Si (silicon) and the piezoelectric layer 120 is ZnO (zinc oxide), the thermal expansion coefficient of Si is 3.55 × 10 −6 / ° C., and the thermal expansion of ZnO. Since the coefficient is 4.0 × 10 −6 / ° C., there is a heating step when forming the ZnO film or forming the electrode of the IDT. Therefore, when heated, ZnO expands more than Si, and the initial state E It is known that since warping in the C direction (before warpage occurs), ZnO contracts more than Si and warps in the D direction when it is returned to room temperature.
Hereinafter, the body expansion coefficient is shown as the thermal expansion coefficient.

前述したように、弾性表面波素子100が反っている場合、IDT130,140の電極間距離が狙いの距離よりも短くなる、あるいは、弾性表面波の音波の伝播距離が短くなることにより、所望の音速が得られない、即ち、所望の周波数を得ることができないというような課題がある。   As described above, when the surface acoustic wave element 100 is warped, the distance between the electrodes of the IDTs 130 and 140 is shorter than the target distance, or the propagation distance of the surface acoustic wave is shortened, so There is a problem that the speed of sound cannot be obtained, that is, a desired frequency cannot be obtained.

また、このような弾性表面波素子100は、ウエハ上に複数一度に形成されるが、前述したように個々の弾性表面波素子100に反りが発生することにより、ウエハ自体も反り、ウエハ状態における特性検査の際に、プローブを外周部に合わせると、中心部の検査ができないというような課題もある。
(実施形態1)
In addition, a plurality of such surface acoustic wave elements 100 are formed on the wafer at a time. However, as described above, when the surface acoustic wave elements 100 are warped, the wafer itself is also warped, and the wafer surface state is increased. In the characteristic inspection, if the probe is aligned with the outer peripheral portion, there is a problem that the central portion cannot be inspected.
(Embodiment 1)

図1は、ウエハ上に形成される本発明に係る弾性表面波素子の配置を示す平面図、図2、図3は、実施形態1に係る弾性表面波素子の平面図、及び断面図である。
図1において、弾性表面波素子10は、ウエハ1に図1に例示したように複数同時に形成される。この状態から、スクライブして単体の弾性表面波素子10が得られる。
FIG. 1 is a plan view showing the arrangement of surface acoustic wave elements according to the present invention formed on a wafer. FIGS. 2 and 3 are a plan view and a sectional view of the surface acoustic wave element according to the first embodiment. .
In FIG. 1, a plurality of surface acoustic wave elements 10 are simultaneously formed on a wafer 1 as illustrated in FIG. From this state, a single surface acoustic wave element 10 is obtained by scribing.

続いて、弾性表面波素子10の構成について図面を参照して説明する。
図2は、本実施形態に係る弾性表面波素子10の構成の1例を示す平面図、図3は、図2のA−A断面を示す断面図である。まず図3において、断面構成を説明する。弾性表面波素子10は、Siからなる基板20の表面にZnOからなる中間層60が形成されている。また、この中間層60の表面にはLiNbO3(ニオブ酸リチウム)からなる圧電体層30が積層形成されている。
さらに、圧電体層の表面には、アルミニウム(Al)からなるIDT40及び反射器50,51が形成されている。
Next, the configuration of the surface acoustic wave element 10 will be described with reference to the drawings.
FIG. 2 is a plan view showing an example of the configuration of the surface acoustic wave element 10 according to the present embodiment, and FIG. 3 is a cross-sectional view showing the AA cross section of FIG. First, a cross-sectional configuration will be described with reference to FIG. In the surface acoustic wave element 10, an intermediate layer 60 made of ZnO is formed on the surface of a substrate 20 made of Si. A piezoelectric layer 30 made of LiNbO 3 (lithium niobate) is laminated on the surface of the intermediate layer 60.
Furthermore, an IDT 40 and reflectors 50 and 51 made of aluminum (Al) are formed on the surface of the piezoelectric layer.

ここで、構成するそれぞれの熱膨張係数は、基板20のSiが3.55×10-6/℃、中間層60のZnOが4.0×10-6/℃、圧電体層30のLiNbO3が15.4×10-6/℃である。圧電体層30の熱膨張係数は、基板20の熱膨張係数の約4倍と大きく、圧電体層30を基板20表面に直接積層する従来技術によれば、圧電体層30をCVD法(Chemical Vapor Deposition)等によって成膜する際、300℃程度の熱が加えられるために、熱膨張係数差によって、弾性表面波素子10が反ってしまう。 Here, the thermal expansion coefficient of each component is 3.55 × 10 −6 / ° C. for Si of the substrate 20, 4.0 × 10 −6 / ° C. for ZnO of the intermediate layer 60, and LiNbO 3 for the piezoelectric layer 30. Is 15.4 × 10 −6 / ° C. The thermal expansion coefficient of the piezoelectric layer 30 is about four times as large as the thermal expansion coefficient of the substrate 20. According to the conventional technique in which the piezoelectric layer 30 is directly laminated on the surface of the substrate 20, the piezoelectric layer 30 is formed by a CVD method (Chemical). When a film is formed by vapor deposition) or the like, heat of about 300 ° C. is applied, so that the surface acoustic wave element 10 warps due to a difference in thermal expansion coefficient.

そこで、本実施形態では、基板20と圧電体層30との間に中間層60を設けている。中間層60のZnOの熱膨張係数は4.0×10-6/℃であり、三者の熱膨張係数の大きさの関係は、基板20<中間層60<圧電体層30の関係にある。 Therefore, in the present embodiment, the intermediate layer 60 is provided between the substrate 20 and the piezoelectric layer 30. The thermal expansion coefficient of ZnO in the intermediate layer 60 is 4.0 × 10 −6 / ° C., and the relationship between the three thermal expansion coefficients is that of the substrate 20 <intermediate layer 60 <piezoelectric layer 30. .

なお、この基板20<中間層60<圧電体層30の関係を満たす中間層60の材質としては、ZnOの他に、Ba2NaNb515、Ba2Ge2TiO8、Ba2Si2TiO8、Pb5GeO11、CdS、CdSe、ZnS、AlN、GaAS、InSb、InAs、TiO2、PbMoO4、Gd3Ga512、Y31512、Cr等を採用することができる。 The material of the intermediate layer 60 satisfying the relationship of the substrate 20 <intermediate layer 60 <piezoelectric layer 30 is not only ZnO but also Ba 2 NaNb 5 O 15 , Ba 2 Ge 2 TiO 8 , Ba 2 Si 2 TiO. 8 , Pb 5 GeO 11 , CdS, CdSe, ZnS, AlN, GaAS, InSb, InAs, TiO 2 , PbMoO 4, Gd 3 Ga 5 O 12 , Y 3 A 15 O 12 , Cr, or the like can be used.

なお、圧電体層30の表面には、IDT40及び反射器50,51が形成されるが、これらの電極は櫛歯状に形成されるため反りに対する影響は少ないが、中間層60は、圧電体層30と基板20の熱膨張係数差、及びIDT40と反射器50,51の影響を加味して材質と厚みを、反り量が最小化すべく選択されることが好ましい。   Although the IDT 40 and the reflectors 50 and 51 are formed on the surface of the piezoelectric layer 30, these electrodes are formed in a comb-teeth shape and thus have little influence on the warp. In consideration of the difference in thermal expansion coefficient between the layer 30 and the substrate 20 and the influence of the IDT 40 and the reflectors 50 and 51, the material and thickness are preferably selected so as to minimize the amount of warpage.

続いて、弾性表面波素子10の平面構成について、図2を参照して説明する。図2において、圧電体層30の表面には、IDT40が形成され、IDT40の両側、即ち弾性表面波が(以降、単に音波と呼称することがある)伝播する方向(図中、X’方向)に反射器50,51が形成されている。   Next, the planar configuration of the surface acoustic wave element 10 will be described with reference to FIG. In FIG. 2, IDT 40 is formed on the surface of the piezoelectric layer 30, and both sides of the IDT 40, that is, directions in which surface acoustic waves (hereinafter simply referred to as sound waves) propagate (X ′ direction in the figure). Reflectors 50 and 51 are formed.

IDT40は、左右に二つのブロックから構成され、一方が入力側IDT、他方が出力側IDTである。IDT40は、櫛歯状電極41と、櫛歯状電極41を接続するバスバー42とから構成されている。また、バスバー42は、図示しない接続用パッドに接続されている。   The IDT 40 is composed of two blocks on the left and right, one being the input side IDT and the other being the output side IDT. The IDT 40 includes a comb-shaped electrode 41 and a bus bar 42 that connects the comb-shaped electrode 41. The bus bar 42 is connected to a connection pad (not shown).

なお、反射器50,51は必ずしも必要ではなく、省略することができる。この場合、圧電体層30の音波の伝播方向両端の側面が反射壁となる。   The reflectors 50 and 51 are not always necessary and can be omitted. In this case, side surfaces at both ends of the piezoelectric layer 30 in the propagation direction of the sound wave serve as reflection walls.

従って、前述の実施形態1によれば、基板20と圧電体層30の熱膨張係数が異なるとき、弾性表面波素子10の製造過程で加熱処理され、再び常温に戻された際に、基板20と圧電体層30の間に、それぞれの熱膨張係数の中間の熱膨張係数を有する中間層60を設けることにより、弾性表面波素子10の反り量を抑制し、反りによって生じるIDT40の櫛歯状電極41の電極間距離、及びIDT40と反射器50,51との電極間距離の変化、音波の伝播距離の変化を抑制し、所望の周波数を得ることができる。   Therefore, according to the first embodiment described above, when the thermal expansion coefficients of the substrate 20 and the piezoelectric layer 30 are different, the substrate 20 is subjected to heat treatment in the manufacturing process of the surface acoustic wave element 10 and returned to room temperature again. By providing an intermediate layer 60 having a thermal expansion coefficient intermediate between the respective thermal expansion coefficients between the piezoelectric layer 30 and the piezoelectric layer 30, the amount of warpage of the surface acoustic wave element 10 is suppressed, and the comb teeth of the IDT 40 generated by the warp A desired frequency can be obtained by suppressing the interelectrode distance of the electrode 41, the interelectrode distance between the IDT 40 and the reflectors 50 and 51, and the change of the propagation distance of the sound wave.

また、弾性表面波素子10は、ウエハ1上に複数個同時に形成されるが、前述したように弾性表面波素子10の反りが抑えられているために、ウエハ状態で特性検査等を行う際、ウエハ1の外周部にも、また中心部にも検査用プローブを確実に接続でき、確実に検査を行うことができるというような効果がある。
(実施形態2)
A plurality of surface acoustic wave elements 10 are simultaneously formed on the wafer 1, but since the warpage of the surface acoustic wave element 10 is suppressed as described above, when performing characteristic inspection or the like in the wafer state, An inspection probe can be reliably connected to the outer peripheral portion and the central portion of the wafer 1, and there is an effect that the inspection can be reliably performed.
(Embodiment 2)

続いて、本発明に係る実施形態2について図面を参照して説明する。
図4は、実施形態2に係る弾性表面波素子10を示す断面図である。IDT40及び反射器50,51の平面構成は、前述した実施形態1と同じであるため説明を省略する。図4において、弾性表面波素子10は、Siからなる基板20の表面側に圧電体層30、裏面側に圧電体層31が形成され、表面側の圧電体層30の表面に、実施形態1(図2、参照)で示した平面形状を有するIDT40と反射器50,51が形成されている。
Subsequently, Embodiment 2 according to the present invention will be described with reference to the drawings.
FIG. 4 is a cross-sectional view showing the surface acoustic wave element 10 according to the second embodiment. Since the planar configurations of the IDT 40 and the reflectors 50 and 51 are the same as those of the first embodiment, the description thereof is omitted. In FIG. 4, the surface acoustic wave element 10 includes a piezoelectric layer 30 formed on the front side of a substrate 20 made of Si, and a piezoelectric layer 31 formed on the back side. The IDT 40 and the reflectors 50 and 51 having the planar shape shown in FIG. 2 are formed.

本実施形態では、圧電体層30,31は、LiNbO3からなり、ほぼ同じ厚みで成膜されている。圧電体層30,31はCVD法等の成膜技術によって形成される。この際、約300℃程度の加熱処理がなされる。 In the present embodiment, the piezoelectric layers 30 and 31 are made of LiNbO 3 and are formed with substantially the same thickness. The piezoelectric layers 30 and 31 are formed by a film forming technique such as a CVD method. At this time, a heat treatment of about 300 ° C. is performed.

なお、圧電体層30,31の厚みは、ほぼ同じ厚みでも良いが、IDT40及び反射器50,51の熱膨張及び収縮の影響を配慮し、音波の伝播に影響のない圧電体層31の厚みを調整する。   Although the piezoelectric layers 30 and 31 may have substantially the same thickness, the thickness of the piezoelectric layer 31 that does not affect the propagation of sound waves in consideration of the effects of thermal expansion and contraction of the IDT 40 and the reflectors 50 and 51. Adjust.

また、圧電体層31は、圧電体層30と同じ材質にすることが好ましいが、圧電体層30の熱膨張係数とほぼ同じで、基板20の表裏において、等価的な熱膨張・収縮を振舞う条件を満たせば、特に限定されることはない。   The piezoelectric layer 31 is preferably made of the same material as that of the piezoelectric layer 30, but has substantially the same thermal expansion coefficient as that of the piezoelectric layer 30 and behaves equivalently to thermal expansion / contraction on the front and back of the substrate 20. If the conditions are satisfied, there is no particular limitation.

従って、前述した実施形態2によれば、基板20の表裏両面に、熱膨張係数がほぼ同じ圧電体層30,31を形成するため、基板20の両面において、等価的な熱膨張・収縮を振舞い、弾性表面波素子10の反りを抑制することができる。このことによって、IDT40の電極間距離の変化、及びIDT40と反射器50,51との電極間距離の変化、弾性表面波の伝播距離の変化を低減し、所望の周波数を得ることができる。
(実施形態3)
Therefore, according to the second embodiment described above, the piezoelectric layers 30 and 31 having substantially the same thermal expansion coefficient are formed on both the front and back surfaces of the substrate 20, so that equivalent thermal expansion and contraction behave on both surfaces of the substrate 20. Further, warpage of the surface acoustic wave element 10 can be suppressed. As a result, a change in the distance between the electrodes of the IDT 40, a change in the distance between the electrodes of the IDT 40 and the reflectors 50 and 51, and a change in the propagation distance of the surface acoustic wave can be reduced to obtain a desired frequency.
(Embodiment 3)

次に、本発明の実施形態3に係る弾性表面波素子の構成について図面を参照して説明する。実施形態3は、前述した実施形態1(図3、参照)における基板20の表面に中間層60と圧電体層30とを積層した構造を、基板20の裏面側にも形成したところに特徴を有している。   Next, the structure of the surface acoustic wave element according to the third embodiment of the present invention will be described with reference to the drawings. The third embodiment is characterized in that the structure in which the intermediate layer 60 and the piezoelectric layer 30 are laminated on the surface of the substrate 20 in the first embodiment (see FIG. 3) is also formed on the back side of the substrate 20. Have.

図5は、実施形態3に係る弾性表面波素子10の構成を示す断面図である。図5において、Siからなる基板20の表裏両面には、それぞれ中間層60,61が形成され、中間層60,61の表面には、それぞれ圧電体層30,31が形成されている。本実施形態においては、中間層60,61はZnOからなり、また圧電体層30,31はLiNbO3からなる。 FIG. 5 is a cross-sectional view illustrating a configuration of the surface acoustic wave element 10 according to the third embodiment. In FIG. 5, intermediate layers 60 and 61 are respectively formed on the front and back surfaces of the substrate 20 made of Si, and piezoelectric layers 30 and 31 are formed on the surfaces of the intermediate layers 60 and 61, respectively. In the present embodiment, the intermediate layers 60 and 61 are made of ZnO, and the piezoelectric layers 30 and 31 are made of LiNbO 3 .

一方の圧電体層30の表面には、IDT40及び反射器50,51が形成されている。IDT40及び反射器50,51は、実施形態1(図2、参照)と同じ構成であるので説明を省略する。   An IDT 40 and reflectors 50 and 51 are formed on the surface of one piezoelectric layer 30. Since the IDT 40 and the reflectors 50 and 51 have the same configuration as that of the first embodiment (see FIG. 2), description thereof is omitted.

実施形態1でも説明したが、基板20のSiの熱膨張係数が3.55×10-6/℃、中間層60,61のZnOが4.0×10-6/℃、圧電体層30,31のLiNbO3が15.4×10-6/℃であり、中間層60,61の材質は、基板20の熱膨張係数<中間層60,61の熱膨張係数<圧電体層30,31の熱膨張係数、という条件を満たす範囲で選択されるとなお好ましい。 As described in the first embodiment, the thermal expansion coefficient of Si of the substrate 20 is 3.55 × 10 −6 / ° C., the ZnO of the intermediate layers 60 and 61 is 4.0 × 10 −6 / ° C., the piezoelectric layer 30, The LiNbO 3 of 31 is 15.4 × 10 −6 / ° C., and the material of the intermediate layers 60 and 61 is the thermal expansion coefficient of the substrate 20 <the thermal expansion coefficient of the intermediate layers 60 and 61 <the piezoelectric layers 30 and 31. It is still more preferable that the thermal expansion coefficient is selected in a range satisfying the condition.

本実施形態では、圧電体層30,31は、ほぼ同じ厚みで成膜され、また、中間層60,61も同様にほぼ同じ厚みで、両者ともCVD法等の成膜技術によって形成される。この際、約300℃程度の加熱処理がなされる。   In this embodiment, the piezoelectric layers 30 and 31 are formed with substantially the same thickness, and the intermediate layers 60 and 61 are also formed with substantially the same thickness, both of which are formed by a film forming technique such as a CVD method. At this time, a heat treatment of about 300 ° C. is performed.

なお、圧電体層30,31の厚みは、ほぼ同じ厚みでも良いが、IDT40及び反射器50,51の熱膨張及び収縮の影響を配慮し、音波の伝播に影響のない圧電体層31の厚みを調整する。   Although the piezoelectric layers 30 and 31 may have substantially the same thickness, the thickness of the piezoelectric layer 31 that does not affect the propagation of sound waves in consideration of the effects of thermal expansion and contraction of the IDT 40 and the reflectors 50 and 51. Adjust.

また、圧電体層31は、圧電体層30と同じ材質にすることが好ましいが、圧電体層30の熱膨張係数がほぼ同じで、基板20の表裏において、等価的な熱膨張・収縮を振舞う条件を満たせば、特に限定されることはない。   The piezoelectric layer 31 is preferably made of the same material as that of the piezoelectric layer 30, but the thermal expansion coefficient of the piezoelectric layer 30 is substantially the same, and equivalent thermal expansion / contraction occurs on the front and back of the substrate 20. If the conditions are satisfied, there is no particular limitation.

また、中間層60,61は、圧電体層30と基板20の熱膨張係数差、及びIDT40と反射器50,51の影響を加味して材質と厚みを、反り量を最小化すべく選択されることが好ましい。   Further, the intermediate layers 60 and 61 are selected so as to minimize the amount of warpage and the material and thickness in consideration of the difference in thermal expansion coefficient between the piezoelectric layer 30 and the substrate 20 and the influence of the IDT 40 and the reflectors 50 and 51. It is preferable.

従って、前述した実施形態3によれば、基板20の表裏両面に中間層60,61と圧電体層30,31が形成されるので、基板20の表裏両面において、等価的な熱膨張・収縮を振舞い、また、中間層60,61を設けることによって熱膨張、収縮を緩和し、弾性表面波素子10の反りをより一層抑制し、IDT40の電極間距離の変化、及びIDT40と反射器50,51との電極間距離の変化、音波の伝播距離の変化を低減し、このことにより、所望の周波数を得ることができる。
(実施形態4)
Therefore, according to the above-described third embodiment, the intermediate layers 60 and 61 and the piezoelectric layers 30 and 31 are formed on both the front and back surfaces of the substrate 20, so that equivalent thermal expansion and contraction are performed on both the front and back surfaces of the substrate 20. By providing the intermediate layers 60 and 61, the thermal expansion and contraction are alleviated, the warpage of the surface acoustic wave element 10 is further suppressed, the change in the interelectrode distance of the IDT 40, and the IDT 40 and the reflectors 50 and 51 are reduced. The change in the distance between the electrodes and the change in the propagation distance of the sound wave can be reduced, whereby a desired frequency can be obtained.
(Embodiment 4)

続いて、本発明に係る実施形態4について図面を参照して説明する。実施形態4は、前述した実施形態1の技術思想を基本に、圧電体層30に基板20の熱膨張係数よりも小さい材料のダミー領域を形成したところに特徴を有している。
図6、図7は、本実施形態に係る弾性表面波素子10を示し、図6には平面図、図7には図6のA−A断面を示す断面図が示されている。
Next, Embodiment 4 according to the present invention will be described with reference to the drawings. The fourth embodiment is characterized in that a dummy region made of a material smaller than the thermal expansion coefficient of the substrate 20 is formed in the piezoelectric layer 30 based on the technical idea of the first embodiment described above.
6 and 7 show the surface acoustic wave element 10 according to the present embodiment, FIG. 6 is a plan view, and FIG. 7 is a cross-sectional view showing the AA cross section of FIG.

まず図7において、断面構成を説明する。弾性表面波素子10は、Siからなる基板20の表面にZnOからなる中間層60、この中間層60の表面にLiNbO3からなる圧電体層30が形成されている。また、この圧電体層30の表面には櫛歯状電極を有するAlからなるIDT40と反射器50,51とが形成されている。 First, a cross-sectional configuration will be described with reference to FIG. In the surface acoustic wave element 10, an intermediate layer 60 made of ZnO is formed on the surface of a substrate 20 made of Si, and a piezoelectric layer 30 made of LiNbO 3 is formed on the surface of the intermediate layer 60. An IDT 40 made of Al having comb-like electrodes and reflectors 50 and 51 are formed on the surface of the piezoelectric layer 30.

圧電体層30には、圧電体層30を貫通して複数のダミー領域70が形成されている。ダミー領域70は、本実施形態では、SiO2(酸化シリコン)で形成されている。 A plurality of dummy regions 70 are formed in the piezoelectric layer 30 so as to penetrate the piezoelectric layer 30. In the present embodiment, the dummy region 70 is formed of SiO 2 (silicon oxide).

ここで、弾性表面波素子10を構成するそれぞれの熱膨張係数は、基板20のSiが3.55×10-6/℃、中間層60のZnOが4.0×10-6/℃、圧電体層30のLiNbO3が15.4×10-6/℃、ダミー領域70のSiO2が0.55×10-6/℃である。ダミー領域70の熱膨張係数は、基板20の熱膨張係数の約1/8と小さい。 Here, the thermal expansion coefficients of the surface acoustic wave device 10 are 3.55 × 10 −6 / ° C. for Si of the substrate 20, 4.0 × 10 −6 / ° C. for ZnO of the intermediate layer 60, and piezoelectric. LiNbO 3 of the body layer 30 is 15.4 × 10 −6 / ° C., and SiO 2 of the dummy region 70 is 0.55 × 10 −6 / ° C. The thermal expansion coefficient of the dummy region 70 is as small as about 1/8 of the thermal expansion coefficient of the substrate 20.

続いて、弾性表面波素子10の平面構成について、図6を参照して説明する。図6において、圧電体層30の表面には、IDT40が形成され、IDT40の両側、即ち音波が伝播する方向(図中、X’方向)に反射器50,51が形成されている。   Next, a planar configuration of the surface acoustic wave element 10 will be described with reference to FIG. In FIG. 6, IDT 40 is formed on the surface of piezoelectric layer 30, and reflectors 50 and 51 are formed on both sides of IDT 40, that is, in the direction in which sound waves propagate (X ′ direction in the figure).

IDT40は、左右に二つのブロックから構成され、一方が入力側IDT、他方が出力側IDTである。IDT40は、櫛歯状電極41と、櫛歯状電極を接続するバスバー42とから構成されている。また、バスバー42は、図示しない接続用パッドに接続されている。   The IDT 40 is composed of two blocks on the left and right, one being the input side IDT and the other being the output side IDT. The IDT 40 includes a comb-shaped electrode 41 and a bus bar 42 that connects the comb-shaped electrode. The bus bar 42 is connected to a connection pad (not shown).

圧電体層30には所定位置に、図6に示すように複数のダミー領域70が形成されている。ダミー領域70は、圧電体層30に円柱形状に形成され、IDT40及び反射器50,51の外側に配置されている。なお、ダミー領域70は、バスバー42、図示しない接続用パッドにも交差して形成してもよいが、IDT40と反射器50,51の音波伝播範囲には形成されない。   In the piezoelectric layer 30, a plurality of dummy regions 70 are formed at predetermined positions as shown in FIG. The dummy region 70 is formed in a cylindrical shape in the piezoelectric layer 30 and is disposed outside the IDT 40 and the reflectors 50 and 51. The dummy region 70 may be formed so as to intersect with the bus bar 42 and a connection pad (not shown), but is not formed in the sound wave propagation range of the IDT 40 and the reflectors 50 and 51.

ダミー領域70は、幅方向(Y’方向)は、A−Aを結んだ直線に対して対称、長手方向(X’方向)は、中心線Bに対して対称に配置される。
(実施形態4の実施例)
The dummy region 70 is arranged symmetrically with respect to the straight line connecting AA in the width direction (Y ′ direction) and symmetrical with respect to the center line B in the longitudinal direction (X ′ direction).
(Example of Embodiment 4)

続いて、本実施形態の実施例を例示する。基板20と圧電体層30との熱膨張係数差を等価的関係にするために、それぞれの熱膨張係数、厚み、面積について具体例をあげて説明する。ダミー領域70をSiO2とし、この面積割合を算出する。 Subsequently, examples of the present embodiment will be illustrated. In order to make the difference in thermal expansion coefficient between the substrate 20 and the piezoelectric layer 30 equivalent, a specific example will be given for each thermal expansion coefficient, thickness, and area. The dummy area 70 is SiO 2 and the area ratio is calculated.

まず、熱膨張係数の関係から以下のように、SiO2の弾性表面波素子10の中の面積割合をα、ZnOの弾性表面波素子10の中の面積割合をβとし、それぞれの割合を決める。
α×SiO2の熱膨張係数+β×ZnOの熱膨張係数=Siの熱膨張係数 (式1)。
これをα+β=1となるように設定する。
First, from the relationship of the thermal expansion coefficient, the area ratio in the surface acoustic wave element 10 of SiO 2 is α, the area ratio in the surface acoustic wave element 10 of ZnO is β, and the respective ratios are determined. .
α × SiO 2 thermal expansion coefficient + β × ZnO thermal expansion coefficient = Si thermal expansion coefficient (Equation 1).
This is set so that α + β = 1.

次に、基板(Si)20と圧電体層(LiNbO3)30それぞれの厚みに関する係数γから反り補正係数を求める。
γ=LiNbO3の厚み/Siの厚み (式2)。
これらのことから、(式1)と(式2)から得られるαとγの積α×γがダミー領域70の面積である。
Next, a warpage correction coefficient is obtained from a coefficient γ relating to the thickness of each of the substrate (Si) 20 and the piezoelectric layer (LiNbO 3 ) 30.
γ = LiNbO 3 thickness / Si thickness (Formula 2).
From these, the product α × γ of α and γ obtained from (Equation 1) and (Equation 2) is the area of the dummy region 70.

実施形態1における各要素の熱膨張係数を、SiO2は0.55×10-6/℃、LiNbO3が15.4×10-6/℃、Siは3.55×10-6/℃とし、(式1)にこの値を代入する。
α×0.55×10-6+(1−α)×15.4×10-6=3.55×10-6の計算式が得られる。
この計算式からα=0.8が求められる。
The thermal expansion coefficient of each element in Embodiment 1 is as follows: SiO 2 is 0.55 × 10 −6 / ° C., LiNbO 3 is 15.4 × 10 −6 / ° C., and Si is 3.55 × 10 −6 / ° C. , (Equation 1) is substituted for this value.
The calculation formula of α × 0.55 × 10 −6 + (1−α) × 15.4 × 10 −6 = 3.55 × 10 −6 is obtained.
From this calculation formula, α = 0.8 is obtained.

ここで、基板20の厚みを300μm、圧電体層30の厚みを3μmに設定すると、γ=3/300=1/100となる。
従って、α×γ=0.8/100=0.8%となり、SiO2の弾性表面波素子10の中の面積割合αは、0.8%に設定することで、基板20と圧電体層30との熱膨張係数差の等価的関係が得られる。
Here, if the thickness of the substrate 20 is set to 300 μm and the thickness of the piezoelectric layer 30 is set to 3 μm, γ = 3/300 = 1/100.
Therefore, α × γ = 0.8 / 100 = 0.8%, and by setting the area ratio α in the surface acoustic wave element 10 of SiO 2 to 0.8%, the substrate 20 and the piezoelectric layer An equivalent relationship of the difference in thermal expansion coefficient from 30 is obtained.

このことから、図6において示したダミー領域70の面積総和が、弾性表面波素子10のIDT40が形成される表面の面積の0.8%となるように、個々のダミー領域の面積と数が設定される。   From this, the area and the number of the individual dummy regions are such that the total area of the dummy regions 70 shown in FIG. 6 is 0.8% of the surface area on which the IDT 40 of the surface acoustic wave element 10 is formed. Is set.

なお、前述の実施形態4では、ダミー領域70にSiO2を採用しているが、SiO2に限らず基板20の熱膨張係数よりも小さい熱膨張係数を有する材料から選択することができる。 In Embodiment 4 described above, SiO 2 is used for the dummy region 70, but the material may be selected from materials having a thermal expansion coefficient smaller than that of the substrate 20 without being limited to SiO 2 .

また、前述の実施形態4では、圧電体層30にダミー領域70を設けたが、中間層60、または圧電体層30と中間層60との両方に設けることができる。このような場合においても、前述した計算式から、熱膨張・収縮が等価的になるような面積を求め、音波の伝播に影響を与えない範囲に設けることができる。   In the fourth embodiment, the dummy region 70 is provided in the piezoelectric layer 30. However, the dummy region 70 may be provided in the intermediate layer 60 or both the piezoelectric layer 30 and the intermediate layer 60. Even in such a case, an area where the thermal expansion and contraction is equivalent can be obtained from the above-described calculation formula, and can be provided in a range that does not affect the propagation of sound waves.

なお、ダミー領域70は、図6に示すように平面形状を円形にするほか、三角形、矩形等任意に選択することができる。また、個々のダミー領域70を連続して溝形状にすることもできる。   As shown in FIG. 6, the dummy area 70 can be arbitrarily selected such as a triangle or a rectangle in addition to a circular plane shape. In addition, the individual dummy regions 70 can be continuously grooved.

従って、前述した実施形態4によれば、圧電体層30に、この圧電体層30と基板20とが等価的な熱膨張・収縮を振舞うように、基板20の熱膨張係数よりも熱膨張係数が小さい材料でダミー領域70を圧電体層30に設けているため、製造工程中に加熱され、再び常温に戻したときに弾性表面波素子が反ることがなく、所望のIDT電極間距離と、弾性表面波の伝播距離を保持することから、所望の弾性表面波の音速を得ることができ、このことから所定の周波数を得ることができるという効果がある。   Therefore, according to the fourth embodiment described above, the thermal expansion coefficient of the piezoelectric layer 30 is larger than the thermal expansion coefficient of the substrate 20 so that the piezoelectric layer 30 and the substrate 20 perform equivalent thermal expansion / contraction. Since the dummy region 70 is provided in the piezoelectric layer 30 with a small material, the surface acoustic wave element does not warp when heated during the manufacturing process and returned to room temperature, and the desired distance between the IDT electrodes Since the propagation distance of the surface acoustic wave is maintained, it is possible to obtain the desired sound velocity of the surface acoustic wave, and from this, it is possible to obtain a predetermined frequency.

また、圧電体層30と基板20との間に、中間層を設けているため、熱膨張・収縮による反り量をさらに低減することができる。   Further, since the intermediate layer is provided between the piezoelectric layer 30 and the substrate 20, the amount of warpage due to thermal expansion / contraction can be further reduced.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前述の実施形態3では、基板20の表裏両面に中間層60,61を設けているが、中間層60,61は、どちらか一方だけ設けることができる。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in Embodiment 3 described above, the intermediate layers 60 and 61 are provided on both the front and back surfaces of the substrate 20, but only one of the intermediate layers 60 and 61 can be provided.

さらに、実施形態4によるダミー領域70を設ける構造の考え方を、実施形態2及び実施形態3にも適用することができ、このようにすれば、より一層、弾性表面波素子10の反りを抑制することができる。   Further, the concept of the structure in which the dummy region 70 according to the fourth embodiment is provided can also be applied to the second and third embodiments. In this way, the warpage of the surface acoustic wave element 10 is further suppressed. be able to.

従って、前述の実施形態1〜4によれば、弾性表面波素子10の反りをなくし、所望のIDT電極間距離と弾性表面波の伝播距離を保持し、且つ、所望の音波の音速を得ることができ、このことによって所望の周波数を得ることができる弾性表面波素子10を提供することができる。   Therefore, according to the first to fourth embodiments described above, the warp of the surface acoustic wave element 10 is eliminated, the desired distance between the IDT electrodes and the propagation distance of the surface acoustic wave is maintained, and the desired sound velocity of the sound wave is obtained. Thus, it is possible to provide the surface acoustic wave device 10 that can obtain a desired frequency.

本発明に係るウエハ上に形成される弾性表面波素子の配置を示す平面図。The top view which shows arrangement | positioning of the surface acoustic wave element formed on the wafer which concerns on this invention. 本発明の実施形態1に係る弾性表面波素子の構成を示す平面図。1 is a plan view showing a configuration of a surface acoustic wave element according to Embodiment 1 of the present invention. 本発明の実施形態1に係る弾性表面波素子の構成を示す断面図。1 is a cross-sectional view illustrating a configuration of a surface acoustic wave element according to a first embodiment of the invention. 本発明の実施形態2に係る弾性表面波素子の構成を示す断面図。Sectional drawing which shows the structure of the surface acoustic wave element which concerns on Embodiment 2 of this invention. 本発明の実施形態3に係る弾性表面波素子の構成を示す断面図。Sectional drawing which shows the structure of the surface acoustic wave element which concerns on Embodiment 3 of this invention. 本発明の実施形態4に係る弾性表面波素子の構成を示す平面図。FIG. 6 is a plan view showing a configuration of a surface acoustic wave element according to Embodiment 4 of the present invention. 本発明の実施形態4に係る弾性表面波素子の構成を示す断面図。Sectional drawing which shows the structure of the surface acoustic wave element which concerns on Embodiment 4 of this invention. 従来技術による弾性表面波素子の断面形状を示す説明図。Explanatory drawing which shows the cross-sectional shape of the surface acoustic wave element by a prior art.

符号の説明Explanation of symbols

1…ウエハ、10…弾性表面波素子、20…基板、30…圧電体層、40…IDT、60…中間層。
DESCRIPTION OF SYMBOLS 1 ... Wafer, 10 ... Surface acoustic wave element, 20 ... Board | substrate, 30 ... Piezoelectric layer, 40 ... IDT, 60 ... Intermediate | middle layer.

Claims (4)

基板の表面に圧電体層を形成し、前記圧電体層の表面にIDTを形成する弾性表面波素子であって、
前記基板と前記圧電体層の熱膨張係数が異なるとき、
前記基板と前記圧電体層との間に中間層を設け、
前記基板の熱膨張係数<前記中間層の熱膨張係数<前記圧電体層の熱膨張係数、となる条件を満たしていることを特徴とする弾性表面波素子。
A surface acoustic wave element in which a piezoelectric layer is formed on a surface of a substrate, and an IDT is formed on the surface of the piezoelectric layer,
When the thermal expansion coefficients of the substrate and the piezoelectric layer are different,
An intermediate layer is provided between the substrate and the piezoelectric layer,
A surface acoustic wave device characterized by satisfying the following condition: thermal expansion coefficient of the substrate <thermal expansion coefficient of the intermediate layer <thermal expansion coefficient of the piezoelectric layer.
請求項1に記載の弾性表面波素子において、
前記圧電体層に、前記基板の熱膨張係数よりも小さい熱膨張係数を有するダミー領域が設けられ、前記基板と前記圧電体層とが、等価的な熱膨張・収縮を振舞うよう構成されていることを特徴とする弾性表面波素子。
The surface acoustic wave device according to claim 1,
The piezoelectric layer is provided with a dummy region having a thermal expansion coefficient smaller than the thermal expansion coefficient of the substrate, and the substrate and the piezoelectric layer are configured to behave in equivalent thermal expansion / contraction. A surface acoustic wave device.
基板の表裏両面に圧電体層が形成され、前記圧電体層の一方の表面にIDTが形成され、
前記基板の表裏両面において、等価的な熱膨張・収縮を振舞うよう構成されていることを特徴とする弾性表面波素子。
Piezoelectric layers are formed on both the front and back surfaces of the substrate, IDT is formed on one surface of the piezoelectric layer,
A surface acoustic wave device characterized in that it is configured to behave equivalently to thermal expansion / contraction on both the front and back surfaces of the substrate.
基板の表裏両面に中間層を形成し、前記中間層の表面にさらに圧電体層を形成し、
一方の圧電体層の表面にIDTが形成され、
前記基板の熱膨張係数<前記中間層の熱膨張係数<前記圧電体層の熱膨張係数、となる条件を満たし、
前記基板の表裏両面において、等価的な熱膨張・収縮を振舞うよう構成されていることを特徴とする弾性表面波素子。

An intermediate layer is formed on both the front and back surfaces of the substrate, a piezoelectric layer is further formed on the surface of the intermediate layer,
IDT is formed on the surface of one piezoelectric layer,
Satisfying the condition of thermal expansion coefficient of the substrate <thermal expansion coefficient of the intermediate layer <thermal expansion coefficient of the piezoelectric layer,
A surface acoustic wave device characterized in that it is configured to behave equivalently to thermal expansion / contraction on both the front and back surfaces of the substrate.

JP2005031539A 2005-02-08 2005-02-08 Surface acoustic wave device Expired - Fee Related JP4609096B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031539A JP4609096B2 (en) 2005-02-08 2005-02-08 Surface acoustic wave device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031539A JP4609096B2 (en) 2005-02-08 2005-02-08 Surface acoustic wave device

Publications (2)

Publication Number Publication Date
JP2006222512A true JP2006222512A (en) 2006-08-24
JP4609096B2 JP4609096B2 (en) 2011-01-12

Family

ID=36984559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031539A Expired - Fee Related JP4609096B2 (en) 2005-02-08 2005-02-08 Surface acoustic wave device

Country Status (1)

Country Link
JP (1) JP4609096B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008089002A1 (en) * 2007-01-17 2008-07-24 Rf Micro Devices, Inc. Piezoelectric substrate for a saw device
JP2010153962A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing composite substrate, and composite substrate
JP2010171392A (en) * 2008-12-25 2010-08-05 Ngk Insulators Ltd Composite substrate and method for forming metal pattern
US7849582B1 (en) 2005-05-24 2010-12-14 Rf Micro Devices, Inc. SAW architecture with series connected interdigitated transducers
US8490260B1 (en) 2007-01-17 2013-07-23 Rf Micro Devices, Inc. Method of manufacturing SAW device substrates
KR101512867B1 (en) 2009-12-14 2015-04-16 엔지케이 인슐레이터 엘티디 Composite substrate and method for forming metal pattern
CN113726305A (en) * 2020-05-25 2021-11-30 厦门市三安集成电路有限公司 Surface acoustic wave device
CN115225060A (en) * 2022-09-15 2022-10-21 常州承芯半导体有限公司 Surface acoustic wave resonator device and method of forming the same

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192022A (en) * 1984-10-11 1986-05-10 Matsushita Electric Ind Co Ltd Surface wave filter
JPS6240812A (en) * 1985-08-19 1987-02-21 Toshiba Corp Surface acoustic wave device
JPH08330882A (en) * 1995-06-02 1996-12-13 Sumitomo Electric Ind Ltd Surface acoustic wave element substrate and its manufacture
JP2002057549A (en) * 2000-08-09 2002-02-22 Sumitomo Electric Ind Ltd Substrate for surface acoustic wave device and surface acoustic wave device
JP2004235874A (en) * 2003-01-29 2004-08-19 Seiko Epson Corp Surface acoustic wave device, frequency filter, oscillator, manufacturing method therefor, electronic circuit, and electronic apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6192022A (en) * 1984-10-11 1986-05-10 Matsushita Electric Ind Co Ltd Surface wave filter
JPS6240812A (en) * 1985-08-19 1987-02-21 Toshiba Corp Surface acoustic wave device
JPH08330882A (en) * 1995-06-02 1996-12-13 Sumitomo Electric Ind Ltd Surface acoustic wave element substrate and its manufacture
JP2002057549A (en) * 2000-08-09 2002-02-22 Sumitomo Electric Ind Ltd Substrate for surface acoustic wave device and surface acoustic wave device
JP2004235874A (en) * 2003-01-29 2004-08-19 Seiko Epson Corp Surface acoustic wave device, frequency filter, oscillator, manufacturing method therefor, electronic circuit, and electronic apparatus

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8225470B1 (en) 2005-05-24 2012-07-24 Rf Micro Devices, Inc. Process of making series connected interdigitated transducers with center chirping
US8069542B1 (en) 2005-05-24 2011-12-06 Rf Micro Devices, Inc. Interleaved interdigitated transducers
US8529986B1 (en) 2005-05-24 2013-09-10 Rf Micro Devices, Inc. Layer acoustic wave device and method of making the same
US7849582B1 (en) 2005-05-24 2010-12-14 Rf Micro Devices, Inc. SAW architecture with series connected interdigitated transducers
US8011074B2 (en) 2007-01-17 2011-09-06 Rf Micro Devices, Inc. Method for manufacture of piezoelectric substrate for a saw device
US8490260B1 (en) 2007-01-17 2013-07-23 Rf Micro Devices, Inc. Method of manufacturing SAW device substrates
WO2008089002A1 (en) * 2007-01-17 2008-07-24 Rf Micro Devices, Inc. Piezoelectric substrate for a saw device
JP2010153962A (en) * 2008-12-24 2010-07-08 Ngk Insulators Ltd Method of manufacturing composite substrate, and composite substrate
JP2010171392A (en) * 2008-12-25 2010-08-05 Ngk Insulators Ltd Composite substrate and method for forming metal pattern
KR101512867B1 (en) 2009-12-14 2015-04-16 엔지케이 인슐레이터 엘티디 Composite substrate and method for forming metal pattern
CN113726305A (en) * 2020-05-25 2021-11-30 厦门市三安集成电路有限公司 Surface acoustic wave device
WO2021238873A1 (en) * 2020-05-25 2021-12-02 Xiamen Sanan Integrated Circuit Co., Ltd. Surface acoustic wave device
CN113726305B (en) * 2020-05-25 2024-03-08 厦门市三安集成电路有限公司 Surface acoustic wave device
CN115225060A (en) * 2022-09-15 2022-10-21 常州承芯半导体有限公司 Surface acoustic wave resonator device and method of forming the same

Also Published As

Publication number Publication date
JP4609096B2 (en) 2011-01-12

Similar Documents

Publication Publication Date Title
JP4609096B2 (en) Surface acoustic wave device
US11616191B2 (en) Elastic wave device
TWI762832B (en) Surface acoustic wave device
JP7224094B2 (en) Acoustic wave resonators, filters and multiplexers
KR20190110020A (en) Elastic wave device
JP2019080093A (en) Acoustic wave device
JP6777221B2 (en) Elastic wave device
JP5617936B2 (en) Surface acoustic wave device
JPS5863214A (en) Surface acoustic wave element
JP6635794B2 (en) Elastic wave device and method of manufacturing the same
JP2023123880A (en) Acoustic wave device
JP7120441B2 (en) Acoustic wave device
JP6767497B2 (en) Elastic wave element
JP2020080519A (en) Surface acoustic wave element
JP2005012736A (en) Surface acoustic wave converter and electronic device using same
JP7330693B2 (en) Acoustic wave device
JP2006217458A (en) Surface acoustic wave device and manufacturing method thereof
WO2021205987A1 (en) Elastic wave device
JP2015167272A (en) surface acoustic wave device
JP2011041082A (en) One-port type elastic wave resonator and elastic wave filter device
WO2010125940A1 (en) Elastic wave device
WO2019022006A1 (en) Acoustic wave element
JP2009124583A (en) Piezoelectric vibration apparatus
JP2010232794A (en) Surface acoustic wave device and method of manufacturing the same
JP2007143180A (en) Surface wave device

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070404

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070921

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100406

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100603

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100622

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100914

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131022

Year of fee payment: 3

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees