JP2006220391A - Controller for cooling system - Google Patents

Controller for cooling system Download PDF

Info

Publication number
JP2006220391A
JP2006220391A JP2005035848A JP2005035848A JP2006220391A JP 2006220391 A JP2006220391 A JP 2006220391A JP 2005035848 A JP2005035848 A JP 2005035848A JP 2005035848 A JP2005035848 A JP 2005035848A JP 2006220391 A JP2006220391 A JP 2006220391A
Authority
JP
Japan
Prior art keywords
temperature
operation amount
internal temperature
calculated
superheat degree
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005035848A
Other languages
Japanese (ja)
Inventor
Seiichi Nakahara
誠一 中原
Nobuyuki Kiuchi
信行 木内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saginomiya Seisakusho Inc
Original Assignee
Saginomiya Seisakusho Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saginomiya Seisakusho Inc filed Critical Saginomiya Seisakusho Inc
Priority to JP2005035848A priority Critical patent/JP2006220391A/en
Publication of JP2006220391A publication Critical patent/JP2006220391A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/21Refrigerant outlet evaporator temperature

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To improve reliability in time of a compressor start, to prevent overfeeding of a liquid refrigerant, and to improve cooling speed, in a controller for a cooling system controlling an opening of an electric expansion valve of a refrigeration cycle. <P>SOLUTION: Temperatures of an outlet and an inlet of an evaporator 4 of the refrigeration cycle are detected by temperature sensors 6, 7. A first superheat degree (calculation by a temperature/temperature expression) is calculated from a difference between the evaporator outlet temperature and the evaporator inlet temperature detected by the temperature sensors 6, 7 to find a first operation amount MT of the valve opening. A second superheat degree (calculation by a temperature/pressure expression) is calculated on the basis of a pressure from a pressure switch 10 and the temperature from the temperature sensor 6 to find a second operation amount MP. A total operation amount M is calculated by use of a prescribed arithmetic expression by the first operation amount MT and the second operation amount MP. The first operation amount MT is made to be effective when an in-chamber temperature is on a low temperature side, and the second operation amount MP is made to be effective when the in-chamber temperature is on a high temperature side. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷凍サイクルにおける冷却システム用制御装置に係り、詳細には、圧縮機が始動した後、庫内温度が庫内設定温度に移行するまでの電動式膨張弁の開度を制御する冷却システム用制御装置に関する。   The present invention relates to a control device for a cooling system in a refrigeration cycle, and more specifically, cooling that controls the opening of an electric expansion valve until the internal temperature shifts to the internal set temperature after the compressor is started. The present invention relates to a system control device.

従来、本発明に関連する先行文献として、例えば特許第3059534号公報(特許文献1)、特開平9−229495号公報(特許文献2)、特公昭60−58384号公報(特許文献3)がある。   Conventionally, for example, Japanese Patent No. 3059534 (Patent Document 1), Japanese Patent Application Laid-Open No. 9-229495 (Patent Document 2), and Japanese Patent Publication No. 60-58384 (Patent Document 3) are related to the present invention. .

特許文献1は、冷凍装置の蒸発器の出口側に温度センサおよび圧力センサを設けて冷媒の過熱度を算出し、可逆式比例型膨張弁の開度を調節して冷媒の流量を制御する制御方法に関する技術である。   Japanese Patent Application Laid-Open No. 2004-151867 provides a temperature sensor and a pressure sensor on the outlet side of the evaporator of the refrigeration apparatus, calculates the degree of superheat of the refrigerant, and controls the flow rate of the refrigerant by adjusting the opening of the reversible proportional expansion valve It is a technique related to the method.

特許文献2は、冷凍システムの蒸発器の出口および入口に装着した温度センサからの信号に基づいて過熱度を演算し、電動式比例型膨張弁の開度を制御する制御方法に関する技術である。   Patent Document 2 is a technique related to a control method for calculating the degree of superheat based on signals from temperature sensors attached to an outlet and an inlet of an evaporator of a refrigeration system and controlling the opening degree of an electric proportional expansion valve.

特許文献3は、その第1頁右欄から第2頁左欄に、蒸発器入口部の温度センサは30秒程度、蒸発器出口部の温度センサは60秒程度の時間遅れを有していることを開示している。
特許第3059534号公報 特開平9−229495号公報 特公昭60−58384号公報
In Patent Document 3, from the right column on the first page to the left column on the second page, the temperature sensor at the evaporator inlet portion has a time delay of about 30 seconds, and the temperature sensor at the evaporator outlet portion has a time delay of about 60 seconds. It is disclosed.
Japanese Patent No. 3059534 JP-A-9-229495 Japanese Patent Publication No. 60-58384

特許文献1の従来技術は、温度/圧力式による過熱度(第2の過熱度)を算出する方法を用いている。この場合、圧力センサによる信号検出は時間遅れがきわめて小さいので、膨張弁の開度を速やかに調節することができる。しかし、庫内温度を−20℃〜−60℃のような低温域に設定する場合、この低温域で用いる圧力センサの精度(確度)は±0.1%という高精度を必要とする。すなわち、広く普及している±1%程度の精度仕様品を用いることが不可能であり、非常に高価な圧力センサを必要とする点、経済性の面で問題がある。   The prior art of Patent Document 1 uses a method of calculating the degree of superheat (second degree of superheat) by a temperature / pressure formula. In this case, since the signal detection by the pressure sensor has a very small time delay, the opening degree of the expansion valve can be adjusted quickly. However, when the internal temperature is set to a low temperature range such as −20 ° C. to −60 ° C., the accuracy (accuracy) of the pressure sensor used in this low temperature range requires a high accuracy of ± 0.1%. That is, it is impossible to use a precision specification product of about ± 1%, which is widely used, and there is a problem in terms of economy in that a very expensive pressure sensor is required.

特許文献2の従来技術は、蒸発器の入口側と出口側に各々温度センサを設けて温度/温度式による過熱度(第1の過熱度)を算出し、弁開度を制御している。しかし、特許文献3に開示されているように、温度センサに時間遅れがあるため、冷凍サイクルの運転中に大きな外乱が発生した場合など、好適な弁開度点に到達するまでに長い時間を要する点で改良の余地を残している。   In the prior art of Patent Document 2, temperature sensors are provided on the inlet side and the outlet side of the evaporator, respectively, the degree of superheat (first degree of superheat) is calculated by the temperature / temperature equation, and the valve opening degree is controlled. However, as disclosed in Patent Document 3, since there is a time delay in the temperature sensor, it takes a long time to reach a suitable valve opening point, such as when a large disturbance occurs during the operation of the refrigeration cycle. It leaves room for improvement.

本発明は、上記の課題を解決し、冷凍サイクルの信頼性を高めるとともに、冷却の応答性を向上させ、冷却工程をより高品位にする冷却システム用制御装置を提供することを課題とする。   It is an object of the present invention to provide a cooling system control device that solves the above-described problems, increases the reliability of the refrigeration cycle, improves the responsiveness of cooling, and makes the cooling process higher quality.

請求項1の冷却システム用制御装置は、冷凍サイクルの蒸発器の冷媒の過熱度を算出し、過熱度に基づいて膨張弁の開度を調節する冷却システム用制御装置において、蒸発器の出口側及び入口側に設けた温度検出手段からの信号に基づいて第1の過熱度を算出し、第1の過熱度に基づいて算出した膨張弁の操作量MTと、蒸発器の出口側に設けた圧力検出手段からの信号と出口側に設けた温度検出手段からの信号とに基づいて第2の過熱度を算出し、第2の過熱度に基づいて算出した膨張弁の操作量MPとから、庫内温度SRに応じた所定処理を実行して合計操作量Mを算出し、膨張弁の開度を調節する制御工程を備えることを特徴とする。   The cooling system control device according to claim 1 calculates the degree of superheat of the refrigerant in the evaporator of the refrigeration cycle, and adjusts the opening degree of the expansion valve based on the degree of superheat. The first superheat degree is calculated based on the signal from the temperature detecting means provided on the inlet side, and the operation amount MT of the expansion valve calculated based on the first superheat degree is provided on the outlet side of the evaporator. Based on the signal from the pressure detection means and the signal from the temperature detection means provided on the outlet side, the second superheat degree is calculated, and from the operation amount MP of the expansion valve calculated based on the second superheat degree, A predetermined process according to the internal temperature SR is executed to calculate the total operation amount M, and a control step of adjusting the opening of the expansion valve is provided.

請求項2の冷却システム用制御装置は、請求項1に記載の冷却システム用制御装置であって、前記制御工程が、前記庫内温度SRが低温側に設定された第2所定庫内温度SRL未満のとき、操作量MTの重みを操作量MPの重み以上として演算する第3所定演算式を用いて前記合計操作量Mを算出することを特徴とする。   The cooling system control device according to claim 2 is the cooling system control device according to claim 1, wherein the control step includes a second predetermined internal temperature SRL in which the internal temperature SR is set to a low temperature side. When it is less than the total amount of operation M, the total operation amount M is calculated using a third predetermined arithmetic expression that calculates the weight of the operation amount MT to be greater than or equal to the weight of the operation amount MP.

請求項3の冷却システム用制御装置は、請求項1に記載の冷却システム用制御装置であって、前記制御工程が、前記庫内温度SRが高温側に設定された第1所定庫内温度SRH未満、かつ低温側に設定された第2所定庫内温度SRL以上のとき、操作量MTの重みと操作量MPの重みとを庫内温度SRに応じて決定して演算する第2所定演算式を用いて前記合計操作量Mを算出することを特徴とする。   The cooling system control device according to claim 3 is the cooling system control device according to claim 1, wherein the control step includes a first predetermined internal temperature SRH in which the internal temperature SR is set to a high temperature side. And a second predetermined calculation formula for determining and calculating the weight of the operation amount MT and the weight of the operation amount MP according to the internal temperature SR when the temperature is equal to or lower than the second predetermined internal temperature SRL set on the low temperature side. The total manipulated variable M is calculated using.

請求項4の冷却システム用制御装置は、請求項1に記載の冷却システム用制御装置であって、前記制御工程が、前記庫内温度SRが高温側に設定された第1所定庫内温度SRH以上のとき、操作量MPの重みを操作量MTの重み以上として演算する第1所定演算式を用いて前記合計操作量Mを算出することを特徴とする。   The cooling system control device according to claim 4 is the cooling system control device according to claim 1, wherein the control step includes a first predetermined internal temperature SRH in which the internal temperature SR is set to a high temperature side. At this time, the total manipulated variable M is calculated using a first predetermined calculation formula that computes the weight of the manipulated variable MP as the weight of the manipulated variable MT.

