JP2006220525A - Film thickness measurement method and film thickness measurement program - Google Patents

Film thickness measurement method and film thickness measurement program Download PDF

Info

Publication number
JP2006220525A
JP2006220525A JP2005033978A JP2005033978A JP2006220525A JP 2006220525 A JP2006220525 A JP 2006220525A JP 2005033978 A JP2005033978 A JP 2005033978A JP 2005033978 A JP2005033978 A JP 2005033978A JP 2006220525 A JP2006220525 A JP 2006220525A
Authority
JP
Japan
Prior art keywords
film thickness
film
value
refractive index
spectral reflectance
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033978A
Other languages
Japanese (ja)
Other versions
JP4622564B2 (en
Inventor
Yutaka Fujiwara
豊 藤原
Hideki Nakakuki
秀樹 中久木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Printing Co Ltd filed Critical Toppan Printing Co Ltd
Priority to JP2005033978A priority Critical patent/JP4622564B2/en
Publication of JP2006220525A publication Critical patent/JP2006220525A/en
Application granted granted Critical
Publication of JP4622564B2 publication Critical patent/JP4622564B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a film thickness measurement method and a film thickness measurement program for accurately finding a film thickness value in view of the effect of an inclination of a film surface and the thickness of a substrate, and not presupposing that the refractive index of the film is already-known. <P>SOLUTION: A spectral reflectivity model is prepared in view of the effect of the inclination of the film surface and the thickness of the substrate to perform a comparison operation of this model with measured spectral reflectivity, thereby accurately finding the film thickness value. First-stage and second-stage theoretical curves of reflectivity are prepared from a wavelength dispersion expression model of a refractive index. A film thickness value, which minimizes the mean square error between the second-stage theoretical curve and data on the measured spectral reflectivity, is used as a measurement result on a film thickness to be found. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、液晶表示装置用のガラス基板などの基板上に形成された薄膜の膜厚を非接触で求める膜厚測定方法に関する。   The present invention relates to a film thickness measurement method for obtaining a film thickness of a thin film formed on a substrate such as a glass substrate for a liquid crystal display device in a non-contact manner.

分光干渉式による非接触膜厚測定は、照明光を膜に照射し、膜表面からの反射光と、膜と基板との境界面からの反射光との位相差により生じる干渉現象を利用したものである。この干渉光の強度は、膜に照射する光の波長、膜の厚み、膜の屈折率、基板の屈折率等の因子に依存することが知られている。   Spectral interference non-contact film thickness measurement uses an interference phenomenon that is caused by the phase difference between the reflected light from the film surface and the reflected light from the boundary surface between the film and the substrate. It is. It is known that the intensity of the interference light depends on factors such as the wavelength of light applied to the film, the thickness of the film, the refractive index of the film, and the refractive index of the substrate.

従来の膜厚測定方法では、実測した分光反射率と、上記の因子が既知のある値と仮定した場合の理論的な分光反射率とを比較し、例えば実測した分光反射率と理論的な分光反射率の平均二乗誤差等の結果により被測定物である薄膜の膜厚が決定される。   In the conventional film thickness measurement method, the measured spectral reflectance is compared with the theoretical spectral reflectance when the above factor is assumed to be a known value. For example, the measured spectral reflectance is compared with the theoretical spectral reflectance. The film thickness of the thin film as the object to be measured is determined based on the result of the mean square error of the reflectance.

上記の方法で利用される理論的な分光反射率は、被測定物の表面が完全に平坦であることを前提にし、さらに、被測定物からの反射光、あるいは基板の裏面からの反射光がすべて受光素子に導かれることを前提として求められる。   The theoretical spectral reflectance used in the above method is based on the premise that the surface of the object to be measured is completely flat, and further the reflected light from the object to be measured or the reflected light from the back surface of the substrate. It is calculated on the assumption that all light is guided to the light receiving element.

ところが、被測定物の薄膜が傾斜している場合(図1(b))や、基板の厚み(図1(c))によっては、被測定物からの反射光のうち、受光素子に到達する光量が少なくなるため、実測分光反射率は理論的な分光反射率よりも小さくなり、その結果、実測分光反射率と理論的な分光反射率の平均二乗誤差が真の膜厚値とかけ離れたところで最小となってしまう問題や、平均二乗誤差が収束しない(解が求まらない)という問題があった。   However, when the thin film of the object to be measured is tilted (FIG. 1B) or depending on the thickness of the substrate (FIG. 1C), the reflected light from the object to be measured reaches the light receiving element. Since the amount of light is reduced, the measured spectral reflectance is smaller than the theoretical spectral reflectance. As a result, the mean square error between the measured spectral reflectance and the theoretical spectral reflectance is far from the true film thickness value. There have been problems of minimizing and mean square error not converging (no solution is found).

特に、対物レンズを介して被測定物の微小領域に光を照射する顕微分光方式において、この問題は顕著になる。   In particular, this problem becomes significant in the microspectroscopic method in which light is irradiated to a minute region of the object to be measured through the objective lens.

近年、液晶表示装置用部材、半導体素子の製造工程等において、被測定部分の微小化が望まれている。例えば、液晶表示装置の部材であるカラーフィルターのパターニングされた画素内におけるレジスト膜厚の非破壊・非接触測定が強く望まれており、測定対象についても、研磨工程後の、膜面が平坦化された段階(図2(a))のものもあれば、プリベークされただけの、膜面が傾斜しているもの(図2(b))もある。膜面が平坦なものについては特許文献1のような測定方法が知られている。   In recent years, miniaturization of a part to be measured has been desired in a manufacturing process of a member for a liquid crystal display device, a semiconductor element, and the like. For example, non-destructive and non-contact measurement of resist film thickness within the patterned pixels of a color filter, which is a member of a liquid crystal display device, is strongly desired, and the film surface after the polishing process is also flattened for the measurement target. Some have been performed (FIG. 2A), while others are pre-baked and the film surface is inclined (FIG. 2B). For a film having a flat film surface, a measurement method as in Patent Document 1 is known.

前述したように、このような対象物の膜厚を分光干渉式の膜厚測定方法で測定することは困難であるため、膜の一部を鋭利な刃物で掻き取って膜表面と基板表面との段差を作り、触針式の段差計による測定が行われているが、このような方法は測定のための準備が煩わしく、測定時間も掛かるうえに被測定物を破壊する破壊計測であるため、ロスの削減を期待することはできない。   As described above, since it is difficult to measure the film thickness of such an object with a spectral interference type film thickness measurement method, a part of the film is scraped off with a sharp blade so that the film surface and the substrate surface Measurements are made using a stylus type step gauge, but this method is cumbersome to prepare for measurement, takes time, and is a destructive measurement that destroys the object being measured. Can't expect to reduce losses.

また、膜厚を分光干渉式で測定する方法には、ピークバレー法と呼ばれる方法が知られているが、この方法は各波長における屈折率が既知であることを前提とするものであるため、屈折率を予めエリプソメーター等で測定しておく必要がある。   In addition, a method called a peak valley method is known as a method for measuring a film thickness by a spectral interference method, but since this method is based on the premise that the refractive index at each wavelength is known, It is necessary to measure the refractive index with an ellipsometer or the like in advance.

しかし、カラーレジストは液晶表示装置の用途により品種が異なり、その種類は多岐に及んでいるばかりでなく、同品種のカラーレジストであっても、ベーク前後で屈折率が異なるため、屈折率が既知であることを前提とするピークバレー法の適用には運用面において限界がある。   However, the types of color resists differ depending on the application of the liquid crystal display device, and the types of color resists are not only diverse, but even the same type of color resist has a different refractive index before and after baking, so the refractive index is known. The application of the peak valley method on the premise of this is limited in terms of operation.

