JP2006138924A - Composite type diffraction optical element by light energy setting type resin and its production method - Google Patents

Composite type diffraction optical element by light energy setting type resin and its production method Download PDF

Info

Publication number
JP2006138924A
JP2006138924A JP2004326399A JP2004326399A JP2006138924A JP 2006138924 A JP2006138924 A JP 2006138924A JP 2004326399 A JP2004326399 A JP 2004326399A JP 2004326399 A JP2004326399 A JP 2004326399A JP 2006138924 A JP2006138924 A JP 2006138924A
Authority
JP
Japan
Prior art keywords
mold
resin
optical element
center
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004326399A
Other languages
Japanese (ja)
Inventor
Masaki Omori
正樹 大森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004326399A priority Critical patent/JP2006138924A/en
Publication of JP2006138924A publication Critical patent/JP2006138924A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To easily adjust the position of each grating plane in a stacked diffraction optical element in a short period of time. <P>SOLUTION: The alignment of each grating plane in an adhesion type stacked diffraction grating in molding is performed in such a manner that a projecting part or a hole part having a width of ≤30 μm has been formed in the center of resin with the grating formed, and the projecting part or the hole part is fitted to a hole part or a projecting part provided in the center of a die for resin molding to be stacked, respectively. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は回折光学素子及びその製造方法に関し、特に複数の波長あるいは帯域光で使用する回折光学素子及びその製造方法に関するものである。   The present invention relates to a diffractive optical element and a method for manufacturing the same, and more particularly to a diffractive optical element used for a plurality of wavelengths or band lights and a method for manufacturing the same.

回折光学素子は回折作用を利用して光線を制御する為、回折光は複数の次数の光に分かれてしまい、例えばカメラ等のレンズとして使用する場合、分かれた光が不要光となり、光学性能を劣化させてしまう。そこで、レンズ系として回折光学素子を使用する場合、使用する波長領域の光束が特定次数に集中するように格子構造(格子高さ)や材料の光学特性(屈折率や分散)を決定する必要がある。この特定次数に対する回折効率を向上させる方法として、特開平9−127322や特許第3472092号では、異なる材料を積層し、各材料に回折格子面を形成することにより、回折効率の向上を図っている(以後積層型回折光学素子と呼ぶ)。こうした積層型回折光学素子の製造方法としては、特開平2001−141918のように光エネルギー硬化型樹脂の薄層を基板上に成形し、硬化させることにより所要の表面形状を形成する方法が用いられる。   Since the diffractive optical element uses the diffraction action to control the light beam, the diffracted light is divided into a plurality of orders of light. For example, when used as a lens for a camera or the like, the separated light becomes unnecessary light, and the optical performance is reduced. It will deteriorate. Therefore, when using a diffractive optical element as a lens system, it is necessary to determine the grating structure (grating height) and the optical characteristics (refractive index and dispersion) of the material so that the light flux in the wavelength range to be used is concentrated in a specific order. is there. As a method for improving the diffraction efficiency for this specific order, in Japanese Patent Laid-Open No. 9-127322 and Japanese Patent No. 3472902, the diffraction efficiency is improved by laminating different materials and forming a diffraction grating surface on each material. (Hereinafter referred to as a laminated diffractive optical element). As a method of manufacturing such a laminated diffractive optical element, a method of forming a desired surface shape by forming a thin layer of a light energy curable resin on a substrate and curing it as in JP-A-2001-141918 is used. .

ここで積層する異なった材料の回折格子面に光軸に垂直な方向に位置ずれがあると特定次数以外の回折光が増加し、光学性能低下の原因となる。そこでこの格子面の位置合わせに関し、特開平2001−141918では一格子面に光学的有効領域外即ち格子面の外側に凸部あるいは凹部を形成し、これに別材料の回折格子面を成形するに際し、成形に用いる型に前記凸部あるいは凹部に対応した凹部あるいは凸部を設けこれを嵌め合わせることにより位置合わせを行っている。
特開平9−127322号公報 特許第3472092号公報 特開平2001−141918号公報
If the diffraction grating planes of different materials laminated here are misaligned in the direction perpendicular to the optical axis, the diffracted light other than the specific order increases, resulting in a decrease in optical performance. Therefore, regarding the alignment of the grating surface, in Japanese Patent Laid-Open No. 2001-141918, a convex portion or a concave portion is formed on one grating surface outside the optically effective area, that is, outside the grating surface, and a diffraction grating surface made of another material is formed on this. The mold used for molding is provided with a concave portion or a convex portion corresponding to the convex portion or the concave portion, and the positioning is performed by fitting the concave portion or the convex portion.
JP-A-9-127322 Japanese Patent No. 3472922 JP-A-2001-141918

図3(a)に正面図、(b)に断面図を示すような同心円状の積層型回折光学素子の各格子面の位置合わせに関し、型と格子面の位置合わせ、即ち、基板22に成形された第一層目の樹脂23の格子面23aと第二層目24を成形するときに用いる格子成形用の型の格子面の位置合わせが、前記従来例のように光学的有効径の外側即ち格子面の外側で行う場合には、型と既に成形されている格子面の位置合わせを少なくとも2ヶ所のアライメントマークあるいは嵌め合わせに用いる凹凸部により型と格子面の位置合わせを行わなければならず、少なくともx−y−θの3軸調整が必要で時間を要してしまうとともに、2ヶ所のアライメントマークと光学軸中心の位置ずれがそのまま位置合わせの精度に上乗せされてしまうため、径の大きな素子ではより不利になる。   3A is a front view, and FIG. 3B is a cross-sectional view of a concentric laminated diffractive optical element. The alignment of the lattice surface 23a of the formed first layer resin 23 and the lattice surface of the lattice forming mold used when forming the second layer 24 is outside the effective optical diameter as in the conventional example. In other words, when performing on the outside of the lattice plane, the mold and the lattice plane must be aligned with at least two alignment marks or uneven portions used for fitting. In addition, at least triaxial adjustment of xy-θ is necessary and time is required, and the positional deviation between the two alignment marks and the optical axis center is directly added to the alignment accuracy. Big element In the more unfavorable.

そこで本発明の第一及び第二は、格子を形成した樹脂中心に幅30μm以下の突起部あるいは穴部を成形により形成しておき、これと積層化する樹脂成形用の型中心に設けた穴部あるいは突起部を勘合させることにより位置合わせを行う。大きさが30μm以下であり、光学性能に影響を与えず、光学軸中心での位置合わせである為、1ヵ所の位置合わせかつx−yの2軸調整ですむ。また中心1ヵ所での位置合わせである為、型の穴あるいは突起部の回折格子の光学軸中心からのずれも少なく、特に型の作製方法として型材料を回転させながらのバイト加工のような場合には、殆どこのずれはなくなる。   Therefore, in the first and second aspects of the present invention, a protrusion or hole having a width of 30 μm or less is formed by molding in the resin center where the lattice is formed, and a hole provided in the mold center for resin molding to be laminated with this. Positioning is performed by fitting the part or the protrusion. Since the size is 30 μm or less and the optical performance is not affected and the alignment is performed at the center of the optical axis, only one alignment and xy biaxial adjustment are required. In addition, because it is aligned at one center, there is little deviation from the center of the optical axis of the diffraction grating of the mold hole or protrusion, especially in the case of bite machining while rotating the mold material as a mold manufacturing method. In most cases, this shift disappears.

また、本発明の第3及び第4は、型の回折格子面の光学軸中心と型の外形の軸心を一致させるとともに、格子面を形成する基材の外形と型の外形を勘合による位置合わせを行うことにより、数十μmオーダーでの格子成形面の光学軸中心と基材外形との位置出しを行う。更に、型の回折格子面の光学軸中心に設けた突起部あるいは穴部と既に成形されている樹脂中心の穴部あるいは突起部を画像処理による位置認識を用いて位置決めを行う。外形による位置出しにより画像認識による位置認識の為のラフな位置出しが可能となり、画像処理による位置認識でサブミクロンオーダーの位置合わせを短時間で行うことが可能となる。   According to the third and fourth aspects of the present invention, the center of the optical axis of the diffraction grating surface of the mold coincides with the axis of the outer shape of the mold, and the outer shape of the base material forming the grating surface and the outer shape of the mold are fitted to each other. By performing the alignment, the center of the optical axis of the grating forming surface and the substrate outer shape are positioned in the order of several tens of μm. Further, the protrusion or hole provided at the center of the optical axis of the diffraction grating surface of the mold and the hole or protrusion of the resin center that has already been molded are positioned using position recognition by image processing. Positioning by external shape enables rough positioning for position recognition by image recognition, and positioning by submicron order can be performed in a short time by position recognition by image processing.

以上、説明したように本願第一から第四の発明によれば積層型回折光学素子の各格子面の位置調整が1ヶ所かつx−yの2軸調整である為、短時間で容易に調整可能となる。   As described above, according to the first to fourth inventions of the present application, since the position adjustment of each grating surface of the laminated diffractive optical element is one place and xy biaxial adjustment, it can be easily adjusted in a short time. It becomes possible.

(実施例1)
図1は本発明に関わる積層型回折光学素子の形状及びその製造方法の一つの実施態様を示す概略図(断面図)である。図1において1は第一層目の格子面を成形する為の型で2は表面に樹脂を成形するガラス基板、3は型とガラス基板を勘合位置合わせする為のリング、4は第一層目の成形に用いる紫外線硬化型樹脂、5は第一層目が成形されたガラス基板、6は成形硬化し、表面が回折格子面である第一層目の樹脂層、7は第二層目の格子面を成形する為の型で8は第二層目の成形に用いる紫外線硬化型樹脂、9は2種類の格子面が成形により形成された積層型回折光学素子で、10は成形硬化し、表面が回折格子面である第二層目の樹脂層である。まず、図1(a)に示すようにリング3の中に型1をセットする。ここで型の外形1cはリングの内面3aより若干小さめに加工されており、クリアランスは10μmでる。また型中心部に形成されている幅30μmの突起部1a及び格子成形面1b(回転軸対称形状)の軸心と型の外形1cとは同軸度0.5μm以下で加工されている為リングの内面に対して型中心の突起部及び格子成形面は最大5.5μm程度の軸ずれでセッティングされていることになる。ここで不図示の樹脂供給装置を用いて型1上に所要量の紫外線硬化型樹脂4を滴下する。(図1(b))次に図1(c)に示すようにガラス基板をリング内に勘合させて樹脂4に接液した後、紫外線を照射して紫外線硬化型樹脂4を硬化させる。ここで樹脂厚は、型の外周突起部1dによりここにガラス基板が接触することにより決定される。不図示のエジェクタ機構により、樹脂が成形されたガラス基板5を離型した。(図1(d))ガラス基板の外形はリングの内面に対して20μm小さめだった為、ガラスの外形に対して成形された樹脂の格子面6b及び樹脂中心の穴部6aは最大15.5μm程度の軸ずれで形成されていることになる。次に図1(e)のように型を第二層目成形用の型7に入れ替え、不図示の樹脂供給装置を用いて型7上に所要量の紫外線硬化型樹脂8を滴下する。この第二層目の型もリングの内面より若干小さめに加工されておりクリアランスは7μmである。また型中心部に形成されている幅30μmの突起部7a及び格子成形面7b(回転軸対称形状)の軸心と型の外形7cとは同軸度0.5μm以下で加工されている為リングの内面に対して型中心の突起部及び格子成形面は最大4μm程度の軸ずれでセッティングされていることになる。次に一層目が形成されたガラス基板をリングに勘合させる。(図1(f))この状態で不図示の画像認識装置を用いて型中心部の突起7aと一層目成形時に形成された樹脂中心の穴部6aの位置ずれを検出、不図示のハンドリング機構を用いて位置調整し、突起7aと穴部6aの位置ずれを1μm以下にした後樹脂8に接液し型中心部の突起7aと一層目の樹脂中心部の穴部6aを勘合させた後、紫外線を照射して樹脂8を硬化させた。(図1(g))ここで樹脂厚は、型の外周突起部7dによりここにガラス基板が接触することにより決定される。不図示のエジェクタ機構により、樹脂が成形され中心に幅30μmの穴部9aを有するガラス基板9を離型した。成形された積層型回折格子9は第一層目の格子面6aと第2層目の格子面10aの位置ズレを測定したところ1μm以下であり、特定次数の回折効率低下は設計値に対して1%以下であり、樹脂中心の穴部による性能劣化もなかった。
Example 1
FIG. 1 is a schematic view (cross-sectional view) showing one embodiment of a shape of a laminated diffractive optical element and a manufacturing method thereof according to the present invention. In FIG. 1, 1 is a mold for molding the lattice plane of the first layer, 2 is a glass substrate on which resin is molded on the surface, 3 is a ring for fitting and aligning the mold and the glass substrate, and 4 is the first layer. UV curable resin used for forming the eye, 5 is a glass substrate on which the first layer is formed, 6 is a first resin layer which is formed and cured and the surface is a diffraction grating surface, and 7 is a second layer. 8 is an ultraviolet curable resin used for molding the second layer, 9 is a laminated diffractive optical element in which two types of grating surfaces are formed by molding, and 10 is molded and cured. The second resin layer whose surface is a diffraction grating surface. First, the mold 1 is set in the ring 3 as shown in FIG. Here, the outer shape 1c of the mold is processed to be slightly smaller than the inner surface 3a of the ring, and the clearance is 10 μm. In addition, since the protrusion 1a having a width of 30 μm formed at the center of the mold and the axis of the grating forming surface 1b (symmetrical shape of rotation) and the outer shape 1c of the mold are processed with a coaxiality of 0.5 μm or less, The protrusions at the center of the mold and the grid forming surface with respect to the inner surface are set with a maximum axial misalignment of about 5.5 μm. Here, a required amount of the ultraviolet curable resin 4 is dropped onto the mold 1 using a resin supply device (not shown). (FIG. 1B) Next, as shown in FIG. 1C, the glass substrate is fitted in the ring and brought into contact with the resin 4, and then the ultraviolet curable resin 4 is cured by irradiation with ultraviolet rays. Here, the resin thickness is determined by the glass substrate coming into contact with the outer peripheral projection 1d of the mold. The glass substrate 5 on which the resin was molded was released by an ejector mechanism (not shown). (FIG. 1 (d)) Since the outer shape of the glass substrate was 20 μm smaller than the inner surface of the ring, the resin lattice plane 6b and the hole 6a at the center of the resin formed on the outer shape of the glass were at most 15.5 μm. It is formed with a certain degree of axial misalignment. Next, as shown in FIG. 1E, the mold is replaced with a mold 7 for forming the second layer, and a required amount of the ultraviolet curable resin 8 is dropped onto the mold 7 using a resin supply device (not shown). This second layer mold is also processed slightly smaller than the inner surface of the ring, and the clearance is 7 μm. Further, the projection 7a having a width of 30 μm formed at the center of the mold and the axis of the lattice forming surface 7b (symmetrical shape of rotation) and the outer shape 7c of the mold are processed with a coaxiality of 0.5 μm or less, so that the ring The protrusion at the center of the mold and the grid forming surface with respect to the inner surface are set with an axis deviation of about 4 μm at the maximum. Next, the glass substrate on which the first layer is formed is fitted into the ring. (FIG. 1 (f)) In this state, an image recognition device (not shown) is used to detect the misalignment between the projection 7a at the center of the mold and the hole 6a at the center of the resin formed at the first layer molding, and a handling mechanism (not shown) After adjusting the position of the protrusion 7a and the hole 6a to 1 μm or less, the liquid 8 was in contact with the resin 8 and the protrusion 7a in the mold center and the hole 6a in the first resin center were fitted together The resin 8 was cured by irradiating with ultraviolet rays. (FIG. 1 (g)) Here, the resin thickness is determined by the glass substrate coming into contact with the outer peripheral projection 7d of the mold. The glass substrate 9 having a hole 9a having a width of 30 μm in the center and molded with resin was released by an ejector mechanism (not shown). The formed multilayer diffraction grating 9 has a measurement result of a positional deviation between the first-layer grating surface 6a and the second-layer grating surface 10a of 1 μm or less. It was 1% or less, and there was no performance deterioration due to the hole at the center of the resin.

(実施例2)
図2は本発明に関わる積層型回折光学素子の第2の形状及びその製造方法の実施態様を示す概略図(断面図)である。図2において11は第一層目の格子面を成形する為の型で12は表面に樹脂を成形するガラス基板、13は型とガラス基板を勘合位置合わせする為のリング、14は第一層目の成形に用いる紫外線硬化型樹脂、15は第一層目が成形されたガラス基板、16は成形硬化し、表面が回折格子面である第一層目の樹脂層、17は第二層目の格子面を成形する為の型で18は第二層目の成形に用いる紫外線硬化型樹脂、19は2種類の格子面が成形により形成された積層型回折光学素子、20は成形硬化し、表面が回折格子面である第二層目の樹脂層である。まず、図2(a)に示すようにリング13の中に型11をセットする。ここで型の外形11cはリングの内面13aより若干小さめに加工されており、クリアランスは10μmである。また型中心部に形成されている幅30μmの穴部11a及び格子成形面11b(回転軸対称形状)の軸心と型の外形11cとは同軸度0.5μm以下で加工されている為リングの内面に対して型中心の穴部及び格子成形面は最大5.5μm程度の軸ずれでセッティングされていることになる。ここで不図示の樹脂供給装置を用いて型11上に所要量の紫外線硬化型樹脂14を滴下する。(図2(b))次に図2(c)に示すようにガラス基板をリング内に勘合させて樹脂14に接液した後、紫外線を照射して紫外線硬化型樹脂14を硬化させる。ここで樹脂厚は、型の外周突起部11dによりここにガラス基板が接触することにより決定される。不図示のエジェクタ機構により、樹脂が成形されたガラス基板15を離型した。(図2(d))ガラス基板の外形はリングの内面に対して30μmほど小さめだった為、ガラスの外形に対して成形された樹脂の格子面16b及び樹脂中心の突起部16aは最大20.5μm程度の軸ずれで形成されていることになる。次に図2(e)のように型を第二層目成形用の型17に入れ替え、不図示の樹脂供給装置を用いて型17上に所要量の紫外線硬化型樹脂18を滴下する。この第二層目の型もリングの内面より若干小さめに加工されておりクリアランスは10μmである。また型中心部に形成されている幅30μmの穴部17a及び格子成形面17bの軸心と型の外形17cとは同軸度0.5μm以下で加工されている為リングの内面に対して型中心の穴部及び格子成形面は最大5.5m程度の軸ずれでセッティングされていることになる。次に一層目が形成されたガラス基板をリングに勘合させる。(図2(f))この状態で不図示の画像認識装置を用いて型中心部の穴部17aと一層目成形時に形成された樹脂中心の突起部16aの位置ずれを検出、不図示のハンドリング機構を用いて位置調整し、穴17aと突起部16aの位置ずれを1μm以下にした後樹脂18に接液し型中心部の穴17aと一層目の樹脂中心部の突起部16aを勘合させた後、紫外線を照射して樹脂18を硬化させた。(図2(g))ここで樹脂厚は、型の外周突起部17dによりここにガラス基板が接触することにより決定される。不図示のエジェクタ機構により、樹脂が成形され中心に幅30μmの突起部19aを有するガラス基板を離型した。成形された積層型回折格子19は第一層目の格子面16aと第2層目の格子面20aの位置ズレを測定したところ1μm以下であり、特定次数の回折効率低下は設計値に対して1%以下であり、樹脂中心の穴部による性能劣化もなかった。
(Example 2)
FIG. 2 is a schematic view (cross-sectional view) showing an embodiment of the second shape of the laminated diffractive optical element and the manufacturing method thereof according to the present invention. In FIG. 2, 11 is a mold for forming the lattice plane of the first layer, 12 is a glass substrate on which resin is formed on the surface, 13 is a ring for fitting and aligning the mold and the glass substrate, and 14 is the first layer. UV curable resin used for forming the eye, 15 is a glass substrate on which the first layer is formed, 16 is a first resin layer which is formed and cured and has a diffraction grating surface, and 17 is a second layer. 18 is an ultraviolet curable resin used for molding the second layer, 19 is a laminated diffractive optical element in which two types of grating surfaces are formed by molding, and 20 is molded and cured. This is a second resin layer whose surface is a diffraction grating surface. First, the die 11 is set in the ring 13 as shown in FIG. Here, the outer shape 11c of the mold is processed to be slightly smaller than the inner surface 13a of the ring, and the clearance is 10 μm. Further, the hole 11a having a width of 30 μm formed in the center of the mold and the axis of the lattice forming surface 11b (symmetrical shape of rotation) and the outer shape 11c of the mold are processed with a coaxial degree of 0.5 μm or less, so that the ring The hole at the center of the mold and the grid forming surface with respect to the inner surface are set with a maximum axial misalignment of about 5.5 μm. Here, a required amount of the ultraviolet curable resin 14 is dropped on the mold 11 using a resin supply device (not shown). (FIG. 2 (b)) Next, as shown in FIG. 2 (c), the glass substrate is fitted into the ring and brought into contact with the resin 14, and then the ultraviolet curable resin 14 is cured by irradiation with ultraviolet rays. Here, the resin thickness is determined by the glass substrate coming into contact with the outer peripheral projection 11d of the mold. The glass substrate 15 on which the resin was molded was released by an ejector mechanism (not shown). (FIG. 2 (d)) Since the outer shape of the glass substrate was about 30 μm smaller than the inner surface of the ring, the resin lattice surface 16b and the protrusion 16a at the center of the resin formed on the outer shape of the glass were 20. It is formed with an axis deviation of about 5 μm. Next, as shown in FIG. 2E, the mold is replaced with a mold 17 for forming the second layer, and a required amount of ultraviolet curable resin 18 is dropped onto the mold 17 using a resin supply device (not shown). This second layer mold is also processed slightly smaller than the inner surface of the ring, and the clearance is 10 μm. In addition, since the axis of the hole portion 17a having a width of 30 μm and the lattice forming surface 17b formed in the center portion of the die and the outer shape 17c of the die are processed with a coaxiality of 0.5 μm or less, the center of the die is in relation to the inner surface of the ring. The hole portion and the grid forming surface are set with a maximum axial misalignment of about 5.5 m. Next, the glass substrate on which the first layer is formed is fitted into the ring. (FIG. 2 (f)) In this state, an image recognition device (not shown) is used to detect the misalignment between the hole 17a at the center of the mold and the protrusion 16a at the center of the resin formed during the first layer molding, and handling (not shown) The position was adjusted using the mechanism, and the positional deviation between the hole 17a and the protrusion 16a was reduced to 1 μm or less, and then contacted with the resin 18 to fit the hole 17a in the mold center and the protrusion 16a in the first resin center. Thereafter, the resin 18 was cured by irradiating ultraviolet rays. (FIG. 2 (g)) Here, the resin thickness is determined by the glass substrate coming into contact with the outer peripheral projection 17d of the mold. The glass substrate having a protrusion 19a having a width of 30 μm in the center and molded with resin was released by an ejector mechanism (not shown). The formed laminated diffraction grating 19 was measured to have a positional deviation between the grating surface 16a of the first layer and the grating surface 20a of the second layer and found to be 1 μm or less. It was 1% or less, and there was no performance deterioration due to the hole at the center of the resin.

以上のように、成形した第一層目の樹脂に穴部あるいは突起部を設け、これと第二層目の型に設けた突起部あるいは穴部を勘合させることに第一層目と第二層目の格子面を1μm以下のズレで位置調整可能となる。ここで上記本実施例では型と第一層目の樹脂を望ましくは勘合させた方がよいが、勘合させずに、位置調整後の位置を維持したまま第二層目の樹脂を硬化させても同様な効果が得られる。また、平面基板上への回折格子面の積層についての実施例であったが、平面に限らず、球面上への格子面の形成についても適用可能である。   As described above, the first layer and the second layer are formed by providing a hole or a protrusion in the molded first layer resin and fitting the protrusion or the hole provided in the second layer mold. The position of the lattice plane of the layer can be adjusted with a deviation of 1 μm or less. In this embodiment, the mold and the first layer resin are desirably mated, but the second layer resin is cured while maintaining the position after the position adjustment without mating. The same effect can be obtained. In addition, although the embodiment has been described with respect to the lamination of the diffraction grating surface on the flat substrate, the present invention is not limited to the flat surface but can be applied to the formation of the grating surface on the spherical surface.

第1の実施例での複合型回折光学素子及びその製造工程を示す概略図。Schematic which shows the composite type | mold diffractive optical element in a 1st Example, and its manufacturing process. 第2の実施例での複合型回折光学素子及びその製造工程を示す概略図。Schematic which shows the composite type | mold diffractive optical element in 2nd Example, and its manufacturing process. 本願で対象とする積層型回折光学素子の概略図。1 is a schematic diagram of a laminated diffractive optical element targeted in the present application. FIG.

符号の説明Explanation of symbols

1、7、11、17 型
2、12、22 ガラス基板
3、13 リング
4、8、14、18 紫外線硬化型樹脂
5、15 第一層目の樹脂が成形されたガラス
6、10、16、20、23、24 成形硬化された樹脂
9、19、21 積層型回折光学素子
1, 7, 11, 17 type 2, 12, 22 glass substrate 3, 13 ring 4, 8, 14, 18 UV curable resin
5, 15 Glass molded with first layer resin 6, 10, 16, 20, 23, 24 Molded and cured resin 9, 19, 21 Multilayer diffractive optical element

Claims (4)

光エネルギー硬化型樹脂を格子が形成された型を用いて形状転写、光照射により硬化後、離型することにより基材上に所要の格子形状を有する光エネルギー硬化型樹脂を形成し、この工程を繰り返して光エネルギー硬化型樹脂を積層化した回折光学素子において、樹脂部中心に幅30μm以下の突起部あるいは穴部を設けたことを特徴とする複合型回折光学素子。   This process forms a light energy curable resin having a required lattice shape on a substrate by releasing the shape after curing the shape by transferring the shape of the light energy curable resin using a mold on which a lattice is formed, light irradiation, and this process. In the diffractive optical element in which the light energy curable resin is laminated by repeating the above, a protrusion or hole having a width of 30 μm or less is provided at the center of the resin part. 特許請求範囲第1項の複合型回折光学素子の積層化する工程において、型の回折格子面の光学軸中心に設けた突起部あるいは穴部を樹脂の穴部あるいは突起部に勘合させた状態で光エネルギー硬化型樹脂を硬化させることを特徴とする複合型光学素子の製造方法。   In the step of laminating the composite diffractive optical element according to claim 1, in a state in which the protrusion or hole provided at the center of the optical axis of the diffraction grating surface of the mold is fitted to the hole or protrusion of the resin A method for producing a composite optical element, comprising curing a light energy curable resin. 特許請求範囲第2項記載の製造方法において、型の回折格子面の光学軸中心と型の外径の軸心を一致させるとともに、基材と第一層目の格子成形用の型及び基材と第二層目の格子成形用の型を外径による勘合位置決めを行うことを特徴とする複合型回折光学素子の製造方法。   3. The manufacturing method according to claim 2, wherein the center of the optical axis of the diffraction grating surface of the mold coincides with the axis of the outer diameter of the mold, and the base and the first layer forming mold and base And a method for producing a composite diffractive optical element, wherein the second layer grating forming die is fitted and positioned by an outer diameter. 特許請求範囲第2項記載の製造方法において、型に設けた突起部あるいは穴部を樹脂の穴部あるいは突起部の位置合わせに画像処理による位置認識を用いて行うことを特徴とする複合型回折光学素子の製造方法。   3. The method according to claim 2, wherein the projection or hole provided in the mold is performed by using position recognition by image processing for alignment of the resin hole or projection. A method for manufacturing an optical element.
JP2004326399A 2004-11-10 2004-11-10 Composite type diffraction optical element by light energy setting type resin and its production method Withdrawn JP2006138924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004326399A JP2006138924A (en) 2004-11-10 2004-11-10 Composite type diffraction optical element by light energy setting type resin and its production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004326399A JP2006138924A (en) 2004-11-10 2004-11-10 Composite type diffraction optical element by light energy setting type resin and its production method

Publications (1)

Publication Number Publication Date
JP2006138924A true JP2006138924A (en) 2006-06-01

Family

ID=36619818

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004326399A Withdrawn JP2006138924A (en) 2004-11-10 2004-11-10 Composite type diffraction optical element by light energy setting type resin and its production method

Country Status (1)

Country Link
JP (1) JP2006138924A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145120A1 (en) * 2006-06-13 2007-12-21 Panasonic Corporation Composite optical element
US20110026119A1 (en) * 2008-12-24 2011-02-03 Tatsutoshi Suenaga Method for producing diffractive optical element, and diffractive optical element
WO2014208371A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007145120A1 (en) * 2006-06-13 2007-12-21 Panasonic Corporation Composite optical element
US8077392B2 (en) 2006-06-13 2011-12-13 Panasonic Corporation Composite optical element
JP5147694B2 (en) * 2006-06-13 2013-02-20 パナソニック株式会社 Compound optical element
US20110026119A1 (en) * 2008-12-24 2011-02-03 Tatsutoshi Suenaga Method for producing diffractive optical element, and diffractive optical element
US8559109B2 (en) * 2008-12-24 2013-10-15 Panasonic Corporation Method for producing diffractive optical element, and diffractive optical element, including a diffraction grating and molded optical adjusting layer
WO2014208371A1 (en) * 2013-06-28 2014-12-31 コニカミノルタ株式会社 Aspherical lens, method for manufacturing lens unit provided with aspherical lens, lens unit manufactured by said method for manufacturing, and lens molding mold

Similar Documents

Publication Publication Date Title
JP5024047B2 (en) Manufacturing method of microstructure
US6989932B2 (en) Method of manufacturing micro-lens
JP4401383B2 (en) Structured device manufacturing
US20050237614A1 (en) Diffractive optical element and method of manufacture of the same
US6523963B2 (en) Hermetically sealed diffraction optical element and production method thereof
KR20130138127A (en) Manufacturing method of apodizer and optical module
EP1474851B1 (en) Method of manufacturing an optical device by means of a replication method
US7294293B2 (en) Method for manufacturing diffraction optical element
JP4714627B2 (en) Method for producing structure having fine uneven structure on surface
JP2006138924A (en) Composite type diffraction optical element by light energy setting type resin and its production method
US20130037976A1 (en) Lens Array Production Method and Laminated Lens Array Production Method
JP2001141918A (en) Diffraction optical device and its production method
JP2003011140A (en) Method and apparatus for demolding diffraction optical element
JPH1130711A (en) Diffraction optical element and its manufacture, and optical equipment
TWI581031B (en) Wafer level lens system and method of fabricating the same
JP2009283557A (en) Method of manufacturing semiconductor optical device
US20120327514A1 (en) Diffractive optical element and imaging apparatus using the same
JP2008129229A (en) Composite optical element and method of manufacturing composite optical element
WO2015166851A1 (en) Optical element manufacturing method
JP2001091716A (en) Diffraction optical device and its production method
JP2008008945A (en) Optical element, optical element holder and optical element module
JP2008165935A (en) Color aberration correcting optical element and optical pickup device
JP2002122720A (en) Optical device and method for processing the optical device
WO2020185163A1 (en) Wafer alignment features
JP2005128181A (en) Method of manufacturing aspheric optical element

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080205