請求項5の冷却システム用制御装置は、請求項1に記載の冷却システム用制御装置であって、前記制御工程が、前記庫内温度SRが高温側に設定された第1所定庫内温度SRH以上のとき、操作量MPの重みを操作量MTの重み以上として演算する第1所定演算式を用いて前記合計操作量Mを算出し、前記庫内温度SRが前記第1所定庫内温度SRH未満、かつ低温側に設定された第2所定庫内温度SRL以上のとき、操作量MTの重みと操作量MPの重みとを庫内温度SRに応じて決定して演算する第2所定演算式を用いて前記合計操作量Mを算出し、前記庫内温度SRが第2所定庫内温度SRL未満のとき、操作量MTの重みを操作量MPの重み以上として演算する第3所定演算式を用いて前記合計操作量Mを算出することを特徴とする。   The cooling system control device according to claim 5 is the cooling system control device according to claim 1, wherein the control step includes a first predetermined internal temperature SRH in which the internal temperature SR is set to a high temperature side. At this time, the total manipulated variable M is calculated using a first predetermined calculation formula that calculates the weight of the manipulated variable MP as the weight of the manipulated variable MT, and the internal temperature SR is the first predetermined internal temperature SRH. And a second predetermined calculation formula for determining and calculating the weight of the operation amount MT and the weight of the operation amount MP according to the internal temperature SR when the temperature is equal to or lower than the second predetermined internal temperature SRL set on the low temperature side. The total manipulated variable M is calculated by using a third predetermined formula for calculating the weight of the manipulated variable MT as the weight of the manipulated variable MP when the interior temperature SR is lower than the second predetermined interior temperature SRL. The total operation amount M is calculated using

請求項1の冷却システム用制御装置によれば、庫内温度の低温側(例えば、−10℃未満)において精度の高い温度/温度式による第1の過熱度から算出した膨張弁の操作量(第1操作量MT)と、庫内温度の高温側(例えば、−5℃以上)において応答性の優れた温度/圧力式による第2の過熱度から算出した膨張弁の操作量(第2操作量MP)とから、合計操作量を算出して膨張弁の開度調節を行う。したがって、庫内温度が高いとき応答性に優れた制御を可能し、庫内温度が低いとき高精度の制御を可能にする。   According to the control device for a cooling system of claim 1, the operation amount of the expansion valve calculated from the first superheat degree by the temperature / temperature equation with high accuracy on the low temperature side (for example, less than −10 ° C.) of the internal temperature ( The first operation amount MT) and the operation amount of the expansion valve (second operation) calculated from the second degree of superheat by the temperature / pressure equation having excellent responsiveness on the high temperature side (for example, −5 ° C. or more) The total manipulated variable is calculated from the amount MP) to adjust the opening of the expansion valve. Therefore, control with excellent responsiveness is possible when the internal temperature is high, and highly accurate control is possible when the internal temperature is low.

請求項2の冷却システム用制御装置によれば、庫内温度SRが第2所定庫内温度SRL(例えば、−10℃)未満のとき、第3所定演算式を用いて第1操作量MTの割合を大きくして合計操作量Mを算出して膨張弁の開度調節を行う。したがって、圧力検出手段による蒸発圧力相当温度の精度悪化の影響がなく、温度/温度式の第1の過熱度により膨張弁の開度を調節するので、高品位の冷却制御を可能にする。さらに、温度/温度式の割合を若干少なくして、温度/圧力の第2の過熱度を作用させるので、大きな外乱に対しては第2の過熱度による第2操作量MPが作用して応答性がよく、高品位の冷却制御が可能となる。   According to the control device for a cooling system of claim 2, when the internal temperature SR is lower than the second predetermined internal temperature SRL (for example, −10 ° C.), the first operation amount MT is calculated using the third predetermined arithmetic expression. The ratio is increased to calculate the total manipulated variable M and adjust the opening of the expansion valve. Therefore, the accuracy of the temperature corresponding to the evaporating pressure by the pressure detection means is not affected, and the opening degree of the expansion valve is adjusted by the first superheat degree of the temperature / temperature type, thereby enabling high-quality cooling control. Further, since the temperature / temperature equation ratio is slightly reduced and the second superheat degree of temperature / pressure is applied, the second manipulated variable MP due to the second superheat degree acts and responds to a large disturbance. And high-quality cooling control is possible.

請求項3の冷却システム用制御装置によれば、庫内温度SRが第1所定庫内温度SRH(例えば、−5℃)未満〜第2所定庫内温度SRL(例えば、−10℃)以上のとき、第2所定演算式を用いて第2操作量MPと第1操作量MTとの割合を徐々に変化させながら合計操作量Mを算出して膨張弁の開度を調節する。したがって、2つの過熱度の切り換えゾーンを設けて、第2操作量MPと第1操作量MTとの割合を徐々に変化させながら膨張弁の開度を調節するので、すなわち、応答性がまったく異なる制御要素をいきなり切り換えないので、ハンチング等を起こさずに、スムースな制御方式の切り換えが可能となり、高品位の冷却制御が可能となる。   According to the cooling system control apparatus of claim 3, the internal temperature SR is less than the first predetermined internal temperature SRH (for example, -5 ° C) to the second predetermined internal temperature SRL (for example, -10 ° C) or more. At this time, the total manipulated variable M is calculated and the opening degree of the expansion valve is adjusted while gradually changing the ratio of the second manipulated variable MP and the first manipulated variable MT using the second predetermined arithmetic expression. Accordingly, two switching zones for the superheat degree are provided, and the opening degree of the expansion valve is adjusted while gradually changing the ratio between the second manipulated variable MP and the first manipulated variable MT, that is, the responsiveness is completely different. Since the control elements are not switched suddenly, it is possible to smoothly switch between control methods without causing hunting or the like, and high-quality cooling control is possible.

請求項4の冷却システム用制御装置によれば、庫内温度SRが第1所定庫内温度SRH(例えば、−5℃)以上のとき、第1所定演算式を用いて第2操作量MPの割合を大きくして合計操作量Mを算出して膨張弁の開度調節を行う。したがって、温度/圧力式の割合を若干少なくして、温度/温度式を作用させるので、細かな圧力変動による頻繁な膨張弁の開閉動作を抑制し、膨張弁の耐用年数が長くなるとともに、高品位の冷却制御が可能となる。   According to the cooling system control apparatus of the fourth aspect, when the internal temperature SR is equal to or higher than the first predetermined internal temperature SRH (for example, −5 ° C.), the second operation amount MP is calculated using the first predetermined arithmetic expression. The ratio is increased to calculate the total manipulated variable M and adjust the opening of the expansion valve. Therefore, the ratio of the temperature / pressure type is slightly reduced and the temperature / temperature type is operated, so that the frequent opening / closing operation of the expansion valve due to small pressure fluctuations is suppressed, the service life of the expansion valve is lengthened, and the high Quality cooling control is possible.

請求項5の冷却システム用制御装置によれば、庫内温度SRが第1所定庫内温度SRH(例えば、−5℃)以上のとき、第1所定演算式を用いて第2操作量MPの割合を大きくして合計操作量Mを算出して膨張弁の開度を調節し、庫内温度SRが第1所定庫内温度SRH(例えば、−5℃)未満〜第2所定庫内温度SRL(例えば、−10℃)以上のとき、第2所定演算式を用いて第2操作量MPと第1操作量MTとの割合を徐々に変化させながら合計操作量Mを算出して膨張弁の開度を調節し、庫内温度SRが第2所定庫内温度SRL(例えば、−10℃)未満のとき、第3所定演算式を用いて第1操作量MTの割合を大きくして合計操作量Mを算出して膨張弁の開度を調節する。したがって、請求項2、3及び4の作用効果が得られる。   According to the cooling system control apparatus of the fifth aspect, when the internal temperature SR is equal to or higher than the first predetermined internal temperature SRH (for example, −5 ° C.), the second operation amount MP is calculated using the first predetermined arithmetic expression. The ratio is increased to calculate the total manipulated variable M to adjust the opening of the expansion valve, and the internal temperature SR is less than the first predetermined internal temperature SRH (for example, −5 ° C.) to the second predetermined internal temperature SRL. When the temperature is equal to or greater than (for example, −10 ° C.), the total manipulated variable M is calculated by gradually changing the ratio between the second manipulated variable MP and the first manipulated variable MT using the second predetermined arithmetic expression. When the opening degree is adjusted and the internal temperature SR is lower than the second predetermined internal temperature SRL (for example, −10 ° C.), the total operation is performed by increasing the ratio of the first operation amount MT using the third predetermined arithmetic expression. The amount M is calculated to adjust the opening of the expansion valve. Therefore, the effects of claims 2, 3 and 4 can be obtained.

請求項1の冷却システム用制御装置によれば、庫内温度が高いとき応答性に優れた制御を可能し、庫内温度が低いとき高精度の制御を可能にするので、冷凍サイクルの信頼性が高まるとともに、冷却工程がより高品位になる。   According to the control device for a cooling system of claim 1, since control with excellent responsiveness is possible when the internal temperature is high, and highly accurate control is possible when the internal temperature is low, the reliability of the refrigeration cycle As the temperature increases, the cooling process becomes higher quality.

請求項2の冷却システム用制御装置によれば、請求項1の効果に加えて、さらに、大きな外乱に対しては第2の過熱度による第2操作量MPが作用して応答性がよく、高品位の冷却制御が可能となる。   According to the cooling system control device of the second aspect, in addition to the effect of the first aspect, the second manipulated variable MP due to the second superheat degree acts on a large disturbance, and the responsiveness is good. High quality cooling control is possible.

請求項3の冷却システム用制御装置によれば、請求項1の効果に加えて、さらに、ハンチング等を起こさずに、スムースな制御方式の切り換えが可能となり、高品位の冷却制御が可能となる。   According to the control device for the cooling system of claim 3, in addition to the effect of claim 1, it is possible to smoothly switch the control method without causing hunting and the like, and high-quality cooling control is possible. .

請求項4の冷却システム用制御装置によれば、請求項1の効果に加えて、さらに、細かな圧力変動による頻繁な膨張弁の開閉動作を抑制し、膨張弁の耐用年数が長くなるとともに、高品位の冷却制御が可能となる。   According to the cooling system control device of claim 4, in addition to the effect of claim 1, it further suppresses frequent opening and closing operations of the expansion valve due to fine pressure fluctuations, and the service life of the expansion valve becomes longer. High quality cooling control is possible.

請求項5の冷却システム用制御装置によれば、請求項1、2、3及び4の効果が得られる。   According to the cooling system control apparatus of the fifth aspect, the effects of the first, second, third and fourth aspects can be obtained.

次に、本発明の冷却システム用制御装置の実施形態を図面を参照して説明する。図1は実施形態の冷却システム用制御装置を適用した冷凍サイクルにおける急速冷却制御装置の基本構成を示す図である。この急速冷却制御装置は、冷凍サイクルの蒸発器の出口側と入口側とにそれぞれ装着した温度検出手段としての温度センサ6,7、庫内温度センサ8及び圧力検出手段10からの信号をA/D変換するA/D変換部91と、A/D変換部91から出力される温度センサ6,7の温度データ、圧力検出手段10の圧力データに基づいて第1の過熱度と第2の過熱度を演算する過熱度演算手段92a−1と、この演算した第1の過熱度と第2の過熱度から弁開度の合計操作量を演算する弁開度演算手段92a−2と、A/D変換部91から出力される庫内温度センサ8の温度データにより庫内の各温度における弁開度の上限値及び下限値を演算する弁開度規制演算手段92a−3と、弁開度規制演算手段92a−3により演算した弁開度の上限値及び下限値と前記弁開度演算手段92a−2により演算した弁開度とを比較し、その比較結果を弁駆動部5に送出して、電動式膨張弁3を駆動させる比較手段92a−4と、を備えている。なお、圧力検出手段10は、後述の圧力スイッチ、圧力センサに対応しており、これらの要素にも符号「10」を用いる。   Next, an embodiment of a control device for a cooling system of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a basic configuration of a rapid cooling control device in a refrigeration cycle to which the cooling system control device of the embodiment is applied. This rapid cooling control apparatus uses signals from temperature sensors 6 and 7, temperature sensor 8 and pressure detection means 10 as temperature detection means mounted on the outlet side and the inlet side of the evaporator of the refrigeration cycle, respectively. Based on the A / D conversion unit 91 that performs D conversion, the temperature data of the temperature sensors 6 and 7 output from the A / D conversion unit 91, and the pressure data of the pressure detection means 10, the first superheat degree and the second superheat A superheat degree calculating means 92a-1 for calculating the degree, a valve opening degree calculating means 92a-2 for calculating a total manipulated variable of the valve opening degree from the calculated first superheat degree and the second superheat degree, A / A valve opening restriction calculating means 92a-3 for calculating an upper limit value and a lower limit value of the valve opening degree at each temperature in the storage based on the temperature data of the internal temperature sensor 8 output from the D conversion unit 91; Upper limit value of valve opening calculated by calculating means 92a-3 And a lower limit value and the valve opening calculated by the valve opening calculating means 92a-2, and the comparison result is sent to the valve drive unit 5 to drive the electric expansion valve 3. And. The pressure detection means 10 corresponds to a pressure switch and a pressure sensor described later, and the reference numeral “10” is also used for these elements.

弁開度演算手段92a−2は、後述のように、第1の過熱度に対応する第1操作量MTと第2の過熱度に対応する第2操作量MPを演算し、庫内温度センサ8の温度データに応じた第1〜第3所定演算式(及び設定係数)に基づいて合計操作量Mを演算する。また、弁開度規制演算手段92a−3は、第3優先制御工程として、庫内温度の低下によって弁開度の上限開度と下限開度を下げるように弁開度を規制するように演算し、第2優先制御工程として、過熱度の範囲が例えば5℃以上かつ25℃以下となるように弁開度を演算し、第1優先制御工程として、MOPび低圧カットを規制するように弁開度を演算する。   As will be described later, the valve opening calculation means 92a-2 calculates a first operation amount MT corresponding to the first superheat degree and a second operation amount MP corresponding to the second superheat degree, and the inside temperature sensor The total manipulated variable M is calculated based on the first to third predetermined calculation formulas (and setting coefficients) corresponding to the temperature data of 8. In addition, the valve opening restriction calculating means 92a-3 calculates the valve opening so as to lower the upper limit opening and the lower limit opening of the valve opening as the internal temperature decreases as the third priority control step. In the second priority control step, the valve opening is calculated so that the range of superheat is, for example, 5 ° C. or more and 25 ° C. or less, and in the first priority control step, the valve is controlled so as to regulate the MOP and the low pressure cut. Calculate the opening.

ここで、MOP及び低圧カットについて説明する。MOP(Maximum Operating Pressure)とは、元々温度式膨張弁の機能である。MOPの規制の結果、圧縮機始動時の液戻り防止、圧縮機モータの過負荷防止が可能となる。一般的にいう、ハイ・リミットの機能である。低圧カットは低圧側圧力スイッチの主たる機能である。膨張弁、蒸発器など冷凍サイクルに異常が発生して冷媒が流れなくなると低圧側圧力が下がるので、そのとき低圧カットが作用して冷凍サイクルを保護する。一般的にいう、ロー・リミットの機能である。   Here, the MOP and the low pressure cut will be described. MOP (Maximum Operating Pressure) is originally a function of a temperature type expansion valve. As a result of the MOP regulation, it is possible to prevent liquid return at the start of the compressor and overload of the compressor motor. In general, this is a high limit function. The low pressure cut is the main function of the low pressure switch. When an abnormality occurs in the refrigeration cycle such as an expansion valve or an evaporator, and the refrigerant stops flowing, the low-pressure side pressure decreases. At that time, a low-pressure cut acts to protect the refrigeration cycle. In general, this is a low limit function.

図2は実施形態の冷凍サイクルと急速冷却制御装置を示す図である。図において、1は圧縮機、2は凝縮器、3は電動式膨張弁、4は蒸発器であり、これらは配管で環状に接続することにより冷凍サイクルを構成し、冷媒の圧縮、凝縮液化、減圧(膨張)、蒸発気化を行う周知のサイクルを形成する。5は電動式膨張弁3の開度を入力信号に応じて調節する電磁石、パルスモータなどの弁駆動部、6,7は蒸発器4の出口側と入口側の温度をそれぞれ検出する温度センサ、8は冷凍庫内の温度を検出する温度センサ、10は蒸発器4の出口側の蒸発圧力を検出する圧力スイッチ、9は圧力スイッチ10と温度センサ6,7及び8が接続され、その出力に基づき弁駆動部5を制御する制御部である。   FIG. 2 is a diagram illustrating the refrigeration cycle and the rapid cooling control device of the embodiment. In the figure, 1 is a compressor, 2 is a condenser, 3 is an electric expansion valve, 4 is an evaporator, and these are connected in a ring to form a refrigeration cycle. A well-known cycle for decompression (expansion) and evaporation is formed. 5 is an electromagnet that adjusts the opening of the electric expansion valve 3 according to an input signal, a valve drive unit such as a pulse motor, and 6 and 7 are temperature sensors that respectively detect the temperatures of the outlet side and the inlet side of the evaporator 4. 8 is a temperature sensor for detecting the temperature in the freezer, 10 is a pressure switch for detecting the evaporation pressure on the outlet side of the evaporator 4, and 9 is connected to the pressure switch 10 and the temperature sensors 6, 7 and 8, and based on the output thereof. It is a control part which controls the valve drive part 5. FIG.

制御部9は、蒸発器4の出口側と入口側の温度をそれぞれ検出する温度センサ6,7からのそれぞれの入力信号により蒸発器出口温度と冷媒温度すなわち蒸発器入口温度との差をとって第1の過熱度(温度/温度式による算出)を演算し、この第1の過熱度と設定過熱度とを比較して算出した偏差信号をPID動作に従った第1操作量MTを求める。また、制御部9は、圧力スイッチ10からの入力信号と前記出口側の温度センサ6からの信号とに基づいて第2の過熱度(温度/圧力式による算出)を演算し、この第2の過熱度と設定過熱度とを比較して算出した偏差信号をPI動作に従った第2操作量MPを求める。そして、温度センサ8で検出した庫内温度に応じて第1〜第3所定演算式を選択し、第1操作量MT、第2操作量MP及び選択した演算式で合計操作量Mを演算し、この全操作量Mに対応する調節信号を出力する。すなわち、電動式膨張弁3を開閉させるパルス数を弁駆動部5に与える弁開度調節信号を印加することにより、電動式膨張弁3の開度を制御し、冷凍サイクルの冷媒流量を調整する。前述したPID動作とはD要素のないPI動作も含まれることはいうまでもない。   The control unit 9 takes the difference between the evaporator outlet temperature and the refrigerant temperature, that is, the evaporator inlet temperature, based on the respective input signals from the temperature sensors 6 and 7 that detect the outlet side and inlet side temperatures of the evaporator 4, respectively. The first superheat degree (calculated by the temperature / temperature equation) is calculated, and the first manipulated variable MT according to the PID operation is obtained from the deviation signal calculated by comparing the first superheat degree and the set superheat degree. Further, the control unit 9 calculates a second degree of superheat (calculation based on a temperature / pressure equation) based on an input signal from the pressure switch 10 and a signal from the temperature sensor 6 on the outlet side. Based on the deviation signal calculated by comparing the degree of superheat and the set degree of superheat, the second manipulated variable MP according to the PI operation is obtained. Then, the first to third predetermined arithmetic expressions are selected according to the internal temperature detected by the temperature sensor 8, and the total operation amount M is calculated using the first operation amount MT, the second operation amount MP, and the selected operation expression. Then, an adjustment signal corresponding to the total operation amount M is output. That is, by applying a valve opening degree adjustment signal that gives the valve drive unit 5 the number of pulses for opening and closing the electric expansion valve 3, the opening degree of the electric expansion valve 3 is controlled and the refrigerant flow rate of the refrigeration cycle is adjusted. . Needless to say, the above-described PID operation includes a PI operation without a D element.

