JP2006221712A - Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed - Google Patents

Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed Download PDF

Info

Publication number
JP2006221712A
JP2006221712A JP2005033084A JP2005033084A JP2006221712A JP 2006221712 A JP2006221712 A JP 2006221712A JP 2005033084 A JP2005033084 A JP 2005033084A JP 2005033084 A JP2005033084 A JP 2005033084A JP 2006221712 A JP2006221712 A JP 2006221712A
Authority
JP
Japan
Prior art keywords
recording
linear velocity
recording medium
phase change
optical recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033084A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sekiguchi
洋義 関口
Kazunori Ito
和典 伊藤
Koji Deguchi
浩司 出口
Hiroko Okura
浩子 大倉
Masanori Kato
将紀 加藤
Mikiko Abe
美樹子 安部
Eiko Hibino
栄子 日比野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2005033084A priority Critical patent/JP2006221712A/en
Publication of JP2006221712A publication Critical patent/JP2006221712A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a phase change type optical recording medium in which an amorphous mark can be exactly formed even on the condition that recording power is suppressed to some extent when high speed recording at DVD 8X is performed, and high modulation degree can be secured by regulating the range of reflectance change, and to provide a recording method to the recording medium and an evaluation method of transition linear speed of the recording medium. <P>SOLUTION: The phase change type optical recording medium is characterized in that when a transition linear speed Vt and the maximum recording linear speed V<SB>M</SB>have a relationship of Vt≤V<SB>M</SB>and when the minimum value of the ratio [R(v)/R<SB>1</SB>] of a reflectance R(v) obtained when a recording layer is irradiated with continuous light (DC light) having power Pi [mW] capable of heating the recording layer at its melting point or above at a linear speed v to a reflectance R<SB>1</SB>of a crystallin substance after initialization is defined as [R(v)/R<SB>1</SB>]<SB>min</SB>, the V<SB>M</SB>satisfies an expression [R(V<SB>M</SB>)/R<SB>1</SB>]<SB>min</SB>=0.60 to 0.85. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光ビームを照射することにより記録層材料に光学的な変化を生じさせて情報の記録、再生を行ない、かつ書き換えが可能で高線速記録に対応し得る相変化型光記録媒体に関するものである。   The present invention relates to a phase-change optical recording medium that records and reproduces information by causing optical changes in a recording layer material by irradiating a light beam, and is rewritable and compatible with high linear velocity recording. It is about.

書き換え型相変化ディスクであるDVD+RWは、現在1〜4倍速対応のものが市販されている。しかし、更なる高速記録が可能なものが求められている。
例えば特許文献1には、レーザーの連続光照射により反射率が下がり始める線速範囲が8m/s以上30m/s以下の範囲であり、記録可能な線速範囲が1.2m/s以上30m/s以下である光記録媒体が開示されているが、相変化記録層がSbとTeを必須元素としており、この組成では、後述するように、本発明が目的とする特性を有する相変化型光記録媒体を実現することはできない。
また、特許文献2には、低速側において最適なオーバーライト特性が得られる消去パワーPeより高いパワーのレーザー光の連続照射により反射率が低下し始める線速(反射率低下線速)が、記録可能な線速範囲内に存在することを特徴とする光記録媒体が開示されているが、本発明のように反射率変化量を規定した記述はない。
DVD + RW, which is a rewritable phase change disk, is commercially available for 1 to 4 times speed. However, what is capable of further high-speed recording is desired.
For example, in Patent Document 1, the linear velocity range in which the reflectance starts to decrease due to continuous laser irradiation is a range of 8 m / s to 30 m / s, and the recordable linear velocity range is 1.2 m / s to 30 m / s. An optical recording medium that is less than or equal to s is disclosed, but the phase change recording layer has Sb and Te as essential elements, and in this composition, as will be described later, the phase change type light having the characteristics intended by the present invention is disclosed. A recording medium cannot be realized.
Further, in Patent Document 2, the linear velocity (reflectance lowering linear velocity) at which the reflectivity starts to decrease due to continuous irradiation of laser light having a power higher than the erasing power Pe at which optimum overwrite characteristics can be obtained on the low speed side is recorded. An optical recording medium characterized by being in a possible linear velocity range is disclosed, but there is no description that defines the amount of change in reflectance as in the present invention.

特開2002−245663号公報JP 2002-245663 A 特開2004−63002号公報JP 2004-63002 A

本発明は、DVD−ROMと同容量(4.7GB)でかつその再生速度3.49m/sの8倍の線速(以下、DVD8倍速という)でも記録が行なえる書き換え可能なDVD+RW相変化型光記録媒体の開発を目的とする。DVD8倍速記録が可能な相変化型光記録媒体を開発するには、従来よりも消去時間を更に速くしなければならないため、記録層の結晶化スピードを大幅に向上させる必要がある。相変化記録層の結晶化スピードの絶対的な値を知ることは困難であるため、本発明ではその代用特性として転移線速Vtを用いる。転移線速の定義は、記録層を融点以上に加熱することのできる照射パワーPiの連続光(DC光)で照射することにより得られる反射率の線速依存性R(v)を線速vで微分したD(v)=−dR(v)/dvが最大になる時の線速である。
図1にDC光を照射したときの反射率の線速依存性R(v)を示す。図1は照射パワーPi=18mWの場合である。初期化後の反射率をRIとして、R(v)/RI曲線を得たのち、R(v)を媒体の線速vで微分したものD(v)=−dR(v)/dvを求め、その微分係数が最大の値となるときの線速を転移線速Vtとしている。この図から読み取れる転移線速は、およそ23m/sである。
The present invention is a rewritable DVD + RW phase change type that has the same capacity (4.7 GB) as a DVD-ROM and can perform recording even at a linear speed that is 8 times the reproduction speed of 3.49 m / s (hereinafter referred to as DVD 8 times speed). The purpose is to develop optical recording media. In order to develop a phase change type optical recording medium capable of 8 × DVD recording, it is necessary to make the erasing time faster than in the prior art. Therefore, it is necessary to greatly improve the crystallization speed of the recording layer. Since it is difficult to know the absolute value of the crystallization speed of the phase change recording layer, the transition linear velocity Vt is used as a substitute characteristic in the present invention. The transition linear velocity is defined as the linear velocity dependency R (v) of the reflectance obtained by irradiating the recording layer with continuous light (DC light) having an irradiation power Pi that can heat the recording layer to the melting point or higher. The linear velocity at which D (v) = − dR (v) / dv differentiated in (1) is maximized.
FIG. 1 shows the linear velocity dependency R (v) of reflectance when DC light is irradiated. FIG. 1 shows a case where the irradiation power Pi = 18 mW. R (v) / RI curve is obtained with the reflectance after initialization as RI, and R (v) is differentiated by the linear velocity v of the medium to obtain D (v) = − dR (v) / dv. The linear velocity when the differential coefficient becomes the maximum value is the transition linear velocity Vt. The transition linear velocity that can be read from this figure is approximately 23 m / s.

転移線速が比較的遅い場合は、集光された光により熱を得た記録層溶融部分が、余熱の影響によって再結晶化する度合いが少ないために、太い非晶質マークを形成させることが容易である。再結晶化とは、非晶質マークを記録する際に、高いパワーで照射されて溶融した部分が、その周辺から徐々に結晶状態に戻る過程をいう。実際、現在市販されている4X(DVD4倍速)DVD+RWディスクでは、転移線速が10m/s程度と遅いため、記録パワーを16mW程度に設定すれば変調度70%付近の高変調度を確保することができる。ここで変調度とは、結晶質部分の反射率をRtop、アモルファス部分の反射率をRbotとしたときに、変調度=(Rtop−Rbot)/Rtopで表されるものである。結晶質部分の反射率に対して、結晶質部分と非晶質部分の反射率差がどのくらいの割合を占めているかを意味している。   When the transition linear velocity is relatively slow, a thick amorphous mark may be formed because the melted portion of the recording layer that has obtained heat by the condensed light is less likely to recrystallize due to the effect of residual heat. Easy. Recrystallization is a process in which a portion melted by irradiation with high power gradually returns to a crystalline state from its periphery when recording an amorphous mark. In fact, the 4X (DVD 4 × speed) DVD + RW disc currently on the market has a slow transition linear velocity of about 10 m / s, so if the recording power is set to about 16 mW, a high degree of modulation around 70% modulation can be secured. Can do. Here, the modulation degree is expressed as modulation degree = (Rtop−Rbot) / Rtop, where Rtop is the reflectance of the crystalline portion and Rbot is the reflectance of the amorphous portion. It means how much the difference in reflectance between the crystalline part and the amorphous part occupies the reflectance of the crystalline part.

一方、DVD8倍速記録が可能な相変化型光記録媒体を開発するにあたり、結晶化スピードの向上に応じて、非晶質マークを記録層に記録する際にはレーザー光の記録パワーも大幅にアップさせる必要が出てきた。結晶化スピードが向上すると再結晶化し易くなり非晶質化が困難となるため、より冷却スピードを上げて急冷効果を与えるために記録パワーが必要となる。DVD+RWやDVD−RWディスクでは急冷効果を与えるための記録方法として、非晶質マークを形成するのに必要なピークパワーPpとボトムパワーPbを交互に繰り返すマルチパルスによる記録方法が採用されており、これはPpを大きくしてPbとの差を大きくすることにより冷却効果が高まるためである。   On the other hand, in developing a phase change optical recording medium capable of 8x DVD recording, the recording power of laser light is greatly increased when recording amorphous marks on the recording layer as the crystallization speed increases. The need to let it come out. When the crystallization speed is improved, recrystallization is facilitated and it is difficult to make the material amorphous. Therefore, a recording power is required to increase the cooling speed and provide a rapid cooling effect. DVD + RW and DVD-RW discs employ a multi-pulse recording method in which peak power Pp and bottom power Pb necessary for forming an amorphous mark are alternately repeated as a recording method for providing a rapid cooling effect. This is because the cooling effect is enhanced by increasing Pp and increasing the difference from Pb.

相変化型光記録媒体の記録速度と、変調度特性が良好となる記録パワーの関係として、図2のような関係が予測できる。この図によると、将来更にDVD8倍速以上の高速記録を実現するには40mWを超える記録パワーが必要となることが予想される。これは、記録走査線速が速くなるほど、単位面積辺りに加えるべき熱量も変化するため、非晶質マークを形成させるための記録パワーとしては更に高いパワーが必要となることを示唆している。しかし、実際はレーザーの出射パワーの向上にも限界があるために、高速記録だからと言って記録パワーをその都度上げていく事はあまり好ましくない。
また、高速記録では情報を消去する際には非晶質マークを素早く消去する必要があるため、相変化型光ディスクの記録層の結晶化スピードを速くする必要がある。しかし、ある程度結晶化スピードが速くなると、一度溶融させた部分が再結晶化し易くなることが分かっており、非晶質マークを均一に形成させることが難しくなることから、高い変調度を確保することが困難となる。したがって、情報を消去する際に非晶質マークを素早く消去でき、更に情報を記録した時に非晶質の再結晶化があまり起こらない程度の結晶化スピードが必要である。
A relationship as shown in FIG. 2 can be predicted as a relationship between the recording speed of the phase change optical recording medium and the recording power at which the modulation factor characteristic is good. According to this figure, it is expected that a recording power exceeding 40 mW will be required in order to realize further high-speed recording of DVD 8 × speed or more. This suggests that as the recording scanning line speed increases, the amount of heat to be applied around the unit area also changes, so that a higher power is required as the recording power for forming the amorphous mark. However, since there is a limit to the improvement of the laser emission power, it is not preferable to increase the recording power every time just because of high-speed recording.
Further, in high-speed recording, when erasing information, it is necessary to quickly erase the amorphous mark, so it is necessary to increase the crystallization speed of the recording layer of the phase change optical disk. However, it has been found that if the crystallization speed is increased to some extent, the part once melted is easily recrystallized, and it becomes difficult to form an amorphous mark uniformly, so a high degree of modulation is ensured. It becomes difficult. Therefore, it is necessary to quickly erase the amorphous mark when erasing information, and to have a crystallization speed that does not cause much recrystallization of amorphous when information is recorded.

以上をまとめると、高速記録システムにおいては記録層材料の結晶化スピードを速くしなければならないので、再結晶化により非晶質マークが細くなることが必然であり、変調度が取れなくなる。したがって、反射率変化を判定基準に入れないとROM互換性が確保できなくなる可能性が出てきてしまう。
これらの問題を踏まえて、本発明は、DVD8倍速での高速記録を行なう際に、記録パワーをある程度抑えた条件であっても非晶質マークを的確に形成させることができ、反射率変化の範囲を規定して高い変調度を確保することができる相変化型光記録媒体、該記録媒体への記録方法、及び該記録媒体の転移線速の評価方法の提供を目的とする。
In summary, in a high-speed recording system, since the crystallization speed of the recording layer material must be increased, the amorphous mark is necessarily thinned by recrystallization, and the degree of modulation cannot be obtained. Accordingly, there is a possibility that ROM compatibility cannot be ensured unless the change in reflectance is included in the criterion.
Based on these problems, the present invention can accurately form amorphous marks even under conditions where the recording power is suppressed to some extent when performing high-speed recording at a DVD 8 × speed, and changes in reflectivity can be achieved. It is an object of the present invention to provide a phase change optical recording medium that can secure a high degree of modulation by defining a range, a recording method on the recording medium, and a method for evaluating a transition linear velocity of the recording medium.

上記課題は、次の1〜7の発明(以下、本発明1〜7という)によって解決される。
1) 転移線速Vtと最高記録線速Vとが、Vt≦Vの関係にあり、かつ、記録層を融点以上に加熱できるパワーPi[mW]の連続光(DC光)を線速vで照射した際の反射率R(v)と、初期化後の結晶質の反射率Rの比「R(v)/R」の最小値を〔R(v)/Rminとして、Vが、〔R(V)/Rmin=0.60〜0.85を満足することを特徴とする相変化型光記録媒体。
2) 0.75V<Vt≦Vであることを特徴とする1)記載の相変化型光記録媒体。
3) 基板上に少なくとも膜厚30〜100nmの下部保護層、膜厚10〜20nmの相変化材料から成る記録層、膜厚3〜15nmの上部保護層、膜厚100〜300nmの反射層がこの順番に積層されていることを特徴とする1)又は2)記載の光記録媒体。
4) 相変化材料が、少なくともGa、Sb、Sn、Geの4元素を含有することを特徴とする3)記載の相変化型光記録媒体。
5) 基板が、トラックピッチ0.74±0.03μm、溝深さ22〜40nm、溝幅0.2〜0.3μmの蛇行溝を有することを特徴とする3)又は4)記載の相変化型光記録媒体。
6) EFM+変調方式を採用し、アモルファスマークを記録するためのパルス条件を、3Tマークを記録する際には1パルス、(3+N)Tを記録する際には、Nが2T分増えるごとに1パルスを付加するような記録ストラテジ(2T周期記録ストラテジ)を用いて記録することを特徴とする1)〜5)の何れかに記載の相変化型光記録媒体の記録方法。
7) 光記録媒体に種々の線速でパワーPiの連続光を照射して各線速のR(v)/RのPiによる変化(Pi依存性)を測定し、これに基づいて各線速の〔R(v)/Rminを算出し、その値が0.60〜0.85の範囲にある線速を光記録媒体の実用可能な最高記録線速Vとし、〔R(V)/Rminを与えるPiを選んで、該Piで光記録媒体を照射することにより得られる反射率の線速依存性R(v)を調べ、これを用いてD(v)=−dR(v)/dvを求め、その微分係数が最大の値となるときの線速を転移線速Vtとすることを特徴とする1)〜5)の何れかに記載の相変化型光記録媒体の転移線速Vtの評価方法。
The above problems are solved by the following first to seventh inventions (hereinafter referred to as the present inventions 1 to 7).
Linear velocity 1) and transition linear velocity Vt and the maximum recording linear velocity V M is in the relationship of Vt ≦ V M, and continuous light power Pi [mW] which can heat the recording layer above the melting point of the (DC light) The minimum value of the ratio “R (v) / R I ” between the reflectance R (v) when irradiated at v and the crystalline reflectance R I after initialization is [R (v) / R I ] min as, V M is, [R (V M) / R I] min = from 0.60 to 0.85 phase-change optical recording medium which satisfies the.
2) The phase change optical recording medium according to 1), wherein 0.75 V M <Vt ≦ V M.
3) A lower protective layer having a thickness of 30 to 100 nm, a recording layer made of a phase change material having a thickness of 10 to 20 nm, an upper protective layer having a thickness of 3 to 15 nm, and a reflective layer having a thickness of 100 to 300 nm are formed on the substrate. The optical recording medium according to 1) or 2), wherein the optical recording media are laminated in order.
4) The phase change optical recording medium according to 3), wherein the phase change material contains at least four elements of Ga, Sb, Sn, and Ge.
5) The phase change according to 3) or 4), wherein the substrate has meandering grooves having a track pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 40 nm, and a groove width of 0.2 to 0.3 μm. Type optical recording medium.
6) Employing the EFM + modulation method, the pulse condition for recording the amorphous mark is 1 pulse when recording the 3T mark, and 1 when N increases by 2T when recording the (3 + N) T. 6. The recording method for a phase change optical recording medium according to any one of 1) to 5), wherein recording is performed using a recording strategy (2T periodic recording strategy) that adds a pulse.
7) changes due to Pi of the optical recording medium in a variety of linear velocity at the power Pi of the continuous light by irradiating each linear velocity R (v) / R I a (Pi dependent) was measured, each linear velocity of based on this [R (v) / R I] was calculated min, the value and practical maximum recording linear velocity V M of the optical recording medium linear velocity in the range of 0.60 to 0.85, [R (V M ) / R I ] Select Pi that gives min , and examine the linear velocity dependence R (v) of the reflectance obtained by irradiating the optical recording medium with the Pi, and use this to determine D (v) = The phase change light according to any one of 1) to 5), wherein -dR (v) / dv is obtained, and the linear velocity when the differential coefficient becomes the maximum value is set as the transition linear velocity Vt. Evaluation method of transition linear velocity Vt of recording medium.

以下、上記本発明について詳しく説明する。
前述した転移線速は、R(v)曲線が低速から高速に向かうにつれて反射率変化が顕著であればあるほど明確に理解することができる。例えば、図3に示すグラフは連続光照射パワーPi=12〜18[mW]としたときの反射率Rの走査線速依存性R(v)/RIを表している。光記録媒体の線速が低速から高速になるにつれ、ある値を境に反射率が低下し始めているのが分る。低速側では相変化記録層が一度融点以上に溶融され、その後は記録層が結晶化して高い反射率になる。一方、高速側においては、パワーPiの連続光が照射された相変化記録層は一度融点以上に溶融されるが、結晶化する前に照射ビームが通り過ぎてしまうため急激に温度が下がり、結果として溶融された状態のままの原子構造が形成され、非晶質状態となっているために反射率が下がる。
Hereinafter, the present invention will be described in detail.
The above-mentioned transition linear velocity can be clearly understood as the change in reflectance becomes more conspicuous as the R (v) curve goes from low speed to high speed. For example, the graph shown in FIG. 3 represents the scanning line speed dependency R (v) / RI of the reflectance R when the continuous light irradiation power Pi = 12 to 18 [mW]. It can be seen that as the linear velocity of the optical recording medium increases from a low speed to a high speed, the reflectance starts to decrease at a certain value. On the low speed side, the phase change recording layer is once melted to the melting point or higher, and thereafter, the recording layer is crystallized to have a high reflectance. On the other hand, on the high-speed side, the phase change recording layer irradiated with continuous light of power Pi is once melted to the melting point or more, but the temperature rapidly decreases because the irradiation beam passes before crystallization, and as a result, The atomic structure in the molten state is formed and the amorphous state is formed, so that the reflectance is lowered.

また照射パワーPiについては、あるパワー以下の場合、例えばPi=12mWである場合は、記録層の融点にまで温度が上がっていないために速度を上げても反射率低下が殆ど起こらない。照射パワーPiがあるパワー以上の場合、例えば13mW≦Pi≦18mWである場合は、相変化材料の温度を融点以上にすることができ、相変化材料が溶融状態となる。そして、線速vにより、ある一定以上の冷却速度により溶融状態から非晶質状態に変化し、反射率低下を測定することができる。ある程度連続光の照射パワーPiを高くするとやがて反射率低下の度合いが飽和し始める。したがって、R(v)曲線の反射率変化を調べるためには連続光の照射パワーPiはできるだけ強い方が良い。
この結果から転移線速Vtを得ることができるが、Vtよりも高速側において記録を行なうと記録層が非晶質化し易いと言える。
以上のことから、高速記録を行なうことのできる相変化型光記録媒体において、なるべく低い記録パワーで非晶質マークを的確に形成させて高い変調度を確保するには、光記録媒体の実用可能な最高記録線速をVとして、Vt≦Vであることが好ましい。
Further, when the irradiation power Pi is less than a certain power, for example, Pi = 12 mW, the temperature does not rise to the melting point of the recording layer, and therefore the reflectance hardly decreases even if the speed is increased. When the irradiation power Pi is equal to or higher than a certain power, for example, when 13 mW ≦ Pi ≦ 18 mW, the temperature of the phase change material can be set to the melting point or higher, and the phase change material becomes a molten state. Then, the linear velocity v changes from a molten state to an amorphous state at a cooling rate of a certain level or more, and a decrease in reflectance can be measured. When the irradiation power Pi of the continuous light is increased to some extent, the degree of reflectivity reduction eventually begins to saturate. Therefore, in order to examine the reflectance change of the R (v) curve, the continuous light irradiation power Pi should be as strong as possible.
From this result, the transition linear velocity Vt can be obtained, but it can be said that if the recording is performed at a higher speed than Vt, the recording layer is easily made amorphous.
From the above, in a phase change optical recording medium capable of performing high-speed recording, it is possible to use an optical recording medium in order to accurately form an amorphous mark with a recording power as low as possible to ensure a high degree of modulation. maximum recording linear velocity as V M a is preferably Vt ≦ V M.

そして、本発明1で規定する要件を満たせば、DVD8倍速に相当する線速でも変調度を確保し易い相変化型光記録媒体が得られる。
連続光の照射パワーPiを上げていくと、図3に示すように、ある線速からR(v)/RがPiにより変化するようになるが、その変化が飽和し始めるPi、即ちR(v)/Rがあまり変化しなくなるPiが存在する。例えば、線速v=28m/sのところで固定し、横軸にPiを取ってみたのが図4であるが、Piが15mW以上ではR(v)/Rがほぼ一定になっていることが分る。Rは、成膜した直後のアズデポ状態にある記録層を初期化して得られる結晶質状態の反射率を表している。ここで、あるPiで飽和しているときのR(v)/Rの値を〔R(v)/Rminとすると、最高記録線速Vにおいて高い変調度を確保しつつ良好な記録特性を得るためには、Vが、〔R(V)/Rmin=0.60〜0.85を満足する必要がある。0.85を超えると、非晶質化が困難となり高い変調度を確保することができなくなる。また、0.60未満では、記録層が非晶質化し易くなりすぎてしまい、情報を消去するとき、つまり非晶質部分を消去するときに消し残りが生じて、記録特性が悪くなってしまう。
If the requirements defined in the first aspect of the present invention are satisfied, a phase-change optical recording medium in which the degree of modulation can be easily secured even at a linear speed corresponding to DVD 8 × speed can be obtained.
As you increase the irradiation power Pi of the continuous light, as shown in FIG. 3, consists of a certain linear velocity as R (v) / R I is changed by Pi, the change begins to saturate Pi, i.e. R (V) There is Pi where / RI does not change much. For example, fixed at a linear velocity v = 28 m / s, but was tried taking Pi on the horizontal axis is 4, the Pi is in the above 15mW are substantially constant R (v) / R I I understand. R I represents the reflectance in the crystalline state obtained by initializing the recording layer in the as-deposited state immediately after film formation. Here, satisfactory while securing When R (v) / R values of I [R (v) / R I] min when saturated at a certain Pi, a high degree of modulation at the maximum recording linear velocity V M to obtain Do recording characteristics, V M needs to satisfy the [R (V M) / R I] min = 0.60 to .85. If it exceeds 0.85, it becomes difficult to make it amorphous, and a high degree of modulation cannot be secured. On the other hand, if it is less than 0.60, the recording layer tends to become amorphous easily, and when information is erased, that is, when an amorphous part is erased, unerased residue is generated, resulting in poor recording characteristics. .

本発明2で規定するように、0.75V<Vt≦Vである場合には、最高記録線速Vにおいて高い変調度を得ることができ、かつ良好な記録特性を得ることができる。転移線速Vtの光記録媒体に対して線速vで記録する際に、Vt≦Vを満足しない場合は、記録層の結晶化スピードが速いために溶融再結晶化が起き易くなってしまい、非晶質マークを太く書けなくなるために、低いパワーであっても高い変調度を確保するということが難しくなる。例えば、図5に示すように、V=28m/sで記録したとき、変調度60%を確保するには、Vt=25m/sの記録層では凡そ29mWでよいのに対し、Vt=31m/sの記録層では凡そ36mWの記録パワーが必要になってくる。何れも記録特性(ジッタ)は9%未満となっていて良好であるが、変調度に大きな差が出ているのが分る。また、0.75V<Vtを満足しない場合は、情報を消去しようとしても消し残りが生じてしまうためにジッタ特性が悪くなる。したがって0.75V<Vt≦Vを満足することが好ましい。 As defined in the present invention 2, in the case of 0.75V M <Vt ≦ V M can obtain a high degree of modulation at the maximum recording linear velocity V M, and it is possible to obtain good recording characteristics . When recording at a linear velocity v with respect to transition linear velocity Vt of the optical recording medium, if not satisfied Vt ≦ V M, becomes liable melting recrystallization occurs because crystallization speed of the recording layer is faster Since the amorphous mark cannot be written thickly, it is difficult to ensure a high degree of modulation even with low power. For example, as shown in FIG. 5, when recording is performed at V M = 28 m / s, in order to secure a modulation degree of 60%, a recording layer of Vt = 25 m / s may have approximately 29 mW, whereas Vt = 31 m. In the recording layer of / s, a recording power of about 36 mW is required. In either case, the recording characteristic (jitter) is less than 9%, which is good, but it can be seen that there is a large difference in the degree of modulation. When not satisfied 0.75 V M <Vt, unerased even the jitter characteristic deteriorates to occur in an attempt to erase the information. Therefore, it is preferable that 0.75 V M <Vt ≦ V M is satisfied.

本発明3は、本発明の相変化型光記録媒体の好ましい層構造を規定したものである。
基板には主にプラスチック製のものが用いられるが、透明性を有しかつ平面精度に優れているものであれば特に制限はない。従来、光記録媒体において基板として慣用されているものの中から任意のものを選択して用いることができる。基板の代表例としてはガラス板やポリカーボネート板などが挙げられる。光学定数に関しては、屈折率1.5〜1.6であることが好ましい。
基板上に形成される下部保護層としては、透明で光を良く通し、かつ融点が1000℃以上の材料からなるものが好ましい。酸化物、窒化物、硫化物などが主に用いられるが、中でもZnSとSiOの混合物がよく用いられる。特にZnS:SiO=80:20(モル比)のものが好ましい。また、膜厚は30〜100nmの範囲にあることが望ましい。この範囲から外れると、程好い変調度を確実に確保することが困難になる。また、30nmよりも薄い場合は膜厚に対する反射率変動が大きいことから安定に作成することが難しく、100nmよりも厚い場合は成膜時間が長くなり光記録媒体の生産性が落ちる。
The present invention 3 defines a preferable layer structure of the phase change optical recording medium of the present invention.
The substrate is mainly made of plastic, but is not particularly limited as long as it has transparency and excellent planar accuracy. Conventionally, any optical recording medium conventionally used as a substrate can be selected and used. Typical examples of the substrate include a glass plate and a polycarbonate plate. Regarding the optical constant, the refractive index is preferably 1.5 to 1.6.
The lower protective layer formed on the substrate is preferably made of a material that is transparent, allows light to pass through, and has a melting point of 1000 ° C. or higher. Oxides, nitrides, sulfides and the like are mainly used, and among them, a mixture of ZnS and SiO 2 is often used. In particular, ZnS: SiO 2 = 80: 20 (molar ratio) is preferable. The film thickness is preferably in the range of 30 to 100 nm. If it is out of this range, it becomes difficult to ensure a favorable degree of modulation. Also, when the thickness is less than 30 nm, the reflectance variation with respect to the film thickness is large, so that it is difficult to produce stably. When the thickness is more than 100 nm, the film formation time becomes long and the productivity of the optical recording medium decreases.

下部保護層上に形成される相変化材料からなる記録層の膜厚は、10〜20nmの範囲にあることが望ましい。10nmより薄いと繰り返し記録による劣化の不具合が生じる。また、20nmより厚いとジッタ特性が悪くなる。
相変化材料からなる記録層上に積層される上部保護層としては、前記下部保護層と同じ特性を持った材料が好ましい。その膜厚は3〜15nmの範囲にあることが望ましい。3nmより薄いと記録感度が悪くなったり変調度が低下したりする不具合が生じる。また、15nmより厚いと、記録時に発生した余熱の影響で記録マークが再結晶化しやすくなり記録特性が悪くなる。
上部保護層上に積層される反射層としては金属材料が用いられるが、光学特性及び熱伝導率などからAl、Ag、Au、Cu及びそれらの合金材料がよく用いられる。その膜厚は100〜300nmの範囲にあることが望ましい。100nmより薄い場合は放熱効果が得られなくなる可能性がある。また、300nmよりも厚くするとそれ以上放熱効果は変わらず、単に必要の無い膜厚を成膜することになる。
The film thickness of the recording layer made of a phase change material formed on the lower protective layer is preferably in the range of 10 to 20 nm. If the thickness is less than 10 nm, a problem of deterioration due to repeated recording occurs. On the other hand, if it is thicker than 20 nm, the jitter characteristics deteriorate.
The upper protective layer laminated on the recording layer made of a phase change material is preferably a material having the same characteristics as the lower protective layer. The film thickness is desirably in the range of 3 to 15 nm. If the thickness is smaller than 3 nm, there arises a problem that the recording sensitivity is deteriorated or the modulation degree is lowered. On the other hand, if it is thicker than 15 nm, the recording mark is easily recrystallized due to the influence of residual heat generated during recording, and the recording characteristics are deteriorated.
Although a metal material is used as the reflective layer laminated on the upper protective layer, Al, Ag, Au, Cu and their alloy materials are often used from the viewpoint of optical characteristics and thermal conductivity. The film thickness is desirably in the range of 100 to 300 nm. If the thickness is less than 100 nm, the heat dissipation effect may not be obtained. On the other hand, if it is thicker than 300 nm, the heat dissipation effect does not change any more, and a film thickness that is not necessary is simply formed.

相変化材料としては、本発明4のように、少なくともGa、Sb、Sn、Geの4元素を含有するものが好ましい。
本発明は、DVD8倍速の最高記録速度において繰り返し記録が可能な相変化型光記録媒体を目標とする。しかし、従来のDVD1〜4倍速DVD+RWに用いられているAgInSbTe系の相変化型記録層材料では、結晶化スピードが遅く高速記録には向いていない。そこでDVD8倍速でも記録が可能な相変化型記録層材料を探索する必要がある。これまでのところ、Ga、Sb、Snの3元素系材料や、Ga、Sb、Sn、Geの4元素系材料が発見されており、これらの構成元素の組成比を変化させることによって、高速記録に対応可能な結晶化スピードを持たせることができる。また、それぞれの元素を数パーセントの範囲で突き詰めていくことで、DVD8倍速での記録が可能な記録層材料を実現できる。
As the phase change material, a material containing at least four elements of Ga, Sb, Sn, and Ge as in the fourth aspect of the present invention is preferable.
The present invention aims at a phase change type optical recording medium capable of repetitive recording at a maximum recording speed of DVD 8 × speed. However, the phase change recording layer material of AgInSbTe type used for conventional DVD 1 to 4 × speed DVD + RW has a low crystallization speed and is not suitable for high-speed recording. Therefore, it is necessary to search for a phase change recording layer material that can be recorded even at a DVD 8 × speed. So far, three-element materials of Ga, Sb, and Sn and four-element materials of Ga, Sb, Sn, and Ge have been discovered, and high-speed recording can be achieved by changing the composition ratio of these constituent elements. It is possible to have a crystallization speed compatible with the above. Further, by recording each element within a range of several percent, a recording layer material capable of recording at DVD 8 times speed can be realized.

本発明5では、トラックピッチ0.74±0.03μm、溝深さ22〜40nm、溝幅0.2〜0.3μmの蛇行溝を有する基板を用いる。溝を蛇行させる目的としては、未記録の特定トラックにアクセスすること、基板を一定線速度で回転させることなどである。0.74±0.03μmのトラックピッチを持つDVDディスクでは、トラッキングエラーを検知するのに使われる信号として、プッシュプル信号が主に抽出されている。プッシュプル信号は、DVDで用いられているレーザー波長660nmにおいて、上記基板を用いると、溝の深さが55nmである時に最も大きな信号強度を得ることができる。反射率を低く調整し、かつプッシュプル信号の振幅を大きくするためには、溝深さは深い方が良いが、記録特性も考慮した場合には、22〜40nmの範囲にあることが好ましい。また、溝幅は記録特性や信号特性を考慮すると0.2〜0.3μmの範囲にあるのが望ましい。   In the fifth aspect of the present invention, a substrate having meandering grooves having a track pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 40 nm, and a groove width of 0.2 to 0.3 μm is used. The purpose of meandering the groove is to access a specific unrecorded track and to rotate the substrate at a constant linear velocity. In a DVD disc having a track pitch of 0.74 ± 0.03 μm, a push-pull signal is mainly extracted as a signal used to detect a tracking error. As for the push-pull signal, when the substrate is used at a laser wavelength of 660 nm used in DVD, the maximum signal intensity can be obtained when the groove depth is 55 nm. In order to adjust the reflectivity low and increase the amplitude of the push-pull signal, the groove depth should be deep, but in consideration of recording characteristics, it is preferably in the range of 22 to 40 nm. The groove width is preferably in the range of 0.2 to 0.3 μm in consideration of recording characteristics and signal characteristics.

本発明6は、本発明の相変化型光記録媒体の好ましい記録方法に関するものである。
EFM+変調方式を採用し、マークを記録するためのパルス条件として、3Tマークを記録する際には1パルス、(3+N)Tを記録する際には、Nが2増えるごとに1パルスを付加するような記録ストラテジ(2T周期記録ストラテジ)を用いる。記録クロックに対して2T周期で照射パルスを設けることにより、高速記録における変調度を大幅に改善できる。従来の1〜4倍速DVD+RW光ディスクでは1T周期記録ストラテジを採用している。これは記録クロックに対して1T周期で照射パルスを設けた記録方法である。この記録方法をDVD8倍速の相変化型光記録媒体の記録に使おうとすると、記録クロック周期が4.78nsecと短いため、照射パルス間にある冷却時間が足りなくなり、次のパルスの余熱によってアモルファス部が再結晶化してしまうので、長いアモルファスマークを形成させることが非常に難かしい。そのため、1T周期記録ストラテジはDVD8倍の高速記録には好ましくない。
The present invention 6 relates to a preferred recording method for the phase change optical recording medium of the present invention.
EFM + modulation system is adopted, and as a pulse condition for recording a mark, 1 pulse is added when recording a 3T mark, and 1 pulse is added every time N increases by 2 when recording (3 + N) T. Such a recording strategy (2T periodic recording strategy) is used. By providing irradiation pulses with a 2T cycle with respect to the recording clock, the modulation degree in high-speed recording can be greatly improved. A conventional 1- to 4-times speed DVD + RW optical disc employs a 1T period recording strategy. This is a recording method in which irradiation pulses are provided at a 1T period with respect to a recording clock. If this recording method is used for recording on a DVD 8 × speed phase change optical recording medium, the recording clock cycle is as short as 4.78 nsec, so that there is not enough cooling time between irradiation pulses, and the amorphous part is caused by the remaining heat of the next pulse. Will recrystallize, making it very difficult to form long amorphous marks. Therefore, the 1T period recording strategy is not preferable for high-speed recording of DVD 8 times.

転移線速Vtは、本発明7の方法により評価する。
Vtを評価するには、先ず光記録媒体の実用可能な最高記録線速Vを判断する。その判断方法について図6を参照しつつ説明する。図6は、光記録媒体に対して線速v=21、28、35m/sで照射パワーPiの連続光を照射した際の、各線速のR(v)/RIのPiによる変化(Pi依存性)を示す。図から分るように、v=21m/sでは、この光記録媒体の結晶化スピードが速いため、どのPiで照射しても記録材料が充分に溶融しきれず、非晶質化が起こらないので反射率低下が見られない。この場合、〔R(21)/R〕minは0.98程度であり、21m/sは光記録媒体の実用可能な最高記録線速Vにはならない。v=28m/sでは、照射パワーPiを上げていくと徐々にR(v)/Rが低下し始め、やがてPi=16mWからR(28)/Rが飽和して〔R(28)/R〕min=0.68が得られる。故に28m/sは適切なVと言える。更にv=35m/sでは、照射パワーPiを上げていくと徐々にR(v)/Rが低下し始める。図のPiの範囲内では飽和値を知ることができないが、〔R(35)/R〕minが0.6未満となることは明らかなので35m/sはVとして不適切である。したがって、v=28m/sにおけるR(28)/RのPi依存性の結果から、〔R(28)/R〕minを与えるPi(=16mW)を選んで転移線速Vtを評価するとよいことが分る。
次いで、光記録媒体を照射パワーPi(16mW)の連続光(DC光)で照射することにより得られる反射率の線速依存性R(v)を調べ、これからD(v)=−dR(v)/dvを求め、その微分係数が最大の値となるときの線速を転移線速Vtとする。
The transition linear velocity Vt is evaluated by the method of the present invention 7.
To evaluate Vt, first determines practical maximum recording linear velocity V M of the optical recording medium. The determination method will be described with reference to FIG. FIG. 6 shows changes in R (v) / RI of each linear velocity due to Pi when the optical recording medium is irradiated with continuous light with an irradiation power Pi at linear velocity v = 21, 28, 35 m / s. Sex). As can be seen from the figure, at v = 21 m / s, the crystallization speed of this optical recording medium is fast, so that the recording material cannot be sufficiently melted even when irradiated with any Pi, and amorphization does not occur. There is no decrease in reflectivity. In this case, [R (21) / R I] min is about 0.98, 21m / s is not a practical maximum recording linear velocity V M of the optical recording medium. In v = 28m / s, saturated As you increase the irradiation power Pi begins to decrease gradually R (v) / R I, eventually R (28) from Pi = 16 mW / R I is [R (28) / R I ] min = 0.68 is obtained. Therefore 28m / s it can be said to be appropriate V M. In addition v = 35m / s, when is increased irradiation power Pi gradually R (v) / R I begins to decrease. Can not know the saturation value in the range of Pi in figure, [R (35) / R I] because min is obvious that less than 0.6 35m / s is inappropriate as V M. Therefore, when Pi (= 16 mW) giving [R (28) / R I ] min is selected from the result of Pi dependence of R (28) / R I at v = 28 m / s, the transition linear velocity Vt is evaluated. I know good things.
Next, the linear velocity dependency R (v) of the reflectance obtained by irradiating the optical recording medium with continuous light (DC light) having an irradiation power Pi (16 mW) was examined, and D (v) = − dR (v ) / Dv, and the linear velocity at which the differential coefficient is the maximum value is defined as the transition linear velocity Vt.

本発明によれば、DVD8倍速での高速記録を行なう際に、記録パワーをある程度抑えた条件であっても非晶質マークを的確に形成させることができ、反射率変化の範囲を規定して高い変調度を確保することができる相変化型光記録媒体、該記録媒体への記録方法、及び該記録媒体の転移線速の評価方法を提供できる。   According to the present invention, when performing high-speed recording at a DVD 8 × speed, an amorphous mark can be accurately formed even under conditions where the recording power is suppressed to some extent, and the range of reflectance change is defined. It is possible to provide a phase change optical recording medium capable of ensuring a high degree of modulation, a recording method on the recording medium, and a method for evaluating a transition linear velocity of the recording medium.

以下、実施例及び比較例により本発明を更に具体的に説明するが、本発明は、これらの実施例により限定されるものではない。
実施例及び比較例で作成した相変化光ディスクは、らせん状の連続グルーブを転写したDVD+RW用のポリカーボネート基板上に、少なくとも下部保護層、相変化記録層、上部第一保護層、上部第二保護層、反射層をこの順番に積層したものである。
実施例及び比較例に用いた相変化光ディスクは、透明基板上にZnS−SiOからなる下部保護層を厚さ58nm、SiOからなる界面層を厚さ2nm、GaSbSnGe又はGaSbSnGeIn(各実施例及び比較例の組成比は表1、表2参照)からなる相変化記録層を厚さ16nm、ZnS−SiOからなる上部第一保護層を厚さ7nm、TiC−TiOからなる上部第二保護層を厚さ4nm、Agからなる反射層を厚さ140nmをこの順番に積層した構成となっている。成膜装置にはバルザース社製の8チャンネルスパッタ装置を用いた。
完成したディスクは相変化光ディスク用初期化装置で初期化し、DVD+RWディスクとした。初期化は、集光ビーム径が75μmとなる光ヘッドを用い、パワー1800mW(ここでは、LDの消費電力であり、照射パワーとは異なる)、走査速度20m/s、送り50μm/回転の条件で結晶化することにより行なった。
相変化記録層への情報の記録は、アモルファス状態を形成させて記録マークを作るためのピークパワーPp、急冷効果を与えてアモルファスマークを作り易くするためのボトムパワーPb、結晶質を形成させて情報を消去するための消去パワーPeの3レベル(Pp>Pe>Pb)で強度変調された2T周期記録ストラテジを用いて行なった。ストラテジのパルス発生装置は日本テクトロニクス社製DTG−5274であり、設定分解能は記録走査速度がDVDのv倍速(v≦8)においては0.026159×16×v[GHz]である。使用した評価装置は、パルステック社製のDDU−1000であり、対物レンズのNA=0.65、記録再生に用いられるレーザー波長λ=660nmである。記録パワーのスペックはPpで最大40mW、Peで最大18mWである。またPbは、急冷効果を与えるには出来るだけ小さなパワーが良いため、0.1mWに固定して記録を行なった。変調度やジッタは、3トラックにオーバーライト10回の記録を行ない、そのうち真ん中のトラックの再生信号から測定した。変調度は大きいほど良い。また、DC(Data to Clock)ジッタは、非晶質マークの端部とクロック周期Twの立ち上がりの時間的なずれを表しており、小さな値ほど良い。
EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention further more concretely, this invention is not limited by these Examples.
The phase change optical discs produced in the examples and comparative examples have at least a lower protective layer, a phase change recording layer, an upper first protective layer, and an upper second protective layer on a polycarbonate substrate for DVD + RW transferred with a spiral continuous groove. The reflective layers are laminated in this order.
The phase change optical disks used in the examples and comparative examples have a lower protective layer made of ZnS-SiO 2 having a thickness of 58 nm and an interface layer made of SiO 2 having a thickness of 2 nm on a transparent substrate, GaSbSnGe or GaSbSnGeIn (each example and The composition ratio of the comparative example is as shown in Tables 1 and 2). The phase change recording layer is 16 nm thick, the upper first protective layer made of ZnS—SiO 2 is 7 nm thick, and the upper second protective layer is made of TiC—TiO. The thickness is 4 nm, and the reflective layer made of Ag is 140 nm thick. As the film forming apparatus, an 8-channel sputtering apparatus manufactured by Balzers was used.
The completed disc was initialized with a phase change optical disc initialization device to obtain a DVD + RW disc. Initialization uses an optical head with a focused beam diameter of 75 μm, power 1800 mW (here, LD power consumption, different from irradiation power), scanning speed 20 m / s, feed 50 μm / rotation. This was done by crystallization.
Information is recorded on the phase change recording layer by forming a peak power Pp for forming a recording mark by forming an amorphous state, a bottom power Pb for facilitating the formation of an amorphous mark by applying a quenching effect, and forming a crystalline material. This was performed using a 2T periodic recording strategy that was intensity-modulated with three levels of erasing power Pe (Pp>Pe> Pb) for erasing information. The strategy pulse generator is DTG-5274 manufactured by Nippon Tektronix Co., Ltd., and the setting resolution is 0.026159 × 16 × v [GHz] when the recording scanning speed is v times the speed of DVD (v ≦ 8). The evaluation apparatus used is DDU-1000 manufactured by Pulse Tech Co., Ltd., with NA = 0.65 of the objective lens and laser wavelength λ = 660 nm used for recording / reproduction. The recording power spec is 40 mW at maximum for Pp and 18 mW for Pe. Since Pb has a power as small as possible to give a rapid cooling effect, recording was carried out with a fixed value of 0.1 mW. The degree of modulation and jitter were measured by recording 10 times of overwrite on 3 tracks and measuring the reproduction signal of the middle track. The higher the degree of modulation, the better. The DC (Data to Clock) jitter represents the time lag between the edge of the amorphous mark and the rising edge of the clock cycle Tw, and a smaller value is better.

実施例1〜20、比較例1〜23
表1に示す組成の記録層材料を用いて実施例1〜20及び比較例1〜23のディスクを作成した。各ディスクの転移線速Vt(m/s)、〔R(28)/R〕minの値、Pp=32mWで記録したときの変調度(Mod〔%〕)、DCジッタを表1に纏めて示した。なお、Vtの測定はPi=16mWで行なった。線速28m/sはDVD8倍速である。変調度及びDCジッタは、オーバーライト10回記録をしたときのデータである。変調度が60%以上のものに○、60%未満のものに×を付けた。また、ジッタ特性が9%未満のものに○、9%以上のものに×を付けた。
実施例1〜20のディスクは、本発明1の要件を満たしており、線速28m/sで記録した際に変調度が良好でありかつジッタ特性が良好である。また、転移線速Vtが本発明2の要件を満たしており、本発明1の要件を満足する範囲と対応している。一方、比較例1〜23は、本発明1の要件を満足しないため、線速28m/sで記録した際に、変調度60%以上を確保できていない。
図7は、表1のデータをグラフにしたものである。各ディスクの〔R(28)/R〕minを横軸に取り、2T周期記録ストラテジを使ってEFM+変調方式で記録した時の変調度を縦軸に取ったものである。この図から変調度60%以上を満たすための条件は、〔R(28)/R〕min≦0.85であることが分る。更に、ジッタ特性がDVD規格値である9%未満を満たすための条件は〔R(28)/R〕min≧0.60であることが分る。記録線速と同じ線速における反射率R(V)がRに対して下がりすぎると、記録層の結晶化スピードが遅すぎるために非晶質マークを消去しきれず、完全に結晶化できないことが原因となってジッタが悪くなっていると考えられる。
Examples 1-20, Comparative Examples 1-23
Disks of Examples 1 to 20 and Comparative Examples 1 to 23 were prepared using recording layer materials having the compositions shown in Table 1. Table 1 summarizes the transition linear velocity Vt (m / s), the value of [R (28) / R I ] min, the degree of modulation (Mod [%]), and DC jitter when recording at Pp = 32 mW. Showed. Vt was measured at Pi = 16 mW. The linear speed of 28 m / s is a DVD 8 × speed. The modulation factor and DC jitter are data when overwriting is performed 10 times. A mark with a modulation degree of 60% or more was marked with ◯, and a mark with less than 60% was marked with a cross. Further, ○ is given to those having a jitter characteristic of less than 9%, and × to 9% or more.
The disks of Examples 1 to 20 satisfy the requirements of the present invention 1, and have good modulation and good jitter characteristics when recorded at a linear velocity of 28 m / s. Further, the transition linear velocity Vt satisfies the requirement of the present invention 2, and corresponds to a range satisfying the requirement of the present invention 1. On the other hand, since Comparative Examples 1 to 23 do not satisfy the requirements of the present invention 1, when recording at a linear velocity of 28 m / s, a modulation degree of 60% or more cannot be secured.
FIG. 7 is a graph of the data in Table 1. [R (28) / R I ] min of each disk is plotted on the horizontal axis, and the degree of modulation is recorded on the vertical axis when recording is performed by the EFM + modulation method using the 2T periodic recording strategy. From this figure, it can be seen that the condition for satisfying the modulation degree of 60% or more is [R (28) / R I ] min ≦ 0.85. Further, it can be seen that the condition for satisfying the jitter characteristic of less than 9% which is the DVD standard value is [R (28) / R I ] min ≧ 0.60. The reflectance at the same linear velocity as the recording linear velocity R (V) is too lowered relative to R I, can not be completely erased amorphous marks for crystallization speed of the recording layer is too slow, it can not be completely crystallized It is considered that the jitter is deteriorated due to the above.

Figure 2006221712
Figure 2006221712

実施例21〜25、比較例24〜28
本発明は、DVD8倍速での高速記録において記録が可能な相変化型光記録媒体を提供することを主要な目的とするが、本発明の媒体がDVD8倍速より低い線速でも記録可能であることを示す。ここでは、DVD5倍速(17.5m/s)の例を挙げる。
表2に示す組成の記録層材料を用いて実施例21〜25及び比較例24〜28のディスクを作成した。各ディスクの転移線速Vt(m/s)、〔R(17.5)/R〕minの値、Pp=32mWでの変調度(Mod〔%〕)、DCジッタを表2に纏めて示した。変調度及びDCジッタの評価内容及び評価基準は、表1の場合と同じである。
実施例21〜25は、本発明1の要件を満足しており、線速17.5m/sで記録した際の変調度が良好で、ジッタ特性も良好である。また、転移線速Vtが本発明2の要件を満たしており、本発明1の要件を満足する範囲と対応している。一方、比較例24〜28は、本発明1の要件を満足しないため、線速17.5m/sで記録した際に変調度60%以上を確保できていない。

Figure 2006221712
Examples 21-25, Comparative Examples 24-28
The main object of the present invention is to provide a phase change type optical recording medium capable of recording in high-speed recording at 8 × DVD, but the medium of the present invention can be recorded even at a linear velocity lower than DVD 8 ×. Indicates. Here, an example of DVD 5 × speed (17.5 m / s) is given.
Disks of Examples 21 to 25 and Comparative Examples 24 to 28 were prepared using recording layer materials having the compositions shown in Table 2. Table 2 summarizes the transition linear velocity Vt (m / s), the value of [R (17.5) / R I ] min, the modulation degree (Mod [%]) at Pp = 32 mW, and the DC jitter of each disk. Indicated. The evaluation contents and evaluation criteria of the modulation degree and DC jitter are the same as those in Table 1.
Examples 21 to 25 satisfy the requirements of the present invention 1, have a good degree of modulation when recorded at a linear velocity of 17.5 m / s, and good jitter characteristics. Further, the transition linear velocity Vt satisfies the requirement of the present invention 2, and corresponds to a range satisfying the requirement of the present invention 1. On the other hand, Comparative Examples 24-28 do not satisfy the requirements of the first aspect of the present invention, and therefore, when the recording is performed at a linear velocity of 17.5 m / s, a modulation degree of 60% or more cannot be secured.
Figure 2006221712

DC光照射後反射率及び微分係数の線速依存性R(v)を示す図。The figure which shows the linear velocity dependence R (v) of the reflectance after DC light irradiation, and a differential coefficient. 記録パワーと記録速度の関係を予測した図。The figure which predicted the relationship between recording power and recording speed. R(v)/RIの線速依存性を示す図。The figure which shows the linear velocity dependence of R (v) / RI. R(28)/RIのPi依存性を示す図。The figure which shows the Pi dependence of R (28) / RI. 記録速度28m/sでのVtの違いによる変調度差を示す図。The figure which shows the modulation degree difference by the difference in Vt in recording speed 28m / s. 光記録媒体に対して線速v=21、28、35m/sでパワーPiの連続光を照射した際の、各線速のR(v)/RIのPiによる変化(Pi依存性)を示す図。The figure which shows the change (Pi dependence) of R (v) / RI of each linear velocity by Pi when the optical recording medium is irradiated with continuous light with power Pi at linear velocity v = 21, 28, 35 m / s. . 表1のデータをグラフにした図。The figure which made the data of Table 1 into a graph.

Claims (7)

転移線速Vtと最高記録線速Vとが、Vt≦Vの関係にあり、かつ、記録層を融点以上に加熱できる照射パワーPi[mW]の連続光(DC光)を線速vで照射した際の反射率R(v)と、初期化後の結晶質の反射率Rの比「R(v)/R」の最小値を〔R(v)/Rminとして、Vが、〔R(V)/Rmin=0.60〜0.85を満足することを特徴とする相変化型光記録媒体。 Transition linear velocity Vt and the maximum recording linear velocity V M is, Vt ≦ V have a relationship of M, and the linear velocity v of the continuous light (DC light) irradiation power Pi that can heat the recording layer above the melting point [mW] [R (v) / R I ] min is the minimum value of the ratio “R (v) / R I ” of the reflectance R (v) when irradiated with the above and the crystalline reflectance R I after initialization. , V M satisfies [R (V M ) / R I ] min = 0.60 to 0.85. 0.75V<Vt≦Vであることを特徴とする請求項1記載の相変化型光記録媒体。 2. The phase change optical recording medium according to claim 1, wherein 0.75 V M <Vt ≦ V M. 基板上に少なくとも膜厚30〜100nmの下部保護層、膜厚10〜20nmの相変化材料から成る記録層、膜厚3〜15nmの上部保護層、膜厚100〜300nmの反射層がこの順番に積層されていることを特徴とする請求項1又は2記載の光記録媒体。   On the substrate, a lower protective layer having a thickness of 30 to 100 nm, a recording layer made of a phase change material having a thickness of 10 to 20 nm, an upper protective layer having a thickness of 3 to 15 nm, and a reflective layer having a thickness of 100 to 300 nm are arranged in this order. The optical recording medium according to claim 1, wherein the optical recording medium is laminated. 相変化材料が、少なくともGa、Sb、Sn、Geの4元素を含有することを特徴とする請求項3記載の相変化型光記録媒体。   4. The phase change optical recording medium according to claim 3, wherein the phase change material contains at least four elements of Ga, Sb, Sn, and Ge. 基板が、トラックピッチ0.74±0.03μm、溝深さ22〜40nm、溝幅0.2〜0.3μmの蛇行溝を有することを特徴とする請求項3又は4記載の相変化型光記録媒体。   5. The phase change light according to claim 3, wherein the substrate has meandering grooves having a track pitch of 0.74 ± 0.03 μm, a groove depth of 22 to 40 nm, and a groove width of 0.2 to 0.3 μm. recoding media. EFM+変調方式を採用し、アモルファスマークを記録するためのパルス条件を、3Tマークを記録する際には1パルス、(3+N)Tを記録する際には、Nが2T分増えるごとに1パルスを付加するような記録ストラテジ(2T周期記録ストラテジ)を用いて記録することを特徴とする請求項1〜5の何れかに記載の相変化型光記録媒体の記録方法。   EFM + modulation system is adopted, and the pulse condition for recording the amorphous mark is 1 pulse when recording a 3T mark, and 1 pulse every time N increases by 2T when recording (3 + N) T. 6. The recording method for a phase change optical recording medium according to claim 1, wherein recording is performed using a recording strategy (2T periodic recording strategy) to be added. 光記録媒体に種々の線速でパワーPiの連続光を照射して各線速のR(v)/RのPiによる変化(Pi依存性)を測定し、これに基づいて各線速の〔R(v)/Rminを算出し、その値が0.60〜0.85の範囲にある線速を光記録媒体の実用可能な最高記録線速Vとし、〔R(V)/Rminを与えるPiを選んで、該Piで光記録媒体を照射することにより得られる反射率の線速依存性R(v)を調べ、これを用いてD(v)=−dR(v)/dvを求め、その微分係数が最大の値となるときの線速を転移線速Vtとすることを特徴とする請求項1〜5の何れかに記載の相変化型光記録媒体の転移線速Vtの評価方法。
Changes due Pi of the optical recording medium various irradiated with continuous light of linear velocity by a power Pi in each linear velocity of the R (v) / to R I to (Pi-dependent) was measured, each linear velocity of based on this [R (v) / R I] was calculated min, the value and practical maximum recording linear velocity V M of the optical recording medium linear velocity in the range of 0.60 to 0.85, [R (V M) / R I ] The Pi that gives min is selected, the linear velocity dependency R (v) of the reflectance obtained by irradiating the optical recording medium with the Pi is examined, and this is used to obtain D (v) = − dR. 6. The phase change optical recording medium according to claim 1, wherein (v) / dv is obtained, and the linear velocity at which the differential coefficient becomes the maximum value is the transition linear velocity Vt. Evaluation method of transition linear velocity Vt.
JP2005033084A 2005-02-09 2005-02-09 Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed Pending JP2006221712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033084A JP2006221712A (en) 2005-02-09 2005-02-09 Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033084A JP2006221712A (en) 2005-02-09 2005-02-09 Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed

Publications (1)

Publication Number Publication Date
JP2006221712A true JP2006221712A (en) 2006-08-24

Family

ID=36983932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033084A Pending JP2006221712A (en) 2005-02-09 2005-02-09 Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed

Country Status (1)

Country Link
JP (1) JP2006221712A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564769B2 (en) * 2004-01-30 2009-07-21 Victor Company Of Japan, Ltd. Phase-change recording medium having the relation between pulse patterns and reflectivity of un-recorded section
KR20170041774A (en) * 2014-08-07 2017-04-17 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 Magnetic storage medium and data recording device
US9704550B2 (en) 2015-08-21 2017-07-11 Riken Magnetic element, skyrmion memory and arithmetic processing unit

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7564769B2 (en) * 2004-01-30 2009-07-21 Victor Company Of Japan, Ltd. Phase-change recording medium having the relation between pulse patterns and reflectivity of un-recorded section
KR20170041774A (en) * 2014-08-07 2017-04-17 고쿠리쓰 겐큐 가이하쓰 호징 리가가쿠 겐큐소 Magnetic storage medium and data recording device
US9824712B2 (en) 2014-08-07 2017-11-21 Riken Magnetic storage media and data storage device
US9704550B2 (en) 2015-08-21 2017-07-11 Riken Magnetic element, skyrmion memory and arithmetic processing unit

Similar Documents

Publication Publication Date Title
US7611762B2 (en) Optical recording medium
JP4354733B2 (en) Optical recording medium
JP4078237B2 (en) Optical recording medium, optical recording method, and optical recording apparatus
JP2004199784A (en) Optical recording method
JP3647848B2 (en) Information recording medium
US7260044B2 (en) Recording method for a phase-change optical recording medium
JP2004220699A (en) Optical recording medium
JP4140060B2 (en) Optical information recording medium, optical information recording method, and optical information recording apparatus
JP2006221712A (en) Phase change type optical recording medium and recording method thereto, and evaluation method of transition linear speed
JP2004322556A (en) Optical recording medium, optical recording method, and optical recording apparatus
JP2000155945A (en) Optical recording method
JP2005302263A (en) Optical disk, recording and reproducing apparatus for the same and method for managing address information
JP4303575B2 (en) Optical recording method and recording / reproducing apparatus
JP2005537156A (en) Rewritable optical data storage medium and use of such medium
JP3786665B2 (en) Information recording medium
JP4437727B2 (en) Optical recording medium
WO2004055791A1 (en) Optical recording method
JP2003242683A (en) Information recording medium
JP4231434B2 (en) Information recording medium
JP4368586B2 (en) Optical recording medium
US20040142277A1 (en) Optical information recording medium
JP2005035058A (en) Phase change type optical information recording medium
JP2004276583A (en) Optical recording medium and initialization method therefor
JP2007257809A (en) Optical recording medium and optical recording method
JP2004227720A (en) Optical recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090217