JP2006220577A - Measuring method of interference - Google Patents

Measuring method of interference Download PDF

Info

Publication number
JP2006220577A
JP2006220577A JP2005035482A JP2005035482A JP2006220577A JP 2006220577 A JP2006220577 A JP 2006220577A JP 2005035482 A JP2005035482 A JP 2005035482A JP 2005035482 A JP2005035482 A JP 2005035482A JP 2006220577 A JP2006220577 A JP 2006220577A
Authority
JP
Japan
Prior art keywords
parallel plate
interference
plate member
optical member
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035482A
Other languages
Japanese (ja)
Inventor
Shigeo Mizoroke
茂男 御菩薩池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2005035482A priority Critical patent/JP2006220577A/en
Publication of JP2006220577A publication Critical patent/JP2006220577A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a measuring method of interference for accurately measuring wavefront aberrations. <P>SOLUTION: The interference measuring method for measuring the wavefront aberrations of an optical member by an interference includes processes of: disposing the optical member between first and second parallel planar members; filling a gap between the optical member and the first parallel planar member and a gap between the optical member and the second parallel planar member with an oil having the approximately same refraction index as the optical member and forming an oil layer; irradiating the first parallel planar member with a measurement beam; a process of partially reflecting the measurement beam on an incident plane of the first parallel planar member and forming a first reflection beam; making the beam enter the second parallel planar member, after the beam passes through the first parallel planar member, the oil layer and the optical member; a process of reflecting the beam on a face opposite to the incident plane of the second parallel planar member and forming a second reflection beam; making the first reflection beam interfere with the second reflection beam and forming an interference beam; and analyzing an interference pattern in the interference beam. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、光学部材の波面を高精度に干渉測定する方法に関し、特に、半導体露光装置や半導体測定装置に用いるための光学部材の干渉測定に有用である。   The present invention relates to a method for performing interference measurement of a wavefront of an optical member with high accuracy, and is particularly useful for interference measurement of an optical member for use in a semiconductor exposure apparatus or semiconductor measurement apparatus.

近年、半導体の高密度化に伴って、その製造に用いられる露光装置や測定装置等の高精度化への要求が著しい。これらの装置の高精度化を実現するには、その光学系を高精度に製造する必要がある。そのためには、光学系を構成する光学部品の元となる光学部材の屈折率均質性が高精度に測定される必要がある。屈折率均質性は光学部材の波面収差を干渉測定により精度よく測定することができる。   In recent years, as the density of semiconductors has increased, there has been a significant demand for higher accuracy of exposure apparatuses and measurement apparatuses used in the manufacture thereof. In order to realize high accuracy of these devices, it is necessary to manufacture the optical system with high accuracy. For that purpose, it is necessary to measure the refractive index homogeneity of the optical member which is the source of the optical components constituting the optical system with high accuracy. The refractive index homogeneity can accurately measure the wavefront aberration of the optical member by interference measurement.

光学部材の干渉測定を行なうための干渉測定装置として、代表的なフィゾー干渉計を図5に示す。図5において、(a)は光学部材がセットされた状態、(b)は光学部材がセットされていない状態を示す。図5の(a)および(b)において、1は被測定物である光学部材、3および4は透過性の平行平板部材、2は光学部材とほぼ同じ屈折率を有するオイル、6は透過性部材、7は反射部材、5はコヒーレント光の測定ビームを示す。   A typical Fizeau interferometer is shown in FIG. 5 as an interference measurement apparatus for performing interference measurement of optical members. 5A shows a state where the optical member is set, and FIG. 5B shows a state where the optical member is not set. In (a) and (b) of FIG. 5, 1 is an optical member that is an object to be measured, 3 and 4 are transmissive parallel plate members, 2 is oil having substantially the same refractive index as that of the optical member, and 6 is transmissive. Reference numeral 7 denotes a reflection member, and reference numeral 5 denotes a measurement beam of coherent light.

測定は次の通り行なう。まず、光学部材はセットせずに、2個の平行平板部材3および4を接近させ、両者の隙間をオイル2で満たした状態とする。オイルの屈折率は、光学部材1とほぼ同じ値とする。この様子を図5(b)に示す。この状態で測定ビーム5を透過性部材6に入射させる。入射した測定ビーム5の一部は透過性部材6の第一面6aで反射され反射ビーム5aとなる。透過性部材6を透過した測定ビーム5は平行平板部材3、オイル2、平行平板部材4の順に透過し、反射部材7の第1面7aで反射され反射ビーム5bとなる。反射ビーム5bは、再び平行平板部材4、オイル2、平行平板部材3、透過性部材6の順に透過し、反射ビーム5aと合わさって干渉し、干渉ビームとなる。この干渉ビームを撮像素子に入射させて撮像し、その干渉縞の状態を解析することで、光学部材1がセットされていない状態における第1の波面収差が測定される。   The measurement is performed as follows. First, the optical member is not set, and the two parallel plate members 3 and 4 are brought close to each other so that the gap between them is filled with the oil 2. The refractive index of the oil is almost the same value as that of the optical member 1. This situation is shown in FIG. In this state, the measurement beam 5 is incident on the transmissive member 6. A part of the incident measurement beam 5 is reflected by the first surface 6a of the transmissive member 6 to become a reflected beam 5a. The measurement beam 5 that has passed through the transmissive member 6 passes through the parallel plate member 3, the oil 2, and the parallel plate member 4 in this order, and is reflected by the first surface 7a of the reflection member 7 to become a reflected beam 5b. The reflected beam 5b is again transmitted in the order of the parallel plate member 4, the oil 2, the parallel plate member 3, and the transmissive member 6, and is combined with the reflected beam 5a to interfere with each other to become an interference beam. The first wavefront aberration in a state where the optical member 1 is not set is measured by making the interference beam incident on the imaging device and imaging, and analyzing the state of the interference fringes.

次に、光学部材1を2個の平行平板部材3および4の間にセットし、光学部材1と平行平板部材3の隙間、および、光学部材1と平行平板部材4の隙間をオイル2で満たしてオイル層を形成する。オイル層を形成するのは、光学部材の表面状態による影響を除去するためである。この様子を図5(a)に示す。この状態で測定ビーム5を透過性部材6に入射させる。入射した測定ビーム5の一部は透過性部材6の第一面6aで反射され反射ビーム5aとなる。透過性部材6を透過した測定ビーム5は平行平板部材3、オイル2、光学部材1、オイル2、平行平板部材4の順に透過し、反射部材7の第1面7aで反射され反射ビーム5bとなる。反射ビーム5bは、再び平行平板部材4、オイル2、光学部材1、オイル2、平行平板部材3、透過性部材6の順に透過し、反射ビーム5aと合わさって干渉し、干渉ビームとなる。この干渉ビームを撮像素子に入射させて撮像し、その干渉縞の状態を解析することで、光学部材1がセットされた状態における第2の波面収差が測定される。   Next, the optical member 1 is set between the two parallel plate members 3 and 4, and the gap between the optical member 1 and the parallel plate member 3 and the gap between the optical member 1 and the parallel plate member 4 are filled with oil 2. To form an oil layer. The reason why the oil layer is formed is to remove the influence of the surface state of the optical member. This situation is shown in FIG. In this state, the measurement beam 5 is incident on the transmissive member 6. A part of the incident measurement beam 5 is reflected by the first surface 6a of the transmissive member 6 to become a reflected beam 5a. The measurement beam 5 transmitted through the transmissive member 6 is transmitted in the order of the parallel plate member 3, the oil 2, the optical member 1, the oil 2, and the parallel plate member 4, and is reflected by the first surface 7a of the reflection member 7 and reflected beam 5b. Become. The reflected beam 5b again passes through the parallel plate member 4, the oil 2, the optical member 1, the oil 2, the parallel plate member 3, and the transmissive member 6 in this order, and interferes with the reflected beam 5a to form an interference beam. The second wavefront aberration in the state where the optical member 1 is set is measured by causing the interference beam to enter the imaging device and imaging and analyzing the state of the interference fringes.

次に、第2の波面収差データから第1の波面収差データを減算する。これにより、干渉計やオイル等による影響を除去して、光学部材の内部均質性に依存した波面収差が導き出せる。   Next, the first wavefront aberration data is subtracted from the second wavefront aberration data. As a result, the wavefront aberration depending on the internal homogeneity of the optical member can be derived by removing the influence of the interferometer and oil.

上記説明では、測定ビーム5は透過性部材6の第一面6aで反射されて反射ビーム5aが形成されるように記載したが、測定ビーム5が透過性部材6の第二面6bで反射されて反射ビーム5aが形成される構成もある。   In the above description, the measurement beam 5 is reflected on the first surface 6a of the transmissive member 6 to form the reflected beam 5a. However, the measurement beam 5 is reflected on the second surface 6b of the transmissive member 6. There is also a configuration in which the reflected beam 5a is formed.

ところで、干渉による波面収差の測定精度は干渉光路長が長くなるに従って低下する。図5に示す干渉測定方法の場合、干渉光路長は、透過性部材6の第1面6aと反射部材7の第1面7aとの間の距離と定義される。従来は、図5に示す干渉測定方法で光学部材の波面収差を行なってきたが、更に高い測定精度への要求を満たすことは難しかった。   By the way, the measurement accuracy of wavefront aberration due to interference decreases as the interference optical path length increases. In the case of the interference measurement method shown in FIG. 5, the interference optical path length is defined as the distance between the first surface 6 a of the transmissive member 6 and the first surface 7 a of the reflecting member 7. Conventionally, the wavefront aberration of the optical member has been performed by the interference measurement method shown in FIG. 5, but it has been difficult to satisfy the demand for higher measurement accuracy.

本発明は上記問題を解決し、より高精度な波面収差を測定できる干渉測定方法を提供することを課題とする。   An object of the present invention is to solve the above problems and provide an interference measurement method capable of measuring wavefront aberration with higher accuracy.

上記課題を解決するために本発明者らが研究した結果、光学部材を平行平板部材に挟んだ状態とし、一方から測定ビームを照射する構成とすることで、干渉光路長を短くすることができ、その結果、高精度に干渉測定が行なえることを見出し、本発明を成すに至った。   As a result of studies conducted by the present inventors in order to solve the above-mentioned problems, the interference optical path length can be shortened by adopting a configuration in which the optical member is sandwiched between parallel plate members and the measurement beam is irradiated from one side. As a result, it has been found that interference measurement can be performed with high accuracy, and the present invention has been achieved.

従って、本発明は第一に、干渉により光学部材の波面収差を測定する干渉測定方法であって、光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程と、光学部材と第1の平行平板部材の隙間および光学部材と第2の平行平板部材の隙間に、光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、測定ビームを第1の平行平板部材に向けて照射する工程と、測定ビームを第1の平行平板部材の入射面で部分的に反射させて第1の反射ビームを形成する工程と、第1の平行平板部材を透過したビームを、光学部材を通して第2の平行平板部材に入射させる工程と、第2の平行平板部材の入射面とは反対側の面でビームを反射させて第2の反射ビームを形成する工程と、第1の反射ビームと第2の反射ビームを干渉させて干渉ビームとする工程と、干渉ビームの干渉縞を解析する工程と、を有することを特徴とする。   Accordingly, the present invention is first an interference measurement method for measuring the wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member; Filling the gap between the optical member and the first parallel plate member and the gap between the optical member and the second parallel plate member with oil having a refractive index substantially equal to that of the optical member to form an oil layer; A step of irradiating the first parallel plate member; a step of partially reflecting the measurement beam on an incident surface of the first parallel plate member to form a first reflected beam; and a first parallel plate member A beam transmitted through the optical member and incident on the second parallel plate member through the optical member, and a second reflected beam is formed by reflecting the beam on a surface opposite to the incident surface of the second parallel plate member. A process, a first reflected beam and a second reaction And having the steps of the interfering beams by interfering the beam, the step of analyzing the interference fringes of the interference beam, a.

また、本発明は第二に、干渉により光学部材の波面収差を測定する干渉測定方法であって、光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程と、第2の平行平板部材に面して、第1の平行平板部材とは反対側に、反射部材を配置する工程と、光学部材と第1の平行平板部材の隙間、および、光学部材と第2の平行平板部材の隙間に、光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、測定ビームを第1の平行平板部材に向けて照射する工程と、測定ビームを反射部材の入射面で反射させて第1の反射ビームを形成する工程と、第1の平行平板部材を透過したビームを、光学部材を通して第2の平行平板部材に入射させる工程と、第2の平行平板部材の入射面とは反対側の面でビームを反射させて第2の反射ビームを形成する工程と、第1の反射ビームと第2の反射ビームを干渉させて干渉ビームとする工程と、干渉ビームの干渉縞を解析する工程と、を有することを特徴とする。   The present invention is secondly an interference measurement method for measuring wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member; The step of disposing the reflecting member on the opposite side of the first parallel plate member facing the second parallel plate member, the gap between the optical member and the first parallel plate member, and the optical member and the second Filling the gap between the parallel plate members with oil having a refractive index substantially equal to that of the optical member to form an oil layer, irradiating the measurement beam toward the first parallel plate member, and Reflecting the incident surface of the reflecting member to form a first reflected beam, allowing the beam transmitted through the first parallel plate member to enter the second parallel plate member through the optical member, Beam on the opposite side of the plane of incidence of the parallel plate member Projecting to form a second reflected beam, causing the first reflected beam and the second reflected beam to interfere with each other to form an interference beam, and analyzing the interference fringes of the interference beam. It is characterized by.

また、本発明は第三に、干渉により光学部材の波面収差を測定する干渉測定方法であって、光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程と、第1の平行平板部材に面して、第2の平行平板部材とは反対側に、透過性部材を配置する工程と、光学部材と第1の平行平板部材の隙間、および、光学部材と第2の平行平板部材の隙間に、光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、測定ビームを透過性部材に向けて照射する工程と、測定ビームを前記透過性部材の入射面で反射させて第1の反射ビームを形成する工程と、透過性部材を透過したビームを、第1の平行平板部材および前記光学部材を通して第2の平行平板部材に入射させる工程と、第2の平行平板部材の入射面とは反対側の面で前記ビームを反射させて第2の反射ビームを形成する工程と、第1の反射ビームと第2の反射ビームを干渉させて干渉ビームとする工程と、干渉ビームの干渉縞を解析する工程と、を有することを特徴とする。   Thirdly, the present invention is an interference measurement method for measuring wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member; The step of disposing a transmissive member facing the first parallel plate member on the side opposite to the second parallel plate member, the gap between the optical member and the first parallel plate member, and the optical member and the first Filling a gap between two parallel plate members with oil having a refractive index substantially equal to that of the optical member to form an oil layer, irradiating a measurement beam toward the transmissive member, and transmitting the measurement beam through the transmission beam. Forming a first reflected beam by reflecting on the incident surface of the transmissive member, and causing the beam transmitted through the transmissive member to enter the second parallel plate member through the first parallel plate member and the optical member. And the incident surface of the second parallel plate member Reflecting the beam on the opposite surface to form a second reflected beam; causing the first reflected beam and the second reflected beam to interfere to form an interference beam; and interference fringes of the interference beam And a step of analyzing.

これらの構成とすることで、干渉光路長を短くでき、その結果、高精度に干渉測定を行なうことを可能とする。
また、本発明は第四に、請求項1または2または3に記載の干渉測定方法において、オイル層の厚さは、0.05mm以上であることを特徴とする。
With these configurations, the interference optical path length can be shortened, and as a result, interference measurement can be performed with high accuracy.
According to a fourth aspect of the present invention, in the interference measuring method according to claim 1, 2 or 3, the thickness of the oil layer is 0.05 mm or more.

このような構成により、オイルの表面張力により光学部材や平行平板部材に撓みが発生して干渉測定の精度が低下するのを防ぐことを可能とする。
また、本発明は第五に、請求項1または2または3に記載の干渉測定方法において、第1の平行平板部材と第2の平行平板部材は、保持部材によって第1の平行平板部材と第2の平行平板部材の位置関係を保持または調整可能に固定されていることを特徴とする。
With such a configuration, it is possible to prevent the optical member or the parallel plate member from being bent due to the surface tension of the oil, thereby reducing the accuracy of interference measurement.
According to a fifth aspect of the present invention, in the interference measurement method according to claim 1, 2 or 3, the first parallel plate member and the second parallel plate member are connected to the first parallel plate member and the first parallel plate member by the holding member. It is characterized in that the positional relationship between the two parallel plate members is fixed so as to be maintained or adjustable.

このような構成とすることで、オイル層の厚さを容易に調整することを可能とする。   With such a configuration, the thickness of the oil layer can be easily adjusted.

本発明によれば、干渉光路長を従来の干渉測定方法に比べて短くできるので、より高い精度で光学部材の波面収差の干渉測定ができる。   According to the present invention, since the interference optical path length can be shortened as compared with the conventional interference measurement method, the interference measurement of the wavefront aberration of the optical member can be performed with higher accuracy.

以下、本発明の干渉測定方法について説明するが、本発明は実施するための最良の形態に限られるものではない。
本発明による干渉測定方法を図1に沿って説明する。図1において、(a)は光学部材がセットされた状態、(b)は光学部材がセットされていない状態を示す。図1の(a)および(b)において、1は被測定物である光学部材、3および4は光透過性の平行平板部材、2は光学部材とほぼ同じ屈折率を有するオイル、5はコヒーレント光の測定ビームを示す。
The interference measurement method of the present invention will be described below, but the present invention is not limited to the best mode for carrying out the present invention.
An interference measurement method according to the present invention will be described with reference to FIG. In FIG. 1, (a) shows a state where the optical member is set, and (b) shows a state where the optical member is not set. 1 (a) and 1 (b), 1 is an optical member that is the object to be measured, 3 and 4 are light transmissive parallel plate members, 2 is oil having substantially the same refractive index as that of the optical member, and 5 is coherent. 1 shows a measurement beam of light.

本発明の干渉測定は次の通り行なう。まず、光学部材はセットせずに、2個の平行平板部材3および4の隙間をオイル2で満たした状態とする。この状態で測定用ビーム5を平行平板部材3に入射させる。その様子を図1(b)に示す。入射した測定ビーム5の一部は平行平板部材3の第一面3aで反射され反射ビーム5aとなる。平行平板部材3を透過した測定ビーム5は平行平板部材3、オイル2、平行平板部材4の順に進み、平行平板部材4の第2面4aで反射され反射ビーム5bとなる。反射ビーム5bは、再び平行平板部材4、オイル2、平行平板部材3の順に進み、反射ビーム5aと合わさって干渉し干渉ビームとなる。干渉ビームを撮像素子に入射させて撮像し、その干渉縞の状態を解析することで、光学部材1が無い状態での第1の波面収差が測定される。   The interference measurement of the present invention is performed as follows. First, the optical member is not set, and the gap between the two parallel plate members 3 and 4 is filled with the oil 2. In this state, the measurement beam 5 is incident on the parallel plate member 3. This is shown in FIG. A part of the incident measurement beam 5 is reflected by the first surface 3a of the parallel plate member 3 to become a reflected beam 5a. The measurement beam 5 transmitted through the parallel plate member 3 proceeds in the order of the parallel plate member 3, the oil 2, and the parallel plate member 4, and is reflected by the second surface 4a of the parallel plate member 4 to become a reflected beam 5b. The reflected beam 5b again proceeds in the order of the parallel plate member 4, the oil 2, and the parallel plate member 3, and is combined with the reflected beam 5a to interfere with it to become an interference beam. The first wavefront aberration in the state where the optical member 1 is not present is measured by causing the interference beam to enter the imaging device and imaging, and analyzing the state of the interference fringes.

次に、光学部材1を2個の平行平板部材3および4の間にセットし、光学部材1と平行平板部材3の隙間、および、光学部材1と平行平板部材4の隙間をオイル2で満たす。この状態で測定ビーム5を平行平板部材3に入射させる。その様子を図1(a)に示す。入射した測定ビーム5の一部は平行平板部材3の第一面3aで反射され反射ビーム5aとなる。平行平板部材3を透過した測定ビーム5はオイル2、光学部材1、オイル2、平行平板部材4の順に進み、平行平板部材4の第2面4aで反射され反射ビーム5bとなる。反射ビーム5bは、再び平行平板部材4、オイル2、光学部材1、オイル2、平行平板部材3の順に進み、反射ビーム5aと合わさって干渉し干渉ビームとなる。この干渉ビームを撮像素子に入射させて撮像し、その干渉縞の状態を解析することで、光学部材1がセットされた状態での第2の波面収差が測定される。   Next, the optical member 1 is set between the two parallel plate members 3 and 4, and the gap between the optical member 1 and the parallel plate member 3 and the gap between the optical member 1 and the parallel plate member 4 are filled with oil 2. . In this state, the measurement beam 5 is incident on the parallel plate member 3. This is shown in FIG. A part of the incident measurement beam 5 is reflected by the first surface 3a of the parallel plate member 3 to become a reflected beam 5a. The measurement beam 5 transmitted through the parallel plate member 3 proceeds in the order of oil 2, optical member 1, oil 2 and parallel plate member 4, and is reflected by the second surface 4a of the parallel plate member 4 to become a reflected beam 5b. The reflected beam 5b again proceeds in the order of the parallel plate member 4, the oil 2, the optical member 1, the oil 2, and the parallel plate member 3, and is combined with the reflected beam 5a to interfere and become an interference beam. The interference wave is incident on the image sensor to pick up an image, and the state of the interference fringes is analyzed, whereby the second wavefront aberration in the state where the optical member 1 is set is measured.

次に、第2の波面収差データから第1の波面収差データを減算する。これにより、干渉計やオイル等による影響を除去して、光学部材内部の均質性に依存した波面収差が導き出せる。   Next, the first wavefront aberration data is subtracted from the second wavefront aberration data. As a result, the wavefront aberration depending on the homogeneity inside the optical member can be derived by removing the influence of the interferometer and oil.

図1からわかる通り、本発明の干渉測定方法における干渉光路長は、平行平板部材3の第1面3aと平行平板部材4の第2面4aの間の距離に相当する。これは、図3に示した従来の干渉測定方法の干渉測定距離に比べてはるかに短い。図5に示した従来の干渉測定方法においては、透過性部材6と光反射部材7により測定ビームを反射させる構成のため、干渉光路長が長いのに対して、図1に示した本発明の干渉測定方法においては、透過性部材と光反射部材を必要とせず、平行平板部材により測定ビームを反射させる構成のため、干渉光路長が短くて済む。既に説明した通り、干渉による波面収差の測定においては干渉光路長が短い方が測定精度が高く、本発明の干渉測定方法は従来の干渉測定方法に比べて精度が高いことがわかる。   As can be seen from FIG. 1, the interference optical path length in the interference measuring method of the present invention corresponds to the distance between the first surface 3 a of the parallel plate member 3 and the second surface 4 a of the parallel plate member 4. This is much shorter than the interference measurement distance of the conventional interference measurement method shown in FIG. In the conventional interference measuring method shown in FIG. 5, the measurement beam is reflected by the transmissive member 6 and the light reflecting member 7, so that the interference optical path length is long, whereas the present invention shown in FIG. In the interference measurement method, a transmission member and a light reflection member are not required, and the measurement beam is reflected by the parallel plate member, so that the interference optical path length can be short. As already explained, in the measurement of wavefront aberration due to interference, the shorter the interference optical path length, the higher the measurement accuracy, and it can be seen that the interference measurement method of the present invention is more accurate than the conventional interference measurement method.

次に、図2に本発明の別の態様について説明する。図2においては、保持部材8によって、平行平板部材3および4を保持する。これにより平行平板部材3および4の間の距離および平行度の位置関係を保持するように固定することが可能となる。   Next, another embodiment of the present invention will be described with reference to FIG. In FIG. 2, the parallel plate members 3 and 4 are held by the holding member 8. As a result, the distance between the parallel flat plate members 3 and 4 and the positional relationship of the parallelism can be fixed.

平行平板部材3および4の間の距離は、光学部材1と平行平板部材3の隙間、および、光学部材1と平行平板部材4の隙間が、共に0.05mmを下回らないように保持することが望ましい。これより隙間が小さくなると、オイルの表面張力の影響で光学部材や平行平板部材に撓みが発生し、干渉測定の精度が低下するからである。また、逆に隙間が大き過ぎると、それに伴ってオイルが多量に必要となり、温度変化等による屈折率バラツキが干渉測定精度に悪影響を与える。従って、オイルの厚さが0.05mmより大きい適当な厚さとすることが好ましい、保持調整手段8を用いることで、このような厚さに容易に調整することを可能とする。   The distance between the parallel plate members 3 and 4 is preferably maintained such that the gap between the optical member 1 and the parallel plate member 3 and the gap between the optical member 1 and the parallel plate member 4 are not less than 0.05 mm. . This is because if the gap becomes smaller than this, the optical member or the parallel plate member bends due to the effect of the surface tension of the oil, and the accuracy of the interference measurement decreases. On the other hand, if the gap is too large, a large amount of oil is required, and the refractive index variation due to temperature change or the like adversely affects the interference measurement accuracy. Therefore, it is preferable that the thickness of the oil is set to an appropriate thickness larger than 0.05 mm. By using the holding adjustment means 8, it is possible to easily adjust to such a thickness.

なお、図3および図4に本発明の別の態様について示す。これらの態様においては、図1に示した構成に比べて、それぞれ、反射部材および透過性部材が加えられた構成となっている。これらの構成においても、従来技術に比べて干渉光路長を短くでき、その結果、より高精度に干渉測定を行なうことが可能である。
(実施例)
図1に示した干渉測定方法により、投影光学系10セット分の光学部材の波面収差を測定した。測定された波面収差の程度に応じてクラス分けした後、これらをレンズ形状に加工して投影レンズを10セット組み立てた。次に、これらの投影光学系のストレール値を測定したところ、ストレール値と波面収差のクラスとは相関を示した。即ち、本発明による光学部材の干渉測定結果と、それらの光学部材により構成された光学系の光学性能の間には強い相関があることがわかる。即ち、本発明の干渉測定方法によれば、光学部材を高精度に干渉測定できることがわかる。
(比較例)
図5に示した干渉測定方法により、投影光学系10セット分の光学部材の波面収差を測定した。次に、波面収差の程度に応じてクラス分けした後、これらをレンズ形状に加工して投影レンズを10セット組み立てた。次に、これらの投影光学系のストレール値を測定したところ、ストレール値と波面収差のクラスとは相関を示したものの、相関係数は実施例の場合よりかなり小さい値であった。
即ち、従来の光学部材の干渉測定結果と、それらの光学部材により構成された光学系の光学性能の間の相関は、本発明の干渉測定方法を用いた場合に比べて小さいことがわかる。即ち、従来の干渉測定方法では、本発明に比べて光学部材測定が高精度にはできないことがわかる。
3 and 4 show another embodiment of the present invention. In these aspects, compared to the configuration shown in FIG. 1, a reflecting member and a transmissive member are added, respectively. Even in these configurations, the interference optical path length can be shortened as compared with the prior art, and as a result, interference measurement can be performed with higher accuracy.
(Example)
The wavefront aberration of the optical members for 10 sets of the projection optical system was measured by the interference measurement method shown in FIG. After classifying according to the measured degree of wavefront aberration, these were processed into a lens shape and 10 sets of projection lenses were assembled. Next, when the Strehl value of these projection optical systems was measured, the Strehl value and the class of wavefront aberration showed a correlation. That is, it can be seen that there is a strong correlation between the interference measurement result of the optical member according to the present invention and the optical performance of the optical system constituted by these optical members. That is, it can be seen that according to the interference measurement method of the present invention, the optical member can be subjected to interference measurement with high accuracy.
(Comparative example)
The wavefront aberration of the optical members for 10 sets of the projection optical system was measured by the interference measurement method shown in FIG. Next, after classifying according to the degree of wavefront aberration, these were processed into a lens shape, and 10 sets of projection lenses were assembled. Next, when the Strehl values of these projection optical systems were measured, the Strehl value and the wavefront aberration class showed a correlation, but the correlation coefficient was considerably smaller than that in the example.
That is, it can be seen that the correlation between the interference measurement results of the conventional optical members and the optical performance of the optical system constituted by these optical members is smaller than when the interference measurement method of the present invention is used. That is, it can be seen that the conventional interference measurement method cannot measure the optical member with higher accuracy than the present invention.

上記の結果より、本発明の干渉測定方法によれば、より高精度に干渉測定することが可能となる。   From the above results, according to the interference measurement method of the present invention, it is possible to perform interference measurement with higher accuracy.

高い精度を要求される光学機器、特にフォトリソグラフィー用露光装置の光学部品の波面収差を高精度に干渉測定することができる。   It is possible to perform interference measurement of the wavefront aberration of an optical device requiring high accuracy, in particular, an optical component of an exposure apparatus for photolithography with high accuracy.

本発明の干渉測定方法を示す概念図である。It is a conceptual diagram which shows the interference measuring method of this invention. 本発明の干渉測定方法の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the interference measuring method of this invention. 本発明の干渉測定方法の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the interference measuring method of this invention. 本発明の干渉測定方法の別の態様を示す概念図である。It is a conceptual diagram which shows another aspect of the interference measuring method of this invention. 従来の干渉測定方法を示す概念図である。It is a conceptual diagram which shows the conventional interference measuring method.

干渉測定装置のフリンジスキャンを説明する概念図である。   It is a conceptual diagram explaining the fringe scan of an interference measuring device.

符号の説明Explanation of symbols

1 光学部材
2 オイル
3平行平板部材
4平行平板部材
5測定ビーム
6透過性部材
7反射部材
8保持調整手段
1 Optical components
2 Oil
3 Parallel plate member
4 parallel plate members
5 measuring beam
6 permeable member
7 Reflective member
8 Holding adjustment means

Claims (5)

干渉により光学部材の波面収差を測定する干渉測定方法であって 、前記光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程 と、
前記光学部材と前記第1の平行平板部材の隙間、および、前記光学部材と前記第2の平行平板部材の隙間に、前記光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、
測定ビームを前記第1の平行平板部材に向けて照射する工程と、
前記測定ビームを前記第1の平行平板部材の入射面で部分的に反射させて第1の反射ビームを形成する工程と、
前記第1の平行平板部材を透過したビームを、前記光学部材を通して前記第2の平行平板部材に入射させる工程と、
前記第2の平行平板部材の入射面とは反対側の面で前記ビームを反射させて第2の反射ビームを形成する工程と、
前記第1の反射ビームと前記第2の反射ビームを干渉させて干渉ビームとする工程と、
前記干渉ビームの干渉縞を解析する工程と、
を有することを特徴とする干渉測定方法。
An interference measurement method for measuring wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member;
An oil layer is formed by filling the gap between the optical member and the first parallel plate member and the gap between the optical member and the second parallel plate member with oil having a refractive index substantially equal to that of the optical member. And a process of
Irradiating a measurement beam toward the first parallel plate member;
Partially reflecting the measurement beam on the incident surface of the first parallel plate member to form a first reflected beam;
Allowing the beam transmitted through the first parallel plate member to enter the second parallel plate member through the optical member;
Reflecting the beam on a surface opposite to the incident surface of the second parallel plate member to form a second reflected beam;
Interfering the first reflected beam and the second reflected beam into an interference beam;
Analyzing the interference fringes of the interference beam;
An interference measurement method characterized by comprising:
干渉により光学部材の波面収差を測定する干渉測定方法であって、光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程と、
前記第2の平行平板部材に面して、前記第1の平行平板部材とは反対側に、反射部材を配置する工程と、
前記光学部材と前記第1の平行平板部材の隙間、および、前記光学部材と前記第2の平行平板部材の隙間に、前記光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、
測定ビームを前記第1の平行平板部材に向けて照射する工程と、
前記測定ビームを前記反射部材の入射面で反射させて第1の反射ビームを形成する工程と、
前記第1の平行平板部材を透過したビームを、前記光学部材を通して前記第2の平行平板部材に入射させる工程と、
前記第2の平行平板部材の入射面とは反対側の面で前記ビームを反射させて第2の反射ビームを形成する工程と、
前記第1の反射ビームと前記第2の反射ビームを干渉させて干渉ビームとする工程と、
前記干渉ビームの干渉縞を解析する工程と、
を有することを特徴とする干渉測定方法。
An interference measurement method for measuring wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member;
A step of facing the second parallel plate member and disposing a reflection member on the side opposite to the first parallel plate member;
An oil layer is formed by filling the gap between the optical member and the first parallel plate member and the gap between the optical member and the second parallel plate member with oil having a refractive index substantially equal to that of the optical member. And a process of
Irradiating a measurement beam toward the first parallel plate member;
Reflecting the measurement beam at an incident surface of the reflecting member to form a first reflected beam;
Allowing the beam transmitted through the first parallel plate member to enter the second parallel plate member through the optical member;
Reflecting the beam on a surface opposite to the incident surface of the second parallel plate member to form a second reflected beam;
Interfering the first reflected beam and the second reflected beam into an interference beam;
Analyzing the interference fringes of the interference beam;
An interference measurement method characterized by comprising:
干渉により光学部材の波面収差を測定する干渉測定方法であって、光学部材を第1の平行平板部材と第2の平行平板部材の間に配置する工程と、
前記第1の平行平板部材に面して、前記第2の平行平板部材とは反対側に、透過性部材を配置する工程と、
前記光学部材と前記第1の平行平板部材の隙間、および、前記光学部材と前記第2の平行平板部材の隙間に、前記光学部材とほぼ等しい屈折率を有するオイルを充填してオイル層を形成する工程と、
測定ビームを前記透過性部材に向けて照射する工程と、
前記測定ビームを前記透過性部材の入射面で反射させて第1の反射ビームを形成する工程と、
前記透過性部材を透過したビームを、前記第1の平行平板部材および前記光学部材を通して前記第2の平行平板部材に入射させる工程と、
前記第2の平行平板部材の入射面とは反対側の面で前記ビームを反射させて第2の反射ビームを形成する工程と、
前記第1の反射ビームと前記第2の反射ビームを干渉させて干渉ビームとする工程と、
前記干渉ビームの干渉縞を解析する工程と、
を有することを特徴とする干渉測定方法。
An interference measurement method for measuring wavefront aberration of an optical member by interference, the step of disposing the optical member between a first parallel plate member and a second parallel plate member;
Facing the first parallel plate member and disposing a transmissive member on the opposite side of the second parallel plate member;
An oil layer is formed by filling the gap between the optical member and the first parallel plate member and the gap between the optical member and the second parallel plate member with oil having a refractive index substantially equal to that of the optical member. And a process of
Irradiating a measurement beam toward the transparent member;
Reflecting the measurement beam at an incident surface of the transmissive member to form a first reflected beam;
Allowing the beam transmitted through the transmissive member to enter the second parallel plate member through the first parallel plate member and the optical member;
Reflecting the beam on a surface opposite to the incident surface of the second parallel plate member to form a second reflected beam;
Interfering the first reflected beam and the second reflected beam into an interference beam;
Analyzing the interference fringes of the interference beam;
An interference measurement method characterized by comprising:
請求項1または2または3に記載の干渉測定方法において、
前記オイル層の厚さは、0.05mm以上であることを特徴とする干渉測定方法。
The interference measurement method according to claim 1, 2 or 3,
The method for measuring interference, wherein the oil layer has a thickness of 0.05 mm or more.
請求項1または2または3に記載の干渉測定方法において、
前記第1の平行平板部材と前記第2の平行平板部材は、保持部材によって前記第1の平行平板部材と前記第2の平行平板部材の位置関係を保持または調整可能に固定されていることを特徴とする干渉測定方法。
The interference measurement method according to claim 1, 2 or 3,
The first parallel plate member and the second parallel plate member are fixed by a holding member so that the positional relationship between the first parallel plate member and the second parallel plate member can be held or adjusted. A characteristic interference measurement method.
JP2005035482A 2005-02-14 2005-02-14 Measuring method of interference Pending JP2006220577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035482A JP2006220577A (en) 2005-02-14 2005-02-14 Measuring method of interference

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035482A JP2006220577A (en) 2005-02-14 2005-02-14 Measuring method of interference

Publications (1)

Publication Number Publication Date
JP2006220577A true JP2006220577A (en) 2006-08-24

Family

ID=36982996

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035482A Pending JP2006220577A (en) 2005-02-14 2005-02-14 Measuring method of interference

Country Status (1)

Country Link
JP (1) JP2006220577A (en)

Similar Documents

Publication Publication Date Title
KR102549058B1 (en) Optical measurement apparatus and optical measurement method
KR101790830B1 (en) Interferometer, lithography apparatus, and method of manufacturing article
TW201643414A (en) Optical metrology with small illumination spot size
US9157870B2 (en) Pattern test apparatus
JP2005043353A (en) Polarization proper investigation method, optical imaging system, and calibration method
US20130157202A1 (en) Apparatus, method, and talbot interferometer for calculating aberration of test optical system
JP2009068922A (en) Measurement apparatus, exposure apparatus, and device fabrication method
TW201011252A (en) A method of measuring overlay error and a device manufacturing method
JP6677746B2 (en) Method and apparatus for optical fiber connection
US6704112B1 (en) Application of the phase shifting diffraction interferometer for measuring convex mirrors and negative lenses
US20150146214A1 (en) Optical performance measurement apparatus of test optical element and its control unit
JP2009053066A (en) Focus adjusting method of wave front measuring interferometer, and manufacturing method of wave front measuring interferometer and projection optical system
TW202217480A (en) Self-referencing integrated alignment sensor
KR101124018B1 (en) apparatus for measurement of aspheric surface
KR102227293B1 (en) Method for determining a focus position of a lithography mask and metrology system for carrying out such a method
JP2009047523A (en) Interference measuring device, exposure device, and device-manufacturing method
JP5033015B2 (en) Exposure apparatus, exposure method, and device manufacturing method
JP2006220577A (en) Measuring method of interference
JP2007057297A (en) Optical characteristic measuring device, optical characteristic measuring method, exposure device and exposure method
JP2007155480A (en) Surface measurement apparatus
JP4650390B2 (en) Diffraction grating manufacturing method
JPH11311600A (en) Method and apparatus for measuring refractive index distribution
JP2004101466A (en) Interferometer device comprising unnecessary light eliminator
JP2024518654A (en) OPTICAL APPARATUS, METHOD FOR ADJUSTING TARGET DEFORMATION, AND LITHOGRAPHY SYSTEM - Patent application
JP2006215023A (en) Inspection method and inspection device for optical component