図3は上記制御部9の内部構成を示し、同図において、A/D変換部91は蒸発器出口温度センサ6、入口温度センサ7、庫内温度センサ8及び圧力センサ10からの信号をA/D変換するA/D変換器、92は予め定めたプログラムに従って動作するマイクロコンピュータであり、マイクロコンピュータ92はCPU92a、プログラムや各種の固定データを格納したROM92b及び各種のデータエリアやワークエリアを有する書き換え可能なRAM92cを有する。CPU92aは、温度センサ6,7からの信号に基づいて第1の過熱度を演算し、温度センサ6と圧力センサ10からの信号に基づいて第2の過熱度を演算し、この演算した第1及び第2の過熱度から弁開度を演算する。また、第1の過熱度と第2の過熱度との差として補正値βを演算し設定過熱度を補正値βで補正し、弁開度を演算する。そして、この演算による弁開度を弁駆動部5に送出して、電動式膨張弁3を動作させる。また、CPU92aは、ROM92b中の所定エリア内に格納した庫内温度、電動式膨張弁の能力、必要冷却能力、蒸発温度、凝縮温度などの各種設定値から、庫内の各温度における弁開度の上限値及び下限値を演算する。制御部9が電動式膨張弁3を操作して、この上限値及び下限値に達すると弁開度は上限値/下限値で制限される。   FIG. 3 shows the internal configuration of the control unit 9, in which an A / D conversion unit 91 receives signals from the evaporator outlet temperature sensor 6, the inlet temperature sensor 7, the internal temperature sensor 8 and the pressure sensor 10 as A. An A / D converter 92 that performs / D conversion is a microcomputer that operates according to a predetermined program. The microcomputer 92 includes a CPU 92a, a ROM 92b that stores programs and various fixed data, and various data areas and work areas. A rewritable RAM 92c is included. The CPU 92a calculates the first superheat degree based on the signals from the temperature sensors 6 and 7, calculates the second superheat degree based on the signals from the temperature sensor 6 and the pressure sensor 10, and calculates the calculated first temperature. The valve opening is calculated from the second degree of superheat. Further, the correction value β is calculated as the difference between the first superheat degree and the second superheat degree, the set superheat degree is corrected with the correction value β, and the valve opening degree is calculated. And the valve opening degree by this calculation is sent to the valve drive part 5, and the electric expansion valve 3 is operated. Further, the CPU 92a determines the valve opening at each temperature in the chamber from various set values such as the chamber temperature stored in a predetermined area in the ROM 92b, the capacity of the electric expansion valve, the required cooling capacity, the evaporation temperature, and the condensation temperature. The upper and lower limit values are calculated. When the controller 9 operates the electric expansion valve 3 to reach the upper limit value and the lower limit value, the valve opening is limited by the upper limit value / lower limit value.

図4は庫内温度に対して演算により求められる弁開度の上限値及び下限値の変化、及び優先制御工程による開度の規制の概念を示す説明図であり、説明図から分かるように、曲線aは庫内温度の低下によって上限開度が下がる様子を、曲線bは庫内温度の低下によって下限開度が下がる様子をそれぞれ示している。これが第3優先制御工程である。また、曲線aを跨ぐ斜線の範囲は、過熱度の範囲を例えば5℃以上に規制する概念、及びMOPを規制する概念を示している。これが第2優先制御工程、及び第1優先制御工程である。さらに、曲線bを跨ぐ斜線の範囲は、過熱度の範囲を例えば25℃以下に規制する概念、及び低圧カットを規制する概念を示している。これが第2優先制御工程、及び第1優先制御工程である。本発明には直接関係しないが、曲線cは初期所定開度であり、この初期所定開度は、下限(曲線b)から、この下限と上限(曲線a)との間隔の70%の値となっている。庫内温度が高いとき下限開度を上げている理由は、冷凍負荷が大きい場合の電動式膨張弁3の閉めすぎを防止するためである。   FIG. 4 is an explanatory view showing the concept of the restriction of the opening degree by the priority control process, and the change of the upper limit value and the lower limit value of the valve opening degree obtained by calculation with respect to the internal temperature. A curve a shows a state where the upper limit opening is lowered due to a decrease in the internal temperature, and a curve b shows a state where the lower limit opening is lowered due to a decrease in the internal temperature. This is the third priority control step. Moreover, the range of the diagonal line over the curve a has shown the concept which regulates the range of superheat degree to 5 degreeC or more, and the concept which regulates MOP. This is the second priority control step and the first priority control step. Furthermore, the range of the diagonal line over the curve b has shown the concept which regulates the range of a superheat degree to 25 degrees C or less, and the concept which regulates a low voltage | pressure cut, for example. This is the second priority control step and the first priority control step. Although not directly related to the present invention, the curve c is an initial predetermined opening, and this initial predetermined opening is a value of 70% of the interval between the lower limit and the upper limit (curve a) from the lower limit (curve b). It has become. The reason why the lower limit opening is increased when the internal temperature is high is to prevent the electric expansion valve 3 from being closed too much when the refrigeration load is large.

以上説明したように、庫内温度が高いときには弁開度の上限値を低めの開度に設定し、庫内温度の低下とともに上限値を下げ、最終的には設定過熱度で運転できるようにしている。これは、急速冷却の負荷の大きな初期段階における蒸発器出口での初期過熱度が、急速冷却の負荷が小さくなる最終段階での最終過熱度に比べて大きいという特性を利用したのであり、冷却初期にはやや過熱気味の運転となるが、液量過多による弁閉動作を防止することができるので、無駄な操作がなくなり、結果的に冷却速度をアップして最終的な冷却温度を得るための時間を短縮することができる(液量過多になると弁の開閉を繰り返すので冷却速度が遅くなる。)。   As explained above, when the internal temperature is high, the upper limit value of the valve opening is set to a lower opening, and the upper limit value is lowered as the internal temperature decreases, so that the valve can finally be operated at the set superheat. ing. This is because the initial superheat degree at the outlet of the evaporator at the initial stage where the rapid cooling load is large is larger than the final superheat degree at the final stage where the rapid cooling load is small. Although the operation is slightly overheated, the valve closing operation due to excessive liquid volume can be prevented, so there is no wasteful operation, and as a result, the cooling rate is increased to obtain the final cooling temperature. The time can be shortened (if the amount of liquid is excessive, the valve is repeatedly opened and closed, resulting in a slow cooling rate).

以上概略説明した動作の詳細を、ROM92bに格納したプログラムに従ってCPU92aが行う処理を示すフローチャートを参照して以下説明する。図5及び図6は第1実施例のフローチャートであり、この第1実施例では、CPU92aは電源の投入によって動作を開始し、その最初のステップS1において初期設定を行う。この初期設定は、ROM92bに格納されている庫内温度、電動式膨張弁の能力、必要冷却能力、蒸発温度、凝縮温度、過冷却度、設定過熱度の値SHなどの各種設定値をRAM92c内の所定のエリアに書き込むことによって行われる。ステップS2では、図示しない起動スイッチの操作による起動信号があるか否かを判定し、この判定がYESになるのを待つ。起動信号があるとステップS3で弁初期開度運転を行って、ステップS4に進む。   Details of the operation outlined above will be described below with reference to a flowchart showing processing performed by the CPU 92a in accordance with a program stored in the ROM 92b. FIGS. 5 and 6 are flowcharts of the first embodiment. In the first embodiment, the CPU 92a starts operation by turning on the power, and performs initial setting in the first step S1. In this initial setting, various set values such as the internal temperature stored in the ROM 92b, the capacity of the electric expansion valve, the required cooling capacity, the evaporation temperature, the condensing temperature, the supercooling degree, and the set superheat value SH are stored in the RAM 92c. This is done by writing to a predetermined area. In step S2, it is determined whether or not there is an activation signal generated by operating an activation switch (not shown), and waits for this determination to be YES. If there is an activation signal, the valve initial opening operation is performed in step S3, and the process proceeds to step S4.

ステップS4では、後述の図10及び図11のシステム構成の場合に実行される通信処理のステップであり、そのサブルーチンを図12に示す。ステップS5では、圧力センサ10からの信号を読み込み、A/D変換して蒸発器出口圧力PG、蒸発圧力相当温度SPGを演算し、ステップS6に進む。ステップS6では、温度センサ6,7,8からの信号を読み込み、A/D変換して温度データSG(蒸発器出口温度)、SL(蒸発器入口温度)、SR(庫内温度)とする。次に、ステップS7で、第1の過熱度SHTを式SHT=SG−SLにより演算する。このステップS7の処理により、CPU92aは蒸発器4の出口及び入口の冷媒配管に装着した温度センサ6,7からの信号に基づいて第1の過熱度を演算する過熱度演算手段92a−1として機能している。次に、ステップS8で、第2の過熱度SHPを式SHP=SG−SPGにより演算し、ステップS9に進む。   Step S4 is a step of communication processing executed in the case of the system configuration shown in FIGS. 10 and 11 described later, and its subroutine is shown in FIG. In step S5, the signal from the pressure sensor 10 is read and A / D converted to calculate the evaporator outlet pressure PG and the evaporation pressure equivalent temperature SPG, and the process proceeds to step S6. In step S6, signals from the temperature sensors 6, 7, and 8 are read and A / D converted to obtain temperature data SG (evaporator outlet temperature), SL (evaporator inlet temperature), and SR (internal temperature). Next, in step S7, the first superheat degree SHT is calculated by the equation SHT = SG-SL. By the processing in step S7, the CPU 92a functions as superheat degree calculation means 92a-1 that calculates the first superheat degree based on signals from the temperature sensors 6 and 7 attached to the refrigerant pipes at the outlet and inlet of the evaporator 4. is doing. Next, in step S8, the second superheat degree SHP is calculated by the equation SHP = SG-SPG, and the process proceeds to step S9.

ステップS9では、「定常状態運転であるか否か」を判定する。ここで、ステップS2で冷却システムが起動して、過渡状態運転から定常状態運転に移行するのに略数分を想定しており、ステップS9の判定でNO(過渡状態運転)の場合、ステップS10の処理で補正値βを予め記憶手段に格納しているデフォルト値β0 (例えば、5℃)としてステップS12に進む。判定がYes(定常状態運転)の場合、ステップS11において、第1の過熱度SHTと第2の過熱度SHPとを減算して補正値βを算出し、ステップS12に進む。この補正値βは設定過熱度のオフセット値βのことである。そして、ステップS12で、補正値(オフセット値)βの格納処理を実行する。なお、後述の図9(C) において補正値βは庫内温度SRに対して一定の値としているが、冷却システムによっては補正値βが変化する場合もある。この場合には、例えば、庫内温度SRを10℃毎に区分して、区分1における補正値βの代表値βi を記憶手段に格納しておけば、庫内温度SRの変化に対して好適な補正値βi が得られるので、より高品位の制御ができる。 In step S9, it is determined “whether or not the operation is in a steady state”. Here, it is assumed that the cooling system is activated in step S2 and the transition from the transient state operation to the steady state operation takes about several minutes. If the determination in step S9 is NO (transient state operation), step S10 is performed. In step S12, the correction value β is set as a default value β 0 (for example, 5 ° C.) previously stored in the storage means, and the process proceeds to step S12. If the determination is Yes (steady state operation), the correction value β is calculated by subtracting the first superheat degree SHT and the second superheat degree SHP in step S11, and the process proceeds to step S12. This correction value β is an offset value β of the set superheat degree. In step S12, a correction value (offset value) β storage process is executed. In FIG. 9C, which will be described later, the correction value β is a constant value with respect to the internal temperature SR, but the correction value β may change depending on the cooling system. In this case, for example, if the internal temperature SR is divided every 10 ° C., and the representative value βi of the correction value β in the classification 1 is stored in the storage means, it is suitable for the change in the internal temperature SR. Since a correct correction value βi is obtained, higher quality control can be performed.

ステップS13では、現在の庫内温度SRと設定庫内温度SRSとの差が20℃以上であるかを判定し、判定がNOのとき(冷凍負荷が小さいとき)ステップS14に進み、判定がYESのとき(冷凍負荷が大きいとき)ステップS16に進む。ステップS14では、第1の過熱度SHTと設定過熱度SHとの差である第1の過熱度偏差ΔSHTを補正値βも加味して、式ΔSHT=SHT−(SH+β)により演算し、ステップS15で、第2の過熱度SHPと設定過熱度SHとの差である第2の過熱度偏差ΔSHPを式ΔSHP=SHP−SHにより演算し、図6のステップS19に進む。ステップS16では、庫内温度SRにより設定過熱度SHの補正演算を行って可変設定過熱度SH’とし、ステップS17に進む。ステップS17では、第1の過熱度SHTと可変設定過熱度SH’との差である第1の過熱度偏差ΔSHTを補正値βも加味して、式ΔSHT=SHT−(SH’+β)により演算し、ステップS18で、第2の過熱度SHPと可変設定過熱度SH’との差である第2の過熱度偏差ΔSHPを式ΔSHP=SHP−SH’により演算し、図6のステップS19に進む。   In step S13, it is determined whether or not the difference between the current internal temperature SR and the set internal temperature SRS is 20 ° C. or more. When the determination is NO (when the refrigeration load is small), the process proceeds to step S14, and the determination is YES. (When the refrigeration load is large), the process proceeds to step S16. In step S14, the first superheat degree deviation ΔSHT, which is the difference between the first superheat degree SHT and the set superheat degree SH, is added to the correction value β and is calculated by the equation ΔSHT = SHT− (SH + β). Thus, the second superheat degree deviation ΔSHP, which is the difference between the second superheat degree SHP and the set superheat degree SH, is calculated by the equation ΔSHP = SHP−SH, and the process proceeds to step S19 in FIG. In step S16, the set superheat degree SH is corrected based on the internal temperature SR to obtain a variable set superheat degree SH ', and the process proceeds to step S17. In step S17, the first superheat degree deviation ΔSHT, which is the difference between the first superheat degree SHT and the variable set superheat degree SH ′, is added to the correction value β and is calculated by the equation ΔSHT = SHT− (SH ′ + β). In step S18, the second superheat degree deviation ΔSHP, which is the difference between the second superheat degree SHP and the variable set superheat degree SH ′, is calculated by the equation ΔSHP = SHP−SH ′, and the process proceeds to step S19 in FIG. .

次に、図6のステップS19で“0←ΔSHT”となるような電動式膨張弁3の第1操作量MTを演算してRAM92cに蓄え、ステップS20で“0←ΔSHP”となるような電動式膨張弁3の第2操作量MPを演算してRAM92cに蓄え、ステップS21に進む。次に、ステップS21では庫内温度SRが−5℃以上であるかを判定し、ステップS23では庫内温度SRが−10℃以上であるかを判定する。そして、庫内温度SRが−5℃以上の場合は、ステップS22でM=MP×0.8+MT×0.2(第1所定演算式)により合計操作量Mを演算してステップS27に進む。庫内温度SRが−5℃未満〜−10℃以上の場合は、ステップS24でCP=[0.6×SR+7]/5、CT=[−0.6×SR−2]/5により係数を演算し、ステップS25でM=MP×CP+MT×CT(第2所定演算式)により合計操作量Mを演算してステップS27に進む。また、庫内温度SRが−10℃未満の場合は、ステップS26でM=MP×0.2+MT×0.8(第3所定演算式)により合計操作量Mを演算してステップS27に進む。すなわち、このステップS21〜S26の処理は、庫内温度SRが−5℃以上では、第2の過熱度の割合を80%、第1の過熱度の割合を20%として制御し、−5℃未満〜−10℃以上では、2つの過熱度で徐々に切り換え制御し、−10℃未満では、第1の過熱度の割合を80%、第2の過熱度の割合を20%として制御する例である。   Next, the first manipulated variable MT of the electric expansion valve 3 that satisfies “0 ← ΔSHT” in step S19 of FIG. 6 is calculated and stored in the RAM 92c, and “0 ← ΔSHP” is satisfied in step S20. The second manipulated variable MP of the expansion valve 3 is calculated and stored in the RAM 92c, and the process proceeds to step S21. Next, in step S21, it is determined whether the internal temperature SR is −5 ° C. or higher. In step S23, it is determined whether the internal temperature SR is −10 ° C. or higher. If the internal temperature SR is −5 ° C. or higher, the total manipulated variable M is calculated by M = MP × 0.8 + MT × 0.2 (first predetermined arithmetic expression) in step S22, and the process proceeds to step S27. When the internal temperature SR is less than −5 ° C. to −10 ° C. or more, the coefficient is calculated by CP = [0.6 × SR + 7] / 5 and CT = [− 0.6 × SR−2] / 5 in step S24. In step S25, the total operation amount M is calculated by M = MP × CP + MT × CT (second predetermined calculation formula), and the process proceeds to step S27. If the internal temperature SR is less than −10 ° C., the total manipulated variable M is calculated by M = MP × 0.2 + MT × 0.8 (third predetermined arithmetic expression) in step S26, and the process proceeds to step S27. That is, in the processing in steps S21 to S26, when the internal temperature SR is −5 ° C. or higher, the ratio of the second superheat degree is controlled to 80% and the ratio of the first superheat degree is set to 20%. When the temperature is lower than -10 ° C or higher, the switching control is gradually performed with two superheat degrees, and when the temperature is lower than -10 ° C, the ratio of the first superheat degree is 80% and the ratio of the second superheat degree is 20%. It is.

ステップS27では、弁開度の上限値/下限値を規制する第3優先制御処理であり、前記ステップS22、あるいはS25、あるいはS26で演算した合計操作量Mに対して、S27の規制が優先する。よって、合計操作量Mが100%で弁の開閉操作をするとは限らない。ステップS28は、第1の過熱度の範囲を規制する第2優先制御処理であり、冷媒量が多すぎて液バックしないように、または少なすぎて過熱が付きすぎないように規制する。すなわち、ステップS27の第3優先制御処理の規制を経ても、このステップS28の規制が優先する。よって、この場合も、合計操作量Mが100%で弁の開閉操作をするとは限らない。ステップS29は、第1優先制御処理であり、蒸発器出口圧力PGがMOP設定値以下となるような操作量、蒸発器出口圧力PGが低圧カット設定値以上となるように操作量を演算し、MOP規制、低圧カット規制の処理を行う。よって、この場合も、合計操作量Mが100%で弁の開閉操作をするとは限らない。そして、ステップS30で、ステップS21〜S29の処理の結果により、弁の開閉操作を実行し、図5のステップS4に戻る。   Step S27 is a third priority control process for restricting the upper limit value / lower limit value of the valve opening, and the restriction of S27 has priority over the total manipulated variable M calculated in Step S22, S25, or S26. . Therefore, the valve opening / closing operation is not always performed when the total operation amount M is 100%. Step S28 is a second priority control process for restricting the range of the first superheat degree, and restricts the amount of refrigerant so as not to be liquid back or too small to prevent overheating. That is, even after the restriction of the third priority control process of step S27, the restriction of step S28 has priority. Therefore, also in this case, the valve opening / closing operation is not always performed when the total operation amount M is 100%. Step S29 is the first priority control process, and the operation amount is calculated such that the evaporator outlet pressure PG is equal to or lower than the MOP set value, and the evaporator outlet pressure PG is equal to or higher than the low pressure cut set value. Processing of MOP regulation and low pressure cut regulation is performed. Therefore, also in this case, the valve opening / closing operation is not always performed when the total operation amount M is 100%. In step S30, the valve opening / closing operation is executed according to the results of the processes in steps S21 to S29, and the process returns to step S4 in FIG.

図7は第2実施例のフローチャートであり、この第2実施例のステップS31〜ステップS36は第1実施例のステップS21〜ステップS26に代える処理である。すなわち前記ステップS20の処理が終了すると、ステップS31で庫内温度SRが−5℃以上であるかを判定し、ステップS33で庫内温度SRが−10℃以上であるかを判定する。そして、庫内温度SRが−5℃以上の場合は、ステップS32で合計操作量Mを第2の過熱度に対応する第2操作量MPとし、ステップS27に進む。庫内温度SRが−5℃未満〜−10℃以上の場合は、ステップS34でCT=[−SR−5]/5、CP=[SR+10]/5により係数を演算し、ステップS35でM=MP×CP+MT×CTにより合計操作量Mを演算してステップS27に進む。また、庫内温度SRが−10℃未満の場合は、ステップS36で合計操作量Mを第1の過熱度に対応する第1操作量MTとし、ステップS27に進む。すなわち、このステップS31〜S36の処理は、庫内温度SRが−5℃以上では、第2の過熱度により制御し、−5℃未満〜−10℃以上では、2つの過熱度で徐々に切り換え制御し、−10℃未満では、第1の過熱度により制御する例である。   FIG. 7 is a flowchart of the second embodiment. Steps S31 to S36 of the second embodiment are processes that replace steps S21 to S26 of the first embodiment. That is, when the processing in step S20 is completed, it is determined in step S31 whether the internal temperature SR is -5 ° C or higher, and in step S33, it is determined whether the internal temperature SR is -10 ° C or higher. If the internal temperature SR is −5 ° C. or higher, the total manipulated variable M is set as the second manipulated variable MP corresponding to the second superheat degree in step S32, and the process proceeds to step S27. When the internal temperature SR is less than −5 ° C. to −10 ° C. or more, the coefficient is calculated by CT = [− SR−5] / 5 and CP = [SR + 10] / 5 in step S34, and M = in step S35. The total manipulated variable M is calculated by MP × CP + MT × CT and the process proceeds to step S27. When the internal temperature SR is less than −10 ° C., the total operation amount M is set as the first operation amount MT corresponding to the first superheat degree in step S36, and the process proceeds to step S27. That is, the processes in steps S31 to S36 are controlled by the second superheat degree when the internal temperature SR is −5 ° C. or higher, and gradually switched between two superheat degrees when the temperature is less than −5 ° C. to −10 ° C or higher. This is an example of controlling by less than −10 ° C. using the first superheat degree.

図8は合計操作量Mを演算する第1操作量MTと第2操作量MPの割合を説明する図であり、図8(a) は一般式、図8(b) は第1実施例の式、図8(c) は第2実施例の式を示している。a1,a2は第2操作量MPと第1操作量MTのそれぞれの最大割合、b1,b2は第1操作量MTと第2操作量MPのそれぞれの最小割合であり、第1所定庫内温度SRHと第2所定庫内温度SRLの間で庫内温度SRに応じて各割合に応じて混合された合計操作量Mが演算される。   FIG. 8 is a diagram for explaining the ratio between the first manipulated variable MT and the second manipulated variable MP for calculating the total manipulated variable M. FIG. 8 (a) is a general formula, and FIG. 8 (b) is a diagram of the first embodiment. FIG. 8C shows the formula of the second embodiment. a1, a2 are the maximum ratios of the second operation amount MP and the first operation amount MT, b1, b2 are the minimum ratios of the first operation amount MT and the second operation amount MP, respectively, and the first predetermined internal temperature A total manipulated variable M mixed according to each ratio is calculated between the SRH and the second predetermined internal temperature SRL according to the internal temperature SR.

図9は第1実施例の制御に対応する温度変化と過熱度変化の説明図であり、図9(a) に庫内温度の状態を示したように、庫内温度が−5℃以上のとき、第2の過熱度SHPにより電動式膨張弁の開度調節を行い、庫内温度が−5℃未満のとき、第1の過熱度SHTにより電動式膨張弁の開度調節を行う。庫内温度が−5℃以上のとき、図9(b) の第2の過熱度SHPの状態を示したように第2の過熱度SHPは可変設定過熱度SH’になるように電動式膨張弁の開度制御が行われる。庫内温度が−5℃未満のとき、図9(c) の第1の過熱度SHTの状態を示したように、例えば、設定庫内温度が−60℃の場合、庫内温度が−5℃未満〜−40℃以上のとき、第1の過熱度SHTは可変設定過熱度SH’に過熱度のズレβを加算した値(SH’+β)になるように電動式膨張弁の開度調節が行われる。以上の説明で、庫内温度が−40℃以上のとき、設定過熱度SH’は庫内温度により値が可変する「可変設定過熱度SH’」としている。なお、図9(b) の第2の過熱度SHPの曲線は圧力検出手段の確度(精度)がマイナス側にある場合を示している。確度(精度)が±0の場合、第2の過熱度SHPは可変設定過熱度SH’及び(固定)設定過熱度SHに対して振れることはいうまでもない。   FIG. 9 is an explanatory view of the temperature change and superheat degree change corresponding to the control of the first embodiment. As shown in FIG. 9 (a), the internal temperature is −5 ° C. or higher. At this time, the opening degree of the electric expansion valve is adjusted based on the second superheat degree SHP. When the internal temperature is less than −5 ° C., the opening degree of the electric expansion valve is adjusted based on the first superheat degree SHT. When the internal temperature is −5 ° C. or higher, the electric expansion is performed so that the second superheat degree SHP becomes the variable set superheat degree SH ′ as shown in the state of the second superheat degree SHP in FIG. Valve opening control is performed. When the internal temperature is less than −5 ° C., as shown in the state of the first superheat degree SHT in FIG. 9C, for example, when the internal temperature is −60 ° C., the internal temperature is −5 When the temperature is lower than ℃ to -40 ℃ or higher, the opening degree of the electric expansion valve is adjusted so that the first superheat degree SHT becomes a value (SH '+ β) obtained by adding the superheat degree deviation β to the variable set superheat degree SH'. Is done. In the above description, when the internal temperature is −40 ° C. or higher, the set superheat degree SH ′ is “variable set superheat degree SH ′” whose value varies depending on the internal temperature. The curve of the second superheat degree SHP in FIG. 9B shows the case where the accuracy (accuracy) of the pressure detecting means is on the negative side. Needless to say, when the accuracy (accuracy) is ± 0, the second superheat degree SHP varies with respect to the variable set superheat degree SH ′ and the (fixed) set superheat degree SH.

第1実施例に類似した他の実施形態として、次のように処理してもよい。3つの温度区分を設けて区分を1.66℃毎に、所定の割合を20%ずつ増減して、
庫内温度が−5℃以上の時、M=MP×1.0+MT×0.0、
−5℃未満〜−6.66℃以上の時、M=MP×0.8+MT×0.2、
−6.66℃未満〜−8.33℃以上の時、M=MP×0.6+MT×0.4、
−8.33℃未満〜−10.0℃以上の時、M=MP×0.4+MT×0.6、
−10.0℃未満の時、M=MP×0.2+MT×0.8、
によって操作量Mを算出して、膨張弁の開度を調節する。−5℃以上では、第2の過熱度により制御し、−5℃未満〜−10℃以上では、2つの過熱度で徐々に切り換え制御し、−10℃未満では、第1の過熱度の割合を80%、第2の過熱度の割合を20%として制御する例を示す。これは低温側のみに作用させる例である。
As another embodiment similar to the first example, the following processing may be performed. Three temperature divisions are provided, and the division is increased and decreased by a predetermined rate by 20% every 1.66 ° C.
When the internal temperature is −5 ° C. or higher, M = MP × 1.0 + MT × 0.0,
When less than −5 ° C. to −6.66 ° C. or more, M = MP × 0.8 + MT × 0.2,
When less than −6.66 ° C. to −8.33 ° C. or more, M = MP × 0.6 + MT × 0.4,
When less than −8.33 ° C. to −10.0 ° C. or more, M = MP × 0.4 + MT × 0.6,
When less than −10.0 ° C., M = MP × 0.2 + MT × 0.8,
To calculate the operation amount M and adjust the opening of the expansion valve. At -5 ° C or higher, control is performed by the second superheat degree, and at less than -5 ° C to -10 ° C or higher, switching control is gradually performed at two superheat degrees, and at less than -10 ° C, the ratio of the first superheat degree In this example, 80% is controlled and 20% is the second superheat ratio. This is an example of acting only on the low temperature side.

また、第2実施例に類似した他の実施形態として、次のように処理してもよい。4つの温度区分を設けて区分を1.25℃毎に、所定の割合を20%ずつ増減して、
庫内温度が−5℃以上の時、M=MP×1.0+MT×0.0、
−5℃未満〜−6.25℃以上の時、M=MP×0.8+MT×0.2、
−6.25℃未満〜−7.5℃以上の時、M=MP×0.6+MT×0.4、
−7.5℃未満〜−8.75℃以上の時、M=MP×0.4+MT×0.6、
−8.75℃未満〜−10℃以上の時、M=MP×0.2+MT×0.8、
−10℃未満の時、M=MP×0.0+MT×1.0、
によって操作量Mを算出して、膨張弁の開度を調節する。−5℃以上では、第2の過熱度により制御し、−5℃未満〜−10℃以上では、2つの過熱度で徐々に切り換え制御し、−10℃未満では、第1の過熱度により制御する例である。
Moreover, you may process as follows as other embodiment similar to 2nd Example. There are four temperature zones, and the zones are increased or decreased by 20% every 1.25 ° C.
When the internal temperature is −5 ° C. or higher, M = MP × 1.0 + MT × 0.0,
When less than −5 ° C. to −6.25 ° C. or more, M = MP × 0.8 + MT × 0.2,
When less than −6.25 ° C. to −7.5 ° C. or more, M = MP × 0.6 + MT × 0.4,
When less than −7.5 ° C. to −8.75 ° C. or more, M = MP × 0.4 + MT × 0.6,
When less than −8.75 ° C. to −10 ° C. or higher, M = MP × 0.2 + MT × 0.8,
When less than −10 ° C., M = MP × 0.0 + MT × 1.0,
To calculate the operation amount M and adjust the opening of the expansion valve. When the temperature is -5 ° C or higher, control is performed by the second superheating degree. When the temperature is lower than -5 ° C to -10 ° C or higher, the switching is gradually performed by two superheating degrees. This is an example.

なお、従来の温度/温度式による第1の過熱度による場合は、第3所定演算式のみによる制御となり、a2=1、b2=0、とする。第3所定演算式は、M=MP×0+MT×1、すなわち、M=MT、となる。また、従来の温度/圧力式による第2の過熱度による場合は、第1所定演算式のみによる制御となり、a1=1、b1=0、とする。第1所定演算式は、M=MP×1+MT×0、すなわち、M=MP、となる。   In the case of the first superheat degree based on the conventional temperature / temperature equation, the control is performed only by the third predetermined arithmetic equation, and a2 = 1 and b2 = 0. The third predetermined arithmetic expression is M = MP × 0 + MT × 1, that is, M = MT. Further, in the case of using the second superheat degree based on the conventional temperature / pressure formula, the control is performed only by the first predetermined calculation formula, and a1 = 1 and b1 = 0. The first predetermined arithmetic expression is M = MP × 1 + MT × 0, that is, M = MP.

図10は冷却システム用制御システムの一実施例を示す構成図である。この実施例では、1台の圧縮機1、1台の凝縮器2に対して、4台の蒸発器41〜44とそれに対応する電動式膨張弁31〜34とにより冷凍サイクルが構成されている。各蒸発器41〜44には、それぞれ実施例の冷却システム用制御装置91〜94が接続されている。なお、以下、冷却システム用制御装置を適宜「制御装置」ともいう。各制御装置91〜94には、蒸発器41〜44の出口側の温度センサ61〜64と入口側の温度センサ71〜74が接続されている。また、各制御装置91〜94の内の親機としての制御装置91はパーソナルコンピュータ100に接続されるとともに、この親機の制御装置91には庫内温度センサ8が接続されている。圧縮機1と凝縮器2との間には高圧圧力スイッチ11が接続され、蒸発器41〜44の出口側には圧力スイッチ10が接続されており、この圧力スイッチ10と各制御装置91〜94は通信端子を介して通信ケーブル200で接続されている。また、親機の制御装置91と圧力スイッチ10の通信端子には終端抵抗Rが接続されている。なお、図に破線で示したように、蒸発器41〜44の出口側及び入口側の温度センサ61〜64,71〜74は、親機の制御装置91だけに接続されてもよい。なお、電動式膨張弁駆動部51〜54は、制御装置91〜94の信号を受けて電動式膨張弁31〜34を開閉操作し、弁開度を制御する弁駆動部である。広義では、電動式膨張弁31〜34に包含されるものである。また、図において圧力スイッチ10は、冷凍サイクルの配管中と通信線接続中との2箇所に図示してあるが、この圧力スイッチ10は同じ位置に設置される1つのものである。   FIG. 10 is a block diagram showing an embodiment of the cooling system control system. In this embodiment, with respect to one compressor 1 and one condenser 2, a refrigeration cycle is constituted by four evaporators 41 to 44 and electric expansion valves 31 to 34 corresponding thereto. . The evaporators 41 to 44 are connected to the cooling system controllers 91 to 94 of the embodiments, respectively. Hereinafter, the control device for the cooling system is also referred to as a “control device” as appropriate. The control devices 91 to 94 are connected to temperature sensors 61 to 64 on the outlet side of the evaporators 41 to 44 and temperature sensors 71 to 74 on the inlet side. Further, a control device 91 as a parent device among the control devices 91 to 94 is connected to the personal computer 100, and an internal temperature sensor 8 is connected to the control device 91 of the parent device. A high pressure switch 11 is connected between the compressor 1 and the condenser 2, and a pressure switch 10 is connected to the outlet sides of the evaporators 41 to 44, and the pressure switch 10 and the control devices 91 to 94 are connected. Are connected by a communication cable 200 via a communication terminal. A terminal resistor R is connected to the communication device of the control device 91 of the master unit and the pressure switch 10. As indicated by broken lines in the figure, the outlet side and inlet side temperature sensors 61 to 64 and 71 to 74 of the evaporators 41 to 44 may be connected only to the control device 91 of the master unit. The electric expansion valve drive units 51 to 54 are valve drive units that open and close the electric expansion valves 31 to 34 in response to signals from the control devices 91 to 94 to control the valve opening. In a broad sense, it is included in the electric expansion valves 31 to 34. Further, in the figure, the pressure switch 10 is illustrated in two places, in the piping of the refrigeration cycle and in the connection of the communication line, but this pressure switch 10 is one installed at the same position.

図11は圧力検出手段としての圧力スイッチ10のブロック図である。圧力スイッチ10は、マイコン10a、RAM10b、ROM10c、EEPROM10d、通信インタフェース10e、入出力インタフェース10f、圧力センサ10g、操作スイッチ10h、リレー駆動回路及び出力リレー10i、デジタル表示器10j、電源回路10kを備えている。マイコン10aは、圧力スイッチ10全体の制御を行い、操作スイッチ10hによる各種の設定値の入力操作、各種演算処理、通信インタフェース10eを介して制御装置91〜94等との間で通信データの授受を行う。デジタル表示器10jは7セグメントLED素子を4桁備えており、この7セグメントLED素子は青色LEDで構成されている。なお、青色LEDによる7セグメントLED素子は圧力スイッチに限らず、本発明の制御装置などに広く用いられることはいうまでもない。   FIG. 11 is a block diagram of the pressure switch 10 as pressure detecting means. The pressure switch 10 includes a microcomputer 10a, a RAM 10b, a ROM 10c, an EEPROM 10d, a communication interface 10e, an input / output interface 10f, a pressure sensor 10g, an operation switch 10h, a relay drive circuit and output relay 10i, a digital display 10j, and a power supply circuit 10k. Yes. The microcomputer 10a controls the pressure switch 10 as a whole, inputs various setting values by the operation switch 10h, various arithmetic processes, and exchanges communication data with the control devices 91 to 94 via the communication interface 10e. Do. The digital display 10j includes four digits of 7-segment LED elements, and the 7-segment LED elements are configured by blue LEDs. Needless to say, the 7-segment LED element using the blue LED is not limited to the pressure switch but is widely used in the control device of the present invention.

操作スイッチ10hからは、冷凍サイクルにおけるMOP設定値、低圧カット設定値が入力設定され、これらの設定値はEEPROM10dに記憶される。そして、圧力スイッチ10からこれらの設定値と、検出圧力データが制御装置91〜94に送信され、制御装置91〜94で、これらの設定値と検出圧力データに基づいて各制御装置91〜94に対応する電動式膨張弁31〜34の開度が制御される。このとき、各制御装置91〜94は、検出圧力データによる検出圧力が、MOP設定値>検出圧力>低圧カット設定値となるように弁開度を制御する。   From the operation switch 10h, the MOP set value and the low pressure cut set value in the refrigeration cycle are input and set, and these set values are stored in the EEPROM 10d. Then, these set values and detected pressure data are transmitted from the pressure switch 10 to the control devices 91 to 94, and the control devices 91 to 94 send the set values and detected pressure data to the control devices 91 to 94 based on these set values and detected pressure data. The opening degree of the corresponding electric expansion valves 31 to 34 is controlled. At this time, each of the control devices 91 to 94 controls the valve opening so that the detected pressure based on the detected pressure data is MOP set value> detected pressure> low pressure cut set value.

また、検出圧力データはデジタル表示器10jに表示される。このとき、低圧の圧力データは青色で表示される。これにより、例えば緑色で表示するよりも、視認性が良くなり、峻別がきわめて容易になる。   The detected pressure data is displayed on the digital display 10j. At this time, the low pressure data is displayed in blue. As a result, the visibility is improved and discrimination is much easier than when displaying in green, for example.

図12は各制御装置91〜94における制御のフローチャートであり、前記図5のステップS4で実行される。なお、制御装置91〜94において、親機である制御装置91は「アドレス1」、子機である制御装置92〜94は「アドレス2〜4」に設定されている。前記ステップS4でサブルーチンとして起動され、ステップS41では、アドレスは“1”であるか(親機であるか)を判断し、YESであればステップS42,S43を介してステップS46に進み、NOであればステップS44,S45を介してステップS46に進む。ステップS42では親機から子機へのデータの送信を行い、ステップS43では親機が子機からのデータを受信する。ステップS44では子機が親機からのデータを受信し、ステップS45では子機から親機へのデータの送信を行う。そして、ステップS46でデータの比較格納処理を行い、通信処理を終了して元のルーチンに復帰する。   FIG. 12 is a flowchart of control in each of the control devices 91 to 94, and is executed in step S4 of FIG. In the control devices 91 to 94, the control device 91 that is the parent device is set to “address 1”, and the control devices 92 to 94 that are child devices are set to “address 2 to 4”. In step S4, the program is started as a subroutine. In step S41, it is determined whether the address is "1" (whether it is a master unit). If YES, the process proceeds to step S46 via steps S42 and S43. If so, the process proceeds to step S46 via steps S44 and S45. In step S42, data is transmitted from the parent device to the child device, and in step S43, the parent device receives data from the child device. In step S44, the slave unit receives data from the master unit, and in step S45, data is transmitted from the slave unit to the master unit. In step S46, a data comparison and storage process is performed, the communication process is terminated, and the process returns to the original routine.

このように複数台の蒸発器に対応する複数台の冷却システム用制御装置と圧力検出手段とを通信線で接続し、デジタルデータを送受信する。そして、検出圧力データ、MOP設定値、低圧カット設定値を通信線に送出し、複数台の冷却システム用制御装置は、通信線を介して例えば検出圧力データ、MOP設定値、低圧カット設定値を受信し、前記実施例のような各種の制御を行って、冷凍サイクルに好適な弁開度に制御することができる。   In this way, the plurality of cooling system controllers corresponding to the plurality of evaporators and the pressure detection means are connected by the communication line to transmit / receive digital data. Then, the detected pressure data, the MOP set value, and the low pressure cut set value are sent to the communication line, and the plurality of cooling system control devices, for example, detect the detected pressure data, the MOP set value, and the low pressure cut set value via the communication line. It is received and various control like the said Example is performed, and it can control to the valve opening degree suitable for a refrigerating cycle.

なお、実施形態では、単純に割合変化により切り換えたが、勿論、ファジイ理論を適用してメンバーシップ関数を定義し、合計操作量Mを演算する方法でもよい。実施形態では、圧力検出手段に圧力スイッチを用いて通信によりデータを授受する実施例を説明したが、勿論、圧力センサを用いて、例えば、4〜20mA、あるいは1〜5V伝送信号を用いることもできる。その場合、第1優先制御処理に係わる設定値の設定処理は本発明の制御装置側で行うことになるが、課題を解決して同様の作用/効果が得られることはいうまでもない。   In the embodiment, the switching is simply performed by changing the ratio, but of course, a method of defining the membership function by applying fuzzy theory and calculating the total manipulated variable M may be used. In the embodiment, an example in which data is exchanged by communication using a pressure switch as a pressure detection unit has been described. Of course, for example, a 4 to 20 mA or 1 to 5 V transmission signal may be used using a pressure sensor. it can. In this case, the setting process of the setting value related to the first priority control process is performed on the control device side of the present invention, but it goes without saying that the same problem / effect can be obtained by solving the problem.

本発明による実施形態の冷却システム用制御装置を適用した冷凍サイクルにおける急速冷却制御装置の基本構成を示す図である。It is a figure which shows the basic composition of the rapid cooling control apparatus in the refrigerating cycle to which the control apparatus for cooling systems of embodiment by this invention is applied. 実施形態の冷凍サイクルと急速冷却制御装置を示す図である。It is a figure which shows the refrigerating cycle and rapid cooling control apparatus of embodiment. 実施形態における制御部の内部構成を示す図である。It is a figure which shows the internal structure of the control part in embodiment. 実施形態における弁開度の上限値及び下限値の変化、及び優先制御工程による開度の規制の概念を示す説明図である。It is explanatory drawing which shows the concept of the restriction | limiting of the opening degree by the change of the upper limit value and lower limit value of the valve opening degree in embodiment, and a priority control process. 実施形態における第1実施例のフローチャートの一部である。It is a part of flowchart of 1st Example in embodiment. 実施形態における第1実施例のフローチャートの他の一部である。It is another part of the flowchart of 1st Example in embodiment. 実施形態における第2実施例のフローチャートである。It is a flowchart of the 2nd example in an embodiment. 実施形態における合計操作量Mを演算する第1操作量MTと第2操作量MPの割合を説明する図である。It is a figure explaining the ratio of the 1st operation amount MT and the 2nd operation amount MP which calculate the total operation amount M in embodiment. 第1実施例の制御に対応する庫内温度変化と過熱度変化の説明図である。It is explanatory drawing of the internal temperature change and superheat degree change corresponding to control of 1st Example. 冷却システム用制御システムの一実施例を示す構成図である。It is a block diagram which shows one Example of the control system for cooling systems. 実施例における圧力スイッチのブロック図である。It is a block diagram of the pressure switch in an Example. 実施形態における通信処理のサブルーチンのフローチャートである。It is a flowchart of a subroutine of communication processing in the embodiment.

符号の説明Explanation of symbols

1 圧縮機
2 凝縮器
3 電動式膨張弁
4 蒸発器
5 弁駆動部
6 蒸発器出口温度センサ
7 蒸発器入口温度センサ
8 庫内温度センサ
10 圧力スイッチ(圧力検出手段)
92a−1 過熱度演算手段(CPU)
92a−2 弁開度演算手段(CPU)
92a−3 弁開度規制演算手段(CPU)
92a−4 比較手段(CPU)
DESCRIPTION OF SYMBOLS 1 Compressor 2 Condenser 3 Electric expansion valve 4 Evaporator 5 Valve drive part 6 Evaporator outlet temperature sensor 7 Evaporator inlet temperature sensor 8 Chamber temperature sensor 10 Pressure switch (pressure detection means)
92a-1 Superheat calculating means (CPU)
92a-2 valve opening calculation means (CPU)
92a-3 Valve opening restriction calculation means (CPU)
92a-4 comparison means (CPU)

Claims (5)

冷凍サイクルの蒸発器の冷媒の過熱度を算出し、過熱度に基づいて膨張弁の開度を調節する冷却システム用制御装置において、
蒸発器の出口側及び入口側に設けた温度検出手段からの信号に基づいて第1の過熱度を算出し、第1の過熱度に基づいて算出した膨張弁の操作量MTと、
蒸発器の出口側に設けた圧力検出手段からの信号と出口側に設けた温度検出手段からの信号とに基づいて第2の過熱度を算出し、第2の過熱度に基づいて算出した膨張弁の操作量MPとから、
庫内温度SRに応じた所定処理を実行して合計操作量Mを算出し、膨張弁の開度を調節する制御工程を備えることを特徴とする冷却システム用制御装置。
In the control device for the cooling system that calculates the superheat degree of the refrigerant of the evaporator of the refrigeration cycle and adjusts the opening degree of the expansion valve based on the superheat degree,
The first superheat degree is calculated based on signals from the temperature detection means provided on the outlet side and the inlet side of the evaporator, and the operation amount MT of the expansion valve calculated based on the first superheat degree;
The second superheat degree is calculated based on the signal from the pressure detection means provided on the outlet side of the evaporator and the signal from the temperature detection means provided on the outlet side, and the expansion calculated based on the second superheat degree From the valve operation amount MP,
A control apparatus for a cooling system, comprising a control step of calculating a total operation amount M by executing a predetermined process according to the internal temperature SR and adjusting an opening of the expansion valve.
前記制御工程が、前記庫内温度SRが低温側に設定された第2所定庫内温度SRL未満のとき、操作量MTの重みを操作量MPの重み以上として演算する第3所定演算式を用いて前記合計操作量Mを算出することを特徴とする請求項1に記載の冷却システム用制御装置。   The control step uses a third predetermined calculation formula that calculates the weight of the operation amount MT as the weight of the operation amount MP when the internal temperature SR is lower than the second predetermined internal temperature SRL set to the low temperature side. The cooling system control device according to claim 1, wherein the total operation amount M is calculated. 前記制御工程が、前記庫内温度SRが高温側に設定された第1所定庫内温度SRH未満、かつ低温側に設定された第2所定庫内温度SRL以上のとき、操作量MTの重みと操作量MPの重みとを庫内温度SRに応じて決定して演算する第2所定演算式を用いて前記合計操作量Mを算出することを特徴とする請求項1に記載の冷却システム用制御装置。   When the control temperature is lower than the first predetermined internal temperature SRH set on the high temperature side and equal to or higher than the second predetermined internal temperature SRL set on the low temperature side, the weight of the operation amount MT 2. The cooling system control according to claim 1, wherein the total manipulated variable M is calculated using a second predetermined calculation formula that determines and calculates the weight of the manipulated variable MP according to the internal temperature SR. 3. apparatus. 前記制御工程が、前記庫内温度SRが高温側に設定された第1所定庫内温度SRH以上のとき、操作量MPの重みを操作量MTの重み以上として演算する第1所定演算式を用いて前記合計操作量Mを算出することを特徴とする請求項1に記載の冷却システム用制御装置。   The control step uses a first predetermined calculation formula that calculates the weight of the operation amount MP as the weight of the operation amount MT when the internal temperature SR is equal to or higher than the first predetermined internal temperature SRH set to the high temperature side. The cooling system control device according to claim 1, wherein the total operation amount M is calculated. 前記制御工程が、
前記庫内温度SRが高温側に設定された第1所定庫内温度SRH以上のとき、操作量MPの重みを操作量MTの重み以上として演算する第1所定演算式を用いて前記合計操作量Mを算出し、
前記庫内温度SRが前記第1所定庫内温度SRH未満、かつ低温側に設定された第2所定庫内温度SRL以上のとき、操作量MTの重みと操作量MPの重みとを庫内温度SRに応じて決定して演算する第2所定演算式を用いて前記合計操作量Mを算出し、
前記庫内温度SRが第2所定庫内温度SRL未満のとき、操作量MTの重みを操作量MPの重み以上として演算する第3所定演算式を用いて前記合計操作量Mを算出する
ことを特徴とする請求項1に記載の冷却システム用制御装置。
The control step is
When the internal temperature SR is equal to or higher than the first predetermined internal temperature SRH set on the high temperature side, the total operation amount is calculated using a first predetermined arithmetic expression that calculates the weight of the operation amount MP as the weight of the operation amount MT. M is calculated,
When the internal temperature SR is lower than the first predetermined internal temperature SRH and equal to or higher than the second predetermined internal temperature SRL set on the low temperature side, the weight of the operation amount MT and the weight of the operation amount MP are determined as the internal temperature. The total manipulated variable M is calculated using a second predetermined calculation formula that is determined and calculated according to SR,
When the internal temperature SR is lower than the second predetermined internal temperature SRL, the total operation amount M is calculated using a third predetermined arithmetic expression that calculates the weight of the operation amount MT as the weight of the operation amount MP. The control device for a cooling system according to claim 1, wherein
JP2005035848A 2005-02-14 2005-02-14 Controller for cooling system Withdrawn JP2006220391A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035848A JP2006220391A (en) 2005-02-14 2005-02-14 Controller for cooling system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035848A JP2006220391A (en) 2005-02-14 2005-02-14 Controller for cooling system

Publications (1)

Publication Number Publication Date
JP2006220391A true JP2006220391A (en) 2006-08-24

Family

ID=36982832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035848A Withdrawn JP2006220391A (en) 2005-02-14 2005-02-14 Controller for cooling system

Country Status (1)

Country Link
JP (1) JP2006220391A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113291128A (en) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 Integrated power battery cooling system, cooling control method and electric automobile
JP6995464B2 (en) 2015-01-09 2022-02-04 アリ グループ エス.アール.エル-カルピジャーニ Machines and methods for producing two liquid or semi-liquid foods

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6995464B2 (en) 2015-01-09 2022-02-04 アリ グループ エス.アール.エル-カルピジャーニ Machines and methods for producing two liquid or semi-liquid foods
CN113291128A (en) * 2021-04-29 2021-08-24 东风柳州汽车有限公司 Integrated power battery cooling system, cooling control method and electric automobile

Similar Documents

Publication Publication Date Title
EP1980805B1 (en) A method for controlling a refrigeration system
EP2641027B1 (en) Device and method for controlling opening of a valve in an hvac system
JP6609417B2 (en) Air conditioner
CN105091204A (en) Control method of multi-split system
JP2006266635A (en) Control device for cooling system
WO2008016228A1 (en) Method for controlling electronic expansion valve of air conditioner
JP2006266533A (en) Valve control system and valve control method
JP2009146241A (en) Valve control device and valve control method
US20140023524A1 (en) Methods for controlling a compressor with double suction for refrigeration systems
US7757505B2 (en) Predictive capacity systems and methods for commercial refrigeration
JP4672001B2 (en) Superheat control device
CN113188230A (en) Expansion valve control method and device of multi-connected air conditioner and multi-connected air conditioner
US7290402B1 (en) Expansion valve control system and method and refrigeration unit employing the same
JP4714448B2 (en) Control device for cooling system
US6993921B2 (en) Multi-variable control of refrigerant systems
JP2006220391A (en) Controller for cooling system
EP3719418A1 (en) Electronic expansion valve, heat exchange system and method for controlling electronic expansion valve
JP2006343001A (en) Pressure detecting device, superheat degree detecting device and control device for cooling system
US20060199121A1 (en) Limited modulation furnace and method for controlling the same
JP2006071263A (en) Controller for cooling system
JPH08327122A (en) Air conditioner
US11692750B1 (en) Electronic expansion valve and superheat control in an HVAC system
JPH02178567A (en) Refrigerant flow rate controller
KR100301847B1 (en) device for controlling flow rate of refrigerant in air conditioner and method for controlling the same
JPH03271656A (en) Superheat degree controller for cooling/refrigerating cycle

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513