特開2003−42722号公報JP 2003-42722 A

本発明は上記の問題に鑑みなされたものであり、その課題とするところは、膜面の傾斜、基板の厚みの影響を考慮した分光反射率モデルを作成し、このモデルと実測分光反射率との比較演算をすることで精度良く膜厚値を求める膜厚測定方法であって、しかも、膜の屈折率が既知であることを前提としない膜厚測定方法、膜厚測定プログラムを提供することにある。   The present invention has been made in view of the above problems, and the problem is that a spectral reflectance model is created in consideration of the influence of the inclination of the film surface and the thickness of the substrate. A film thickness measurement method and a film thickness measurement program that do not assume that the refractive index of the film is known. It is in.

上記課題を解決するため、請求項1に係る発明においては、基板上に薄膜が形成された試料表面に光を照射し、試料からの反射光を分光して分光反射率データを取得し、その実測分光反射率を、理論計算により求まる理論曲線と比較することで前記薄膜の膜厚を測定する膜厚測定方法において、
前記基板の屈折率と、前記薄膜の屈折率の推定値を用いて、前記実測分光反射率が極大・極小となる波長から干渉次数を決定するステップと、
決定された前記干渉次数を用いて、前記極大・極小波長に対応する膜厚値を求めるステップと、
前記膜厚値に基づく値から前記薄膜のとり得る膜厚範囲を特定するステップを含むことを特徴とする膜厚測定方法を提供する。
In order to solve the above-mentioned problem, in the invention according to claim 1, the sample surface on which the thin film is formed is irradiated with light, the reflected light from the sample is dispersed to obtain spectral reflectance data, In the film thickness measurement method for measuring the film thickness of the thin film by comparing the measured spectral reflectance with a theoretical curve obtained by theoretical calculation,
Using the refractive index of the substrate and the estimated value of the refractive index of the thin film, determining the interference order from the wavelength at which the measured spectral reflectance is maximized and minimized;
Using the determined interference order, obtaining a film thickness value corresponding to the maximum and minimum wavelengths;
There is provided a film thickness measuring method including a step of specifying a film thickness range that the thin film can take from a value based on the film thickness value.

また、請求項2に係る発明においては、基板上に薄膜が形成された試料表面に光を照射し、試料からの反射光を分光して分光反射率データを取得し、その実測分光反射率を、理論計算により求まる理論曲線と比較することで前記薄膜の膜厚を測定する膜厚測定方法において、
前記基板の屈折率と、前記薄膜の屈折率の推定値を用いて、前記実測分光反射率が極大・極小となる波長から干渉次数を決定するステップと、
決定された前記干渉次数を用いて、前記極大・極小波長に対応する膜厚値を求めるステップと、
前記膜厚値に基づく値から前記薄膜のとり得る膜厚範囲を特定するステップを実行した後、
前記干渉次数を用い、膜厚値を変化させて各膜厚値に対する前記実測分光反射率の極大・極小波長から前記薄膜の屈折率を求め直すステップと、
各膜厚値に対して定まる前記極大・極小波長に対応する屈折率から、前記薄膜の屈折率の波長分散式モデルを作成するステップと、
各膜厚値と各膜厚値に対して定まる前記波長分散式モデルに基づいて反射率の第1段階の理論曲線を作成するステップと、を含むことを特徴とする請求項1に記載の膜厚測定方法を提供する。
Further, in the invention according to claim 2, the sample surface on which the thin film is formed on the substrate is irradiated with light, the reflected light from the sample is dispersed to obtain spectral reflectance data, and the measured spectral reflectance is obtained. In the film thickness measurement method for measuring the film thickness of the thin film by comparing with a theoretical curve obtained by theoretical calculation,
Using the refractive index of the substrate and the estimated value of the refractive index of the thin film, determining the interference order from the wavelength at which the measured spectral reflectance is maximized and minimized;
Using the determined interference order, obtaining a film thickness value corresponding to the maximum and minimum wavelengths;
After performing the step of specifying the film thickness range that the thin film can take from the value based on the film thickness value,
Re-determining the refractive index of the thin film from the maximum and minimum wavelengths of the measured spectral reflectance for each film thickness value by using the interference order and changing the film thickness value;
Creating a chromatic dispersion model of the refractive index of the thin film from the refractive index corresponding to the maximum and minimum wavelengths determined for each film thickness value;
The film according to claim 1, further comprising: creating a first-stage theoretical curve of reflectivity based on each film thickness value and the chromatic dispersion model determined for each film thickness value. A thickness measurement method is provided.

また、請求項3に係る発明においては、前記波長分散式モデルを作成するステップは極大・極小波長に対応する屈折率の個数に応じて選択されるステップを含むことを特徴とする請求項2に記載の膜厚測定方法を提供する。   Further, in the invention according to claim 3, the step of creating the wavelength dispersion type model includes a step of selecting according to the number of refractive indexes corresponding to the maximum and minimum wavelengths. The described film thickness measuring method is provided.

また、請求項4に係る発明においては、前記第1段階の理論曲線が、前記薄膜に由来する反射と、前記基板の裏面反射の線形結合であることを特徴とする請求項2または3に記載の膜厚測定方法を提供する。   The invention according to claim 4 is characterized in that the first-stage theoretical curve is a linear combination of reflection derived from the thin film and back-surface reflection of the substrate. A film thickness measuring method is provided.

また、請求項5に係る発明においては、前記第1段階の理論曲線の極小波長における反射率に基づく値と、前記実測分光反射率の極小波長における反射率に基づく値を比較し、その比較演算によりオフセット量を算出するステップと、前記第1段階の理論曲線を前記オフセット量の分だけオフセットした第2段階の理論曲線を作成するステップとを含み、前記第2段階の理論曲線と、前記実測分光反射率データの平均二乗誤差が最小となるときの膜厚値を、求める膜厚の測定結果とすることを特徴とする請求項2から4の何れかに記載の膜厚測定方法を提供する。   In the invention according to claim 5, the value based on the reflectance at the minimum wavelength of the theoretical curve of the first stage is compared with the value based on the reflectance at the minimum wavelength of the measured spectral reflectance, and the comparison calculation is performed. And calculating the offset amount, and creating a second stage theoretical curve obtained by offsetting the first stage theoretical curve by the amount of the offset, the second stage theoretical curve, and the actual measurement 5. The film thickness measurement method according to claim 2, wherein the film thickness value when the mean square error of the spectral reflectance data is minimized is a measurement result of the film thickness to be obtained. .

また、請求項6に係る発明においては、前記膜厚の測定結果を求める際に使用する、前記実測分光反射率が極大・極小となる波長に対応する屈折率の妥当性を判断するステップを含み、
前記屈折率が妥当と判断されたら前記膜厚の測定結果の膜厚値を測定結果として表示し、前記屈折率が異常と判断されたらエラー表示することを特徴とする請求項5に記載の膜厚測定方法を提供する。
Further, the invention according to claim 6 includes a step of judging validity of a refractive index corresponding to a wavelength at which the measured spectral reflectance is maximized / minimized, which is used when obtaining the measurement result of the film thickness. ,
6. The film according to claim 5, wherein when the refractive index is determined to be appropriate, a film thickness value of the film thickness measurement result is displayed as a measurement result, and when the refractive index is determined to be abnormal, an error is displayed. A thickness measurement method is provided.

また、請求項7に係る発明においては、コンピュータに請求項1から6の何れかに記載の膜厚測定方法を行わせることを特徴とする膜厚測定プログラムを提供する。   According to a seventh aspect of the invention, there is provided a film thickness measurement program that causes a computer to perform the film thickness measurement method according to any one of the first to sixth aspects.

本発明によれば、膜面の傾斜、基板の厚みの影響を考慮した分光反射率モデルを作成し、このモデルと実測分光反射率との比較演算をすることで精度良く膜厚値を求めることができる。しかも、膜の屈折率が既知であることを前提としないで膜厚値を求めることができる。   According to the present invention, a spectral reflectance model that takes into account the influence of the inclination of the film surface and the thickness of the substrate is created, and the film thickness value is obtained accurately by performing a comparison operation between this model and the measured spectral reflectance. Can do. Moreover, the film thickness value can be obtained without assuming that the refractive index of the film is known.

まず、本発明の膜厚測定方法について、概要を説明する。   First, an outline of the film thickness measuring method of the present invention will be described.

図3は、本発明の膜厚測定方法の手順を示すフローチャートである。以下、各ステップの詳細な説明をする。   FIG. 3 is a flowchart showing the procedure of the film thickness measuring method of the present invention. Hereinafter, each step will be described in detail.

ステップ(以下、「S」と略記することがある)1で、実測分光反射率(以下、「RExp(λ)」と記す)を求める。 In step (hereinafter sometimes abbreviated as “S”) 1, an actual spectral reflectance (hereinafter referred to as “R Exp (λ)”) is obtained.

S2で、RExp(λ)の極大・極小波長から後述する干渉次数mと、膜厚の初期値(〈d〉−α)を決定する。図4は、通常の顕微分光方式により取得した、カラーフィルターの青色セル内におけるRExp(λ)を示したものである。空気、膜(Film)、基板(Substrate)の屈折率をそれぞれ、1.0、n、n(ただし、測定波長域においてn>n>1.0、nは既知)とすると、膜表面からの反射光R1Fと、膜と基板との境界面からの反射光RFSとの光路差は2ndであり、n>n>1.0なので、R1FおよびRFSの位相は入射光の位相に比べてπだけ変化する。したがって、極小波長をλValley、極大波長をλPeak、膜厚をd、干渉次数をm(整数)として、

Figure 2006220525

Figure 2006220525

が成り立つ。ここで、n(λValley)、n(λPeak)は、膜の屈折率nの波長分散を考慮したもので、nが波長λの関数であることを表している。 In S2, an interference order m, which will be described later, and an initial value (<d> -α) are determined from the maximum and minimum wavelengths of R Exp (λ). FIG. 4 shows R Exp (λ) in the blue cell of the color filter obtained by the normal microspectroscopic method. Assume that the refractive indices of air, film, and substrate are 1.0, n F , and n S (where n F > n S > 1.0 and n S are known in the measurement wavelength range). Since the optical path difference between the reflected light R 1F from the film surface and the reflected light R FS from the boundary surface between the film and the substrate is 2n F d and n F > n S > 1.0, R 1F and R The phase of FS changes by π compared to the phase of incident light. Therefore, assuming that the minimum wavelength is λ Valley , the maximum wavelength is λ Peak , the film thickness is d, and the interference order is m (integer),
Figure 2006220525

Figure 2006220525

Holds. Here, n FValley ) and n FPeak ) take into consideration the wavelength dispersion of the refractive index n F of the film, and represent that n F is a function of the wavelength λ.

S2では、数1、数2のn(λValley)、n(λPeak)を1.7と仮定して干渉次数m、および膜厚の初期値(〈d〉−α)を求める。なお、n(λValley)、n(λPeak)を1.7と仮定しているのは、一般的なカラーレジストの屈折率nは、ガラス基板の屈折率nS(≒1.5)よりも若干大きいからである。つまり、この段階においてはnがnSよりも若干大きい値であればよく、厳密性は必要としない。 In S2, assuming that n FValley ) and n FPeak ) of Equations 1 and 2 are 1.7, the interference order m and the initial value (<d> −α) of the film thickness are obtained. Note that n FValley ) and n FPeak ) are assumed to be 1.7 because the refractive index n F of a general color resist is the refractive index n S (≈1. This is because it is slightly larger than 5). That is, at this stage, n F may be a value slightly larger than n S , and strictness is not required.

数1、数2のn(λValley)、n(λPeak)を1.7と仮定すると、

Figure 2006220525

Figure 2006220525

なので、適当な干渉次数mを数3、数4に代入すれば、RExp(λ)の各極大・極小波長に対応した複数の膜厚値が算出されることになる。 Assuming that n FValley ) and n FPeak ) of Equations 1 and 2 are 1.7,
Figure 2006220525

Figure 2006220525

Therefore, if an appropriate interference order m is substituted into Equations 3 and 4, a plurality of film thickness values corresponding to the maximum and minimum wavelengths of R Exp (λ) are calculated.

以下、干渉次数mと、膜厚の初期値(〈d〉−α)の決定方法について説明する。
(i) RExp(λ)(図4)からすべての極大値と極小値を取る波長λ、λ、λ、…を求める。
(ii) (i)で得られた極大値・極小値を与える波長のうち、最も短い波長が極小値を与えるものであれば仮の干渉次数として整数mを与え、最も短い波長が極大値を与えるものであれば仮の干渉次数として(m+0.5)を与える。極大値・極小値は交互に現れるので、残りの極大値・極小値を与える波長に対しては、0.5ずつ引いた値を干渉次数として用いればよい(以下、この一連の干渉次数を「干渉次数セット」と記す)。このようにして、数3、数4により、λ、λ、λ、…に対して膜厚d、d、d、…を求める。
(iii) 仮の干渉次数として整数(m+1)、(m+2)、(m+3)、…を与え、(ii)と同様の手続きを行う。
(iv) 各干渉次数セットを与えて求まるd、d、d、…の最大値と最小値の差を算出し、これが最小となるときの干渉次数セットを求める。
(v) (iv)で求めた干渉次数セットに対するd、d、d、…の平均値〈d〉を求め、膜厚の初期値として、〈d〉−αを得る。
Hereinafter, a method for determining the interference order m and the initial value (<d> −α) of the film thickness will be described.
(I) Wavelengths λ 1 , λ 2 , λ 3 ,... Taking all local maximum values and local minimum values are obtained from R Exp (λ) (FIG. 4).
(Ii) If the shortest wavelength gives the minimum value among the wavelengths giving the maximum value and the minimum value obtained in (i), an integer m is given as a temporary interference order, and the shortest wavelength has the maximum value. If given, (m + 0.5) is given as a temporary interference order. Since the maximum value and the minimum value appear alternately, the value obtained by subtracting 0.5 may be used as the interference order for the wavelength that gives the remaining maximum value and minimum value (hereinafter, this series of interference orders is expressed as “ Interference order set ”). In this way, the film thicknesses d 1 , d 2 , d 3 ,... Are obtained for λ 1 , λ 2 , λ 3 ,.
(Iii) Integers (m + 1), (m + 2), (m + 3),... Are given as temporary interference orders, and the same procedure as in (ii) is performed.
(Iv) The difference between the maximum value and the minimum value of d 1 , d 2 , d 3 ,... Obtained by giving each interference order set is calculated, and the interference order set when this becomes the minimum is obtained.
(V) An average value <d> of d 1 , d 2 , d 3 ,... With respect to the interference order set obtained in (iv) is obtained, and <d> −α is obtained as an initial value of the film thickness.

ここで、αはステップS3以降でdを変数として取り扱う際に、dを振る範囲を決定するものであり、ユーザーが任意に設定できる。つまり、S3以降ではdを(〈d〉−α)≦d≦(〈d〉+α)の範囲で振ることになる。   Here, α determines the range in which d is shaken when d is treated as a variable in step S3 and subsequent steps, and can be arbitrarily set by the user. That is, after S3, d is shaken in the range of (<d> −α) ≦ d ≦ (<d> + α).

S4では、S2で決定したmを固定し、変数dに対応するnを求め直す。数5、数6により極大値と極小値を取る波長λ、λ、λ、…に対応した一連の屈折率n、n、n、…が算出される。

Figure 2006220525

Figure 2006220525
In S4, m determined in S2 is fixed, and n corresponding to the variable d is obtained again. A series of refractive indexes n 1 , n 2 , n 3 ,... Corresponding to the wavelengths λ 1 , λ 2 , λ 3 ,.
Figure 2006220525

Figure 2006220525

続いて測定波長全域における屈折率を求めるために、数5、数6から得られたn、n、n、…を利用して、屈折率の波長分散式n(λ)を決定する。n(λ)のモデルとしては公知のモデル式を用いればよいが、種々のカラーレジストの分光透過率を示す図5から判るように、カラーレジストの場合は近赤外域において吸収の無い透明膜として取り扱うことが可能となるので、近赤外域を測定波長域として選択し、SellmeierモデルやCauchyモデルを用いてn(λ)を決定するのが好ましい。 Subsequently, in order to obtain the refractive index in the entire measurement wavelength range, the wavelength dispersion formula n (λ) of the refractive index is determined using n 1 , n 2 , n 3 ,. . As a model of n (λ), a known model equation may be used. As can be seen from FIG. 5 showing the spectral transmittance of various color resists, in the case of color resists, a transparent film having no absorption in the near infrared region is used. Since it can be handled, it is preferable to select the near infrared region as the measurement wavelength region and determine n (λ) using the Sellmeier model or the Couchy model.

S4では、変数dを振る毎に数5、数6により求まるn、n、n、…の個数に基づいてn(λ)のモデル式を選択するステップを含むことができる。 S4 may include a step of selecting a model expression of n (λ) based on the number of n 1 , n 2 , n 3 ,.

ここで、Sellmeierモデルによる波長分散式(以下、「nSellmeier(λ)」と記す)、および、Cauchyモデルによる波長分散式(以下、「nCauchy(λ)」と記す)の決定方法について説明する。nSellmeier(λ)は数7の形で表され、n、n、n、…に最も近似する係数a、bを求めることで決定される。また、nCauchy(λ)は数8の形で表され、n、n、n、…に最も近似する係数A、B、Cを求めることで決定される。数7の係数a、b、数8の係数A、B、Cは、公知の非線形最小二乗法(例えばレーベンベルグマルカート法)や線形最小二乗法等を用いれば容易に求めることができる。

Figure 2006220525

Figure 2006220525
Here, a method of determining a wavelength dispersion formula (hereinafter referred to as “n Cellmeier (λ)”) based on the Sellmeier model and a wavelength dispersion formula (hereinafter referred to as “n Cauchy (λ)”) based on the Cauchy model will be described. . n Sellmeier (λ) is expressed in the form of Equation 7, and is determined by obtaining coefficients a and b that are closest to n 1 , n 2 , n 3 ,. Further, n Cauchy (λ) is expressed in the form of Formula 8, and is determined by obtaining coefficients A, B, and C that are closest to n 1 , n 2 , n 3 ,. The coefficients a and b in Expression 7 and the coefficients A, B, and C in Expression 8 can be easily obtained by using a known nonlinear least square method (for example, Levenberg-Marquardt method) or a linear least square method.
Figure 2006220525

Figure 2006220525

前述のように、λ、λ、λ、…に対応するn、n、n、…の個数が、nSellmeier(λ)とnCauchy(λ)の選択判断基準となるが、n、n、n、…の個数が2個の場合には、3つの係数を含むnCauchy(λ)を決定することはできないのでnSellmeier(λ)を選択し、n、n、n、…の個数が3個以上である場合にはnCauchy(λ)を選択すればよい。なお、n、n、n、…の個数が1個以下の場合は、nSellmeier(λ)を決定することも不可能となってしまうが、通常、カラーレジストの膜厚は1000〜3000nmなので、900〜1600nm程度の範囲を測定波長域とする分光器を使用すれば、n、n、n、…の個数、すなわち、RExp(λ)の極大値と極小値を取る波長λ、λ、λ、…の個数が1個以下となるような事態を回避することができる。 As described above, the number of n 1 , n 2 , n 3 ,... Corresponding to λ 1 , λ 2 , λ 3 ,... Serves as a selection criterion for n Sellmeier (λ) and n Cauchy (λ). , N 1 , n 2 , n 3 ,..., N Cauchy (λ) including three coefficients cannot be determined, so n Sellmeier (λ) is selected, and n 1 , When the number of n 2 , n 3 ,... is 3 or more, n Cauchy (λ) may be selected. If n 1 , n 2 , n 3 ,... Is 1 or less, it is impossible to determine n Sellmeier (λ). Since it is 3000 nm, if a spectroscope having a measurement wavelength range of about 900 to 1600 nm is used, the number of n 1 , n 2 , n 3 ,..., That is, the maximum and minimum values of R Exp (λ) are obtained. It is possible to avoid a situation in which the number of wavelengths λ 1 , λ 2 , λ 3 ,.

S5では、変数dと、S4で求めた変数dに対応するn(λ)を用いて、数9で表される第1段階の理論曲線(以下、「R´Theory(λ)」と記す)を作成する。ここで、数9のP、Qはユーザーが任意に設定できるパラメータであり、あらかじめ種々のサンプルなどから最適値を実験的に求めておくことが出来る。R(λ)は、単層膜に光が垂直入射する前提で理論的に計算される分光反射率で、数10のように表される。R(λ)は基板の裏面反射で、数11で表される。つまり、数9は所謂単層膜モデルの分光反射率R(λ)と、裏面反射R(λ)の線形結合である。なお、数10のr1F、rFSは、膜面におけるフレネル反射係数、膜と基板の境界面におけるフレネル反射係数であり、それぞれ数12、数13で表され、数11のR(λ)は、r1Fを二乗したものである。

Figure 2006220525

Figure 2006220525

Figure 2006220525

Figure 2006220525

Figure 2006220525
In S5, using the variable d and n (λ) corresponding to the variable d obtained in S4, a first-stage theoretical curve expressed by Equation 9 (hereinafter referred to as “R ′ Theory (λ)”). Create Here, P and Q in Equation 9 are parameters that can be arbitrarily set by the user, and the optimum values can be experimentally obtained in advance from various samples. R 1 (λ) is a spectral reflectance calculated theoretically on the premise that light is perpendicularly incident on the single-layer film, and is expressed as in Expression 10. R 2 (λ) is the back surface reflection of the substrate and is expressed by Equation 11. That is, Equation 9 is a linear combination of the spectral reflectance R 1 (λ) of the so-called single-layer film model and the back surface reflection R 2 (λ). Note that r 1F and r FS in Equation 10 are the Fresnel reflection coefficient at the film surface and the Fresnel reflection coefficient at the interface between the film and the substrate, and are expressed by Equations 12 and 13, respectively, and R 0 (λ) in Equation 11 Is the square of r 1F .
Figure 2006220525

Figure 2006220525

Figure 2006220525

Figure 2006220525

Figure 2006220525

S6では、RExp(λ)とR´Theory(λ)の極小値を揃えた第2段階の理論曲線(以下、「RTheory(λ)」と記す)を作成する。以下、RTheory(λ)の作成方法について説明する。 In S6, a second-stage theoretical curve (hereinafter referred to as “R Theory (λ)”) in which the minimum values of R Exp (λ) and R ′ Theory (λ) are aligned is created. Hereinafter, a method of creating R Theory (λ) will be described.

Exp(λ)が極小となるときの波長をλValley1、λValley2、λValley3、…、R´Theory(λ)が極小となるときの波長をλ´Valley1、λ´Valley2、λ´Valley3、…とすると、RExp(λ)の極小値はRExp(λValley1)、RExp(λValley2)、RExp(λValley3)、…、R´Thory(λ)の極小値はR´Theory(λ´Valley1)、R´Theory(λ´Valley2)、R´Theory(λ´Valley3)、…と表されるので、RExp(λ)の極小値の平均値(以下、「<RExp(λValley)>」と記す)と、R´Theory(λ)の極小値の平均値(以下、「<R´Theory(λ´Valley)>」と記す)は、RExp(λ)の極小値の数をI、R´Theory(λ)の極小値の数をJとして、数14、数15で求められる。

Figure 2006220525

Figure 2006220525
The wavelength at which the R Exp (lambda) is minimum λ Valley1, λ Valley2, λ Valley3 , ..., R'Theory (λ) is Ramuda' a wavelength at which the minimum Valley1, λ'Valley2, λ'Valley3, When ... to the minimum value of R Exp (lambda) is R Exp (λ Valley1), R Exp (λ Valley2), R Exp (λ Valley3), ..., R' minimum value of Thory (λ) is R'Theory ( λValley 1 ), R ′ Theory ( λValley 2 ), R ′ Theory (λ ′ Valley 3 ),..., and therefore, the average value of the minimum values of R Exp (λ) (hereinafter, “<R ExpValley)> and "hereinafter), the average value of the minimum value of the R'Theory (λ) (hereinafter referred to as"<R'Theory(λ' alley)> referred to as ") is the number of the minimum value of R Exp (lambda) I, the number of local minima of R'Theory (lambda) as J, number 14, obtained by the number 15.
Figure 2006220525

Figure 2006220525

よって、RExp(λ)とR´Theory(λ)の極小値を揃えるには、R´Theory(λ)を、<RExp(λValley)>と<R´Theory(λ´Valley)>の差分で表されるオフセット量の分だけオフセットしてやればよい。つまり、RTheory(λ)は数16で表される。

Figure 2006220525
Therefore, in order to align the minimum values of R Exp (λ) and R ′ Theory (λ), R ′ Theory (λ) is set to <R ExpValley )> and <R ′ Theory (λ ′ Valley )>. What is necessary is just to offset by the offset amount represented by the difference. That is, R Theory (λ) is expressed by Equation 16.
Figure 2006220525

S7では、RExp(λ)とRTheory(λ)の平均二乗誤差を計算する。 In S7, the mean square error of R Exp (λ) and R Theory (λ) is calculated.

以下、S8で変数dの値をδdずつ増加させ、各dについてS4〜S7の処理を行う。なお、各dにおける平均二乗誤差は、dの値に対応づけて順次メモリ内に蓄積される。このようにして、dに〈d〉+αを代入したときの処理までを完了すると、S9が「Yes」となってS10に移行し、前記平均二乗誤差が最小となる場合の膜厚(以下、「D」と記す)を抽出する。   Thereafter, in S8, the value of the variable d is increased by δd, and the processing of S4 to S7 is performed for each d. Note that the mean square error at each d is sequentially stored in the memory in association with the value of d. In this way, when the process up to substituting <d> + α for d is completed, S9 becomes “Yes” and the process proceeds to S10, and the film thickness when the mean square error is minimized (hereinafter referred to as “thickness”). (Denoted “D”).

S11では、d=Dの場合にS4の数5、数6により求まる一連の屈折率n、n、n、…の妥当性を判断する。判断基準はn、n、n、…がガラス基板の屈折率nS(≒1.5)よりも若干大きい値であるか否かとすればよい。こうして、n、n、n、…が正常な値であると判断された場合はS13に移行して前記Dを測定結果としてモニタ上に表示する一方、n、n、n、…が異常な値であると判断された場合はS12に移行してエラーを表示し、ユーザーに再測定を促す。 In S11, when d = D, the validity of a series of refractive indexes n 1 , n 2 , n 3 ,. The determination criterion may be whether n 1 , n 2 , n 3 ,... Is a value slightly larger than the refractive index n S (≈1.5) of the glass substrate. Thus, when it is determined that n 1 , n 2 , n 3 ,... Are normal values, the process proceeds to S 13 to display D as a measurement result on the monitor, while n 1 , n 2 , n 3. If it is determined that the values are abnormal values, the process proceeds to S12 to display an error and prompt the user to remeasure.

図3の手順によれば、膜面の傾斜、基板の厚みの影響を考慮した分光反射率モデルを作成し、このモデルと実測分光反射率との比較演算をすることで精度良く膜厚値を求めることができる。しかも、膜の屈折率が既知であることを前提としないで膜厚値を求めることができる。また以上説明した各ステップは、必要なパラメータ値、物性値を適宜入力するコンピュータプログラム化することで、自動的に実行してゆくことが可能である。   According to the procedure shown in FIG. 3, a spectral reflectance model that takes into account the influence of the inclination of the film surface and the thickness of the substrate is created, and the film thickness value is accurately obtained by performing a comparison operation between this model and the measured spectral reflectance. Can be sought. Moreover, the film thickness value can be obtained without assuming that the refractive index of the film is known. Each step described above can be automatically executed by creating a computer program for appropriately inputting necessary parameter values and physical property values.

本発明は上記説明したように、被測定物が、研磨工程後の、膜面が平坦化されたカラーフィルターである場合、プリベークされただけの膜面が傾斜しているカラーフィルターである場合、あるいは、ガラス基板の厚み等に応じて数9のP、Qを予め求めておいた適切な値に設定することで例えば図2(b)に示したような段階、すなわち、製品の製造途中段階における非破壊測定が可能となる。つまり、製品の欠陥要因を、非接触・非破壊で、しかも早期に発見することが可能となるので、ラインロスの削減や歩留まりの向上を期待できるようになる。   In the present invention, as described above, when the object to be measured is a color filter having a flattened film surface after the polishing step, or a color filter in which the film surface only prebaked is inclined, Alternatively, by setting P and Q of Equation 9 to appropriate values obtained in advance according to the thickness of the glass substrate, for example, a stage as shown in FIG. Non-destructive measurement at is possible. In other words, it is possible to detect a defect factor of a product in a non-contact / non-destructive manner and at an early stage, so that a reduction in line loss and an improvement in yield can be expected.

次に、本発明の膜厚測定方法の実施例について説明する。   Next, examples of the film thickness measuring method of the present invention will be described.

図4は、通常の顕微分光方式により取得した、カラーフィルターの青色セル内におけるRExp(λ)を示したものである。図4からすべての極大値と極小値を取る波長λ、λ、λ、…を求め、各干渉次数セットに対して数3、数4により膜厚d、d、d、…、d、d、d、…の最大値と最小値の差、d、d、d、…の平均値〈d〉を求めた結果を表1に示す。

Figure 2006220525
FIG. 4 shows R Exp (λ) in the blue cell of the color filter obtained by the normal microspectroscopic method. Wavelengths λ 1 , λ 2 , λ 3 ,... Taking all local maxima and minima are obtained from FIG. 4, and film thicknesses d 1 , d 2 , d 3 , ... shows d 1, d 2, d 3, the difference between ... maximum value and the minimum value of the result of obtaining d 1, d 2, d 3, ... average of <d> Table 1.
Figure 2006220525

表1から、d、d、d、…の最大値と最小値の差が最小となるときの干渉次数セット(表中のケース2)と、〈d〉=1734.64が決定された。 From Table 1, the interference order set (case 2 in the table) when the difference between the maximum value and the minimum value of d 1 , d 2 , d 3 ,... Is minimum and <d> = 1734.64 are determined. It was.

S3で、dの初期値として、S2で求めた〈d〉に基づく数〈d〉−αを設定する。ここで、αはステップS3以降でdを変数として取り扱う際に、dを振る範囲を決定するものであり、ユーザーが任意に設定できる。つまり、S3以降ではdを(〈d〉−α)≦d≦(〈d〉+α)の範囲で振ることになる。発明者等の種々の実験に基づく経験から、αを200nm程度に設定しておけば、S10で平均二乗誤差が極小となるd=Dを抽出できることを確認している。   In S3, a number <d> -α based on <d> obtained in S2 is set as an initial value of d. Here, α determines the range in which d is shaken when d is treated as a variable in step S3 and subsequent steps, and can be arbitrarily set by the user. That is, after S3, d is shaken in the range of (<d> −α) ≦ d ≦ (<d> + α). From experience based on various experiments by the inventors, it has been confirmed that if α is set to about 200 nm, d = D at which the mean square error is minimized can be extracted in S10.

S4では、S2で決定したmを固定し、変数dに対応するnを求め直す。数5、数6により極大値と極小値を取る波長λ、λ、λ、…に対応した一連の屈折率n、n、n、…を算出し、測定波長全域における屈折率を求めるために、前記n、n、n、…を利用して、屈折率の波長分散式n(λ)を決定する。図6は、表1中のケース2の干渉次数セットを使用し、d=〈d〉−α≒1535nmとした場合のn、n、n、…、nSellmeier(λ)、nCauchy(λ)を示したものである(α=200nmとした)。このとき、n、n、n、…の総数は6個で、nSellmeier(λ)よりもnCauchy(λ)の方がn、n、n、…に良い近似を示しているので、n(λ)のモデルとしてnCauchy(λ)を選択して次ステップに移行する。 In S4, m determined in S2 is fixed, and n corresponding to the variable d is obtained again. A series of refractive indexes n 1 , n 2 , n 3 ,... Corresponding to the wavelengths λ 1 , λ 2 , λ 3 ,. In order to obtain the rate, the wavelength dispersion formula n (λ) of the refractive index is determined using the n 1 , n 2 , n 3 ,. FIG. 6 shows n 1 , n 2 , n 3 ,..., N Sellmeier (λ), n Cauchy when using the interference order set of Case 2 in Table 1 and d = <d> −α≈1535 nm. (Λ) is shown (α = 200 nm). At this time, the total number of n 1 , n 2 , n 3 ,... Is 6, and n Cauchy (λ) shows a better approximation to n 1 , n 2 , n 3 ,. Therefore, n Cauchy (λ) is selected as a model of n (λ) and the process proceeds to the next step.

変数dと、変数dにより求まるn(λ)が決定されたため、S5でR´Theory(λ)を、S6でRTheory(λ)を作成することが可能となる。なお、数9のP、Qはユーザーが任意に設定できるパラメータであるが、被測定物が、研磨工程後の、膜面が平坦化されたカラーフィルターである場合、プリベークされただけの膜面が傾斜しているカラーフィルターである場合、あるいは、ガラス基板の厚み等に応じて、予め求めた適切な値を設定することが重要である。 Since the variable d and n (λ) obtained from the variable d are determined, it becomes possible to create R ′ Theory (λ) in S5 and R Theory (λ) in S6. Note that P and Q in Equation 9 are parameters that can be arbitrarily set by the user. However, when the object to be measured is a color filter having a flattened film surface after the polishing process, the film surface is only pre-baked. Is an inclined color filter, or it is important to set an appropriate value determined in advance according to the thickness of the glass substrate or the like.

続くS7で、RExp(λ)とRTheory(λ)の平均二乗誤差を計算することが可能となる。図7は、RExp(λ)と、数9のP、Qを、膜面が平坦な場合の最適値としてP=0.95、Q=0.70とし、d=〈d〉−α≒1535nm、図6のnCauchy(λ)を用いて求まるRTheory(λ)を示したものである。 In subsequent S7, it becomes possible to calculate the mean square error of R Exp (λ) and R Theory (λ). FIG. 7 shows that R Exp (λ) and P and Q in Equation 9 are P = 0.95 and Q = 0.70 as optimum values when the film surface is flat, and d = <d> −α≈. FIG. 7 shows R Theory (λ) obtained using 1 Cauchy (λ) in FIG. 6 at 1535 nm.

以下、S8で変数dの値をδdずつ増加させ、各dについてS4〜S7の処理を行い、dに〈d〉+αを代入したときの処理までを完了すると、S9が「Yes」となってS10に移行し、前記平均二乗誤差が最小となる場合の膜厚Dを抽出する。図8は、dを(〈d〉−α)≦d≦(〈d〉+α)の範囲で振ったときの、dと、RExp(λ)とRTheory(λ)の平均二乗誤差の関係を示したものである。なお、本実施例においてはδd=5nmとしたが、δdの値をさらに小さく、あるいは、大きく設定することができるのはもちろんである。 Thereafter, in S8, the value of the variable d is increased by δd, the processing of S4 to S7 is performed for each d, and when the processing up to substituting <d> + α is completed, S9 becomes “Yes”. The process proceeds to S10, and the film thickness D when the mean square error is minimized is extracted. FIG. 8 shows the relationship between d and the mean square error of R Exp (λ) and R Theory (λ) when d is swung in the range of (<d> −α) ≦ d ≦ (<d> + α). Is shown. In this embodiment, δd = 5 nm, but it is needless to say that the value of δd can be set smaller or larger.

図8より、RExp(λ)とRTheory(λ)の平均二乗誤差が最小となるときの膜厚Dが1790nmと求められた。なお、図9はd=Dにおけるn、n、n、…、nSellmeier(λ)、nCauchy(λ)を示したものであるが、n、n、n、…はガラス基板の屈折率nS(≒1.5)よりも若干大きい値であり、正常な値であると判断がS11においてなされたために、前記Dが測定結果としてモニタ上に表示される。また、図10は、RExp(λ)と、数9のP、Qを、P=0.95、Q=0.70とし、d=D、図9のnCauchy(λ)を用いて求まるRTheory(λ)を示したものである。 From FIG. 8, the film thickness D when the mean square error between R Exp (λ) and R Theory (λ) is minimized was determined to be 1790 nm. Note that FIG. 9 is n 1 in d = D, n 2, n 3, ..., n Sellmeier (λ), but shows the n Cauchy (λ), n 1 , n 2, n 3, ... is Since the value is slightly larger than the refractive index n S (≈1.5) of the glass substrate and is determined to be a normal value in S11, D is displayed on the monitor as a measurement result. Further, FIG. 10 is obtained by using R Exp (λ) and P and Q of Equation 9 with P = 0.95 and Q = 0.70, d = D, and n Cauchy (λ) of FIG. R Theory (λ) is shown.

同様の手続きで、カラーフィルターの赤色セル内、緑色セル内を測定したところ、赤色セル内ではD=1815nm、緑色セル内ではD=1835nmを得た。   In the same procedure, the red cell and the green cell of the color filter were measured, and D = 1815 nm was obtained in the red cell and D = 1835 nm was obtained in the green cell.

上記測定結果の妥当性を確認するために、前記赤色セル内、緑色セル内、青色セル内の膜厚を触針式の段差計で測定したところ、表2のようになり、何れも本発明の膜厚測定方法による測定結果と近い値であり、正確な膜厚値が得られたことが確認された。

Figure 2006220525
In order to confirm the validity of the above measurement results, the film thicknesses in the red cell, green cell, and blue cell were measured with a stylus type step meter, as shown in Table 2, all of which are the present invention. Thus, it was confirmed that an accurate film thickness value was obtained.
Figure 2006220525

図2(b)に示した緑色セルに対しても数9のP、Qを、P=0.95、Q=0.70として同様の手続きを行ったところ、D=2750nmが得られたが、触針式の段差計による測定結果は2710nmであり、研磨工程後の、膜面が平坦化された場合(図2(a))よりは差が大きい結果となった。   When the same procedure was performed for the green cell shown in FIG. 2B with P and Q of Equation 9 set to P = 0.95 and Q = 0.70, D = 2750 nm was obtained. The measurement result by a stylus type step gauge was 2710 nm, and the difference was larger than that when the film surface was flattened after the polishing step (FIG. 2A).

ここで、図2(b)の、緑色セルにおけるプロファイル形状を見てみると、図1(b)に示すように、膜面が傾斜しているために、受光素子に到達する反射光量が少なくなっていることが予想された。なお、緑色セルの膜面が傾斜しているのは、カラーレジストが図2(b)に示した赤+緑セルから緑セルに流れ込むのが原因である。したがって、カラーレジスト塗布装置の塗布条件は、隣接セルから流れ込む量をも考慮して設定されている。このような理由で、カラーレジストを塗布した直後に、その膜厚を非接触・非破壊で測定する要求が高まっている。   Here, looking at the profile shape of the green cell in FIG. 2B, the amount of reflected light reaching the light receiving element is small because the film surface is inclined as shown in FIG. 1B. It was expected to become. The reason why the film surface of the green cell is inclined is that the color resist flows into the green cell from the red + green cell shown in FIG. 2B. Accordingly, the coating conditions of the color resist coating apparatus are set in consideration of the amount flowing from the adjacent cell. For these reasons, there is an increasing demand for measuring the film thickness in a non-contact and non-destructive manner immediately after the color resist is applied.

そこで、数9のP、Qを、膜面が傾斜している場合の最適値としてP=0.80、Q=0.60としたところ、D=2710nmとなり、触針式の段差計による測定結果に一致する値が得られた。
Therefore, when P and Q in Equation 9 are set to P = 0.80 and Q = 0.60 as optimum values when the film surface is inclined, D = 2710 nm, which is measured by a stylus type step meter. A value consistent with the results was obtained.

薄膜の状態、基板の厚みにより反射光の反射の様子の違いを示す図。The figure which shows the difference in the mode of reflection of reflected light by the state of a thin film, and the thickness of a board | substrate. 触針式の段差計による測定結果を示す図。The figure which shows the measurement result by a stylus type level difference meter. 本発明の膜厚測定方法の手順を示すフローチャート。The flowchart which shows the procedure of the film thickness measuring method of this invention. カラーフィルターの青色セル内におけるRExp(λ)を示す図。The figure which shows RExp ((lambda)) in the blue cell of a color filter. 種々のカラーレジストの分光透過率を示す図。The figure which shows the spectral transmittance of various color resists. 屈折率の波長分散式のモデル例を表示した図。The figure which displayed the example of a wavelength dispersion type model of a refractive index. 第2段階の理論曲線を示す図。The figure which shows the theoretical curve of a 2nd step. Exp(λ)とRTheory(λ)の平均二乗誤差の関係を示す図。R Exp (lambda) and shows the relationship between the mean square error of R Theory (λ). d=Dにおける波長分散式の図。The figure of a wavelength dispersion type in d = D. d=Dとして求まるRTheory(λ)を示す図。The figure which shows RTheory ((lambda)) calculated | required as d = D.

Claims (7)

基板上に薄膜が形成された試料表面に光を照射し、試料からの反射光を分光して分光反射率データを取得し、その実測分光反射率を、理論計算により求まる理論曲線と比較することで前記薄膜の膜厚を測定する膜厚測定方法において、
前記基板の屈折率と、前記薄膜の屈折率の推定値を用いて、前記実測分光反射率が極大・極小となる波長から干渉次数を決定するステップと、
決定された前記干渉次数を用いて、前記極大・極小波長に対応する膜厚値を求めるステップと、
前記膜厚値に基づく値から前記薄膜のとり得る膜厚範囲を特定するステップを含むことを特徴とする膜厚測定方法。
Irradiate the surface of the sample with a thin film on the substrate, divide the reflected light from the sample to obtain spectral reflectance data, and compare the measured spectral reflectance with the theoretical curve obtained by theoretical calculation. In the film thickness measuring method for measuring the film thickness of the thin film,
Using the refractive index of the substrate and the estimated value of the refractive index of the thin film, determining the interference order from the wavelength at which the measured spectral reflectance is maximized and minimized;
Using the determined interference order, obtaining a film thickness value corresponding to the maximum and minimum wavelengths;
A method of measuring a film thickness comprising the step of specifying a film thickness range that the thin film can take from a value based on the film thickness value.
基板上に薄膜が形成された試料表面に光を照射し、試料からの反射光を分光して分光反射率データを取得し、その実測分光反射率を、理論計算により求まる理論曲線と比較することで前記薄膜の膜厚を測定する膜厚測定方法において、
前記基板の屈折率と、前記薄膜の屈折率の推定値を用いて、前記実測分光反射率が極大・極小となる波長から干渉次数を決定するステップと、
決定された前記干渉次数を用いて、前記極大・極小波長に対応する膜厚値を求めるステップと、
前記膜厚値に基づく値から前記薄膜のとり得る膜厚範囲を特定するステップを実行した後、
前記干渉次数を用い、膜厚値を変化させて各膜厚値に対する前記実測分光反射率の極大・極小波長から前記薄膜の屈折率を求め直すステップと、
各膜厚値に対して定まる前記極大・極小波長に対応する屈折率から、前記薄膜の屈折率の波長分散式モデルを作成するステップと、
各膜厚値と各膜厚値に対して定まる前記波長分散式モデルに基づいて反射率の第1段階の理論曲線を作成するステップと、を含むことを特徴とする請求項1に記載の膜厚測定方法。
Light is applied to the surface of the sample on which a thin film is formed on the substrate, the reflected light from the sample is dispersed to obtain spectral reflectance data, and the measured spectral reflectance is compared with a theoretical curve obtained by theoretical calculation. In the film thickness measuring method for measuring the film thickness of the thin film,
Using the refractive index of the substrate and the estimated value of the refractive index of the thin film, determining the interference order from the wavelength at which the measured spectral reflectance is maximized and minimized;
Using the determined interference order, obtaining a film thickness value corresponding to the maximum and minimum wavelengths;
After performing the step of specifying the film thickness range that the thin film can take from the value based on the film thickness value,
Re-determining the refractive index of the thin film from the maximum and minimum wavelengths of the measured spectral reflectance for each film thickness value by using the interference order and changing the film thickness value;
Creating a chromatic dispersion model of the refractive index of the thin film from the refractive index corresponding to the maximum and minimum wavelengths determined for each film thickness value;
The film according to claim 1, further comprising: creating a first-stage theoretical curve of reflectivity based on each film thickness value and the wavelength dispersion formula model determined for each film thickness value. Thickness measurement method.
前記波長分散式モデルを作成するステップは極大・極小波長に対応する屈折率の個数に応じて選択されるステップを含むことを特徴とする請求項2に記載の膜厚測定方法。   3. The film thickness measuring method according to claim 2, wherein the step of creating the wavelength dispersion model includes a step selected according to the number of refractive indexes corresponding to maximum and minimum wavelengths. 前記第1段階の理論曲線が、前記薄膜に由来する反射と、前記基板の裏面反射の線形結合であることを特徴とする請求項2または3に記載の膜厚測定方法。   4. The film thickness measuring method according to claim 2, wherein the first-stage theoretical curve is a linear combination of a reflection derived from the thin film and a back surface reflection of the substrate. 前記第1段階の理論曲線の極小波長における反射率に基づく値と、前記実測分光反射率の極小波長における反射率に基づく値を比較し、その比較演算によりオフセット量を算出するステップと、前記第1段階の理論曲線を前記オフセット量の分だけオフセットした第2段階の理論曲線を作成するステップとを含み、前記第2段階の理論曲線と、前記実測分光反射率データの平均二乗誤差が最小となるときの膜厚値を、求める膜厚の測定結果とすることを特徴とする請求項2から4の何れかに記載の膜厚測定方法。   Comparing the value based on the reflectance at the minimum wavelength of the theoretical curve of the first stage with the value based on the reflectance at the minimum wavelength of the measured spectral reflectance, and calculating the offset amount by the comparison operation; Creating a second stage theoretical curve obtained by offsetting the first stage theoretical curve by the offset amount, and the mean square error between the second stage theoretical curve and the measured spectral reflectance data is minimized. The film thickness measurement method according to any one of claims 2 to 4, wherein the film thickness value at the time is a measurement result of the film thickness to be obtained. 前記膜厚の測定結果を求める際に使用する、前記実測分光反射率が極大・極小となる波長に対応する屈折率の妥当性を判断するステップを含み、
前記屈折率が妥当と判断されたら前記膜厚の測定結果の膜厚値を測定結果として表示し、前記屈折率が異常と判断されたらエラー表示することを特徴とする請求項5に記載の膜厚測定方法。
Determining the appropriateness of the refractive index corresponding to the wavelength at which the measured spectral reflectance is maximized / minimum used when obtaining the measurement result of the film thickness;
6. The film according to claim 5, wherein when the refractive index is determined to be appropriate, a film thickness value of the film thickness measurement result is displayed as a measurement result, and when the refractive index is determined to be abnormal, an error is displayed. Thickness measurement method.
コンピュータに請求項1から6の何れかに記載の膜厚測定方法を行わせることを特徴とする膜厚測定プログラム。   A film thickness measurement program for causing a computer to perform the film thickness measurement method according to claim 1.
JP2005033978A 2005-02-10 2005-02-10 Film thickness measurement method Expired - Fee Related JP4622564B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033978A JP4622564B2 (en) 2005-02-10 2005-02-10 Film thickness measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033978A JP4622564B2 (en) 2005-02-10 2005-02-10 Film thickness measurement method

Publications (2)

Publication Number Publication Date
JP2006220525A true JP2006220525A (en) 2006-08-24
JP4622564B2 JP4622564B2 (en) 2011-02-02

Family

ID=36982949

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033978A Expired - Fee Related JP4622564B2 (en) 2005-02-10 2005-02-10 Film thickness measurement method

Country Status (1)

Country Link
JP (1) JP4622564B2 (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250877A (en) * 2008-04-09 2009-10-29 Nitto Denko Corp Film thickness measurement method, film thickness measurement program, film thickness measurement apparatus
JP2011038968A (en) * 2009-08-17 2011-02-24 Yokogawa Electric Corp Film thickness measuring device
WO2013001955A1 (en) * 2011-06-27 2013-01-03 コニカミノルタアドバンストレイヤー株式会社 Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, and so on
JP2013044542A (en) * 2011-08-22 2013-03-04 Sumitomo Chemical Co Ltd Inspection method for gas barrier laminated film, manufacturing method tor the same, inspection method for electronic device using the same, and manufacturing method therefor
WO2014075351A1 (en) * 2012-11-19 2014-05-22 深圳市华星光电技术有限公司 Endpoint detection method and apparatus of optical alignment on liquid crystal material
WO2015105169A1 (en) * 2014-01-10 2015-07-16 Ntn株式会社 Height detection device, coating device, and height detection method
WO2016171397A1 (en) * 2015-04-23 2016-10-27 에스엔유 프리시젼 주식회사 Method for measuring thin film thickness
JP2018004442A (en) * 2016-07-01 2018-01-11 株式会社溝尻光学工業所 Shape measurement method and shape measurement device of transparent plate
CN108317962A (en) * 2018-01-29 2018-07-24 哈尔滨工程大学 Eliminate the measurement method of total the light path self calibration film thickness and refractive index of transmitted light
CN110044278A (en) * 2019-04-09 2019-07-23 华南理工大学 A kind of contactless fluid film measurer for thickness and method
CN114112930A (en) * 2020-08-26 2022-03-01 立邦涂料(中国)有限公司 Testing device and testing method for contrast ratio of paint wet film
JP7245801B2 (en) 2020-02-06 2023-03-24 株式会社日立ハイテク Film thickness inspection device
CN115950859A (en) * 2023-03-14 2023-04-11 北京特思迪半导体设备有限公司 Method and system for judging limit of resolution of reflection spectrum according to film thickness detection resolution

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122824A (en) * 1996-10-24 1998-05-15 Dainippon Screen Mfg Co Ltd Film thickness measuring method
JP2002277215A (en) * 2001-03-14 2002-09-25 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2003042722A (en) * 2001-08-01 2003-02-13 Toppan Printing Co Ltd Film-thickness measuring method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10122824A (en) * 1996-10-24 1998-05-15 Dainippon Screen Mfg Co Ltd Film thickness measuring method
JP2002277215A (en) * 2001-03-14 2002-09-25 Omron Corp Film thickness measuring method and film thickness sensor using the same
JP2003042722A (en) * 2001-08-01 2003-02-13 Toppan Printing Co Ltd Film-thickness measuring method

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009250877A (en) * 2008-04-09 2009-10-29 Nitto Denko Corp Film thickness measurement method, film thickness measurement program, film thickness measurement apparatus
JP2011038968A (en) * 2009-08-17 2011-02-24 Yokogawa Electric Corp Film thickness measuring device
WO2013001955A1 (en) * 2011-06-27 2013-01-03 コニカミノルタアドバンストレイヤー株式会社 Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, and so on
JPWO2013001955A1 (en) * 2011-06-27 2015-02-23 コニカミノルタ株式会社 Optical film thickness measurement method, optical film thickness measurement system, optical film thickness measurement program, etc.
JP2013044542A (en) * 2011-08-22 2013-03-04 Sumitomo Chemical Co Ltd Inspection method for gas barrier laminated film, manufacturing method tor the same, inspection method for electronic device using the same, and manufacturing method therefor
WO2014075351A1 (en) * 2012-11-19 2014-05-22 深圳市华星光电技术有限公司 Endpoint detection method and apparatus of optical alignment on liquid crystal material
CN105899909A (en) * 2014-01-10 2016-08-24 Ntn株式会社 Height detection device, coating device, and height detection method
JP2015148604A (en) * 2014-01-10 2015-08-20 Ntn株式会社 Height detection device, coating device, and height detection method
WO2015105169A1 (en) * 2014-01-10 2015-07-16 Ntn株式会社 Height detection device, coating device, and height detection method
CN105899909B (en) * 2014-01-10 2019-10-18 Ntn株式会社 Height detecting device, apparatus for coating and height detection method
WO2016171397A1 (en) * 2015-04-23 2016-10-27 에스엔유 프리시젼 주식회사 Method for measuring thin film thickness
JP2018004442A (en) * 2016-07-01 2018-01-11 株式会社溝尻光学工業所 Shape measurement method and shape measurement device of transparent plate
CN108317962A (en) * 2018-01-29 2018-07-24 哈尔滨工程大学 Eliminate the measurement method of total the light path self calibration film thickness and refractive index of transmitted light
CN110044278A (en) * 2019-04-09 2019-07-23 华南理工大学 A kind of contactless fluid film measurer for thickness and method
JP7245801B2 (en) 2020-02-06 2023-03-24 株式会社日立ハイテク Film thickness inspection device
CN114112930A (en) * 2020-08-26 2022-03-01 立邦涂料(中国)有限公司 Testing device and testing method for contrast ratio of paint wet film
CN114112930B (en) * 2020-08-26 2023-06-27 立邦涂料(中国)有限公司 Paint wet film contrast ratio testing device and testing method
CN115950859A (en) * 2023-03-14 2023-04-11 北京特思迪半导体设备有限公司 Method and system for judging limit of resolution of reflection spectrum according to film thickness detection resolution

Also Published As

Publication number Publication date
JP4622564B2 (en) 2011-02-02

Similar Documents

Publication Publication Date Title
JP4622564B2 (en) Film thickness measurement method
JP4152966B2 (en) Method for determining the physical properties of an optical layer or layer structure
JP4242767B2 (en) Thin film characteristic measuring apparatus using two-dimensional detector and measuring method thereof
US8947673B2 (en) Estimating thickness based on number of peaks between two peaks in scanning white light interferometry
JP6290637B2 (en) Film thickness measuring method and film thickness measuring apparatus
JP4216209B2 (en) Film thickness measuring method and apparatus
JP2014512704A5 (en) Generation of spectral libraries for polishing based on models
JP2021003789A5 (en)
JP2022513882A (en) How to operate coating equipment for manufacturing layered systems
CN112595673A (en) Method for measuring optical constant of single crystal diamond substrate
JP4136740B2 (en) Analysis method of thin film trilayer structure using spectroscopic ellipsometer
JP4844069B2 (en) In-pixel thickness measuring apparatus and measuring method
JPH11352019A (en) Method and device for measuring surface reflection factor of light-transmitting type optical function film for preventing reflection and method for manufacturing light-transmitting type optical function film for preventing reflection
JPH0643957B2 (en) Refractive index dispersion measuring method and film thickness measuring method
JP2006242798A (en) Film thickness and calculation method of optical constant
JP2003042722A (en) Film-thickness measuring method
EP3063497A1 (en) Integrated computational element fabrication methods and systems
JP2009210487A (en) Spectral ellipsometer
JP2014016194A (en) Optical characteristics measuring system and optical characteristics measuring method
JP2022052246A (en) Film thickness estimation method and film thickness determination device
JP5184842B2 (en) Colored film thickness measuring method and apparatus
JPH07318321A (en) Method and apparatus for evaluation of film thickness of thin film
TWI753477B (en) System and method for monitoring optical thin film deposition
JP4622219B2 (en) Color resist film thickness measuring device
JP3926207B2 (en) Etching amount measuring method and measuring apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100624

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100826

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101005

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101018

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131112

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees