JP2006220779A - Optical element and manufacturing method and forming method therefor - Google Patents

Optical element and manufacturing method and forming method therefor Download PDF

Info

Publication number
JP2006220779A
JP2006220779A JP2005032442A JP2005032442A JP2006220779A JP 2006220779 A JP2006220779 A JP 2006220779A JP 2005032442 A JP2005032442 A JP 2005032442A JP 2005032442 A JP2005032442 A JP 2005032442A JP 2006220779 A JP2006220779 A JP 2006220779A
Authority
JP
Japan
Prior art keywords
substrate
optical
optical element
molding
alignment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005032442A
Other languages
Japanese (ja)
Inventor
Hiroaki Maekawa
浩章 前川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2005032442A priority Critical patent/JP2006220779A/en
Publication of JP2006220779A publication Critical patent/JP2006220779A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an optical element which can be aligned in a state in which the abutting of an outer peripheral butting part in alignment is avoided and which comprehensively exhibits excellent quality and productivity. <P>SOLUTION: A layered type optical element is characterized in that a plurality of formed parts each having a 1st a diffraction optical surface formed on a 1st substrate and a surface or a ridge part crossing an optical axis formed on the 1st substrate at a right angle are formed integrally with the 1st diffraction optical surface and a plurality of formed parts each having a surface or a ridge part crossing an optical axis arranged in an equally divided position on the outer peripheral side surface of a 2nd substrate at a right angle are formed integrally with the 2nd diffraction optical surface. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、積層型光学素子の調芯手段を提供可能な光学素子及び光学素子の成形方法と製造方法に関する。   The present invention relates to an optical element capable of providing alignment means for a laminated optical element, and a method for manufacturing and a method for manufacturing the optical element.

従来、積層型回折光学素子の調芯方法は、特許文献1に記載されている。その手法の概略について図12及び図13を用いて説明する。   Conventionally, Patent Document 1 describes a method of aligning a laminated diffractive optical element. The outline of the method will be described with reference to FIGS.

図12は従来の積層型回折光学素子の断面図、図13は従来の積層型回折光学素子の調芯工程を表す図である。   FIG. 12 is a cross-sectional view of a conventional laminated diffractive optical element, and FIG. 13 is a diagram illustrating an alignment process of the conventional laminated diffractive optical element.

図12において、201と203は光学ガラス基板、202と204は各々基板201,203上にレプリカ成形された成形面である202a,204aは、レプリカ成形時に不図示型から転写成形された回折光学面であり、202b,204bは、同じくレプリカ成形時に回折光学面202a,204aの中央に一体成形された調芯用のアライメントマークである。202c,204cは同じくレプリカ成形時に回折光学面2a,4aの有効径外に一体成形された外周突き当て部であり、図12では202c,204cを胴付けした状態である。この胴付けした状態で201又は203の基板どちらか一方の基板の光学面201a又は203aを不図示エア吸着等の手法で固定する(次工程説明のため、ここでは203aを固定する)。   In FIG. 12, 201 and 203 are optical glass substrates, 202 and 204 are molding surfaces replica-molded on the substrates 201 and 203, respectively. 202a and 204a are diffractive optical surfaces that are transfer-molded from a mold (not shown) at the time of replica molding. 202b and 204b are alignment marks for alignment that are integrally formed in the center of the diffractive optical surfaces 202a and 204a during replica molding. Similarly, 202c and 204c are outer peripheral butting portions integrally molded outside the effective diameter of the diffractive optical surfaces 2a and 4a at the time of replica molding. In FIG. 12, 202c and 204c are in a state of being mounted. In this mounted state, the optical surface 201a or 203a of either the substrate 201 or 203 is fixed by a technique such as air adsorption (not shown) (here, 203a is fixed for explanation of the next process).

次に、図13に示すように、固定しない他方の基板側面1bを4等分位置に配置されたマイクロメータの固定端子205,207とバネ押圧を介したマイクロメータの可動先端子206,208によって押圧して微動調整し、不図示のCCDカメラ等で画像拡大し、アライメントマーク204bに202bを精度良く一致させる。ここで、基板側面201bを略3等分位置に配置されたマイクロメータの固定端子2箇所とバネ押圧を介したマイクロメータの可動端子1箇所によって押圧して微動調整する装置構成を採ることも珍しくない。   Next, as shown in FIG. 13, the other substrate side surface 1 b that is not fixed is fixed by the micrometer fixed terminals 205 and 207 that are arranged at four equal positions, and the movable tip terminals 206 and 208 of the micrometer through spring pressing. Fine adjustment is performed by pressing, and the image is enlarged by a CCD camera (not shown) or the like, and 202b is aligned with the alignment mark 204b with high accuracy. Here, it is also unusual to adopt a device configuration in which the substrate side surface 201b is finely adjusted by pressing with two fixed terminals of the micrometer arranged at approximately three equal positions and one movable terminal of the micrometer via spring pressing. Absent.

又、特許文献2では「一方のアライメントマーク凹部に他方のアライメントマーク凸部を嵌合可能に構成する。」とされる提案がなされている。   Further, Patent Document 2 proposes that “the other alignment mark convex portion is configured to be fitted in one alignment mark concave portion”.

特開2002−182022号公報JP 2002-182022 A 特開2002−258024号公報JP 2002-258024 A

しかしながら、特許文献1の積層型回折光学素子の調芯方法の例ではアライメント中に胴付けされた外周突き当て部202cと204cの面摩擦が増大し、基板203上の基板201が不動化する「吸着現象」が発生して調芯作業が不能になる状態が多発した。又、作業者が不用意に吸着現象の解除を試み、回折光学面に傷を誘発したり、調芯作業の繰り返しトライの回数増により調芯工程のタクトが増大するという問題があった。   However, in the example of the alignment method of the laminated diffractive optical element disclosed in Patent Document 1, the surface friction between the outer peripheral abutting portions 202c and 204c mounted during alignment increases, and the substrate 201 on the substrate 203 is immobilized. “Adsorption phenomenon” occurred and the alignment work became impossible. In addition, the operator inadvertently tried to cancel the adsorption phenomenon, causing scratches on the diffractive optical surface, and the tact of the alignment process increased due to an increase in the number of repeated trials of the alignment operation.

又、特許文献2の例では、現実的に光学性能に影響を及ぼさない数十μm以下のアライメントマークの高さ方向の嵌合が認識可能な精度範囲にレプリカ成形で制御するのは困難なため生産には導入されていない。   Further, in the example of Patent Document 2, it is difficult to control by replica molding within an accuracy range in which the alignment in the height direction of an alignment mark of several tens of μm or less that does not actually affect the optical performance can be recognized. Not introduced into production.

そこで、本発明はこれらの問題に鑑み、アライメント中の外周突き当て部の胴付けを回避した状態で調芯可能な、総合的に品質性と生産性に優れた光学素子とその製造方法及び成形方法を提供することを目的とする。   Accordingly, in view of these problems, the present invention is capable of aligning in a state where the outer peripheral abutting portion is not attached during alignment, and has an optical element that is excellent in quality and productivity, and a manufacturing method and molding thereof. It aims to provide a method.

上記目的を達成するため、請求項1記載の発明は、積層型光学素子において、第1の基板上に成形された第1の回折光学面と第1の基板上に成形された光軸と直交する面又は陵部を持つ複数の成形部が、前記第1の回折光学面と一体的に形成され、第2の基板の外周側面に等分位置に配置された光軸と直交する面又は陵部を持つ複数の成形部が前記第2の回折光学面と一体的に形成されることを特徴とする。   In order to achieve the above object, according to a first aspect of the present invention, in the laminated optical element, the first diffractive optical surface molded on the first substrate and the optical axis molded on the first substrate are orthogonal to each other. A plurality of molded parts having a surface or a ridge that is formed integrally with the first diffractive optical surface, and a surface or a ridge that is orthogonal to the optical axis disposed at an equal position on the outer peripheral side surface of the second substrate A plurality of molded parts having a part are formed integrally with the second diffractive optical surface.

請求項2記載の発明は、第1の回折光学面と前記第2の回折光学面を芯出し調整する工程において、第1の基板の外周側面に等分位置に配置された複数の成形部と、第2の基板の外周側面に等分位置に配置された複数の成形部が各々対向位置で面接触又は線接触し、第1の光学突き当て面と第2の光学突き当て面を一定量離間させる手段と、前記第1の回折光学面と前記第2の回折光学面を芯出し調整する工程において、前記第1の基板又は前記第2の基板の何れか一方を固定する第1の固定手段と、前記第1の固定手段を用いない他方の基板を基板中心同軸姿勢で固定する第2の固定手段と、該他方の基板を回転制御可能な回転手段と、前記第1の基板を前記第2の基板に対して平面方向に移動可能な調芯手段と、前記芯出し調整後、前記第1の基板を回転し、前記第1の基板の外周側面の複数の成形部と前記第2の基板の外周側面の複数の成形部の各々の接触状態が外れ、前記第1の光学突き当て面と前記第2の光学突き当て面を当接させる手段とを備えたことを特徴とする。   The invention according to claim 2 is the step of adjusting the centering of the first diffractive optical surface and the second diffractive optical surface, and a plurality of molded parts arranged at equal positions on the outer peripheral side surface of the first substrate; The plurality of molding portions arranged at equal positions on the outer peripheral side surface of the second substrate are in surface contact or line contact at the opposing positions, and a certain amount of the first optical abutting surface and the second optical abutting surface are provided. In the step of adjusting the centering of the first diffractive optical surface and the second diffractive optical surface, the first fixing for fixing either the first substrate or the second substrate in the step of adjusting the center of the first diffractive optical surface and the second diffractive optical surface Means, second fixing means for fixing the other substrate not using the first fixing means in a center-coaxial posture, rotation means capable of controlling rotation of the other substrate, and the first substrate Aligning means movable in a plane direction with respect to the second substrate, and after the centering adjustment, 1 substrate is rotated, and the contact state of each of the plurality of molded portions on the outer peripheral side surface of the first substrate and the plurality of molded portions on the outer peripheral side surface of the second substrate is released, and the first optical abutting surface And means for bringing the second optical abutting surface into contact with each other.

請求項3記載の発明は、第1の基板又は第2の基板の外周端に嵌合する第1の成形筒型と、該成形型と光軸方向に離間した対向面で、且つ、前記第1の基板又は第2の基板の有効径外面に胴付けされ、等分位置に複数の溝を設けた第2の成形筒型と、第1及び第2の成形筒型に回転可能に嵌合し、側面部から樹脂充填可能な貫通穴を設けた規制筒を各々成形手段として配置して、前記光軸と直交する面又は陵部を持つ複数の成形部を回折光学面と一体成形することを特徴とする。   According to a third aspect of the present invention, there is provided a first molding cylinder mold fitted to the outer peripheral end of the first substrate or the second substrate, an opposing surface spaced apart from the molding mold in the optical axis direction, and the first substrate A second molding cylinder that is mounted on the outer surface of the effective diameter of the first substrate or the second substrate and has a plurality of grooves at equal positions, and is rotatably fitted to the first and second molding cylinders. Then, each of the regulating cylinders provided with through holes that can be filled with resin from the side surface portion is disposed as a molding means, and a plurality of molded portions having surfaces or ridges orthogonal to the optical axis are integrally formed with the diffractive optical surface. It is characterized by.

本発明によれば、積層型光学素子の調芯工程において、第1のレンズ基板と第2のレンズ基板の外周に設けられた複数の成形部が互いに係合して、素子最終突き当て面同士の間に隙間を生じさせ、アライメント中の素子同士の摩擦増大による回折光学面への傷発生や、調芯作業の繰り返しトライの回数増により、タクトの増大を招くことがない。   According to the present invention, in the alignment step of the laminated optical element, the plurality of molded portions provided on the outer circumferences of the first lens substrate and the second lens substrate are engaged with each other, so that the element final abutting surfaces are in contact with each other. A gap is generated between the elements, and scratches are not generated on the diffractive optical surface due to increased friction between elements during alignment, and tact is not increased due to an increased number of repeated trials of alignment work.

又、本発明によれば、調芯開始前、完了後の工程において、第2のレンズ基板(可動側)に設けられた成形部を挟持してレンズ基板を回転させる治具を構成することで、第1の基板と第2の基板外周に設けられた成形部を互いに係合、解除させる調芯開始前、完了後の工程導入を容易に提供することができる。   In addition, according to the present invention, the jig for rotating the lens substrate by sandwiching the molding portion provided on the second lens substrate (movable side) in the process after the start of alignment and after the completion can be configured. In addition, it is possible to easily provide process introduction before and after the start of alignment for engaging and releasing the molded portions provided on the outer periphery of the first substrate and the second substrate.

更に、本発明によれば、調芯工程が精度向上方向に段階的に進むため、調芯作業の繰り返しトライの回数増により、タクトの増大を招くことがない。   Furthermore, according to the present invention, since the alignment process proceeds stepwise in the direction of improving accuracy, an increase in the number of repeated trials of the alignment operation does not cause an increase in tact.

又、本発明によれば、転写面の成形に左右されず、基板側面に複数の成形部を容易に成形することができる。   In addition, according to the present invention, it is possible to easily form a plurality of forming portions on the side surface of the substrate without being influenced by the forming of the transfer surface.

本発明の実施の形態は、上記構成を適用し、積層型回折光学素子の調芯工程において、第1のレンズ基板と第2のレンズ基板の外周に設けられた複数の成形部が互いに係合して、素子最終突き当て面同志の間に隙間を生じさせ、アライメント中の素子同志の摩擦増大による回折光学面への傷発生や、調芯作業の繰り返しトライの回数増により、タクトの増大を招くことのない光学素子及びその成形方法が実現可能である。   In the embodiment of the present invention, the above configuration is applied, and in the alignment step of the laminated diffractive optical element, a plurality of molding portions provided on the outer periphery of the first lens substrate and the second lens substrate are engaged with each other. As a result, a gap is created between the last abutting surfaces of the elements, and the tact increases due to the occurrence of scratches on the diffractive optical surface due to increased friction between the elements during alignment and the number of repeated trials of alignment work. An optical element that is not incurred and a molding method thereof can be realized.

又、調芯開始前、完了後の工程において、第2のレンズ基板(可動側)に設けられた成形部を挟持してレンズ基板を回転させる治具を構成することで、第1の基板と第2の基板外周に設けられた成形部を互いに係合、解除させる調芯開始前、完了後の工程導入が容易になる。   In addition, in the process before the alignment start and after the completion, a jig for rotating the lens substrate by sandwiching the molding portion provided on the second lens substrate (movable side) is configured with the first substrate It is easy to introduce the process before and after the start of alignment to engage and release the molding parts provided on the outer periphery of the second substrate.

更に、調芯を高精度化するため、予め第1のレンズ基板(固定側)の受け台を第2のレンズ基板に対して可動可能な0. 1μmピッチ分解能のX−Yテーブルとして構成しておくことにより、素子最終突き当て面近接位置でアライメント補正したり、調芯完了後の素子突き当てによるアライメントズレを補正する調芯作業の再トライに備えて、第1のレンズ基板位置調整が可能になる。   Furthermore, in order to improve the alignment accuracy, the cradle of the first lens substrate (fixed side) is configured in advance as an XY table with a 0.1 μm pitch resolution that can be moved with respect to the second lens substrate. This makes it possible to adjust the position of the first lens substrate in preparation for the retry of alignment work to correct alignment at the element final abutment surface proximity position or to correct alignment misalignment due to element abutment after alignment. become.

<実施の形態1>
図1は本発明の実施の形態1に係る光学素子の調芯調整時の構成断面図、図2は実施の形態1に係る光学素子の平面図、図3(a)は実施の形態1における第1の基板の側面に本発明の成形部を成形する成形方法を表す構成断面図、図3(b)は実施の形態1における第2の基板の側面に本発明の成形部を成形する成形方法を表す構成断面図、図4(a)は第2の基板から成る光学素子に係合して調芯するアライメント装置の要部を含む平面図、図4(b)は第2の基板から成る光学素子に係合して調芯するアライメント装置の一部側面及び断面図、図5は実施の形態1に係る光学素子を調芯するアライメント装置の側面図、図6は調芯観察系の構成を表わす図、図7(a)は本発明の実施の形態1のモニターされたアライメントマークが光軸に対して法線方向に傾いている様子を表わす図、図7(b)は第1の基板のアライメントマーク中心と第1の基板のアライメントマーク中心が一致している様子を表わす図、図8(a)は本発明の実施の形態の第1の基板と第2の基板の側面を接合する様子を表わす断面図、図8(b)は第1の基板と第2の基板の側面を接合する様子を表わす平面図、図9は2つの光学素子の胴付け突き当て後のクサビ量と調芯時のクサビ量による法線面のアライメントズレ量を表した概略図である。
<Embodiment 1>
FIG. 1 is a cross-sectional view of a configuration of an optical element according to Embodiment 1 of the present invention during alignment, FIG. 2 is a plan view of the optical element according to Embodiment 1, and FIG. FIG. 3B is a cross-sectional view illustrating a molding method for molding the molding portion of the present invention on the side surface of the first substrate, and FIG. 3B illustrates molding for molding the molding portion of the present invention on the side surface of the second substrate in the first embodiment. FIG. 4A is a plan view including a main part of an alignment device that engages and aligns with an optical element made of a second substrate, and FIG. 4B is a view from the second substrate. FIG. 5 is a side view of the alignment apparatus for aligning the optical element according to the first embodiment, and FIG. 6 is an alignment observation system. FIG. 7A is a diagram showing the configuration, and the alignment mark monitored in the first embodiment of the present invention is light. FIG. 7B shows a state in which the center of the alignment mark of the first substrate coincides with the center of the alignment mark of the first substrate, and FIG. (A) is sectional drawing showing a mode that the side surface of the 1st board | substrate and 2nd board | substrate of embodiment of this invention is joined, FIG.8 (b) is joining the 1st board | substrate and the side surface of a 2nd board | substrate. FIG. 9 is a schematic view showing the amount of misalignment of the normal plane according to the amount of wedge after the barrel contact of the two optical elements and the amount of wedge during alignment.

図1及び図2において、1は光学素子のベースとなる第1の基板ガラス、2はブレーズド型回折格子と光学素子の突き当て面を形成する第1の樹脂部材、5,6,7は調芯調整時に対向する光学素子と係合してアライメントを可能にする第1の基板外周に成形された第1の係合樹脂部材、3は光学素子のベースとなる第2の基板ガラス、4はブレーズド型回折格子と光学素子の突き当て面を形成する第2の樹脂部材、8は調芯調整時に対向する光学素子と係合してアライメントを可能にする第2の基板外周に成形された第2の係合樹脂部材である。   1 and 2, 1 is a first substrate glass that serves as a base of an optical element, 2 is a first resin member that forms a blazed diffraction grating and an abutting surface of the optical element, and 5, 6, and 7 are adjustments. A first engaging resin member formed on the outer periphery of the first substrate that enables alignment by engaging with the optical element facing when the core is adjusted, 3 is a second substrate glass serving as a base of the optical element, 4 is A second resin member 8 that forms the abutting surface of the blazed diffraction grating and the optical element, and the second resin member 8 is formed on the outer periphery of the second substrate that engages with the opposing optical element during alignment adjustment to enable alignment. 2 is an engaging resin member.

基板ガラス1と3の光学ガラス基材としては、一般的な硝材S−BSL7を用い、第1の基板ガラス1は凹メニス型、第2の基板ガラス3は凸型に研磨加工されたレンズを用いる。   As the optical glass substrate of the substrate glasses 1 and 3, a general glass material S-BSL7 is used, and the first substrate glass 1 is a concave menis type and the second substrate glass 3 is a convex lens. Use.

樹脂部材2,4は、光硬化反応型のモノマー樹脂を使用し、第1の基板ガラス1及び第2の基板ガラス3上に不図示スタンパ型と光照射装置を用いて図1に示すようなレリーフパターン転写面2a及び4aと第1の基板ガラス1から成る光学素子と第2の基板3から成る光学素子を突き当てる胴付け面2b及び4bを予めレプリカ成形しておく。ここで、レリーフパターン転写面2aと胴付け面2b又はレリーフパターン転写面4aと胴付け面4bは各々の型で一体的に成形される。   As the resin members 2 and 4, a photo-curing reaction type monomer resin is used, and a stamper type and a light irradiation device (not shown) are used on the first substrate glass 1 and the second substrate glass 3 as shown in FIG. The body mounting surfaces 2b and 4b that abut the relief pattern transfer surfaces 2a and 4a, the optical element made of the first substrate glass 1 and the optical element made of the second substrate 3 are replica-molded in advance. Here, the relief pattern transfer surface 2a and the body mounting surface 2b or the relief pattern transfer surface 4a and the body mounting surface 4b are integrally formed with each mold.

胴付け面2bの曲率R上の高さは、転写面2aの格子先端の曲率R上の高さより数μm高く設定され、胴付け面4bの曲率R上の高さも転写面4aの格子先端の曲率R上の高さより数μm高く設定されるため、第1の基板ガラス1から成る光学素子と第2の基板ガラス3から成る光学素子を接合した際に転写面2aの格子先端と転写面4aの格子先端が互いに衝突するようなことはない。又、第1の樹脂部材2と第2の樹脂部材4は屈折率、アッベ数等の光学特性に合致していれば異なる樹脂材料であっても良く、プロセス上、熱硬化型樹脂であっても、光硬化・熱硬化併用型樹脂であっても良い。   The height on the curvature R of the body surface 2b is set to be several μm higher than the height on the curvature R of the grating tip of the transfer surface 2a, and the height on the curvature R of the body surface 4b is also the height of the grating tip of the transfer surface 4a. Since the height is set to several μm higher than the height on the curvature R, when the optical element made of the first substrate glass 1 and the optical element made of the second substrate glass 3 are joined, the lattice tip of the transfer surface 2a and the transfer surface 4a The lattice tips do not collide with each other. Also, the first resin member 2 and the second resin member 4 may be different resin materials as long as they match optical characteristics such as refractive index and Abbe number, and are thermosetting resins in the process. Alternatively, a photocuring / thermosetting resin may be used.

第1の係合樹脂部材5,6,7及び第2の係合樹脂部材8,9,10(9,10は不図示)は、樹脂部材2,4と同様の光硬化反応型のモノマー樹脂を使用し、各々第1のガラス基板1、第2のガラス基板2の側面の各々の3等分箇所にカップリング剤を塗布し、マークした後、一定幅(4mm)で帯状にレプリカ成形され、第1のガラス基板1、第2のガラス基板2の曲率R面側へ流出した樹脂は各々の基板側へ、5c,6c,7c,8cのように数μmの厚みで転写成形される。   The first engagement resin members 5, 6, 7 and the second engagement resin members 8, 9, 10 (9 and 10 are not shown) are the same photo-curing reaction type monomer resin as the resin members 2, 4. After applying and marking a coupling agent on each of the three equal portions of the side surfaces of the first glass substrate 1 and the second glass substrate 2, respectively, they are replica-molded in a band shape with a constant width (4 mm) The resin that has flowed out to the curvature R surface side of the first glass substrate 1 and the second glass substrate 2 is transfer-molded to each substrate side with a thickness of several μm, such as 5c, 6c, 7c, and 8c.

ここで、例えば第1の係合樹脂部材5の係合面5aの高さと第2の係合樹脂部材8の係合面8aの高さ及び係合面6aの高さと係合面9aの高さ及び係合面7aの高さと係合面10aの高さは、互いに係合した際に先に成形された胴付け面2bと4bを50μm離間させるように設定されるので胴付け面の緩衝摩擦がなくなり、後述する調芯作業が進展する。又、第1の係合樹脂部材5,6,7及び第2の係合樹脂部材8,9,10は樹脂部材2,4と異なる樹脂材料であっても良く、プロセス上、熱硬化型樹脂であっても、光硬化・熱硬化併用型樹脂であっても良い。   Here, for example, the height of the engagement surface 5a of the first engagement resin member 5, the height of the engagement surface 8a of the second engagement resin member 8, the height of the engagement surface 6a, and the height of the engagement surface 9a. The height of the engaging surface 7a and the height of the engaging surface 10a are set so as to separate the previously formed body mounting surfaces 2b and 4b by 50 μm when engaged with each other. The friction disappears and the alignment work described later progresses. Further, the first engagement resin members 5, 6, 7 and the second engagement resin members 8, 9, 10 may be made of a resin material different from that of the resin members 2, 4. Alternatively, a photocuring / thermosetting resin may be used.

次に、係合樹脂部材5,8の成形方法について図3を用いて説明する。   Next, a method for forming the engaging resin members 5 and 8 will be described with reference to FIG.

図3において、11は第1のガラス基板1を設置して係合樹脂部材5の外形を転写成形するための転写型、16は第2のガラス基板3を設置して係合樹脂部材8の外形を転写成形するための転写型である。12,17は紫外線を透過して係合樹脂部材5,8の各々の一部を成形するための透明成形筒、13,18は側面の開口部から樹脂材料を充填し、回転して開口部を閉じる外形成形筒である。   In FIG. 3, reference numeral 11 denotes a transfer mold for setting the first glass substrate 1 to transfer and mold the outer shape of the engagement resin member 5, and 16 denotes a second glass substrate 3 for setting the engagement resin member 8. This is a transfer mold for transferring and molding the outer shape. Reference numerals 12 and 17 denote transparent molded cylinders for transmitting a part of each of the engaging resin members 5 and 8 by transmitting ultraviolet rays, and reference numerals 13 and 18 denote resin materials filled from the side openings, which are rotated to open the openings. Is an outer shape forming cylinder.

転写型11,16の型材としては通常スタンパ型として用いられるステンレス鋼に化学ニッケルメッキを処理し、表面を研磨加工して用いる。表面粗さはRa=0. 2μmとした。透明成形筒12,17はパイレックスガラス製の円筒端面12a,17aに離型性を良くするためサイトップ(Cytop)をディップコートし、80℃で1hキュアして離型性膜を形成した。外形成形筒13,18は円筒フッ素樹脂の側面にφ1mmの貫通穴を円周上の3等分位置に設けた。   As the mold material of the transfer molds 11 and 16, a stainless steel usually used as a stamper mold is treated with chemical nickel plating and the surface is polished. The surface roughness was Ra = 0.2 μm. The transparent molded cylinders 12 and 17 were formed by dip-coating Cytop on the cylindrical end faces 12a and 17a made of Pyrex glass and curing at 80 ° C. for 1 hour to form a release film. The outer shape forming cylinders 13 and 18 were provided with through-holes of 1 mm on the side surface of the cylindrical fluororesin at three equal positions on the circumference.

図3(a)において、光学素子21は予め第1のガラス基板1の有効径外部1bと側面部1cにシラン系カップリング剤を塗布した後、60℃で1hキュアする処理を施工している転写型11上の11a面に光学素子21の第1のガラス基板1の有効径外部1bを載置し、第1のガラス基板1の外径に透明成形筒12を嵌合させ、転写型11上の11bより3mm高い位置で透明成形筒12を保持する。透明成形筒12の外径及び転写型11の外径部に外形成形筒13を嵌入する。外形成形筒13の側面開口部13aを転写型11の型幅の中心に合わせ、予めディスペンサーに用意した樹脂材料を側面開口部13aから封入する。   In FIG. 3A, the optical element 21 is preliminarily applied with a silane coupling agent on the effective diameter outside 1b and the side surface 1c of the first glass substrate 1 and then cured at 60 ° C. for 1 h. The effective diameter outside 1b of the first glass substrate 1 of the optical element 21 is placed on the surface 11a on the transfer mold 11, and the transparent molding cylinder 12 is fitted to the outer diameter of the first glass substrate 1, so that the transfer mold 11 The transparent cylinder 12 is held at a position 3 mm higher than the upper 11b. The outer shape forming tube 13 is inserted into the outer diameter of the transparent forming tube 12 and the outer diameter portion of the transfer die 11. The side opening 13a of the outer shape forming cylinder 13 is aligned with the center of the mold width of the transfer mold 11, and a resin material prepared in advance in the dispenser is sealed from the side opening 13a.

適量封入すると、外形成形筒13を120°回転し、同様に側面開口部13aから樹脂材料を適量封入する。ここで用いた樹脂材料は、前述の樹脂部材2,4と同様の光硬化反応型のモノマー樹脂である。従って、光学素子21の上面から不図示紫外線照射機で紫外線光エネルギーを付与すると封入した樹脂材料は硬化する。この際使用した照射プロファイルは樹脂材料のヒケを防止するため初期弱照射(1mW/cm2
×10sec+30mW/cm2 ×300sec)とした。
When an appropriate amount is encapsulated, the outer shape forming cylinder 13 is rotated by 120 °, and an appropriate amount of resin material is encapsulated from the side opening 13a. The resin material used here is a photo-curing reaction type monomer resin similar to the resin members 2 and 4 described above. Therefore, when ultraviolet light energy is applied from the upper surface of the optical element 21 by an unillustrated ultraviolet irradiator, the encapsulated resin material is cured. The irradiation profile used at this time was an initial weak irradiation (1 mW / cm 2 to prevent sinking of the resin material.
× 10 sec + 30 mW / cm 2 × 300 sec).

離型手順は最初に外形成形筒13を回転させながら取り外す。次に、透明成形筒12を取り外し、続いて第1のガラス基板1の上面側に冷却剤をスプレーし、転写型11から係合樹脂部材5と第1のガラス基板1の有効径外部1b上の樹脂とを離型する。   In the mold release procedure, the outer shape forming cylinder 13 is first removed while rotating. Next, the transparent molding cylinder 12 is removed, and then the coolant is sprayed on the upper surface side of the first glass substrate 1, and the engagement resin member 5 and the effective diameter outside 1 b of the first glass substrate 1 are transferred from the transfer mold 11. Release the resin.

次に、光学素子23に成形された係合樹脂部材8,9,10の各々を挟持して光学素子23を回転し、第1のガラス基板1の係合樹脂部材5,6,7と第2のガラス基板3の係合樹脂部材8,9,10を互いに係合する装置構成と作動プロセスについて図4を用いて説明する。   Next, each of the engaging resin members 8, 9, 10 formed on the optical element 23 is sandwiched to rotate the optical element 23, and the engaging resin members 5, 6, 7 of the first glass substrate 1 and the first The apparatus configuration and operation process for engaging the engaging resin members 8, 9, 10 of the second glass substrate 3 with each other will be described with reference to FIG.

図4において、31,32,33は係合樹脂部材8,9,10を各々挟持し、光学素子23を保持可能な挟持部材、34は挟持部材31,32,33を一体的に連結する連結部材、36は連結部材34をカップリング材35で連結して回転可能なレバー、37はレバー36を上下動可能なリフト、38はレバー36を介して光学素子23を回動可能にするカム部である。   In FIG. 4, reference numerals 31, 32, and 33 hold the engaging resin members 8, 9, and 10, respectively, and a holding member that can hold the optical element 23. Reference numeral 34 denotes a connection that integrally connects the holding members 31, 32, and 33. Reference numeral 36 denotes a lever that can be rotated by connecting the connecting member 34 with a coupling member 35; 37, a lift that can move the lever 36 up and down; 38, a cam portion that allows the optical element 23 to be rotated via the lever 36; It is.

挟持部材31,32,33は、バネ性ステンレス材SUS304を用い、例えば31は31aと31bのように係合樹脂部材8に対して両サイドからの挟持によって保持されるが、係合樹脂部材8,9,10との位相が明らかでない初期状態では、挟持部材31,32,33各々の両サイドの部材(31a−31b,32a−32b,33a−33b)は離間した状態にある。   The holding members 31, 32, and 33 are made of spring stainless steel SUS304. For example, 31 is held by holding the engaging resin member 8 from both sides like 31 a and 31 b, but the engaging resin member 8. , 9, 10 in the initial state where the phase is not clear, the members (31a-31b, 32a-32b, 33a-33b) on both sides of the holding members 31, 32, 33 are in a separated state.

光学素子23の位相が光学素子21上で係合状態にある時、連結部材34を手動回転し、不図示バネ座ロック機構を外してスラスト方向に下降調整し、再ロックして挟持部材31,32,33各々の両サイドの部材(31a−31b,32a−32b,33a−33b)を係合樹脂部材8,9,10に係合させる。   When the phase of the optical element 23 is in the engaged state on the optical element 21, the connecting member 34 is manually rotated, the spring seat locking mechanism (not shown) is removed and adjusted downward in the thrust direction, and re-locked to hold the clamping member 31, The members (31a-31b, 32a-32b, 33a-33b) on both sides of 32, 33 are engaged with the engaging resin members 8, 9, 10.

図4(b)に示すように、係合樹脂部材8,9,10と挟持部材が完全に係合すると、カム部38に沿って不図示駆動源(モータ)に連結された連結ギアを介してリフト37を例えば右回動すると、リフト37と台形ネジで螺合するレバー36も右回動し、これらと一体的に連結部材34が右回転する。光学素子23の係合部材8,9,10と光学素子21の係合部材5,6,7の係合が完全に外れる位相まで達すると、リフト37の不図示駆動源からの回動をストップする。この位相で光学素子23の胴付け面4bと光学素子21の胴付け面2bとの隙間は10μm有り非接触の状態である。   As shown in FIG. 4 (b), when the engaging resin members 8, 9, 10 and the clamping member are completely engaged, via a connecting gear connected to a driving source (motor) (not shown) along the cam portion 38. When the lift 37 is rotated to the right, for example, the lever 36 screwed with the lift 37 with a trapezoidal screw is also rotated to the right, and the connecting member 34 is rotated to the right integrally therewith. When the engagement members 8, 9, 10 of the optical element 23 and the engagement members 5, 6, 7 of the optical element 21 are completely disengaged, the lift 37 stops rotating from a drive source (not shown). To do. At this phase, the gap between the body surface 4b of the optical element 23 and the body surface 2b of the optical element 21 is 10 μm and is in a non-contact state.

次のステップとして光学素子21の位置補正による仮アライメント作業について、図5〜図7を用いて説明する。   As a next step, a temporary alignment operation by correcting the position of the optical element 21 will be described with reference to FIGS.

図5において、42は光学素子21を下方へ吸着、保持するエア吸着弁、40は光学素子21を支持する支持台、41は光学素子21のR1面を吸着する際のゴム製緩衝リング、50,51,52は支持台40を傾き調整する傾き調整ネジ43は支持台40をY方向へ移動するYテーブル、44はYテーブル43を移動調整する0.1μmピッチ分解能のマイクロメーター、45は支持台40をX方向へ移動するXテーブル、46はXテーブル45を移動調整する0.1μmピッチ分解能のマイクロメーター、47は支持台40をZ方向へ移動するZテーブル、48はZテーブル47を移動調整する0.5μmピッチ分解能のマイクロメーター、61はアライメントマークを観察するフォーカス機能付き対物レンズ、62は対物レンズを連結する鏡筒、63は対物レンズをズーミングするズーム部、64は鏡筒62に連結するCCDカメラ本体である。   In FIG. 5, 42 is an air adsorption valve that adsorbs and holds the optical element 21 downward, 40 is a support base that supports the optical element 21, 41 is a rubber buffer ring that adsorbs the R1 surface of the optical element 21, and 50. , 51 and 52 are tilt adjustment screws 43 for adjusting the tilt of the support base 40, a Y table for moving the support base 40 in the Y direction, 44 a micrometer with a 0.1 μm pitch resolution for moving and adjusting the Y table 43, and 45 for support. An X table that moves the table 40 in the X direction, 46 is a micrometer with a resolution of 0.1 μm that adjusts the X table 45, 47 is a Z table that moves the support table 40 in the Z direction, and 48 is a table that moves the Z table 47. A micrometer with 0.5 μm pitch resolution to be adjusted, 61 is an objective lens with a focus function for observing the alignment mark, and 62 is an objective lens connected Barrel, 63 a zoom unit for zooming the objective lens, 64 is a CCD camera that connects to the barrel 62.

図6において、66はCCDカメラ64の撮像をモニターするTVモニタ、65はTVモニタ64にターゲットを表示するアジャスター、67は対物レンズに入射光を導くイルミネータのファイバー、68はイルミネータ光源である。   In FIG. 6, 66 is a TV monitor for monitoring the imaging of the CCD camera 64, 65 is an adjuster for displaying a target on the TV monitor 64, 67 is an illuminator fiber for guiding incident light to the objective lens, and 68 is an illuminator light source.

予め、エア吸着弁42を開いて光学素子21を吸着固定しておき、イルミネータ光源はアライメントマークが観察できるよう所望の明るさまでレベル調整しておく。アジャスター65、CCDカメラ64は、TVモニター66に接続され、何れの電源もON状態にセットされている。又、Yテーブルマイクロメーター44、Xテーブルマイクロメーター46を調整して光学素子21の中心がモニターされるよう支持台40を移動セットしておく。対物レンズ61をフォーカス調整し、対物レンズ61の深度を光学素子21のアライメントマークにピント調整する。   In advance, the air adsorption valve 42 is opened and the optical element 21 is adsorbed and fixed, and the level of the illuminator light source is adjusted to a desired brightness so that the alignment mark can be observed. The adjuster 65 and the CCD camera 64 are connected to the TV monitor 66, and both power supplies are set to the ON state. Further, the support table 40 is moved and set so that the center of the optical element 21 is monitored by adjusting the Y table micrometer 44 and the X table micrometer 46. The focus of the objective lens 61 is adjusted, and the depth of the objective lens 61 is focused on the alignment mark of the optical element 21.

図7(a)に示すように、アライメントマーク74の内側輪帯72が輪帯間の高低差によって、外側輪帯から外れてモニターされる場合、
傾き調整ネジ50,51,52を調整して内側輪帯73内径に外側輪帯72が入るようにする。尚、ここでは、CCDカメラ64の倍率100倍、対物レンズ61の倍率最大20倍を設定していることから敏感度は2000倍(1μmのズレを2mmでモニターしている)である。
As shown in FIG. 7A, when the inner ring zone 72 of the alignment mark 74 is monitored out of the outer ring zone due to the height difference between the ring zones,
The inclination adjusting screws 50, 51, 52 are adjusted so that the outer ring zone 72 enters the inner diameter of the inner ring zone 73. Here, since the magnification of 100 times of the CCD camera 64 and the maximum magnification of 20 times of the objective lens 61 are set, the sensitivity is 2000 times (1 μm deviation is monitored at 2 mm).

次に、Zテーブルマイクロメーター48を+Z値側、即ち、光学素子21を光学素子23に近づける側へ+5μm調整する。続いて対物レンズ61をフォーカス調整し、対物レンズ61の深度を光学素子23のアライメントマークに深度調整するが、5μmの深度差では、図7(b)に示すように、光学素子21のアライメントマーク74も同時にモニター上に観察される。この状態で光学素子23のアライメントマーク84はアライメントマーク74に近接している筈であるが、アライメントマーク84がモニター上に観察されない場合は、ズーム部63を回転調整して対物レンズの倍率を5〜6倍程度まで低下させ、モニター内エリアにアライメントマーク84を捕らえるようにする。   Next, the Z table micrometer 48 is adjusted to + Z value side, that is, the optical element 21 is brought closer to the optical element 23 by +5 μm. Subsequently, the focus of the objective lens 61 is adjusted, and the depth of the objective lens 61 is adjusted to the alignment mark of the optical element 23. However, when the depth difference is 5 μm, as shown in FIG. 74 is also observed on the monitor at the same time. In this state, the alignment mark 84 of the optical element 23 should be close to the alignment mark 74. However, when the alignment mark 84 is not observed on the monitor, the zoom unit 63 is rotated to adjust the magnification of the objective lens to 5. It is lowered to about -6 times so that the alignment mark 84 is captured in the monitor area.

アライメントマーク74にアライメントマーク84が近接するようYテーブルマイクロメーター44とXテーブルマイクロメーター46を調整し、対物レンズの倍率を最大20倍まで拡大して図7(b)に示すようにアライメントマーク74の外側輪帯73がアライメントマーク84の内側輪帯82の内径中心に合うようYテーブルマイクロメーター44とXテーブルマイクロメーター46を微動調整する。   The Y table micrometer 44 and the X table micrometer 46 are adjusted so that the alignment mark 84 is close to the alignment mark 74, and the magnification of the objective lens is increased up to 20 times, and the alignment mark 74 is shown in FIG. 7B. The Y table micrometer 44 and the X table micrometer 46 are finely adjusted so that the outer ring zone 73 is aligned with the inner diameter center of the inner ring zone 82 of the alignment mark 84.

次に、Zテーブルマイクロメーター48を+Z値側へ+4μm調整する。ここで、アライメントマーク74の外側輪帯73がアライメントマーク84の内側輪帯82の内径中心にあることを再確認する。ズレが生じた場合は、上記と同様にアライメントマークを再調整する。ここまでで仮アライメント作業を終了した。   Next, the Z table micrometer 48 is adjusted to + Z value side by +4 μm. Here, it is reconfirmed that the outer ring zone 73 of the alignment mark 74 is at the center of the inner diameter of the inner ring zone 82 of the alignment mark 84. When the deviation occurs, the alignment mark is readjusted in the same manner as described above. Thus, the temporary alignment work has been completed.

次のステップとしては、光学素子23の胴付け面4b,4c,4dに光学素子21の胴付け面2b,2c,2dを突き当て、アライメント再確認後、光学素子21,23を接合して光学素子23の係合樹脂部材8,9,10から挟持部材31,32,33を解除する工程について説明する。   As the next step, the body surfaces 2b, 2c, and 2d of the optical element 21 are brought into contact with the body surfaces 4b, 4c, and 4d of the optical element 23, and after reconfirming the alignment, the optical elements 21 and 23 are joined to form an optical element. A process of releasing the clamping members 31, 32, 33 from the engaging resin members 8, 9, 10 of the element 23 will be described.

Zテーブルマイクロメーター48を+Z値側へ+1μm調整する。上記と同様にアライメントマークの一致を最終確認する。ここで理論的には、光学素子23の胴付け面4b,4c,4dに光学素子21の胴付け面2b,2c,2dが突き当てられた筈であるが、実際には成形品のバラツキにより突き当てを保証できない。そこで、Zテーブルマイクロメーター48を+Z値側へ更に+2μm調整する。   Adjust the Z table micrometer 48 to the + Z value side by +1 μm. Similar to the above, the alignment mark is finally confirmed. Theoretically, the body surfaces 2b, 2c, and 2d of the optical element 21 should be abutted against the body surfaces 4b, 4c, and 4d of the optical element 23. Butting cannot be guaranteed. Accordingly, the Z table micrometer 48 is further adjusted to +2 μm toward the + Z value side.

ところで、調芯精度の規格は、口径φ50のレンズで±2μm程度を要求される。積層型の素子においては突き当ての倒れによる光軸に対する法線面上のズレは図9を参照した以下数式に示すように、
tanθ=hA/R ⇒θ=tan−1(hA/R)
tanθ=Δ2/(hA+hB)⇒θ=tan−1(Δ2/(hA+hB))
Δ2=hA(hA+hB)/R=(0.005mm
×0.01mm)/25mm=0.004 μm
突き当て面の倒れがZ値で10μm発生したとしても法線面上のズレは0.002μmに留まる。又、本発明の基板外周に設けられた成形部の2基板光軸に対する法線面の倒れがZ値で0.1mmとなるような調芯状態であったとしても法線面上のズレは0.02μmである。従って、レプリカ成形による実力では素子最終突き当て面の倒れがアライメント精度範囲に影響を及ぼすことはない。
By the way, the standard for the alignment accuracy is required to be about ± 2 μm for a lens having a diameter of φ50. In the stacked type element, the deviation on the normal plane with respect to the optical axis due to the falling of the butting is as shown in the following formula with reference to FIG.
tan θ = hA / R ⇒θ = tan −1 (hA / R)
tan θ = Δ2 / (hA + hB) => θ = tan −1 (Δ2 / (hA + hB))
Δ2 = hA (hA + hB) / R = (0.005 mm
× 0.01mm) /25mm=0.004 μm
Even if the abutting surface is tilted by 10 μm in terms of the Z value, the deviation on the normal surface remains at 0.002 μm. Even if the tilt of the normal surface of the molded part provided on the outer periphery of the substrate of the present invention with respect to the optical axis of the two substrates is centered so that the Z value is 0.1 mm, the deviation on the normal surface is 0.02 μm. Therefore, the tilt of the element final abutting surface does not affect the alignment accuracy range with the capability of replica molding.

次に、図8に示す光学素子21と23の外周境界部3等分箇所91,92,93にディスペンサー等を用いて接合剤を塗布し、不図示照射機を用いて光照射して硬化させる。ここでは接合剤に低粘度の紫外線硬化型樹脂を用いた。続いてエア吸着弁42を開いて光学素子21を吸着固定し、連結部材34を手動回転し、不図示バネ座ロック機構を外してスラスト方向に上昇、調整し、再ロックして光学素子23の係合樹脂部材8,9,10から挟持部材31,32,33を離間する。最後に吸着弁42を閉じて光学素子21を開放する。   Next, a bonding agent is applied using a dispenser or the like to the outer peripheral boundary portion 3 equally divided portions 91, 92, and 93 of the optical elements 21 and 23 shown in FIG. 8, and light is cured using an unillustrated irradiator. . Here, a low-viscosity UV curable resin was used as the bonding agent. Subsequently, the air adsorbing valve 42 is opened to adsorb and fix the optical element 21, the connecting member 34 is manually rotated, the spring seat locking mechanism (not shown) is removed, the thrust is raised and adjusted, and the optical element 23 is re-locked. The holding members 31, 32, 33 are separated from the engaging resin members 8, 9, 10. Finally, the adsorption valve 42 is closed and the optical element 21 is opened.

一般的にアライメント調整を含む組立工程では、作業が複雑で煩雑になり勝ちであるが、例えばφ80mmを超える大口径レンズのような小数ロット生産においては、製品サイクルが短期化することにより調整仕様が頻繁に変更される可能性が高く、全てオートメーション化するのではなく前述したような一部自動化による半自動機工程が好ましい。   In general, the assembly process including alignment adjustment tends to be complicated and cumbersome, but in small lot production such as a large-diameter lens exceeding φ80 mm, adjustment specifications can be reduced by shortening the product cycle. The semi-automatic machine process by partial automation as mentioned above is preferable, rather than being fully automated.

前述した構成の積層型光学素子の調芯工程は、第1のレンズ基板と第2のレンズ基板の外周に設けられた複数の成形部が互いに係合して、素子最終突き当て面同志の間に隙間を生じさせ、アライメント中の素子同志の摩擦増大による回折光学面への傷発生や、調芯作業の繰り返しトライの回数増により、タクトの増大を招くことがない。   In the alignment process of the laminated optical element having the above-described configuration, a plurality of molding portions provided on the outer circumferences of the first lens substrate and the second lens substrate are engaged with each other so that the element abutting surfaces are in contact with each other. In other words, the diffractive optical surface is not flawed due to increased friction between elements during alignment, and the number of repeated trials of alignment work is not increased.

又、調芯開始前、完了後の工程において、第2のレンズ基板(可動側)に設けられた成形部を挟持してレンズ基板を回転させる治具を構成することで、第1の基板と第2の基板外周に設けられた成形部を互いに係合、解除させる調芯開始前、完了後の工程導入が容易になる。更に、調芯を高精度化するため、予め第1のレンズ基板(固定側)の受け台を第2のレンズ基板に対して可動可能な0. 1μmピッチ分解能のX−Yテーブルとして構成しておくことにより、素子最終突き当て面近接位置でアライメント補正したり、調芯完了後の素子突き当てによるアライメントズレを補正する調芯作業の再トライに備えて、第1のレンズ基板位置調整が可能になる。   In addition, in the process before the alignment start and after the completion, a jig for rotating the lens substrate by sandwiching the molding portion provided on the second lens substrate (movable side) is configured with the first substrate It is easy to introduce the process before and after the start of alignment to engage and release the molding parts provided on the outer periphery of the second substrate. Furthermore, in order to improve the alignment accuracy, the cradle of the first lens substrate (fixed side) is configured in advance as an XY table with a 0.1 μm pitch resolution that can be moved with respect to the second lens substrate. This makes it possible to adjust the position of the first lens substrate in preparation for the retry of alignment work to correct alignment at the element final abutment surface proximity position or to correct alignment misalignment due to element abutment after alignment. become.

<実施の形態2>
本発明の実施の形態2は図10及び図11において、光学素子121の係合樹脂部材105の係合部105aと光学素子123の係合樹脂部材108の係合部108aを互いに接触した際に、その接触部が点当たりとなるよう陵部形状の係合部105a,108aを形成した実施の形態1の変形例である。
<Embodiment 2>
The second embodiment of the present invention is shown in FIGS. 10 and 11 when the engaging portion 105a of the engaging resin member 105 of the optical element 121 and the engaging portion 108a of the engaging resin member 108 of the optical element 123 are brought into contact with each other. This is a modified example of the first embodiment in which the ridge-shaped engaging portions 105a and 108a are formed so that the contact portion is a spot.

係合樹脂部材105,108の成形方法については実施の形態1とほぼ同様であるが、係合部105a,108aを転写成形する不図示転写型の面は、実施の形態1と異なり、陵部形状の裏返し(逆転写)面を形成している。   The molding method of the engaging resin members 105 and 108 is almost the same as that of the first embodiment, but the surface of the transfer mold (not shown) for transferring and molding the engaging portions 105a and 108a is different from the first embodiment and is a ridge portion. A reverse (reverse transfer) surface of the shape is formed.

その他、装置構成を含むアライメントの工程については実施の形態1と同様であるため説明を省略する。   In addition, since the alignment process including the apparatus configuration is the same as that of the first embodiment, the description thereof is omitted.

本実施の形態の効果は、実施の形態1の「光学素子23に成形された係合樹脂部材8,9,10の各々を挟時して、光学素子23を回転し、第1の基板1の係合樹脂部5,6,7と第2の基板3の係合樹脂部8,9,10を互いに係合する装置構成と作動プロセスについての説明」で述べた、駆動源からの伝達によりリフト37、レバー36を回動し、連結部材34が回転して挟持部材31,32,33を介して光学素子23を回転する際の係合樹脂部8,9,10と光学素子21の係合樹脂部5,6,7の互いの接触摩擦を1/3に軽減することができる。これにより、装置の稼動耐久により挟持部材31,32,33が疲労変形し、光学素子23の係合樹脂部材8,9,10が光学素子21の係合樹脂部材5,,7の係合から完全に外れた位相で、挟持部材31,32,33から光学素子23を脱落するようなことはない。従って、装置トラブルや装置構成メンテナンスによるコストの増大を最小限に抑えることができる。   The effect of the present embodiment is that the first substrate 1 rotates the optical element 23 while sandwiching each of the engaging resin members 8, 9, 10 formed on the optical element 23. By the transmission from the drive source described in “Description of Device Configuration and Operation Process for Engaging Engagement Resin Parts 5, 6, 7 and Engagement Resin Parts 8, 9, and 10 of Second Substrate 3” When the lift 37 and the lever 36 are rotated and the connecting member 34 rotates to rotate the optical element 23 via the clamping members 31, 32, 33, the engagement resin portions 8, 9, 10 and the optical element 21 are engaged. The mutual contact friction of the composite resin portions 5, 6, and 7 can be reduced to 1/3. As a result, the clamping members 31, 32, 33 are fatigued due to the operation durability of the apparatus, and the engagement resin members 8, 9, 10 of the optical element 23 are engaged with the engagement resin members 5, 7 of the optical element 21. The optical element 23 is not dropped from the clamping members 31, 32, 33 at a completely out of phase. Therefore, an increase in cost due to device trouble and device configuration maintenance can be minimized.

本発明の実施の形態1に係るの光学素子の調芯調整時の構成断面図である。It is a structure sectional view at the time of alignment adjustment of the optical element according to Embodiment 1 of the present invention. 本発明の実施の形態1に係る光学素子の調芯調整時の構成平面図である。It is a structure top view at the time of the alignment adjustment of the optical element which concerns on Embodiment 1 of this invention. (a)は本発明の実施の形態の第1の基板の側面に本発明の成形部を成形する成形方法を表す構成断面図、(b)は第2の基板の側面に本発明の成形部を成形する成形方法を表す構成断面図である。(A) is a cross-sectional view showing a molding method for molding the molded part of the present invention on the side surface of the first substrate according to the embodiment of the present invention, and (b) is a molded part of the present invention on the side surface of the second substrate. It is a structure sectional view showing the shaping | molding method which shape | molds. (a)は本発明の実施の形態1の第2の基板から成る光学素子に係合して調芯するアライメント装置の要部を含む平面図、(b)は第2の基板から成る光学素子に係合して調芯するアライメント装置の一部側面及び断面図である。(A) is a top view including the principal part of the alignment apparatus which engages with the optical element which consists of a 2nd board | substrate of Embodiment 1 of this invention, and aligns, (b) is an optical element which consists of a 2nd board | substrate. It is a partial side view and cross-sectional view of an alignment apparatus that engages with and aligns the center. 本発明の実施の形態1に係る光学素子を調芯するアライメント装置の側面図である。It is a side view of the alignment apparatus which aligns the optical element which concerns on Embodiment 1 of this invention. 本発明の実施の形態1の調芯観察系の構成を表す図である。It is a figure showing the structure of the alignment observation system of Embodiment 1 of this invention. (a)は本発明の実施の形態1のモニターされたアライメントマークが光軸に対して法線方向に傾いている様子を表す図、(b)は第1の基板のアライメントマーク中心と第2の基板のアライメントマーク中心が一致している様子を表す図である。(A) is a figure showing a mode that the alignment mark monitored of Embodiment 1 of this invention inclines in the normal line direction with respect to an optical axis, (b) is the alignment mark center of a 1st board | substrate, and 2nd It is a figure showing a mode that the alignment mark center of the board | substrate of this corresponds. (a)は本発明の実施の形態1の第1の基板と第2の基板の側面を接合する様子を表す断面図、(b)は第1の基板と第2の基板の側面を接合する様子を表す平面図である。(A) is sectional drawing showing a mode that the 1st board | substrate of Embodiment 1 of this invention and the side surface of a 2nd board | substrate are joined, (b) is joining the side surface of a 1st board | substrate and a 2nd board | substrate. It is a top view showing a mode. 2つの光学素子の胴付け突き当て後のクサビ量と調芯時のクサビ量による法線面のアライメントズレ量を表した概略図である。It is the schematic showing the amount of alignment gaps of the normal line surface by the amount of wedges after body contact of two optical elements, and the amount of wedges at the time of alignment. 本発明の実施の形態2に係る光学素子の調芯調整時の構成断面図である。It is a structure sectional drawing at the time of the alignment adjustment of the optical element which concerns on Embodiment 2 of this invention. 本発明の実施の形態2に係る光学素子の調芯調整時の一部平面図である。It is a partial top view at the time of the alignment adjustment of the optical element which concerns on Embodiment 2 of this invention. 従来の積層型回折光学素子の断面図である。It is sectional drawing of the conventional lamination type diffractive optical element. 従来の積層型回折光学素子の調芯工程を表す図である。It is a figure showing the alignment process of the conventional lamination type diffractive optical element.

符号の説明Explanation of symbols

1 第1の基板ガラス
2 第1の樹脂部材
2a,4a レリーフパターン転写面
2b,4b 胴付け面
3 第2の基板ガラス
4 第2の樹脂部材
5,6,7 第1の係合樹脂部材
5a,6a,7a,8a,9a,10a 係合面
8,9,10 第2の係合樹脂部材
5c,6c,7c,8c 流出樹脂
11,16 転写型
12,17 透明成形筒
13,18 外形成形筒
13a 側面開口部
21,23,121,123 光学素子
31,32,33 挟持部材
34 連結部材
36 レバー
38 カム部
40 支持台
41 緩衝リング
42 エア吸着弁
43 Yテーブル
44,46,48 マイクロメータ
45 Xテーブル
47 Zテーブル
61 対物レンズ
62 鏡筒
63 ズーム部
64 CCDカメラ
65 アジャスター
66 TVモニタ
67 ファイバー
68 イルミネータ光源
72,73 内側輪帯(アライメントマーク)
74,84 アライメントマーク
105aa,108a 係合部
DESCRIPTION OF SYMBOLS 1 1st board | substrate glass 2 1st resin member 2a, 4a Relief pattern transfer surface 2b, 4b Body mounting surface 3 2nd board | substrate glass 4 2nd resin member 5, 6, 7 1st engagement resin member 5a , 6a, 7a, 8a, 9a, 10a Engagement surface 8, 9, 10 Second engagement resin member 5c, 6c, 7c, 8c Outflow resin 11, 16 Transfer mold 12, 17 Transparent molding cylinder 13, 18 Outline molding Tube 13a Side opening 21, 23, 121, 123 Optical element 31, 32, 33 Nipping member 34 Connection member 36 Lever 38 Cam part 40 Support base 41 Buffer ring 42 Air adsorption valve 43 Y table 44, 46, 48 Micrometer 45 X table 47 Z table 61 Objective lens 62 Lens barrel 63 Zoom section 64 CCD camera 65 Adjuster 66 TV monitor 67 Fiber 68 Il Minator light source 72, 73 Inner ring zone (alignment mark)
74, 84 Alignment mark 105aa, 108a Engagement part

Claims (3)

積層型光学素子において、
第1の基板上に成形された第1の回折光学面と第1の基板上に成形された光軸と直交する面又は陵部を持つ複数の成形部が、前記第1の回折光学面と一体的に形成され、第2の基板の外周側面に等分位置に配置された光軸と直交する面又は陵部を持つ複数の成形部が前記第2の回折光学面と一体的に形成されることを特徴とする光学素子。
In laminated optical elements,
A plurality of molded parts having a first diffractive optical surface molded on the first substrate and a surface orthogonal to the optical axis molded on the first substrate or a projecting part, and the first diffractive optical surface A plurality of molded parts that are formed integrally and have a surface perpendicular to the optical axis or a crest disposed at equal positions on the outer peripheral side surface of the second substrate are formed integrally with the second diffractive optical surface. An optical element.
第1の回折光学面と前記第2の回折光学面を芯出し調整する工程において、第1の基板の外周側面に等分位置に配置された複数の成形部と、第2の基板の外周側面に等分位置に配置された複数の成形部が各々対向位置で面接触又は線接触し、第1の光学突き当て面と第2の光学突き当て面を一定量離間させる手段と、前記第1の回折光学面と前記第2の回折光学面を芯出し調整する工程において、前記第1の基板又は前記第2の基板の何れか一方を固定する第1の固定手段と、前記第1の固定手段を用いない他方の基板を基板中心同軸姿勢で固定する第2の固定手段と、該他方の基板を回転制御可能な回転手段と、前記第1の基板を前記第2の基板に対して平面方向に移動可能な調芯手段と、前記芯出し調整後、前記第1の基板を回転し、前記第1の基板の外周側面の複数の成形部と前記第2の基板の外周側面の複数の成形部の各々の接触状態が外れ、前記第1の光学突き当て面と前記第2の光学突き当て面を当接させる手段とを備えたことを特徴とする光学素子の製造方法。   In the step of adjusting the centering of the first diffractive optical surface and the second diffractive optical surface, a plurality of molding parts arranged at equal positions on the outer peripheral side surface of the first substrate, and the outer peripheral side surface of the second substrate A plurality of forming portions arranged at equal positions respectively in surface contact or line contact at opposing positions, the first optical abutting surface and the second optical abutting surface being spaced apart by a certain amount; and the first In the step of adjusting the center of the diffractive optical surface and the second diffractive optical surface, first fixing means for fixing either the first substrate or the second substrate, and the first fixing A second fixing means for fixing the other substrate without using the means in a substrate center coaxial posture; a rotating means capable of controlling rotation of the other substrate; and the first substrate in a plane with respect to the second substrate. Aligning means movable in the direction, and after the alignment adjustment, the first substrate is rotated The contact state of each of the plurality of molding portions on the outer peripheral side surface of the first substrate and the plurality of molding portions on the outer peripheral side surface of the second substrate is released, and the first optical abutting surface and the second optical abutting surface are released. A method for manufacturing an optical element, comprising: means for contacting the surfaces. 第1の基板又は第2の基板の外周端に嵌合する第1の成形筒型と、該成形型と光軸方向に離間した対向面で、且つ、前記第1の基板又は第2の基板の有効径外面に胴付けされ、等分位置に複数の溝を設けた第2の成形筒型と、第1及び第2の成形筒型に回転可能に嵌合し、側面部から樹脂充填可能な貫通穴を設けた規制筒を各々成形手段として配置して、前記光軸と直交する面又は陵部を持つ複数の成形部を回折光学面と一体成形することを特徴とする光学素子の成形方法。   A first molding cylinder mold fitted to an outer peripheral end of the first substrate or the second substrate; an opposing surface spaced apart from the molding mold in the optical axis direction; and the first substrate or the second substrate. Can be rotatably fitted to the second and second molding cylinders, which are mounted on the outer surface of the effective diameter and provided with a plurality of grooves at equal positions, and can be filled with resin from the side surface. An optical element is formed by arranging a plurality of molding parts having surfaces or ridges orthogonal to the optical axis and integrally forming with a diffractive optical surface, each of which is provided with a regulation cylinder provided with a through-hole as molding means. Method.
JP2005032442A 2005-02-09 2005-02-09 Optical element and manufacturing method and forming method therefor Withdrawn JP2006220779A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005032442A JP2006220779A (en) 2005-02-09 2005-02-09 Optical element and manufacturing method and forming method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005032442A JP2006220779A (en) 2005-02-09 2005-02-09 Optical element and manufacturing method and forming method therefor

Publications (1)

Publication Number Publication Date
JP2006220779A true JP2006220779A (en) 2006-08-24

Family

ID=36983164

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005032442A Withdrawn JP2006220779A (en) 2005-02-09 2005-02-09 Optical element and manufacturing method and forming method therefor

Country Status (1)

Country Link
JP (1) JP2006220779A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120981A1 (en) 2011-03-07 2012-09-13 コニカミノルタオプト株式会社 Method for manufacturing lens barrel

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012120981A1 (en) 2011-03-07 2012-09-13 コニカミノルタオプト株式会社 Method for manufacturing lens barrel
US9188842B2 (en) 2011-03-07 2015-11-17 Konica Minolta, Inc. Method for manufacturing lens barrel

Similar Documents

Publication Publication Date Title
JP3983652B2 (en) Microlens array substrate manufacturing method and manufacturing apparatus
JP4226067B2 (en) Modeling method, lens manufacturing method, and modeling apparatus
US10764478B2 (en) Camera module includes a lens unit that is fixed to a holding member having an image sensor via an engaging member of cured resin and manufacturing method thereof
WO2013154121A1 (en) Lens unit
US9216549B2 (en) Optical part manufacturing method, mold manufacturing method, optical part manufacturing apparatus, and mold manufacturing apparatus
US7859772B2 (en) Composite optical element and method for manufacturing the same
JP2006220779A (en) Optical element and manufacturing method and forming method therefor
JP5883447B2 (en) Method and apparatus for manufacturing lens wafers
JP4467768B2 (en) Compound lens manufacturing apparatus and compound lens manufacturing method
JP5503115B2 (en) Manufacturing method of modeling object and manufacturing system of modeling object
WO2013047653A1 (en) Image pickup lens unit and method for manufacturing image pickup lens unit
KR100755640B1 (en) A device for adjusting the focusing of camera module
JP4443758B2 (en) Compound lens manufacturing apparatus and compound lens manufacturing method
JP2019117363A (en) Method of manufacturing optical element assembly
WO2012161220A1 (en) Method for producing wafer lens, device for producing wafer lens, and optical element
JP5657296B2 (en) Composite optical element alignment method and alignment apparatus therefor
JP2006224342A (en) Manufacturing method of hybrid lens
JP2011053332A (en) Joint optical element and method of manufacturing the same
JP5608402B2 (en) Method for manufacturing composite optical element and apparatus for manufacturing the same
JP4345964B2 (en) Method for adhering lens in light source device
JPH09130536A (en) Work fixing structure and mount structure for solid-state image pickup element in image reader
JP2006221062A (en) Method of manufacturing lamination type diffraction optical element and lamination type diffraction optical element
JP2006138924A (en) Composite type diffraction optical element by light energy setting type resin and its production method
TWI420177B (en) Apparatus and method for assembling lens module
WO2007145116A1 (en) Composite optical element and method for manufacturing same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513