JP2006219710A - Device for forming surface-treated layer, method for forming surface-treated layer and control rod for atomic furnace at which the surface-treated layer is formed - Google Patents

Device for forming surface-treated layer, method for forming surface-treated layer and control rod for atomic furnace at which the surface-treated layer is formed Download PDF

Info

Publication number
JP2006219710A
JP2006219710A JP2005033096A JP2005033096A JP2006219710A JP 2006219710 A JP2006219710 A JP 2006219710A JP 2005033096 A JP2005033096 A JP 2005033096A JP 2005033096 A JP2005033096 A JP 2005033096A JP 2006219710 A JP2006219710 A JP 2006219710A
Authority
JP
Japan
Prior art keywords
surface treatment
treatment layer
forming
target member
predetermined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033096A
Other languages
Japanese (ja)
Other versions
JP3692367B1 (en
Inventor
Shinichi Shiraishi
慎一 白石
Hideshi Yoneda
英志 米田
Hideaki Kamida
英章 紙田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SHIMONOSEKI MEKKI KK
SHINKO TOKUSHU KOKAN KK
Mitsubishi Nuclear Fuel Co Ltd
Mitsubishi Heavy Industries Ltd
Original Assignee
SHIMONOSEKI MEKKI KK
SHINKO TOKUSHU KOKAN KK
Mitsubishi Nuclear Fuel Co Ltd
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SHIMONOSEKI MEKKI KK, SHINKO TOKUSHU KOKAN KK, Mitsubishi Nuclear Fuel Co Ltd, Mitsubishi Heavy Industries Ltd filed Critical SHIMONOSEKI MEKKI KK
Priority to JP2005033096A priority Critical patent/JP3692367B1/en
Application granted granted Critical
Publication of JP3692367B1 publication Critical patent/JP3692367B1/en
Publication of JP2006219710A publication Critical patent/JP2006219710A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Electroplating Methods And Accessories (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To form a surface-treated layer with two step structures having different film thicknesses with a transit part having a prescribed shape interposed. <P>SOLUTION: First anode rods 32 with a curved shape plurally arranged around a sheathed tube 21 at almost equal intervals each other, and in which the distance with the sheathed tube 21 is made short toward the depth direction of a solution 31 are fed with electric current from either power source 38. Second anode rods 37 arranged at the inside of an insulating shielding member 36 at the inside of the first anode rods 32, and plurally arranged around the sheathed tube 21 piercing the central part at almost equal intervals are fed with electric current from the other power source 39, the opening area of a through-hole 38 provided at the central part of an insulating diaphragm 35 at the edge part of the shielding member 36 is made into a tapered shape where it reduces from the side of each first anode rod 32 to the side of each second anode rod 37, and the electric current sneaking from each anode rod 32 to the inside of the shielding member 36 is gradually reduced, so as to form a transit part of the surface-treated layer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、メッキ等の表面処理層の形成装置及び形成方法に関し、例えば、原子炉用制御棒の表面の表面処理層の形成に用いるものである。   The present invention relates to an apparatus and method for forming a surface treatment layer such as plating, and is used, for example, to form a surface treatment layer on the surface of a control rod for a nuclear reactor.

図1に、燃料集合体と原子炉用制御棒を示し、その構成を簡単に説明する。なお、図1は、加圧水型原子炉に用いられる燃料集合体及び燃料集合体に挿入される制御棒の一例を示したものである。   FIG. 1 shows a fuel assembly and a control rod for a nuclear reactor, and the configuration thereof will be briefly described. FIG. 1 shows an example of a fuel assembly used in a pressurized water reactor and a control rod inserted into the fuel assembly.

燃料集合体1は、各々2種類のノズルを有し、上端部、下端部に配設された上部ノズル部5、下部ノズル部6と、上部ノズル部5と下部ノズル部6とを連結すると共に、互いに平行な中空の複数の制御棒案内管3と、制御棒案内管3の長さ方向に複数設けられた正方形の格子構造の支持格子4と、支持格子4の格子開口に1本ずつ挿入された複数の燃料棒2とを有するものである。   The fuel assembly 1 has two types of nozzles, and connects the upper nozzle portion 5 and the lower nozzle portion 6 disposed at the upper end portion and the lower end portion, and the upper nozzle portion 5 and the lower nozzle portion 6. , A plurality of hollow control rod guide tubes 3 parallel to each other, a support lattice 4 having a square lattice structure provided in the length direction of the control rod guide tube 3, and one each inserted into a lattice opening of the support lattice 4 The plurality of fuel rods 2 are provided.

一方、制御棒10は、中空のステンレス鋼管の上端と下端を密封して、細長い棒状体としたものであり、下端側は砲弾形状となっている。制御棒10の内部には、銀−インジウム−カドミウム合金棒からなる中性子吸収体と押さえばねが収納されている。複数の制御棒10は、その上端部をスパイダー組立体12により保持されて、制御棒クラスタ7として使用される。スパイダー組立体12は、図示しない駆動軸に分離自在に連結されるハブ部8と、ハブ部8から放射状に延設された複数のベーン部9と、制御棒10を受け入れて固定するフィンガー部11とを有するものであり、駆動軸の作動に伴い、ハブ部8が上下に移動するように構成されている。そして、ハブ部8で連結された制御棒クラスタ7の上下動作と共に複数の制御棒10が制御棒案内管3の内部を上下に移動することとなる。   On the other hand, the control rod 10 seals the upper end and lower end of a hollow stainless steel tube to form an elongated rod-like body, and the lower end side has a shell shape. Inside the control rod 10, a neutron absorber made of a silver-indium-cadmium alloy rod and a holding spring are accommodated. The plurality of control rods 10 are used as control rod clusters 7 with their upper ends held by the spider assembly 12. The spider assembly 12 includes a hub portion 8 that is detachably connected to a drive shaft (not shown), a plurality of vane portions 9 that extend radially from the hub portion 8, and a finger portion 11 that receives and fixes the control rod 10. The hub portion 8 is configured to move up and down with the operation of the drive shaft. A plurality of control rods 10 move up and down in the control rod guide tube 3 as the control rod clusters 7 connected by the hub portion 8 move up and down.

原子炉用の制御棒10は、原子炉炉心を構成する燃料集合体1に対して、制御棒10の挿入長さを調節することで、原子炉の出力の制御を行うものである。通常、原子炉を運転しているときには、定格出力運転を行うため、制御棒10は、先端部分を残して、燃料集合体1の上方に引き上げた状態としている割合が多い。又、原子炉の出力を抑制するときには、制御棒10の一部をわずかに燃料集合体に挿入した状態とし、原子炉を停止するときには、制御棒10全体を燃料集合体1に挿入した状態とする。更に、原子炉の緊急停止時には、制御棒10の自由落下を利用して、所定時間内に迅速に制御棒10全体を燃料集合体1に挿入するようにしている。このように、制御棒10は、原子炉の制御上、更には安全上、極めて重要なものであり、緊急時においても、正しく動作することが求められる。   The control rod 10 for a nuclear reactor controls the output of the nuclear reactor by adjusting the insertion length of the control rod 10 with respect to the fuel assembly 1 constituting the nuclear reactor core. Usually, when the nuclear reactor is operating, the rated output operation is performed, so that the control rod 10 is often pulled up above the fuel assembly 1 with the tip portion remaining. In order to suppress the output of the nuclear reactor, a part of the control rod 10 is slightly inserted into the fuel assembly, and when the nuclear reactor is stopped, the entire control rod 10 is inserted into the fuel assembly 1. To do. Furthermore, at the time of emergency stop of the nuclear reactor, the entire control rod 10 is quickly inserted into the fuel assembly 1 within a predetermined time by using free fall of the control rod 10. Thus, the control rod 10 is extremely important for the control of the nuclear reactor and also for safety, and is required to operate correctly even in an emergency.

燃料集合体1及び制御棒10の関連部材に対して、各状態(稼働時、停止時)における制御棒10の位置関係を図2に示す。
図2に示すように、燃料集合体1の上部ノズル部5の上方には上部炉心板15が配設されており、その上方に、連続ガイドチューブ17、案内支持板18を有する制御棒クラスタ案内管16が配設されている。なお、これらの更に上方に、駆動軸に連結されたスパイダー組立体12等が配置される。通常運転時、制御棒クラスタ7、即ち、制御棒10が燃料集合体1から引き上げられている時には、制御棒10の下端部のみが制御棒案内管3の中に挿入された状態であり、大部分はその上方の制御棒クラスタ案内管16に位置することとなる(図2の制御棒10a参照)。
FIG. 2 shows the positional relationship of the control rod 10 in each state (when operating and when stopped) with respect to the related members of the fuel assembly 1 and the control rod 10.
As shown in FIG. 2, an upper core plate 15 is disposed above the upper nozzle portion 5 of the fuel assembly 1, and a control rod cluster guide having a continuous guide tube 17 and a guide support plate 18 above the upper core plate 15. A tube 16 is provided. Further above these, the spider assembly 12 and the like connected to the drive shaft are arranged. During normal operation, when the control rod cluster 7, that is, the control rod 10 is pulled up from the fuel assembly 1, only the lower end portion of the control rod 10 is inserted into the control rod guide tube 3. The portion is positioned in the control rod cluster guide tube 16 above (see the control rod 10a in FIG. 2).

又、緊急停止時における制御棒10は、所定の挿入長さまでは迅速に、最終的には、衝撃を受けないような速度に減速して、挿入する必要があり、そのため、制御棒案内管3の下端部には、制御棒案内管3の一部の内径を細くすることで、冷却材による制御棒10の抵抗力を増やし、制御棒10の挿入速度を減速させるダッシュポット3aが設けられており、制御棒10の先端部がダッシュポット3aの部分に挿入され、最終的には、この位置に停止することとなる(図2の制御棒10b参照)。   Further, the control rod 10 at the time of emergency stop needs to be inserted quickly at a predetermined insertion length, and finally decelerated to a speed that does not receive an impact, so that the control rod guide tube 3 is inserted. A dash pot 3a for increasing the resistance of the control rod 10 by the coolant and decelerating the insertion speed of the control rod 10 by reducing the inner diameter of a part of the control rod guide tube 3 is provided at the lower end of the control rod. Thus, the tip of the control rod 10 is inserted into the dash pot 3a, and finally stops at this position (see the control rod 10b in FIG. 2).

制御棒クラスタ案内管16の領域は、燃料集合体1内を上向きに流れてきた冷却材が、図示しない複数の原子炉出口ノズル方向に向かって、様々な横方向に流れの向きを変え、冷却材の流れの強さ、或いは方向が不規則となる部分であり、冷却材の流れの不規則性のため、制御棒10がランダムに振動し、周囲の部材、例えば、連続ガイドチューブ17等に接触して、被覆管が摩耗するおそれがある。制御棒10表面の摩耗は、最悪の場合、制御棒10の破断を招くこともおそれもあり、制御棒10の破断により、緊急停止時における制御棒10の挿入動作が阻害されること等、安全上、有ってはならない。   In the region of the control rod cluster guide tube 16, the coolant that has flowed upward in the fuel assembly 1 changes the flow direction in various lateral directions toward a plurality of reactor outlet nozzles (not shown) to cool the control rod cluster guide tube 16. It is a part where the strength or direction of the flow of material is irregular, and due to irregularity of the flow of coolant, the control rod 10 vibrates randomly, and the surrounding members, for example, the continuous guide tube 17 etc. There is a risk that the cladding tube will wear due to contact. In the worst case, the wear on the surface of the control rod 10 may cause the control rod 10 to break. The breakage of the control rod 10 may hinder the insertion operation of the control rod 10 during an emergency stop. Don't be on top.

そこで、制御棒10表面の摩耗を防止するため、制御棒10を構成する鋼管の外表面には、クロムメッキ等の表面処理層が形成されており、制御棒10の先端部まで表面処理層で被覆している。制御棒10の表面処理層は、制御棒10表面の摩耗を抑制し、所定の寿命を得ると共に、制御棒10の挿入性に影響を与えない膜厚が望ましい。又、ダッシュポット3aの構造を考慮すると、ダッシュポット3aの内径の減少部分に接触して、停止することなく挿入可能とするため、ダッシュポット3aに挿入される制御棒10の先端部の表面処理層の膜厚は、先端部以外の表面処理層の膜厚と比較して、あまり厚くすることはできない。そのため、制御棒10の表面には、制御棒10の先端部と先端部以外の膜厚が異なる2段構造の表面処理層が形成されている(特許文献1参照)。このように、制御棒10の構造は、制御棒10の外表面に形成される表面処理層を含めて、燃料集合体1等の構造と密接に関係している。   Therefore, in order to prevent the surface of the control rod 10 from being worn, a surface treatment layer such as chrome plating is formed on the outer surface of the steel pipe constituting the control rod 10. It is covered. The surface treatment layer of the control rod 10 desirably has a film thickness that suppresses wear on the surface of the control rod 10 to obtain a predetermined life and does not affect the insertion property of the control rod 10. Further, in consideration of the structure of the dash pot 3a, the surface treatment of the front end portion of the control rod 10 inserted into the dash pot 3a is made so that the dash pot 3a can be inserted without stopping by contacting the reduced portion of the inner diameter of the dash pot 3a. The film thickness of the layer cannot be made too thick compared to the film thickness of the surface treatment layer other than the tip. Therefore, on the surface of the control rod 10, a surface treatment layer having a two-stage structure with different film thicknesses other than the tip portion and the tip portion of the control rod 10 is formed (see Patent Document 1). As described above, the structure of the control rod 10 is closely related to the structure of the fuel assembly 1 and the like, including the surface treatment layer formed on the outer surface of the control rod 10.

特開平11−153685号公報JP-A-11-153585

上述したように、制御棒の表面処理層の膜厚は、耐摩耗性、挿入性を考慮して、制御棒の部位に応じた所定の膜厚に形成されているが、膜厚が変化する部分(以降、遷移部と呼ぶ。)に対する検討、特に、挿入性に対する影響の検討は不十分であった。例えば、遷移部が階段形状であれば、局在的な抵抗が発生し、制御棒の全挿入過程を通じて、挿入時間が延長するおそれがあり、又、遷移部が不用意に長すぎると、挿入性だけではなく、耐摩耗性にも悪影響を与えるおそれがあり、所定の形状、例えば、テーパ形状等とすることが望ましいものと考えられる。   As described above, the thickness of the surface treatment layer of the control rod is formed to a predetermined thickness corresponding to the portion of the control rod in consideration of wear resistance and insertability, but the thickness changes. Examination of the part (hereinafter referred to as the transition part), in particular, examination of the influence on the insertability was insufficient. For example, if the transition part has a staircase shape, localized resistance may occur, and the insertion time may be extended through the entire insertion process of the control rod. It is considered that it is desirable to have a predetermined shape, for example, a tapered shape, which may adversely affect not only the wear resistance but also the wear resistance.

そして、膜厚の異なる2段構造の表面処理層を、所望の形状の遷移部を挟んで形成し、所望の膜質、或いは形状の表面処理層を得るには、従来の方法は、その工程が複雑であり、時間及びコストがかかると共に、以下に示すような問題があり、所望の表面処理層を得ることが難しかった。   In order to obtain a surface treatment layer having a desired film quality or shape by forming a surface treatment layer having a two-stage structure with different film thickness with a transition portion having a desired shape interposed therebetween, It is complicated, takes time and costs, and has the following problems, making it difficult to obtain a desired surface treatment layer.

例えば、通常、膜厚の異なる2段構造の表面処理層の形成は、2回に分けて、メッキ施工により行うのが一般的である。この場合、2回の表面処理層の形成を別々に行うことで、膜厚の異なる2段構造の表面処理層としているため、下層の表面処理層上に上層の表面処理層を重ねる構造となり、表面処理層の膜厚が安定して得られない上、上層の表面処理層の密着性等の問題があった。又、この方法では、遷移部を所望の形状とすることも極めて難しいものであった。   For example, the formation of a surface treatment layer having a two-stage structure with different film thicknesses is generally performed in two steps by plating. In this case, by forming the surface treatment layer twice, the surface treatment layer has a two-stage structure with different film thicknesses, so that the upper surface treatment layer is stacked on the lower surface treatment layer. The film thickness of the surface treatment layer cannot be obtained stably, and there are problems such as adhesion of the upper surface treatment layer. Also, with this method, it is extremely difficult to make the transition portion into a desired shape.

又、制御棒等の被メッキ物から距離を変化させて配置した陽極側電極を用いることで、表面処理層を重ねることなく、膜厚の異なる2段構造の表面処理層を同時に施工する方法もあるが、対象が長尺(4m程)であるため、この場合、形成される遷移部の範囲を安定させるための制御が難しく、又、表面処理層全体の膜厚の精度が悪化するおそれもあった。   In addition, by using the anode side electrode arranged at a different distance from the object to be plated, such as a control rod, there is also a method for simultaneously constructing a surface treatment layer having a two-stage structure with different film thickness without overlapping the surface treatment layer. However, since the target is long (about 4 m), in this case, it is difficult to control to stabilize the range of the formed transition portion, and the accuracy of the film thickness of the entire surface treatment layer may be deteriorated. there were.

更に、薄い膜厚の表面処理層が所望の膜厚となった後、その部分を遮蔽冶具で覆い、電流の遮蔽を行うことで、その部分に、新たな表面処理層が形成されないようにして、膜厚の異なる2段構造の表面処理層を連続的に施工する方法もあるが、この場合、既に形成された薄い膜厚の表面処理層の表面が荒れる等、制御棒の表面処理層としての耐摩耗性、挿入性を満足できないおそれがあった。   Furthermore, after the surface treatment layer with a thin film thickness has reached the desired film thickness, the part is covered with a shielding jig and the current is shielded so that no new surface treatment layer is formed on that part. There is also a method of continuously constructing a surface treatment layer having a two-stage structure with different film thicknesses. In this case, the surface treatment layer of the control rod, such as a rough surface of the thin film treatment layer already formed, is used. There was a possibility that the wear resistance and insertability could not be satisfied.

なお、良好な表面処理層を得るためには、表面処理層の膜厚が遷移部だけでなく、表面処理層の終端部の形状も重要である。例えば、一般的には、制御棒の端部近傍に犠牲電極を配置し、犠牲電極に表面処理層を析出させることで、制御棒の端部への表面処理層の析出を防止して、表面処理層の形成部分と非形成部分との境界を適正に設ける方法も用いられているが、表面処理層の形成の度に、犠牲電極に表面処理層が析出し、犠牲電極の寸法が変動してしまうことから、施工の都度に、析出した表面処理層を除去しないと、制御棒の端部における表面処理層の形成状態、具体的には、膜厚、境界の位置を、安定して得ることができなかった。この現象は、1回の施工中においても発生し、1回の施工中に犠牲電極の状態が変化することで、制御棒の端部での表面処理層の形成状態が変化してしまい、安定した施工結果を得ることができなかった。   In order to obtain a good surface treatment layer, the thickness of the surface treatment layer is important not only for the transition part but also for the shape of the terminal part of the surface treatment layer. For example, in general, the sacrificial electrode is disposed near the end of the control rod, and the surface treatment layer is deposited on the sacrificial electrode, thereby preventing the surface treatment layer from being deposited on the end of the control rod. Although a method of providing an appropriate boundary between the formed portion and the non-formed portion of the treatment layer is also used, the surface treatment layer is deposited on the sacrificial electrode each time the surface treatment layer is formed, and the size of the sacrificial electrode varies. Therefore, if the deposited surface treatment layer is not removed every time construction is performed, the formation state of the surface treatment layer at the end of the control rod, specifically, the film thickness and the position of the boundary are stably obtained. I couldn't. This phenomenon occurs even during one construction, and the state of the sacrificial electrode changes during one construction, which changes the state of formation of the surface treatment layer at the end of the control rod. It was not possible to obtain the construction results.

このように、表面処理層の終端部の位置が安定しないと、例えば、制御棒等の管状の被メッキ物では、表面処理層の終端部の位置が周方向で変化し、波打って見える現象が発生し、製造歩留まりの悪化を招いていた。又、終端部の層厚が大きくなると、挿入性にも影響がある。このような波打ち現象が発生した場合、表面処理層の終端部を研磨して対処することも考えられるが、耐摩耗性が高い表面処理層と表面処理層と比較して硬度が低い鋼管との境界部分を研磨することは容易ではなく、又、肉薄の管は変形し易いため、製造歩留まりの悪化を低減することは難しいものであった。   Thus, if the position of the end portion of the surface treatment layer is not stable, for example, in the case of a tubular object to be plated such as a control rod, the position of the end portion of the surface treatment layer changes in the circumferential direction and appears to wave Occurred, and the manufacturing yield was deteriorated. Moreover, when the layer thickness of the terminal portion is increased, the insertion property is also affected. When such a undulation phenomenon occurs, it is conceivable to handle the end portion of the surface treatment layer by polishing, but the surface treatment layer with high wear resistance and the steel pipe having a lower hardness than the surface treatment layer are considered. It is not easy to polish the boundary portion, and since the thin tube is easily deformed, it is difficult to reduce the deterioration of the manufacturing yield.

又、一般的に、被メッキ物に表面処理層を形成する際には、被メッキ物の外面を電極で保持し、その電極を介して、被メッキ物に電流を流すことが行われているが、被メッキ物が制御棒のように長尺の場合や通電抵抗の大きな材料、形状である場合には、この方法では、メッキ処理に必要な電流を被メッキ物の表面全体に渡って、安定して供給することができず、表面処理層を均等な膜厚にすることができなかった。又、被メッキ物への通電位置がメッキ液面の外にある場合、被メッキ物の固有抵抗と通電による発熱のため、被メッキ物自体を高温にしてしまい、材質低下や変形等の問題を引き起こしていた。   In general, when a surface treatment layer is formed on an object to be plated, the outer surface of the object to be plated is held by an electrode, and an electric current is passed through the object to be plated through the electrode. However, if the object to be plated is long like a control rod or is a material or shape having a large energization resistance, in this method, the current required for the plating process is spread over the entire surface of the object to be plated, It was not possible to supply stably and the surface treatment layer could not be made uniform. In addition, when the energization position for the object to be plated is outside the plating liquid surface, the object to be plated itself becomes high temperature due to the specific resistance of the object to be plated and the heat generated by energization, which causes problems such as material deterioration and deformation. It was causing.

上述したように、膜厚の異なる2段構造の表面処理層の形成は、従来の方法では、種々の問題点があり、又、制御棒のような長尺な物に対する表面処理層の形成は、上記問題点の解決を更に難しいものとしていた。そして、上記問題点を克服する以下のような表面処理層の形成装置、形成方法が望まれていた。
(1)膜厚の異なる2段構造の表面処理層を所望の形状の遷移部を挟んで連続的に形成して、耐摩耗性を損なうことなく、制御棒の挿入性を向上させるようにする。
(2)各表面処理層の膜厚を安定させると共に、被メッキ物への密着性が高く、滑らかな表面状態となるようにする。
(3)表面処理層の終端部での膜厚が、小さい幅で連続的に又は段階的に薄くなると共に、その終端部が周方向に安定した位置となるようにする。
(4)通電抵抗が大きい材料、長尺の材料の被メッキ物に対しても、被メッキ物の表面の電流分布が一定となるようにして、形成される表面処理層の膜厚が均等になるようにする。
(5)研磨等の後処理を要することがなく、単一工程で、所望の表面処理層を形成できるようにする。
As described above, the formation of a surface treatment layer having a two-stage structure with different film thicknesses has various problems in the conventional method, and the formation of a surface treatment layer on a long object such as a control rod is not possible. , Making the above problems more difficult to solve. And the following surface treatment layer forming apparatus and forming method which overcome the above-described problems have been desired.
(1) A surface treatment layer having a two-stage structure with different thicknesses is continuously formed with a transition portion having a desired shape interposed therebetween so as to improve the insertability of the control rod without impairing the wear resistance. .
(2) Stabilize the film thickness of each surface treatment layer, and have high adhesion to the object to be plated and a smooth surface state.
(3) The film thickness at the end portion of the surface treatment layer is decreased continuously or stepwise with a small width, and the end portion is positioned at a stable position in the circumferential direction.
(4) Even for a material to be plated of a material having a large energization resistance or a long material, the current distribution on the surface of the material to be plated is made constant so that the film thickness of the surface treatment layer to be formed is uniform. To be.
(5) A desired surface treatment layer can be formed in a single step without requiring post-treatment such as polishing.

本発明は上記課題に鑑みなされたもので、膜厚の異なる2段構造の表面処理層を所定形状の遷移部を挟んで形成する表面処理層の形成装置、形成方法及びその表面処理層が形成された原子炉用制御棒を提供することを目的とする。   The present invention has been made in view of the above problems, and a surface treatment layer forming apparatus, a formation method, and a surface treatment layer for forming a surface treatment layer having a two-stage structure with different thicknesses sandwiching a transition portion having a predetermined shape are formed. An object of the present invention is to provide a controlled rod for a nuclear reactor.

上記課題を解決する第1の発明に係る表面処理層の形成装置は、
表面処理層を構成する材料を含有し、表面処理層を形成する対象部材がその上端部を除いて浸漬された溶液と、
前記対象部材の周囲に互いに略等間隔に複数配置されると共に、前記溶液の深さ方向に向かって、前記対象部材との距離が短くなる湾曲形状の第1陽極棒と、
前記複数の第1陽極棒の内側に配置され、中心部分を前記対象部材が貫通する絶縁性の遮蔽部材と、
前記遮蔽部材の内側に配置され、前記対象部材の周囲に互いに略等間隔に複数配置された第2陽極棒と、
前記遮蔽部材の下端部に設けられた絶縁性の仕切板と、
前記仕切板の中心部に設けられ、前記対象部材が貫通すると共に、前記第1陽極棒側から前記第2陽極棒側に向かって、開口面積が減少するようなテーパ形状又は階段形状に形成された貫通孔と、
前記第1陽極棒、前記第2陽極棒に接続され、各々独立して電流を供給する複数の電源とを有することを特徴とする。
An apparatus for forming a surface treatment layer according to a first invention for solving the above-described problems is as follows.
A solution containing the material constituting the surface treatment layer, the target member forming the surface treatment layer being immersed except for its upper end, and
A plurality of first anode rods having a curved shape in which the distance between the target member and the target member is shortened in the depth direction of the solution, and a plurality of the anode members are arranged at substantially equal intervals around the target member.
An insulating shielding member that is disposed inside the plurality of first anode rods and through which the target member penetrates a central portion;
A plurality of second anode rods arranged inside the shielding member and arranged at substantially equal intervals around the target member;
An insulating partition plate provided at the lower end of the shielding member;
It is provided at the center of the partition plate, and is formed into a tapered shape or a staircase shape so that the target member penetrates and the opening area decreases from the first anode rod side to the second anode rod side. Through holes,
And a plurality of power supplies connected to the first anode rod and the second anode rod, each independently supplying a current.

上記課題を解決する第2の発明に係る表面処理層の形成装置は、
上記第1の発明に係る表面処理層の形成装置において、
前記対象部材の上端部、下端部を保持する絶縁性の上保持部材、下保持部材を設けると共に、前記上保持部材、前記下保持部材の前記対象部材を保持する側の端部を、前記対象部材の端部側に向かって、その開口面積が減少するようなテーパ形状又は階段形状としたことを特徴とする。
An apparatus for forming a surface treatment layer according to a second invention for solving the above-described problems is as follows.
In the surface treatment layer forming apparatus according to the first invention,
An insulating upper holding member and a lower holding member for holding the upper end portion and the lower end portion of the target member are provided, and an end portion of the upper holding member and the lower holding member on the side holding the target member is provided as the target. A taper shape or a staircase shape is formed such that the opening area decreases toward the end of the member.

上記課題を解決する第3の発明に係る表面処理層の形成装置は、
上記第1、第2の発明に係る表面処理層の形成装置において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさの導電性の良い導電部材と、前記導電部材の表面に複数設けられ、導電性の良い材料から構成された弾性部材とを有する陰極部材を備え、
前記陰極部材を前記対象部材の中空部分に挿入して、前記弾性部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする。
An apparatus for forming a surface treatment layer according to a third invention for solving the above-described problems
In the surface treatment layer forming apparatus according to the first and second inventions,
When the target member has a hollow shape,
A conductive member having a length equivalent to that of the target member and having a size capable of being inserted into a hollow portion of the target member, and a plurality of conductive members provided on the surface of the conductive member, and configured from a material having good conductivity. A negative electrode member having an elastic member formed,
The cathode member is inserted into a hollow portion of the target member, and the elastic member is brought into contact with an inner wall surface of the target member.

上記課題を解決する第4の発明に係る表面処理層の形成装置は、
上記第3の発明に係る表面処理層の形成装置において、
前記弾性部材として、短冊状の板バネ、円筒状の板バネ、又は、リング状のワイヤを用いたことを特徴とする。
An apparatus for forming a surface treatment layer according to a fourth invention for solving the above-described problems is
In the surface treatment layer forming apparatus according to the third invention,
As the elastic member, a strip-shaped leaf spring, a cylindrical leaf spring, or a ring-shaped wire is used.

上記課題を解決する第5の発明に係る表面処理層の形成装置は、
上記第3、第4の発明に係る表面処理層の形成装置において、
前記陰極部材の外側に導電性のある筒状の網状部材を被せると共に、前記網状部材と共に前記陰極部材を前記対象部材の中空部分に挿入して、前記網状部材を介して、前記弾性部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする。
An apparatus for forming a surface treatment layer according to a fifth invention for solving the above-described problems
In the surface treatment layer forming apparatus according to the third and fourth inventions,
Covering the outside of the cathode member with a conductive cylindrical mesh member, inserting the cathode member together with the mesh member into a hollow portion of the target member, and passing the elastic member through the mesh member, It is characterized by being brought into contact with the inner wall surface of the target member.

上記課題を解決する第6の発明に係る表面処理層の形成装置は、
上記第1、第2の発明に係る表面処理層の形成装置において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさであり、長手方向にスリットが設けられた導電性の良い円柱状の導電部材と、前記導電部材の長手方向に沿って、前記導電部材の内部に配設された膨張可能な膨張部材とを有する陰極部材を備え、
前記陰極部材を前記対象部材の中空部分に挿入し、前記膨張部材を膨らませて、前記導電部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする。
An apparatus for forming a surface treatment layer according to a sixth invention for solving the above-described problems is as follows.
In the surface treatment layer forming apparatus according to the first and second inventions,
When the target member has a hollow shape,
The conductive member has a length equivalent to that of the target member, is a size that can be inserted into a hollow portion of the target member, and has a cylindrical conductive member with good conductivity provided with a slit in the longitudinal direction. A negative electrode member having an inflatable expansion member disposed in the conductive member along the longitudinal direction;
The cathode member is inserted into a hollow portion of the target member, the expansion member is expanded, and the conductive member is brought into contact with an inner wall surface of the target member.

上記課題を解決する第7の発明に係る表面処理層の形成装置は、
上記第1〜第6の発明に係る表面処理層の形成装置において、
一方の前記電源は、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給するように制御されると共に、
他方の前記電源は、前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給し、第2所定膜厚の表面処理層が形成された後には、前記第1陽極棒への電流の供給が停止されるまで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給するように制御されたことを特徴とする。
An apparatus for forming a surface treatment layer according to a seventh aspect of the present invention for solving the above problem is as follows.
In the apparatus for forming a surface treatment layer according to the first to sixth inventions,
One power source is controlled to supply a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined thickness is formed,
The other power supply supplies a constant second predetermined current smaller than the first predetermined current to the second anode rod until a surface treatment layer having a second predetermined thickness smaller than the first predetermined thickness is formed. Then, after the surface treatment layer having the second predetermined thickness is formed, a third predetermined current lower than the current for forming the surface treatment layer is applied until the supply of current to the first anode rod is stopped. Controlled to supply to the second anode rod.

上記課題を解決する第8の発明に係る表面処理層の形成装置は、
上記第1〜第6の発明に係る表面処理層の形成装置において、
一方の前記電源は、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給するように制御されると共に、
他方の前記電源は、第1所定膜厚の表面処理層が形成される時間から前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成される時間を引いた所定時間まで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給し、前記第1所定膜厚及び前記第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給するように制御されたことを特徴とする。
An apparatus for forming a surface treatment layer according to an eighth invention for solving the above-described problems is as follows.
In the apparatus for forming a surface treatment layer according to the first to sixth inventions,
One power source is controlled to supply a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined thickness is formed,
On the other hand, the other power source has a predetermined time obtained by subtracting a time for forming a surface treatment layer having a second predetermined film thickness smaller than the first film thickness from a time for forming a surface treatment layer having a first film thickness. A third predetermined current lower than a current for forming the surface treatment layer is supplied to the second anode rod, and the first treatment film is formed until the surface treatment layer having the first predetermined film thickness and the second predetermined film thickness is formed. Control is performed to supply a constant second predetermined current smaller than the predetermined current to the second anode rod.

上記課題を解決する第9の発明に係る表面処理層が形成された原子炉用制御棒は、
表面処理層が形成される対象部材を、原子炉用制御棒の被覆管とし、
上記第1〜第8の発明に係る表面処理層の形成装置を用いて、前記被覆管に異なる膜厚の2段構造の表面処理層を形成すると共に、異なる膜厚の表面処理層の間を、所定範囲内で連続的に膜厚が変化するように形成したことを特徴とする。
A control rod for a nuclear reactor in which a surface treatment layer according to a ninth invention for solving the above problem is formed,
The target member on which the surface treatment layer is formed is a cladding tube of a control rod for a nuclear reactor,
Using the surface treatment layer forming apparatus according to any of the first to eighth inventions, a surface treatment layer having a two-stage structure with different thicknesses is formed on the cladding tube, and between the surface treatment layers with different thicknesses. The film thickness is continuously changed within a predetermined range.

上記課題を解決する第10の発明に係る表面処理層の形成方法は、
表面処理層を構成する材料を含有する溶液に、表面処理層を形成する対象部材を、その上端部を除いて浸漬し、
前記対象部材の周囲に互いに略等間隔に複数配置されると共に、前記溶液の深さ方向に向かって、前記対象部材との距離が短くなる湾曲形状の第1陽極棒に、一方の電源から電流を供給し、
前記複数の第1陽極棒の内側の絶縁性の遮蔽部材の内側に配置され、中心部分を貫通する前記対象部材の周囲に互いに略等間隔に複数配置された第2陽極棒に、他方の電源から電流を供給し、
前記遮蔽部材の下端部に設けられた絶縁性の仕切板の中心部に、前記対象部材が貫通すると共に、前記第1陽極棒側から前記第2陽極棒側に向かって、開口面積が減少するようなテーパ形状又は階段形状の貫通孔を形成して、前記第1陽極棒から前記遮蔽部材の内部に回り込む電流を、徐々に減少させることを特徴とする。
A method for forming a surface treatment layer according to a tenth aspect of the present invention for solving the above problem is as follows.
In the solution containing the material constituting the surface treatment layer, the target member for forming the surface treatment layer is dipped except for its upper end,
A plurality of the anode members are arranged at substantially equal intervals around the target member, and a current from one power source is supplied to the curved first anode rod whose distance from the target member becomes shorter in the depth direction of the solution. Supply
The second power source is disposed on the inner side of the insulating shielding member on the inner side of the plurality of first anode rods, and a plurality of second anode rods are arranged at substantially equal intervals around the target member penetrating the central portion. Supply current from
The target member penetrates through the center of the insulating partition plate provided at the lower end of the shielding member, and the opening area decreases from the first anode rod side to the second anode rod side. By forming such a tapered or stepped through hole, the current flowing from the first anode rod into the shielding member is gradually reduced.

上記課題を解決する第11の発明に係る表面処理層の形成方法は、
上記第10の発明に係る表面処理層の形成方法において、
前記対象部材の上端部、下端部を保持する絶縁性の上保持部材、下保持部材における前記対象部材を保持する側の端部を、前記対象部材の端部側に向かって、その開口面積が減少するようなテーパ形状又は階段形状に形成して、前記第1陽極棒又は第2陽極棒からの電流を、徐々に減少させることを特徴とする。
A method for forming a surface treatment layer according to an eleventh invention for solving the above-described problems is as follows.
In the method for forming a surface treatment layer according to the tenth aspect,
The insulating upper holding member that holds the upper end portion and the lower end portion of the target member, and the end portion of the lower holding member that holds the target member toward the end side of the target member has an opening area thereof It is formed in a taper shape or a step shape that decreases, and the current from the first anode rod or the second anode rod is gradually reduced.

上記課題を解決する第12の発明に係る表面処理層の形成方法は、
上記第10、第11の発明に係る表面処理層の形成方法において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさの導電性の良い導電部材と、前記導電部材の表面に複数設けられ、導電性の良い材料から構成された弾性部材とを有する陰極部材を、前記対象部材の中空部分に挿入して、前記弾性部材を前記対象部材の内壁面に接触させることを特徴とする。
A method for forming a surface treatment layer according to a twelfth aspect of the present invention for solving the above problem is as follows.
In the method for forming a surface treatment layer according to the tenth and eleventh inventions,
When the target member has a hollow shape,
A conductive member having a length equivalent to that of the target member and having a size capable of being inserted into a hollow portion of the target member, and a plurality of conductive members provided on the surface of the conductive member, and configured from a material having good conductivity. A cathode member having an elastic member is inserted into a hollow portion of the target member, and the elastic member is brought into contact with an inner wall surface of the target member.

上記課題を解決する第13の発明に係る表面処理層の形成方法は、
上記第12の発明に係る表面処理層の形成方法において、
前記弾性部材は、短冊状の板バネ、円筒状の板バネ、又は、リング状のワイヤであることを特徴とする。
A method for forming a surface treatment layer according to a thirteenth invention for solving the above-described problems is as follows.
In the method for forming a surface treatment layer according to the twelfth invention,
The elastic member is a strip-shaped plate spring, a cylindrical plate spring, or a ring-shaped wire.

上記課題を解決する第14の発明に係る表面処理層の形成方法は、
上記第12、第13の発明に係る表面処理層の形成方法において、
前記陰極部材の外側に導電性のある筒状の網状部材を被せ、前記網状部材と共に前記陰極部材を前記対象部材の中空部分に挿入して、前記網状部材を介して、前記弾性部材を前記対象部材の内壁面に接触させることを特徴とする。
A method for forming a surface treatment layer according to a fourteenth aspect of the present invention for solving the above problem is as follows.
In the method for forming a surface treatment layer according to the twelfth and thirteenth inventions,
Covering the outside of the cathode member with a conductive cylindrical mesh member, inserting the cathode member together with the mesh member into a hollow portion of the target member, and passing the elastic member through the mesh member to the target It is made to contact the inner wall surface of a member, It is characterized by the above-mentioned.

上記課題を解決する第15の発明に係る表面処理層の形成方法は、
上記第10、第11の発明に係る表面処理層の形成方法において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさであり、長手方向にスリットが設けられた導電性の良い円柱状の導電部材と、前記導電部材の長手方向に沿って、前記導電部材の内部に配設された膨張可能な膨張部材とを有する陰極部材を前記対象部材の中空部分に挿入し、
前記膨張部材を膨らませて、前記導電部材を前記対象部材の内壁面に接触させることを特徴とする。
A method for forming a surface treatment layer according to a fifteenth aspect of the present invention for solving the above problems is as follows.
In the method for forming a surface treatment layer according to the tenth and eleventh inventions,
When the target member has a hollow shape,
The conductive member has a length equivalent to that of the target member, is a size that can be inserted into a hollow portion of the target member, and has a cylindrical conductive member with good conductivity provided with a slit in the longitudinal direction. Along the longitudinal direction, a negative electrode member having an inflatable expansion member disposed inside the conductive member is inserted into a hollow portion of the target member,
The inflating member is inflated, and the conductive member is brought into contact with an inner wall surface of the target member.

上記課題を解決する第16の発明に係る表面処理層の形成方法は、
上記第10〜第15の発明に係る表面処理層の形成方法において、
一方の前記電源が、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給すると共に、
他方の前記電源が、前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給し、第2所定膜厚の表面処理層が形成された後には、前記第1陽極棒への電流の供給が停止されるまで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給することを特徴とする。
A method for forming a surface treatment layer according to a sixteenth aspect of the present invention for solving the above problem is as follows.
In the method for forming a surface treatment layer according to the tenth to fifteenth inventions,
One of the power supplies supplies a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined film thickness is formed,
The other power source supplies a constant second predetermined current smaller than the first predetermined current to the second anode rod until a surface treatment layer having a second predetermined film thickness that is thinner than the first predetermined film thickness is formed. Then, after the surface treatment layer having the second predetermined thickness is formed, a third predetermined current lower than the current for forming the surface treatment layer is applied until the supply of current to the first anode rod is stopped. It supplies to a 2nd anode rod, It is characterized by the above-mentioned.

上記課題を解決する第17の発明に係る表面処理層の形成方法は、
上記第10〜第15の発明に係る表面処理層の形成方法において、
一方の前記電源が、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給すると共に、
他方の前記電源が、第1所定膜厚の表面処理層が形成される時間から前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成される時間を引いた所定時間まで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給し、前記第1所定膜厚及び前記第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給することを特徴とする。
A method for forming a surface treatment layer according to a seventeenth aspect of the present invention for solving the above problem is as follows.
In the method for forming a surface treatment layer according to the tenth to fifteenth inventions,
One of the power supplies supplies a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined film thickness is formed,
The other power source is a predetermined time obtained by subtracting a time for forming a surface treatment layer having a second predetermined film thickness thinner than the first film thickness from a time for forming a surface treatment layer having a first film thickness. A third predetermined current lower than a current for forming the surface treatment layer is supplied to the second anode rod, and the first treatment film is formed until the surface treatment layer having the first predetermined film thickness and the second predetermined film thickness is formed. A second predetermined current smaller than a predetermined current is supplied to the second anode rod.

上記課題を解決する第第18の発明に係る表面処理層が形成された原子炉用制御棒は、
表面処理層が形成される対象部材を、原子炉用制御棒の被覆管とし、
上記第10〜第17の発明に係る表面処理層の形成方法を用いて、
前記被覆管に異なる膜厚の2段構造の表面処理層を形成すると共に、異なる膜厚の表面処理層の間を、所定範囲内で連続的に膜厚が変化するように形成することを特徴とする。
A control rod for a nuclear reactor in which a surface treatment layer according to an eighteenth aspect of the present invention for solving the above problems is formed,
The target member on which the surface treatment layer is formed is a cladding tube of a control rod for a nuclear reactor,
Using the method for forming a surface treatment layer according to the tenth to seventeenth inventions,
A surface treatment layer having a two-stage structure with different film thicknesses is formed on the cladding tube, and the surface treatment layers with different film thicknesses are formed so as to continuously change within a predetermined range. And

第1、第10の発明によれば、異なる膜厚を有する2段構造の表面処理層を、対象部材に同時に形成することができると共に、異なる膜厚の表面処理層間の遷移部を、連続的に膜厚が変化する所望の形状とすることができる。この2段構造の表面処理層は、重ね合わせ部分がないため密着性が優れ、耐摩耗性を向上させることができる。又、各部位の表面処理層の膜厚を安定して均等に形成できると共に、表面処理層の遷移部の位置、形状を、所望の位置、形状に安定して制御することができる。例え、原子炉用制御棒のような長尺な対象部材であっても、表面処理層の膜厚を安定して均等に形成できると共に、表面処理層の遷移部の位置、形状を、所望の位置、形状に安定して制御することができる。更に、2段構造の表面処理層を同時に形成するため、施工工程を簡略化して、施工コストを低減することも可能である。   According to the first and tenth inventions, a surface treatment layer having a two-stage structure having different film thicknesses can be simultaneously formed on a target member, and a transition portion between surface treatment layers having different film thicknesses can be continuously formed. It is possible to obtain a desired shape in which the film thickness changes. Since the two-stage surface treatment layer has no overlapping portion, it has excellent adhesion and can improve wear resistance. In addition, the film thickness of the surface treatment layer at each site can be stably and uniformly formed, and the position and shape of the transition portion of the surface treatment layer can be stably controlled to a desired position and shape. For example, even for a long target member such as a control rod for a nuclear reactor, the film thickness of the surface treatment layer can be stably and uniformly formed, and the position and shape of the transition portion of the surface treatment layer can be set to a desired value. The position and shape can be controlled stably. Furthermore, since the surface treatment layer having a two-stage structure is formed at the same time, it is possible to simplify the construction process and reduce the construction cost.

第2、第11の発明によれば、テーパ形状等を有する絶縁性の下保持部材、上保持部材で対象部材を保持するので、非形成部分への表面処理層の析出を確実に防止すると共に、表面処理層の終端部を所望の位置、所望の形状に安定して形成することができる。又、絶縁材料から構成される下保持部材、上保持部材には、施工時に表面処理層が析出することがなく、表面処理層を除去する等の作業が不要となり、施工時のコストダウンが可能となる。   According to the second and eleventh inventions, since the target member is held by the insulating lower holding member and upper holding member having a tapered shape or the like, the deposition of the surface treatment layer on the non-formed portion can be reliably prevented. The terminal portion of the surface treatment layer can be stably formed at a desired position and a desired shape. In addition, the lower holding member and upper holding member made of an insulating material do not deposit a surface treatment layer during construction, eliminating the need for operations such as removing the surface treatment layer, thus reducing costs during construction. It becomes.

第3〜第6、第12〜第15の発明によれば、陰極部材を対象部材の内部に挿入して用いるので、対象部材の全長に渡って、その内壁面に均等な接触圧で複数の良好な接触状態を得ることができ、対象部材の表面での通電を一定として、対象部材の全長に渡って、表面処理層の均等な膜厚を形成することができる。又、上記陰極部材を用いる場合、陰極部材による傷や通電痕等が残らないため、傷の除去等の後処理が不要となり、コストダウンを図ることもできる。   According to the third to sixth and twelfth to fifteenth inventions, since the cathode member is inserted into the target member and used, a plurality of contact members can be applied to the inner wall surface with the same contact pressure over the entire length of the target member. A good contact state can be obtained, and the uniform thickness of the surface treatment layer can be formed over the entire length of the target member, with the energization on the surface of the target member being constant. Further, when the above-described cathode member is used, scratches and energization marks due to the cathode member do not remain, so that post-treatment such as removal of scratches is not necessary, and cost can be reduced.

第7、第8、第16、第17の発明によれば、膜厚の薄い表面処理層の表面状態を良好に保って、異なる膜厚の2段構造の表面処理層を、連続的に形成することができる。   According to the seventh, eighth, sixteenth, and seventeenth inventions, the surface treatment layers having different thicknesses are continuously formed while maintaining the surface condition of the thin surface treatment layers in good condition. can do.

第9、第18の発明によれば、遷移部の範囲、形状を適切なものとするので、制御棒自体の挿入性を向上させることができると共に、挿入性に対する品質管理を向上させることができる。又、耐摩耗性のある範囲をできるだけ長くして、耐摩耗性も向上させることができる。   According to the ninth and eighteenth aspects, since the range and shape of the transition portion are appropriate, the insertion property of the control rod itself can be improved, and the quality control for the insertion property can be improved. . Also, the wear resistance can be improved by making the wear resistance range as long as possible.

図3〜第9を参照して、本発明に係る表面処理層の形成を詳細に説明する。   The formation of the surface treatment layer according to the present invention will be described in detail with reference to FIGS.

図3に、本発明に係る表面処理層が形成された制御棒の詳細な構造を示す。図3(a)は、制御棒全体の構造を示すものであり、図3(b)は、図3(a)のC領域の拡大図である。   FIG. 3 shows the detailed structure of the control rod on which the surface treatment layer according to the present invention is formed. FIG. 3A shows the structure of the entire control rod, and FIG. 3B is an enlarged view of a region C in FIG.

制御棒10は、中空のステンレス鋼管の被覆管21が、その上端部、下端部を上部端栓22、下部端栓25に溶接されて、その内部が密封されたものである。上部端栓22には、図1に示したスパイダー組立体12のフィンガー部11に挿入される細径部23と固定用のねじ部24が形成されており、制御棒クラスタ7を構成するときは、締結用袋ナット等がねじ部24に螺着される。下部端栓25は下端側が砲弾形状であり、その上端側が被覆管21の下端部に円周溶接26により気密に連結固定される。下部端栓25の上方の被覆管21の内部には、中性子吸収体27が収納されており、更に、その上方には、中性子吸収体27を押さえる圧縮コイルばね28が介装されている。中性子吸収体27は、銀−インジウム−カドミウム(例えば、Ag:80%,In:15%,Cd:5%)合金棒から形成されている。   The control rod 10 is a hollow stainless steel tube sheathed tube 21 whose upper end and lower end are welded to an upper end plug 22 and a lower end plug 25 so that the inside is sealed. The upper end plug 22 is formed with a narrow diameter portion 23 to be inserted into the finger portion 11 of the spider assembly 12 shown in FIG. 1 and a fixing screw portion 24. When the control rod cluster 7 is configured, A fastening cap nut or the like is screwed onto the screw portion 24. The lower end plug 25 has a shell shape at the lower end side, and the upper end side thereof is hermetically connected and fixed to the lower end portion of the cladding tube 21 by a circumferential weld 26. A neutron absorber 27 is accommodated inside the cladding tube 21 above the lower end plug 25, and further, a compression coil spring 28 for holding the neutron absorber 27 is interposed above the neutron absorber 27. The neutron absorber 27 is formed of a silver-indium-cadmium (eg, Ag: 80%, In: 15%, Cd: 5%) alloy rod.

被覆管21の外面には、範囲Aにおいて、耐摩耗表面処理層として、約30μmの膜厚のクロムメッキ層29が施されている。更に、被覆管21の下端から約300mmの範囲内、且つ、円周溶接26の熱影響部分(約5mm)を除いた範囲Bにおいて、約10μmの膜厚のクロムメッキ29が施されている。範囲Bにおけるクロムメッキ層29の膜厚は、ダッシュポット3aとの間隙を確実に得ること、即ち、挿入性と、耐摩耗性が考慮されて決定されている。上述したように、被覆管21には、2つの異なる膜厚のクロムメッキ層29が形成されているが、これらは、後述するように、連続的に、同時に形成されたものであり、更に、範囲A、範囲Bの境界部分には、図3(b)に示すように、約15mmの範囲に渡って、クロムメッキ層29の膜厚が連続的に変化するテーパ形状の遷移部Dが形成されている。   In the range A, a chromium plating layer 29 having a thickness of about 30 μm is applied to the outer surface of the cladding tube 21 as a wear-resistant surface treatment layer. Further, a chromium plating 29 having a film thickness of about 10 μm is applied in a range of about 300 mm from the lower end of the cladding tube 21 and in a range B excluding the heat-affected portion (about 5 mm) of the circumferential weld 26. The film thickness of the chromium plating layer 29 in the range B is determined in consideration of reliably obtaining a gap with the dashpot 3a, that is, insertability and wear resistance. As described above, the cladding tube 21 is formed with the chromium plating layers 29 having two different film thicknesses, and these are formed continuously and simultaneously as described later. As shown in FIG. 3B, a tapered transition portion D in which the film thickness of the chrome plating layer 29 continuously changes is formed over a range of about 15 mm at the boundary between the ranges A and B. Has been.

上記構成の制御棒10は、図1に示した制御棒クラスタ7のように組み立てられ、原子炉炉心を形成する燃料集合体1の制御棒案内管3に挿入され、又は、引き抜かれて、原子炉の出力制御に使用されることになる。原子炉の定格出力運転時には、制御棒10は、炉心の上方に引き上げられている状態であるが、冷却材の流れにより、制御棒案内管3の上部や制御棒クラスタ案内管16の近接部材に制御棒10が接触しても、範囲Aから範囲Bに続くクロムメッキにより被覆管21の摩耗損傷が抑制されている。又、炉心を緊急停止時に、自由落下等により制御棒10が急速に制御棒案内管3の下方に挿入されても、範囲Bにおける被覆管21と制御棒案内管3のダッシュポット部3aとの間に所定の隙間が確保されている等のため、挿入性を損なうことなく、制御棒10の落下衝撃を吸収することができる。   The control rod 10 having the above-described configuration is assembled like the control rod cluster 7 shown in FIG. 1 and inserted into the control rod guide tube 3 of the fuel assembly 1 forming the nuclear reactor core or pulled out, and It will be used for power control of the furnace. During the rated power operation of the nuclear reactor, the control rod 10 is in a state of being pulled up above the core. However, due to the flow of the coolant, the control rod 10 is moved to the upper part of the control rod guide tube 3 or the adjacent member of the control rod cluster guide tube 16. Even if the control rod 10 comes into contact, the wear damage of the cladding tube 21 is suppressed by the chrome plating following the range A to the range B. Further, even when the control rod 10 is rapidly inserted below the control rod guide tube 3 due to free fall or the like when the reactor core is urgently stopped, the cladding tube 21 in the range B and the dashpot portion 3a of the control rod guide tube 3 Since a predetermined gap is secured between them, the drop impact of the control rod 10 can be absorbed without impairing the insertability.

更に、範囲A、範囲Bの境界部分の遷移部Dは、適切な長さの範囲で連続的に膜厚が変化するテーパ形状となっているので、単に2つの異なる膜厚のクロムメッキ層を形成したものと比較して、制御棒10自体の挿入性を向上させることができる。仮に、遷移部Dが適切な長さに設定されていない(又は、製造上管理されていない)場合を考えてみると、遷移部Dが短すぎる場合(例えば、遷移部Dの幅が略0である場合)には、挿入過程を通じて、流体抗力が局所的に増加し、挿入時間が長くなったり、或いは、その部分がダッシュポット3aに物理的に引っ掛かり、挿入性に悪影響を与えるおそれがあり、又、遷移部Dが長すぎる場合には、範囲A方向に長すぎれば、耐摩耗性のために施したクロムメッキの薄くなる範囲が広くなり、耐摩耗性が低下し、又、範囲B方向に長すぎれば、挿入性へ悪影響を与えるおそれがあった。   Furthermore, since the transition portion D at the boundary between the ranges A and B has a tapered shape in which the film thickness continuously changes within a suitable length range, the chrome plating layers having two different film thicknesses are simply used. Compared with the formed one, the insertion property of the control rod 10 itself can be improved. If the transition part D is not set to an appropriate length (or not managed in production), the transition part D is too short (for example, the width of the transition part D is substantially 0). In this case, the fluid drag increases locally through the insertion process, and the insertion time may become longer, or the portion may be physically caught by the dashpot 3a, and the insertion property may be adversely affected. In addition, when the transition portion D is too long, if the transition portion D is too long in the range A direction, the thinned range of the chrome plating applied for wear resistance is widened, and the wear resistance is lowered. If it is too long in the direction, the insertability may be adversely affected.

次に、被覆管21への上記構成の表面処理層29の形成方法を、図4〜図8を用いて説明する。なお、図4は、本発明に係る表面処理層の形成装置の概略であり、図4(a)は上面図、図4(b)は斜視図である。又、図5は、図4(a)に示した表面処理層の形成装置の断面及び電源の接続状態を説明する図であり、図6、図7は、被覆管21に挿入される陰極部材を示す図である。更に、図8は、表面処理層の形成装置に供給される電流の制御方法を説明するグラフである。   Next, a method of forming the surface treatment layer 29 having the above configuration on the cladding tube 21 will be described with reference to FIGS. 4A and 4B are schematic views of the apparatus for forming a surface treatment layer according to the present invention. FIG. 4A is a top view and FIG. 4B is a perspective view. 5 is a view for explaining the cross section of the surface treatment layer forming apparatus shown in FIG. 4A and the connection state of the power source. FIGS. 6 and 7 are cathode members inserted into the cladding tube 21. FIG. FIG. Further, FIG. 8 is a graph for explaining a method of controlling the current supplied to the surface treatment layer forming apparatus.

本発明に係る表面処理層の形成装置は、図4、図5に示すように、クロムメッキ用の溶液31中に浸漬された被覆管21(対象部材)の周囲に複数配置された長尺の第1陽極棒32を有するものである。第1陽極棒32は、上面から見て(図4(a)参照)、被メッキ物となる被覆管21の周囲の同心円上に、第1陽極棒32同士が、等間隔、若しくは、所定範囲内で略等間隔になるように配置されている。ここでは、一例として、6本の第1陽極棒32を配置した構成を示している。更に、第1陽極棒32自体は、湾曲形状に形成されており、溶液31の深さ方向に行くに従って、換言すれば、電源38と接続された第1電極32の接続部分から遠ざかるに従って、第1陽極棒32と被覆管21の距離が短くなるように配置され、図示しない固定部材により、その位置が固定されている。   As shown in FIGS. 4 and 5, the surface treatment layer forming apparatus according to the present invention includes a plurality of long tubes arranged around a cladding tube 21 (target member) immersed in a chrome plating solution 31. The first anode rod 32 is provided. When viewed from the top (see FIG. 4A), the first anode rods 32 are arranged at equal intervals or in a predetermined range on concentric circles around the cladding tube 21 to be plated. It arrange | positions so that it may become substantially equal intervals in the inside. Here, as an example, a configuration in which six first anode bars 32 are arranged is shown. Furthermore, the first anode rod 32 itself is formed in a curved shape, and as it goes in the depth direction of the solution 31, in other words, as it moves away from the connection portion of the first electrode 32 connected to the power source 38, 1 The anode rod 32 and the cladding tube 21 are arranged so that the distance between them is shortened, and the position is fixed by a fixing member (not shown).

これは、被覆管21、第1陽極棒32が長いため、SUS(ステンレススチール)等で構成される被覆管21や鉄等で構成される第1陽極棒32の固有抵抗を考慮し、被覆管21の全長に渡って均一な電流を供給するため、通電ロスによる表面の電流減衰に合わせて、被覆管21と第1陽極棒32との距離が適宜に近づくように変化させたものである。特に、長尺な被覆管21の表面にクロムメッキを析出させる場合には、析出のための電流値が大きい(例えば、200A程度)ため、上記構成の有無による効果は顕著であり、これにより、被覆管21の全長に渡って均一な膜厚のクロムメッキを析出させることが可能となる。そして、この部分が前述の範囲Aの表面処理層となる。なお、クロムメッキ用の溶液31としては、クロムメッキを構成する材料を含有するクロム酸と硫酸の混合液を約50℃に加熱して用いる。   This is because the cladding tube 21 and the first anode rod 32 are long, so that the resistivity of the cladding tube 21 made of SUS (stainless steel) or the first anode rod 32 made of iron or the like is taken into account. In order to supply a uniform current over the entire length of 21, the distance between the cladding tube 21 and the first anode rod 32 is appropriately changed in accordance with the current attenuation of the surface due to the energization loss. In particular, when chrome plating is deposited on the surface of the long cladding tube 21, the current value for deposition is large (for example, about 200A), so the effect of the presence or absence of the above configuration is remarkable. It is possible to deposit chromium plating with a uniform film thickness over the entire length of the cladding tube 21. This portion becomes the surface treatment layer in the range A described above. As the chromium plating solution 31, a mixed solution of chromic acid and sulfuric acid containing a material constituting the chromium plating is heated to about 50 ° C. and used.

表面処理層の形成装置の下方側には、円筒状の下保持部材33が配置されており、又、表面処理層の形成装置の上方側には、円筒状の上保持部材34が配置されており、各々被覆管21の下端部、上端部を内部に保持している。下保持部材33においては、上部端栓22、細径部23、ねじ部24(図3(a)参照)の重さを利用して、下保持部材33の内部に上方から被覆管21が挿入された後、下保持部材33と被覆管21との間隙が安定しており、これにより、第1陽極棒32から被覆管21の端部への電流を、被覆管21の円周方向に均一に遮蔽できるようにしている。更に、下保持部材33自体を塩化ビニル等の絶縁材料から構成することにより、下保持部材33の内部側への電流を完全に遮蔽できるようにして、被覆管21の非メッキ部分の寸法を精度良く管理している。   A cylindrical lower holding member 33 is disposed on the lower side of the surface treatment layer forming apparatus, and a cylindrical upper holding member 34 is disposed on the upper side of the surface treatment layer forming apparatus. The lower end and the upper end of the cladding tube 21 are held inside. In the lower holding member 33, the cladding tube 21 is inserted into the lower holding member 33 from above using the weight of the upper end plug 22, the small diameter portion 23, and the screw portion 24 (see FIG. 3A). After that, the gap between the lower holding member 33 and the cladding tube 21 is stable, so that the current from the first anode rod 32 to the end of the cladding tube 21 is uniform in the circumferential direction of the cladding tube 21. It can be shielded. Further, the lower holding member 33 itself is made of an insulating material such as vinyl chloride, so that the current to the inner side of the lower holding member 33 can be completely shielded, and the dimension of the non-plated portion of the cladding tube 21 is accurate. I manage well.

更に、下保持部材33の上端部には、被覆管21の端部に近づくに従って、その開口面積が減少するテーパ部33aが形成されており、このテーパ部33aにより被覆管21に形成されるクロムメッキの終端部の形状が、正確に制御される。具体的には、被覆管21の端部に近づくに従って、テーパ部33aの傾斜により、第1陽極棒32からの電流が徐々に減少し、それに伴って、析出するクロムメッキの膜厚も連続的に減少するように形成される。クロムメッキの膜厚の減少量は、テーパ部33aの傾斜角度を変更することで変更することができ、所望の幅(被覆管21の長さ方向の幅)で、所定のクロムメッキの膜厚から膜厚0(非形成状態)とすることができる。   Furthermore, a taper portion 33a whose opening area decreases as it approaches the end portion of the cladding tube 21 is formed at the upper end portion of the lower holding member 33, and chromium formed on the cladding tube 21 by this taper portion 33a. The shape of the end portion of the plating is accurately controlled. Specifically, as the end of the cladding tube 21 is approached, the current from the first anode rod 32 gradually decreases due to the inclination of the taper portion 33a, and the film thickness of the deposited chromium plating is continuously increased accordingly. It is formed to decrease. The amount of decrease in the chromium plating film thickness can be changed by changing the inclination angle of the taper portion 33a, and a predetermined chromium plating film thickness with a desired width (width in the length direction of the cladding tube 21). Therefore, the film thickness can be set to 0 (non-formed state).

加えて、上保持部材34も、単に、被覆管21を保持しているだけのものではなく、上記下保持部材33と同様に、上方側のクロムメッキの終端部の形状の形成に寄与するものである。具体的には、上保持部材34も、電導性のない塩化ビニル等の絶縁材料から形成されており、更に、上保持部材34の下端部にも、被覆管21の端部に近づくに従って、その開口面積が減少するテーパ部34aが形成されている。このテーパ部34aの傾斜により、被覆管21の端部に近づくに従って、後述する第2陽極棒37からの電流が徐々に減少し、それに伴って、形成されるクロムメッキの膜厚も連続的に減少するように形成されて、所望の幅(被覆管21の長さ方向の幅)で、所定のクロムメッキの膜厚から膜厚0(非形成状態)とすることができる。   In addition, the upper holding member 34 does not simply hold the cladding tube 21 but contributes to the formation of the shape of the upper end portion of the chrome plating, like the lower holding member 33. It is. Specifically, the upper holding member 34 is also formed of an insulating material such as vinyl chloride having no electrical conductivity, and further, the lower end portion of the upper holding member 34 is moved closer to the end portion of the cladding tube 21. A tapered portion 34a is formed in which the opening area is reduced. Due to the inclination of the taper portion 34a, the current from the second anode rod 37, which will be described later, gradually decreases as the end of the cladding tube 21 is approached. It is formed so as to decrease, and the film thickness can be reduced to 0 (non-formed state) from a predetermined chromium plating film thickness with a desired width (width in the length direction of the cladding tube 21).

又、上保持部材34のテーパ部34aには、複数の穴又は隙間が設けられており、クロムメッキ析出時に発生するガスを利用し、発生ガスをテーパ部34aから適度に排出するようにして、クロムメッキの終端部が、安定して所望の位置、所望の形状になるようにしている。なお、上記テーパ部33a、34aに換えて、複数の段差を有する階段形状部としてもよい。   Further, the tapered portion 34a of the upper holding member 34 is provided with a plurality of holes or gaps, and by using the gas generated at the time of chrome plating deposition, the generated gas is appropriately discharged from the tapered portion 34a, The terminal portion of the chrome plating is stably in a desired position and a desired shape. Instead of the tapered portions 33a and 34a, a stepped portion having a plurality of steps may be used.

このように、上記下保持部材33、上保持部材34を用いることにより、非形成部分へのクロムメッキの析出を確実に防止すると共に、クロムメッキの終端部を所望の位置、所望の形状に安定して形成することができる。例えば、管状の被覆管21にクロムメッキを形成する場合でも、クロムメッキの終端部の位置が周方向に波打つことがなくなる。本発明の場合、従来の犠牲電極とは異なり、絶縁性の下保持部材33、上保持部材34にはクロムメッキが析出することがないため、クロムメッキを除去する等の作業が不要となり、施工時のコストダウンが可能となる。   As described above, by using the lower holding member 33 and the upper holding member 34, it is possible to reliably prevent the chrome plating from being deposited on the non-formed portion, and to stabilize the chrome plating terminal portion at a desired position and a desired shape. Can be formed. For example, even when chrome plating is formed on the tubular cladding tube 21, the position of the end portion of the chrome plating does not undulate in the circumferential direction. In the case of the present invention, unlike the conventional sacrificial electrode, the chrome plating does not deposit on the insulating lower holding member 33 and the upper holding member 34, so that the work such as removing the chrome plating is not necessary. Time cost can be reduced.

又、表面処理層の形成装置の上方側であり、第1陽極棒32の内側には、その下端側にリング状の仕切板35を有する円筒状の遮蔽部材36が配置されており、その遮蔽部材36の中央部分を被覆管21が貫通する配置である。そして、遮蔽部材36の内側に複数の第2陽極棒37が配置される。第2陽極棒37は、第1陽極棒32と同様に、上面から見て(図4(a)参照)、被覆管21の周囲の同心円上に、第2陽極棒37同士が、等間隔、若しくは、所定範囲内で略等間隔になるように配置されて、固定されている。なお、上記仕切板35、遮蔽部材36は、下保持部材33等と同様に、塩化ビニル等の絶縁材料から構成されている。又、ここでは、一例として、3本の第2陽極棒37を配置した構成を示している。このように、第1陽極棒32の内側に遮蔽部材36が配置され、その遮蔽部材36の更に内側に第2陽極棒37が配置された構成であり、遮蔽部材36が、第1陽極棒32から遮蔽部材36内の被覆管21への電流を遮蔽すると共に、遮蔽部材36内に配置された複数の第2陽極棒37からの電流が遮蔽部材36内の被覆管21に供給されるようにしている。   A cylindrical shielding member 36 having a ring-shaped partition plate 35 is disposed on the lower end side of the first anode rod 32 on the upper side of the surface treatment layer forming apparatus and inside the first anode rod 32. In this arrangement, the cladding tube 21 penetrates the central portion of the member 36. A plurality of second anode rods 37 are arranged inside the shielding member 36. Similarly to the first anode rod 32, the second anode rod 37 is viewed from above (see FIG. 4A), and the second anode rods 37 are equidistant from each other on a concentric circle around the cladding tube 21. Alternatively, they are arranged and fixed at substantially equal intervals within a predetermined range. The partition plate 35 and the shielding member 36 are made of an insulating material such as vinyl chloride, like the lower holding member 33 and the like. In addition, here, as an example, a configuration in which three second anode rods 37 are arranged is shown. Thus, the shielding member 36 is disposed inside the first anode rod 32, and the second anode rod 37 is disposed further inside the shielding member 36, and the shielding member 36 is the first anode rod 32. Current from the plurality of second anode rods 37 arranged in the shielding member 36 is supplied to the cladding tube 21 in the shielding member 36. ing.

第2陽極棒37の場合、クロムメッキ処理を行う被覆管21の対象範囲が広くないため、第1陽極棒32のように湾曲形状とする必要はなく、直線形状のものを用いている。上記構成により、被覆管21の所望の部分に、つまり、遮蔽部材36内の被覆管21に、薄い膜厚のクロムメッキを均一に析出させることが可能となり、この部分が前述の範囲Bの表面処理層となる。又、遮蔽部材36により、第1陽極棒32からの電流、第2陽極棒37からの電流が互いに干渉しないようにして、各々異なる膜厚のクロムメッキ層を形成することができる。   In the case of the second anode rod 37, since the target range of the cladding tube 21 to be chrome-plated is not wide, it is not necessary to have a curved shape like the first anode rod 32, and a linear shape is used. With the above configuration, it is possible to uniformly deposit a thin chrome plating on a desired portion of the cladding tube 21, that is, on the cladding tube 21 in the shielding member 36. It becomes a processing layer. Further, the shielding member 36 can form chromium plating layers having different thicknesses so that the current from the first anode rod 32 and the current from the second anode rod 37 do not interfere with each other.

そして、遮蔽部材36の下端側には、リング状の仕切板35が設けられており、この仕切板35の構成が、前述した遷移部Dの形成に寄与する。具体的には、仕切板35には、その中央部に被覆管21が貫通する円形状の貫通孔38が設けられており、この貫通孔38の内壁面38aが、遮蔽部材36の内部へ向かって、つまり、第1陽極棒32側から第2陽極棒37側へ向かって、貫通孔38の開口面積が減少するように傾斜したテーパ形状に形成されている。   And the ring-shaped partition plate 35 is provided in the lower end side of the shielding member 36, and the structure of this partition plate 35 contributes to formation of the transition part D mentioned above. Specifically, the partition plate 35 is provided with a circular through hole 38 through which the cladding tube 21 penetrates at the center thereof, and the inner wall surface 38 a of the through hole 38 faces the inside of the shielding member 36. That is, it is formed in a tapered shape inclined so that the opening area of the through hole 38 decreases from the first anode rod 32 side to the second anode rod 37 side.

これは、前述した下保持部材33のテーパ部33a等と同様な作用を狙ったものであり、テーパ形状の内壁面38aにより、被覆管21に形成されるクロムメッキの形状、つまり、遷移部Dの形状が制御される。詳細には、内壁面38aの近傍では、第1陽極棒32からの電流を遮蔽するのではなく、遮蔽部材36の内部側へ行くに従って、内壁面38aの傾斜により、第1陽極棒32から回り込む電流を徐々に減少させており、回り込む電流の減少に伴って、形成されるクロムメッキの膜厚も連続的に減少するように形成される。このクロムメッキの膜厚の減少量は、内壁面38aの傾斜角度の変更により変更することができ、所望の幅(被覆管21の長さ)で、範囲Aのクロムメッキの膜厚から範囲Bのクロムメッキの膜厚へ連続的に変化させることができる。   This aims at the same operation as the tapered portion 33a of the lower holding member 33 described above, and the shape of the chrome plating formed on the cladding tube 21 by the tapered inner wall surface 38a, that is, the transition portion D. The shape is controlled. Specifically, in the vicinity of the inner wall surface 38a, the current from the first anode rod 32 is not shielded, but the inner wall surface 38a goes around from the first anode rod 32 due to the inclination of the inner wall surface 38a toward the inner side of the shielding member 36. The current is gradually decreased, and the film thickness of the formed chrome plating is continuously reduced as the current flowing around decreases. The amount of decrease in the chrome plating film thickness can be changed by changing the inclination angle of the inner wall surface 38a, and the desired width (length of the cladding tube 21) can be changed from the chrome plating film thickness in the range A to the range B. The film thickness can be continuously changed to the chromium plating film thickness.

更に、貫通孔38の大きさ(被覆管21表面から貫通孔38の内壁面38aまでの距離)、仕切板35から第2陽極棒37の先端までの距離も、遷移部Dの形状を制御するためには重要であり、被覆管21表面から貫通孔38の内壁面38aまでの距離は、第1陽極棒32から回り込む電流を考慮して決定されており、第2陽極棒37の先端は、範囲Bと遷移部Dとの境界近傍になるように配置されている。又、テーパ形状の内壁面38aに換えて、複数の段差(階段形状部)を内壁面38aに設けるようにしてもよい。   Further, the size of the through hole 38 (distance from the surface of the cladding tube 21 to the inner wall surface 38a of the through hole 38) and the distance from the partition plate 35 to the tip of the second anode rod 37 also control the shape of the transition portion D. Therefore, the distance from the surface of the cladding tube 21 to the inner wall surface 38a of the through hole 38 is determined in consideration of the current flowing from the first anode rod 32, and the tip of the second anode rod 37 is It is arranged so as to be in the vicinity of the boundary between the range B and the transition part D. A plurality of steps (stepped portions) may be provided on the inner wall surface 38a instead of the tapered inner wall surface 38a.

加えて、本発明に係る表面処理層の形成装置では、上述した陽極棒32、37や遮蔽部材33、36の構成だけでなく、陰極側の構成、更には、電源の接続状態、電流の供給方法等にも、特有の工夫がなされている。   In addition, in the apparatus for forming a surface treatment layer according to the present invention, not only the configuration of the anode rods 32 and 37 and the shielding members 33 and 36 described above, but also the configuration on the cathode side, the connection state of the power source, and the supply of current The method has also been devised in a unique way.

具体的には、陰極側は、被覆管21の端部が電源側に接続される従来のような構成ではなく、図5に示すように、端部が電源側に接続された陰極部材41を中空の被覆管21の内部に挿入し、陰極部材41が有する複数の板バネ42aで、被覆管21の全長に渡って、その内壁面に均等な接触圧で接するように構成されている。この陰極部材41は、図6(a)に示すように、被覆管21と同等の長さを有する銅製の角棒42(導電部材)と、角棒42の表面に複数設けられ、外方側への弾性力を有する短冊状の板バネ42a(弾性部材)とを有するものである。   Specifically, the cathode side is not a conventional configuration in which the end portion of the cladding tube 21 is connected to the power source side, but a cathode member 41 whose end portion is connected to the power source side as shown in FIG. A plurality of leaf springs 42a that the cathode member 41 has are inserted into the hollow cladding tube 21 and are configured to contact the inner wall surface of the cladding tube 21 with an equal contact pressure over the entire length. As shown in FIG. 6A, the cathode member 41 is provided with a copper square bar 42 (conductive member) having a length equivalent to that of the cladding tube 21, and a plurality of the cathode members 41 on the surface of the square bar 42. And a strip-shaped leaf spring 42a (elastic member) having an elastic force.

これは、被覆管21が薄肉であり、又、SUS等で構成される被覆管21自体の固有抵抗が大きいことを考慮して、電気伝導度の良い材質である銅等を用い、更に、弾性力を有する板バネ42aを用いることにより、被覆管21の内壁面に均等な接触圧で多数接触するように構成することで、被覆管21表面に流れ込む電流が、安定して均等に通電するようにしたものである。又、板バネ42aは、被覆管21の大きさ、長さ、そして、通電のしやすさ等を考慮して、被覆管21の表面に均等な電流が流れるような数にする必要がある。上記構成により、制御棒の被覆管21のように長尺な被メッキ物に対しても、その表面に均等にクロムメッキを析出させることが可能となる。   In consideration of the fact that the cladding tube 21 is thin and has a large specific resistance of the cladding tube 21 itself made of SUS or the like, copper or the like having a good electrical conductivity is used. By using the plate spring 42a having a force, a large number of contacts are made to contact the inner wall surface of the cladding tube 21 with a uniform contact pressure, so that the current flowing into the surface of the cladding tube 21 is stably and evenly energized. It is a thing. The number of leaf springs 42a needs to be a number that allows a uniform current to flow on the surface of the cladding tube 21 in consideration of the size and length of the cladding tube 21 and the ease of energization. With the above configuration, it is possible to deposit chromium plating evenly on the surface of a long object to be plated such as the cladding tube 21 of the control rod.

なお、本発明に係る表面処理層の形成装置では、膜厚の異なる2段構造の表面処理層を形成しており、このためには、範囲Aにおける陰極部材41の接触密度を高くして、クロムメッキを析出し易くし、範囲Bにおける陰極部材41の接触密度を低くして、クロムメッキを形成し難くすることが望ましい。そのため、陰極部材41の角棒42に設ける板バネ42aの密度を、範囲Aに対応する部分を高く、範囲Bに対応する部分を低くするようにしてもよい。   In the surface treatment layer forming apparatus according to the present invention, the surface treatment layer having a two-stage structure with different film thicknesses is formed. For this purpose, the contact density of the cathode member 41 in the range A is increased, It is desirable to make chrome plating easy to deposit and to lower the contact density of the cathode member 41 in the range B so that it is difficult to form the chrome plating. Therefore, the density of the leaf springs 42a provided on the square bars 42 of the cathode member 41 may be increased in the portion corresponding to the range A and decreased in the portion corresponding to the range B.

又、陰極部材41の通電開始位置、つまり、一番電源側に近い板ばね42aの位置は、溶液31の水面より下側になるように配置することが望ましい。このことにより、被覆管21への通電による発熱を防止して、被覆管21の材質低下や変形等を抑制することが可能となる。   Further, it is desirable to arrange the energization start position of the cathode member 41, that is, the position of the leaf spring 42 a closest to the power supply side to be below the water surface of the solution 31. As a result, heat generation due to energization of the cladding tube 21 can be prevented, and deterioration of the material or deformation of the cladding tube 21 can be suppressed.

又、陰極部材の他の構成としては、図6(b)に示すようなものでもよい。図6(b)に示す陰極部材40は、導電性の良いワイヤ、例えば、銅製の細線に銀メッキを施したワイヤを筒状のメッシュに編んだメッシュ部材43(網状部材)の内部に、図6(a)に示した陰極部材41を挿入したものであり、これらを被覆管21の内部に挿入して用いるものである。上記陰極部材40を用いることで、陰極部材41と被覆管21との間にメッシュ部材43が挿入されることになり、陰極部材40が被覆管21の内壁面に、より多くの箇所で、より均等に、より安定して接触通電することができる。又、接触箇所の増加と共に接触面圧の低下を図ることができ、被覆管21の内壁面の接触傷や通電痕を防止することができる。   Moreover, as another structure of a cathode member, what is shown in FIG.6 (b) may be sufficient. The cathode member 40 shown in FIG. 6 (b) is provided inside a mesh member 43 (net-like member) in which a wire having good conductivity, for example, a wire obtained by silver-plating a thin copper wire is knitted into a cylindrical mesh. The cathode member 41 shown in FIG. 6A is inserted, and these are inserted into the cladding tube 21 and used. By using the cathode member 40, the mesh member 43 is inserted between the cathode member 41 and the cladding tube 21, and the cathode member 40 is placed on the inner wall surface of the cladding tube 21 in more places. Evenly and more stably, contact energization can be performed. In addition, the contact surface pressure can be reduced as the number of contact points increases, and contact scratches and energization marks on the inner wall surface of the cladding tube 21 can be prevented.

又、陰極部材の更なる他の構成例としては、被覆管21の内壁面に均等な接触圧を与える突起状の弾性部材であれば、図7(a)、(b)に示すようなものでもよい。具体的には、図7(a)の陰極部材44は、角棒42の表面に円筒状の板バネ44aを複数設けたものであり、板バネ44aの弾性変形により、被覆管21の内壁面と均等に接するようにしたものである。又、図7(b)の陰極部材45は、角棒42の表面に細線からなるリングワイヤ44aを複数設けたものであり、リングワイヤ45aの弾性変形により、被覆管21の内壁面と均等に接するようにしたものである。図7(a)、(b)に示した陰極部材44、45は、各々単独で用いて、被覆管21の内部に挿入してもよいし、図6(b)に示したように、メッシュ部材43の内部に挿入し、メッシュ部材43と共に被覆管21の内部に挿入するようにしてもよい。   Further, as another example of the structure of the cathode member, as shown in FIGS. 7A and 7B, if it is a protrusion-like elastic member that applies an even contact pressure to the inner wall surface of the cladding tube 21, But you can. Specifically, the cathode member 44 of FIG. 7A is provided with a plurality of cylindrical plate springs 44a on the surface of the square bar 42, and the inner wall surface of the cladding tube 21 is elastically deformed by the plate springs 44a. It is intended to touch evenly. Further, the cathode member 45 of FIG. 7B is provided with a plurality of thin wire wires 44a on the surface of the square bar 42, and is equal to the inner wall surface of the cladding tube 21 by elastic deformation of the ring wire 45a. It is something that comes in contact. The cathode members 44 and 45 shown in FIGS. 7 (a) and 7 (b) may be used alone and inserted into the cladding tube 21, or as shown in FIG. 6 (b). It may be inserted into the member 43 and inserted into the cladding tube 21 together with the mesh member 43.

加えて、陰極部材の更なる他の構成例としては、被覆管21の内壁面に均等な接触圧を得るものであれば、図8に示すようなものでもよい。具体的には、図8の陰極部材46は、長手方向にスリット47aが設けられた導電性の良い銅等の円柱状のパイプ47(導電部材)と、パイプ47の長手方向に沿って、その内部に配設された膨張可能なバルーン48(膨張部材)とを有する。ここで、パイプ47は、被覆管21と同等の長さを有し、被覆管21の中空部分に挿入可能であり、更に、バルーン48を膨張させたとき、パイプ47が被覆管21の内壁面に接触可能な大きさである。又、バルーン48は、内部を空気等により加圧すると膨張するものであり、耐熱性のある材料から構成される。使用時には、陰極部材46を被覆管21の中空部分に挿入し、チューブ48aから空気等を注入してバルーン48を膨らませて、パイプ47を被覆管21の内壁面に密着させるようにしている。   In addition, as another configuration example of the cathode member, as shown in FIG. 8, as long as an equal contact pressure is obtained on the inner wall surface of the cladding tube 21. Specifically, the cathode member 46 in FIG. 8 includes a cylindrical pipe 47 (conductive member) made of copper or the like having good conductivity and slits 47 a in the longitudinal direction, and the longitudinal direction of the pipe 47. And an inflatable balloon 48 (inflatable member) disposed therein. Here, the pipe 47 has a length equivalent to that of the cladding tube 21 and can be inserted into the hollow portion of the cladding tube 21. Further, when the balloon 48 is inflated, the pipe 47 becomes the inner wall surface of the cladding tube 21. It is a size that can be touched. The balloon 48 expands when the inside is pressurized with air or the like, and is made of a heat-resistant material. In use, the cathode member 46 is inserted into the hollow portion of the cladding tube 21 and air or the like is injected from the tube 48 a to inflate the balloon 48 so that the pipe 47 is in close contact with the inner wall surface of the cladding tube 21.

このように、上記構成の陰極部材を被覆管21の内部に挿入して用いることで、被覆管21の全長に渡って、その内壁面に均等な接触圧で良好な複数の接触状態を得ることができるので、被覆管21と陰極部材の接触箇所に通電等に因る温度変化があったとしても、被覆管21の表面での通電が一定となり、被覆管21の全長に渡って、均等なクロムメッキの膜厚を析出することができる。又、上記構成の陰極部材を用いる場合、陰極部材による傷や通電痕等が残らなくなり、傷の除去等の後処理が不要となり、コストダウンを図ることもできる。   In this way, by using the cathode member having the above configuration inserted into the cladding tube 21 and using the cathode member over the entire length of the cladding tube 21, a plurality of good contact states can be obtained with uniform contact pressure on the inner wall surface. Therefore, even if there is a temperature change due to energization or the like at the contact portion between the cladding tube 21 and the cathode member, the energization on the surface of the cladding tube 21 becomes constant, and it is even over the entire length of the cladding tube 21. A chromium plating film thickness can be deposited. In addition, when the cathode member having the above-described configuration is used, scratches and energization marks due to the cathode member do not remain, and post-processing such as removal of the scratches is not necessary, and cost can be reduced.

更に、本発明に係る表面処理層の形成装置では、図5に示すように、第1陽極棒32と、第2陽極棒37とに、電源38、電源39を各々独立して接続し、第1陽極棒32、第2陽極棒37に供給する電流を各々独立して制御するようにしている。具体的には、図9(a)に示すように、第1陽極棒32に電流を供給する電源38では、範囲Aに析出されるクロムメッキが所望の膜厚(第1所定膜厚)になるまでの所定時間t1間、電流I1(第1所定電流)が供給されるように制御されており、第2陽極棒37に電流を供給する電源39では、範囲Bに析出されるクロムメッキが、範囲Aより薄い所望の膜厚(第2所定膜厚)になるまでの所定時間t2間、電流I2(第2所定電流)が供給されるように制御されている。そして、電源39では、所定時間t2経過後には、電流が電流I3(第3所定電流)に低減されて、所定時間t1まで供給されるように制御されている。これは、範囲Bに所望の膜厚のクロムメッキ層を形成した後、電流を下げてしまうと、電位差が逆転し、腐食環境下となり、析出したクロムメッキの表面がエッチングされ、クロムメッキ自体の耐摩耗性、滑り性悪化により挿入性に影響を与えるおそれがあるので、クロムメッキが析出する電流値より低い電流I3を流し続けることで、クロムメッキの膜厚を厚くすることなく、クロムメッキの表面を良好に維持するためである。 Furthermore, in the apparatus for forming a surface treatment layer according to the present invention, as shown in FIG. 5, a power source 38 and a power source 39 are independently connected to the first anode rod 32 and the second anode rod 37, respectively. The current supplied to the first anode rod 32 and the second anode rod 37 is controlled independently. Specifically, as shown in FIG. 9A, in the power source 38 that supplies current to the first anode rod 32, the chromium plating deposited in the range A has a desired film thickness (first predetermined film thickness). It is controlled so that the current I1 (first predetermined current) is supplied for a predetermined time t 1 until it becomes, and the power source 39 that supplies the current to the second anode rod 37 has a chromium plating deposited in the range B. but between the predetermined time t 2 until thin desired thickness than the range a (second predetermined thickness), the current I2 (second predetermined current) is controlled to be supplied. Then, the power supply 39, and after a predetermined time t 2 has elapsed, the current is reduced to a current I3 (third predetermined current) is controlled to be supplied until the predetermined time t 1. This is because, if a chrome plating layer having a desired film thickness is formed in the range B and then the current is lowered, the potential difference is reversed and a corrosive environment is created, and the surface of the deposited chrome plating is etched. Since there is a possibility of affecting insertability due to wear resistance and slipperiness deterioration, by continuing to pass a current I3 lower than the current value at which the chrome plating is deposited, the chrome plating can be made without increasing the thickness of the chrome plating. This is for maintaining the surface well.

又、図9(b)に示すように、電源39における電流制御を、図9(a)とは逆にするようにしてもよい。具体的には、第2陽極棒37に電流を供給する電源39において、所定時間t1から所定時間t2を引いた所定時間t3まで、クロムメッキが析出する電流値より低い電流I3を第2陽極棒37に供給し、そして、所定時間t3経過後、所定時間t1まで、つまり、範囲Aに析出されるクロムメッキ及び範囲Bに析出されるクロムメッキが所望の膜厚になるまで、電流I3より大きく電流I1より小さい一定の電流I2を第2陽極棒37に供給するようにしている。ここで、第1陽極棒32に電流を供給する電源38では、図9(a)と同じ電流制御を行っている。 Further, as shown in FIG. 9B, the current control in the power source 39 may be reversed from that in FIG. 9A. Specifically, in the power supply 39 supplies current to the second anode rod 37, the predetermined time t 1 until the predetermined time t 3 when minus a predetermined time t 2, the lower current I3 from current value chromium plating is precipitated first is supplied to the second anode rod 37, and, after a predetermined time t 3 has elapsed, until the predetermined time t 1, that is, until the chrome plating is deposited chromium plating and range B is deposited range a becomes a desired thickness A constant current I2 larger than the current I3 and smaller than the current I1 is supplied to the second anode rod 37. Here, in the power supply 38 which supplies an electric current to the 1st anode rod 32, the same electric current control as Fig.9 (a) is performed.

なお、被覆管21にクロムメッキを良好に析出させるためには、メッキ前に、電流を逆流させて、つまり、陰極側の被覆管21から陽極棒32、37方向へ電流が流れるようにして、被覆管21の表面を活性化させた後、又は、塩酸、硝酸等の酸性薬品による酸洗浄によって、被覆管21の表面を活性化させた後、上記方法にてクロムメッキを析出させることが望ましい。   In order to favorably deposit the chromium plating on the cladding tube 21, the current is made to flow backward before plating, that is, the current flows from the cathode side cladding tube 21 toward the anode rods 32 and 37. After activating the surface of the cladding tube 21 or activating the surface of the cladding tube 21 by acid cleaning with acidic chemicals such as hydrochloric acid and nitric acid, it is desirable to deposit chromium plating by the above method. .

上述したように、本発明に係る表面処理層の形成装置を用いることにより、図3に示したような、異なる膜厚を有する2段構造の表面処理層を、同時に形成することができると共に、異なる膜厚の表面処理層間の遷移部を、連続的に膜厚が変化する所望の形状とすることができる。そして、このように形成された2段構造の表面処理層は、重ね合わせ部分がないため密着性が優れ、耐摩耗性が向上すると共に、遷移部を含めて、表面処理層の表面を滑らかにすることができる。又、表面処理層の膜厚を安定して均等に形成できると共に、表面処理層の遷移部、終端部の位置、形状を、所望の位置、形状に安定して制御することができる。更に、2段構造の表面処理層を同時に形成するため、施工工程を簡略化して、施工コストを低減することも可能である。上記表面処理層を原子炉用制御棒に施せば、耐摩耗性、挿入性の優れた製品を安価に提供可能となる。   As described above, by using the apparatus for forming a surface treatment layer according to the present invention, a surface treatment layer having a two-stage structure having different film thicknesses as shown in FIG. 3 can be formed simultaneously. The transition part between the surface treatment layers having different film thicknesses can have a desired shape in which the film thickness continuously changes. The two-stage surface treatment layer formed in this way has no overlapped portion, so it has excellent adhesion and wear resistance, and the surface of the surface treatment layer including the transition portion is smooth. can do. Further, the film thickness of the surface treatment layer can be formed stably and uniformly, and the position and shape of the transition part and the terminal part of the surface treatment layer can be stably controlled to a desired position and shape. Furthermore, since the surface treatment layer having a two-stage structure is formed at the same time, it is possible to simplify the construction process and reduce the construction cost. If the surface treatment layer is applied to the nuclear reactor control rod, a product with excellent wear resistance and insertability can be provided at low cost.

本発明では、主に、原子炉用制御棒への表面処理層の形成を一例として説明したが、本発明に係る表面処理層の形成方法及び形成装置は、原子炉用制御棒に限ることなく、膜厚の異なる多段構造の表面処理層が必要なものであれば、どのようなものでも適用可能であり、特に、長尺な被メッキ物への適用が好適である。   In the present invention, the formation of the surface treatment layer on the reactor control rod has been mainly described as an example. However, the method and apparatus for forming the surface treatment layer according to the present invention are not limited to the reactor control rod. As long as a surface treatment layer having a multistage structure with different film thicknesses is required, any surface treatment layer can be applied, and application to a long object to be plated is particularly suitable.

加圧水型原子炉に用いられる燃料集合体及び燃料集合体に挿入される制御棒(制御棒クラスタ)の一例を示す図である。It is a figure which shows an example of the control rod (control rod cluster) inserted in a fuel assembly used for a pressurized water reactor and a fuel assembly. 燃料集合体及び制御棒の関連部材に対して、稼働時、停止時における制御棒の位置関係を示す図である。It is a figure which shows the positional relationship of the control rod at the time of an operation | movement and a stop with respect to the related member of a fuel assembly and a control rod. 図3(a)は、制御棒全体の構造を示すものであり、図3(b)は、図3(a)のC領域の拡大図である。FIG. 3A shows the structure of the entire control rod, and FIG. 3B is an enlarged view of a region C in FIG. 図4(a)は、本発明に係る表面処理層の形成装置の概略の上面図であり、図4(b)は、その斜視図である。FIG. 4A is a schematic top view of a surface treatment layer forming apparatus according to the present invention, and FIG. 4B is a perspective view thereof. 図4(a)に示した表面処理層の形成装置の断面及び電源の接続状態を説明する図である。It is a figure explaining the cross section of the formation apparatus of the surface treatment layer shown to Fig.4 (a), and the connection state of a power supply. 被覆管に挿入される陰部側電極の一例を示す図である。It is a figure which shows an example of the genital side electrode inserted in a cladding tube. 被覆管に挿入される陰部側電極の他の例を示す図である。It is a figure which shows the other example of the genital side electrode inserted in a cladding tube. 被覆管に挿入される陰部側電極の更なる他の例を示す図である。It is a figure which shows the further another example of the genital side electrode inserted in a cladding tube. 本発明に係る表面処理層の形成装置に供給される電流の制御方法を説明するグラフである。It is a graph explaining the control method of the electric current supplied to the formation apparatus of the surface treatment layer which concerns on this invention.

符号の説明Explanation of symbols

1 燃料集合体
3 制御棒案内管
7 制御棒クラスタ
10 制御棒
21 被覆管
29 表面処理層
32 第1陽極棒
33 下保持部材
35 仕切板
36 遮蔽部材
37 第2陽極棒
38 電源(第1陽極棒側)
39 電源(第2陽極棒側)
41 陰極部材
DESCRIPTION OF SYMBOLS 1 Fuel assembly 3 Control rod guide tube 7 Control rod cluster 10 Control rod 21 Cladding tube 29 Surface treatment layer 32 First anode rod 33 Lower holding member 35 Partition plate 36 Shield member 37 Second anode rod 38 Power source (first anode rod) side)
39 Power supply (second anode rod side)
41 Cathode member

Claims (18)

表面処理層を構成する材料を含有し、表面処理層を形成する対象部材が浸漬された溶液と、
前記対象部材の周囲に互いに略等間隔に複数配置されると共に、前記溶液の深さ方向に向かって、前記対象部材との距離が短くなる湾曲形状の第1陽極棒と、
前記複数の第1陽極棒の内側に配置され、中心部分を前記対象部材が貫通する絶縁性の遮蔽部材と、
前記遮蔽部材の内側に配置され、前記対象部材の周囲に互いに略等間隔に複数配置された第2陽極棒と、
前記遮蔽部材の下端部に設けられた絶縁性の仕切板と、
前記仕切板の中心部に設けられ、前記対象部材が貫通すると共に、前記第1陽極棒側から前記第2陽極棒側に向かって、開口面積が減少するようなテーパ形状又は階段形状に形成された貫通孔と、
前記第1陽極棒、前記第2陽極棒に接続され、各々独立して電流を供給する複数の電源とを有することを特徴とする表面処理層の形成装置。
A solution containing a material constituting the surface treatment layer, in which a target member forming the surface treatment layer is immersed;
A plurality of first anode rods having a curved shape in which the distance between the target member and the target member is shortened in the depth direction of the solution, and a plurality of the anode members are arranged at substantially equal intervals around the target member.
An insulating shielding member that is disposed inside the plurality of first anode rods and through which the target member penetrates a central portion;
A plurality of second anode rods arranged inside the shielding member and arranged at substantially equal intervals around the target member;
An insulating partition plate provided at the lower end of the shielding member;
It is provided at the center of the partition plate and is formed in a tapered shape or a staircase shape so that the target member penetrates and the opening area decreases from the first anode rod side to the second anode rod side. Through holes,
An apparatus for forming a surface treatment layer, comprising: a plurality of power supplies connected to the first anode rod and the second anode rod, each independently supplying a current.
請求項1に記載の表面処理層の形成装置において、
前記対象部材の上端部、下端部を保持する絶縁性の上保持部材、下保持部材を設けると共に、前記上保持部材、前記下保持部材の前記対象部材を保持する側の端部を、前記対象部材の端部側に向かって、その開口面積が減少するようなテーパ形状又は階段形状としたことを特徴とする表面処理層の形成装置。
In the formation apparatus of the surface treatment layer of Claim 1,
An insulating upper holding member and a lower holding member for holding the upper end portion and the lower end portion of the target member are provided, and an end portion of the upper holding member and the lower holding member on the side holding the target member is provided as the target. An apparatus for forming a surface treatment layer, characterized by having a tapered shape or a stepped shape so that an opening area thereof decreases toward an end portion side of the member.
請求項1又は請求項2に記載の表面処理層の形成装置において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさの導電性の良い導電部材と、前記導電部材の表面に複数設けられ、導電性の良い材料から構成された弾性部材とを有する陰極部材を設け、
前記陰極部材を前記対象部材の中空部分に挿入して、前記弾性部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする表面処理層の形成装置。
In the surface treatment layer forming apparatus according to claim 1 or 2,
When the target member has a hollow shape,
A conductive member having a length equivalent to that of the target member and having a size capable of being inserted into a hollow portion of the target member, and a plurality of conductive members provided on the surface of the conductive member, and configured from a material having good conductivity. A cathode member having an elastic member formed,
An apparatus for forming a surface treatment layer, wherein the negative electrode member is inserted into a hollow portion of the target member, and the elastic member is brought into contact with an inner wall surface of the target member.
請求項3に記載の表面処理層の形成装置において、
前記弾性部材として、短冊状の板バネ、円筒状の板バネ、又は、リング状のワイヤを用いたことを特徴とする表面処理層の形成装置。
In the formation apparatus of the surface treatment layer of Claim 3,
A strip-shaped plate spring, a cylindrical plate spring, or a ring-shaped wire is used as the elastic member.
請求項3又は請求項4に記載の表面処理層の形成装置において、
前記陰極部材の外側に導電性のある筒状の網状部材を被せると共に、前記網状部材と共に前記陰極部材を前記対象部材の中空部分に挿入して、前記網状部材を介して、前記弾性部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする表面処理層の形成装置。
In the formation apparatus of the surface treatment layer of Claim 3 or Claim 4,
Covering the outside of the cathode member with a conductive cylindrical mesh member, inserting the cathode member together with the mesh member into a hollow portion of the target member, and passing the elastic member through the mesh member, An apparatus for forming a surface treatment layer, wherein the surface treatment layer is brought into contact with an inner wall surface of a target member.
請求項1又は請求項2に記載の表面処理層の形成装置において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさであり、長手方向にスリットが設けられた導電性の良い円柱状の導電部材と、前記導電部材の長手方向に沿って、前記導電部材の内部に配設された膨張可能な膨張部材とを有する陰極部材を備え、
前記陰極部材を前記対象部材の中空部分に挿入し、前記膨張部材を膨らませて、前記導電部材を前記対象部材の内壁面に接触させるようにしたことを特徴とする表面処理層の形成装置。
In the surface treatment layer forming apparatus according to claim 1 or 2,
When the target member has a hollow shape,
The conductive member has a length equivalent to that of the target member, is a size that can be inserted into a hollow portion of the target member, and has a cylindrical conductive member with good conductivity provided with a slit in the longitudinal direction. A negative electrode member having an inflatable expansion member disposed in the conductive member along the longitudinal direction;
An apparatus for forming a surface treatment layer, wherein the cathode member is inserted into a hollow portion of the target member, the expansion member is expanded, and the conductive member is brought into contact with an inner wall surface of the target member.
請求項1乃至請求項6のいずれかに記載の表面処理層の形成装置において、
一方の前記電源は、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給するように制御されると共に、
他方の前記電源は、前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給し、第2所定膜厚の表面処理層が形成された後には、前記第1陽極棒への電流の供給が停止されるまで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給するように制御されたことを特徴とする表面処理層の形成装置。
In the surface treatment layer forming apparatus according to any one of claims 1 to 6,
One power source is controlled to supply a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined thickness is formed,
The other power supply supplies a constant second predetermined current smaller than the first predetermined current to the second anode rod until a surface treatment layer having a second predetermined thickness smaller than the first predetermined thickness is formed. Then, after the surface treatment layer having the second predetermined thickness is formed, a third predetermined current lower than the current for forming the surface treatment layer is applied until the supply of current to the first anode rod is stopped. A surface treatment layer forming apparatus controlled to be supplied to a second anode rod.
請求項1乃至請求項6のいずれかに記載の表面処理層の形成装置において、
一方の前記電源は、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給するように制御されると共に、
他方の前記電源は、第1所定膜厚の表面処理層が形成される時間から前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成される時間を引いた所定時間まで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給し、前記第1所定膜厚及び前記第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給するように制御されたことを特徴とする表面処理層の形成装置。
In the surface treatment layer forming apparatus according to any one of claims 1 to 6,
One power source is controlled to supply a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined thickness is formed,
On the other hand, the other power source has a predetermined time obtained by subtracting a time for forming a surface treatment layer having a second predetermined film thickness smaller than the first film thickness from a time for forming a surface treatment layer having a first film thickness. A third predetermined current lower than a current for forming the surface treatment layer is supplied to the second anode rod, and the first treatment film is formed until the surface treatment layer having the first predetermined film thickness and the second predetermined film thickness is formed. An apparatus for forming a surface treatment layer, wherein the apparatus is controlled to supply a constant second predetermined current smaller than a predetermined current to the second anode rod.
表面処理層が形成される対象部材を、原子炉用制御棒の被覆管とし、
請求項1乃至請求項8のいずれかに記載の表面処理層の形成装置を用いて、
前記被覆管に異なる膜厚の2段構造の表面処理層を形成すると共に、異なる膜厚の表面処理層の間を、所定範囲内で連続的に膜厚が変化するように形成したことを特徴とする表面処理層が形成された原子炉用制御棒。
The target member on which the surface treatment layer is formed is a cladding tube of a control rod for a nuclear reactor,
Using the surface treatment layer forming apparatus according to any one of claims 1 to 8,
A surface treatment layer having a two-stage structure with different film thicknesses is formed on the cladding tube, and the surface treatment layers with different film thicknesses are formed so as to continuously change within a predetermined range. A control rod for a nuclear reactor in which a surface treatment layer is formed.
表面処理層を構成する材料を含有する溶液に、表面処理層を形成する対象部材を浸漬し、
前記対象部材の周囲に互いに略等間隔に複数配置されると共に、前記溶液の深さ方向に向かって、前記対象部材との距離が短くなる湾曲形状の第1陽極棒に、一方の電源から電流を供給し、
前記複数の第1陽極棒の内側の絶縁性の遮蔽部材の内側に配置され、中心部分を貫通する前記対象部材の周囲に互いに略等間隔に複数配置された第2陽極棒に、他方の電源から電流を供給し、
前記遮蔽部材の下端部に設けられた絶縁性の仕切板の中心部に、前記対象部材が貫通すると共に、前記第1陽極棒側から前記第2陽極棒側に向かって、開口面積が減少するようなテーパ形状又は階段形状の貫通孔を形成して、前記第1陽極棒から前記遮蔽部材の内部に回り込む電流を、徐々に減少させることを特徴とする表面処理層の形成方法。
Immerse the target member that forms the surface treatment layer in a solution containing the material constituting the surface treatment layer,
A plurality of the anode members are arranged at substantially equal intervals around the target member, and a current from one power source is supplied to the curved first anode rod whose distance from the target member becomes shorter in the depth direction of the solution. Supply
The second power source is disposed on the inner side of the insulating shielding member on the inner side of the plurality of first anode rods, and a plurality of second anode rods are arranged at substantially equal intervals around the target member penetrating the central portion. Supply current from
The target member penetrates through the center of the insulating partition plate provided at the lower end of the shielding member, and the opening area decreases from the first anode rod side to the second anode rod side. A method for forming a surface treatment layer, characterized by forming a tapered or stepped through-hole and gradually reducing the current flowing from the first anode rod into the shielding member.
請求項10に記載の表面処理層の形成方法において、
前記対象部材の上端部、下端部を保持する絶縁性の上保持部材、下保持部材における前記対象部材を保持する側の端部を、前記対象部材の端部側に向かって、その開口面積が減少するようなテーパ形状又は階段形状に形成して、前記第1陽極棒、前記第2陽極棒からの電流を、徐々に減少させることを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer according to claim 10,
The insulating upper holding member that holds the upper end portion and the lower end portion of the target member, and the end portion of the lower holding member that holds the target member toward the end side of the target member has an opening area thereof A method of forming a surface treatment layer, wherein the surface treatment layer is formed in a taper shape or a step shape that decreases, and the current from the first anode rod and the second anode rod is gradually reduced.
請求項10又請求項11に記載の表面処理層の形成方法において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさの導電性の良い導電部材と、前記導電部材の表面に複数設けられ、導電性の良い材料から構成された弾性部材とを有する陰極部材を、前記対象部材の中空部分に挿入して、前記弾性部材を前記対象部材の内壁面に接触させることを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer of Claim 10 or Claim 11,
When the target member has a hollow shape,
A conductive member having a length equivalent to that of the target member and having a size capable of being inserted into a hollow portion of the target member, and a plurality of conductive members provided on the surface of the conductive member, and configured from a material having good conductivity. A method for forming a surface treatment layer, comprising: inserting a negative electrode member having a formed elastic member into a hollow portion of the target member and bringing the elastic member into contact with an inner wall surface of the target member.
請求項12に記載の表面処理層の形成方法において、
前記弾性部材は、短冊状の板バネ、円筒状の板バネ、又は、リング状のワイヤであることを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer according to claim 12,
The method of forming a surface treatment layer, wherein the elastic member is a strip-shaped plate spring, a cylindrical plate spring, or a ring-shaped wire.
請求項12又は請求項13に記載の表面処理層の形成方法において、
前記陰極部材の外側に導電性のある筒状の網状部材を被せ、前記網状部材と共に前記陰極部材を前記対象部材の中空部分に挿入して、前記網状部材を介して、前記弾性部材を前記対象部材の内壁面に接触させることを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer according to claim 12 or claim 13,
Covering the outside of the cathode member with a conductive cylindrical mesh member, inserting the cathode member together with the mesh member into a hollow portion of the target member, and passing the elastic member through the mesh member to the target A method for forming a surface treatment layer, which comprises contacting an inner wall surface of a member.
請求項10又請求項11に記載の表面処理層の形成方法において、
前記対象部材が中空形状で有る場合、
前記対象部材と同等の長さを有し、前記対象部材の中空部分に挿入可能な大きさであり、長手方向にスリットが設けられた導電性の良い円柱状の導電部材と、前記導電部材の長手方向に沿って、前記導電部材の内部に配設された膨張可能な膨張部材とを有する陰極部材を前記対象部材の中空部分に挿入し、
前記膨張部材を膨らませて、前記導電部材を前記対象部材の内壁面に接触させることを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer of Claim 10 or Claim 11,
When the target member has a hollow shape,
The conductive member has a length equivalent to that of the target member, is a size that can be inserted into a hollow portion of the target member, and has a cylindrical conductive member with good conductivity provided with a slit in the longitudinal direction. Along the longitudinal direction, a negative electrode member having an inflatable expansion member disposed inside the conductive member is inserted into a hollow portion of the target member,
A method for forming a surface treatment layer, wherein the expansion member is expanded, and the conductive member is brought into contact with an inner wall surface of the target member.
請求項10乃至請求項15のいずれかに記載の表面処理層の形成方法において、
一方の前記電源が、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給すると共に、
他方の前記電源が、前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給し、第2所定膜厚の表面処理層が形成された後には、前記第1陽極棒への電流の供給が停止されるまで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給することを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer in any one of Claims 10 thru | or 15,
One of the power supplies supplies a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined film thickness is formed,
The other power source supplies a constant second predetermined current smaller than the first predetermined current to the second anode rod until a surface treatment layer having a second predetermined film thickness that is thinner than the first predetermined film thickness is formed. Then, after the surface treatment layer having the second predetermined thickness is formed, a third predetermined current lower than the current for forming the surface treatment layer is applied until the supply of current to the first anode rod is stopped. A method for forming a surface treatment layer, wherein the surface treatment layer is supplied to a second anode rod.
請求項10乃至請求項15のいずれかに記載の表面処理層の形成方法において、
一方の前記電源が、第1所定膜厚の表面処理層が形成されるまで、一定の第1所定電流を前記第1陽極棒に供給すると共に、
他方の前記電源が、第1所定膜厚の表面処理層が形成される時間から前記第1所定膜厚より薄い第2所定膜厚の表面処理層が形成される時間を引いた所定時間まで、表面処理層が形成される電流より低い第3所定電流を前記第2陽極棒に供給し、前記第1所定膜厚及び前記第2所定膜厚の表面処理層が形成されるまで、前記第1所定電流より小さい一定の第2所定電流を前記第2陽極棒に供給することを特徴とする表面処理層の形成方法。
In the formation method of the surface treatment layer in any one of Claims 10 thru | or 15,
One of the power supplies supplies a constant first predetermined current to the first anode rod until a surface treatment layer having a first predetermined film thickness is formed,
The other power source is a predetermined time obtained by subtracting a time for forming a surface treatment layer having a second predetermined film thickness thinner than the first film thickness from a time for forming a surface treatment layer having a first film thickness. A third predetermined current lower than a current for forming the surface treatment layer is supplied to the second anode rod, and the first treatment film is formed until the surface treatment layer having the first predetermined film thickness and the second predetermined film thickness is formed. A method for forming a surface treatment layer, wherein a second predetermined current smaller than a predetermined current is supplied to the second anode rod.
表面処理層が形成される対象部材を、原子炉用制御棒の被覆管とし、
請求項10乃至請求項17のいずれかに記載の表面処理層の形成方法を用いて、
前記被覆管に異なる膜厚の2段構造の表面処理層を形成すると共に、異なる膜厚の表面処理層の間を、所定範囲内で連続的に膜厚が変化するように形成することを特徴とする表面処理層が形成された原子炉用制御棒。
The target member on which the surface treatment layer is formed is a cladding tube of a control rod for a nuclear reactor,
Using the method for forming a surface treatment layer according to any one of claims 10 to 17,
A surface treatment layer having a two-stage structure with different film thicknesses is formed on the cladding tube, and the surface treatment layers with different film thicknesses are formed so as to continuously change within a predetermined range. A control rod for a nuclear reactor in which a surface treatment layer is formed.
JP2005033096A 2005-02-09 2005-02-09 Surface treatment layer forming apparatus, surface treatment layer forming method, and nuclear reactor control rod having the surface treatment layer formed thereon Active JP3692367B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033096A JP3692367B1 (en) 2005-02-09 2005-02-09 Surface treatment layer forming apparatus, surface treatment layer forming method, and nuclear reactor control rod having the surface treatment layer formed thereon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033096A JP3692367B1 (en) 2005-02-09 2005-02-09 Surface treatment layer forming apparatus, surface treatment layer forming method, and nuclear reactor control rod having the surface treatment layer formed thereon

Publications (2)

Publication Number Publication Date
JP3692367B1 JP3692367B1 (en) 2005-09-07
JP2006219710A true JP2006219710A (en) 2006-08-24

Family

ID=35033256

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033096A Active JP3692367B1 (en) 2005-02-09 2005-02-09 Surface treatment layer forming apparatus, surface treatment layer forming method, and nuclear reactor control rod having the surface treatment layer formed thereon

Country Status (1)

Country Link
JP (1) JP3692367B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903930A (en) * 2012-12-26 2014-07-02 核工业西南物理研究院 Glow discharge electrode with gap electrical insulation structure
CN103903931A (en) * 2012-12-26 2014-07-02 核工业西南物理研究院 Embedded glow discharge electrode

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103225094B (en) * 2013-05-20 2015-09-09 深圳市博敏电子有限公司 The guard method of a kind of blind hole plate plating single-sided current
CN111321452B (en) * 2018-12-17 2021-06-08 联合汽车电子有限公司 Deep inner hole part rack plating structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903930A (en) * 2012-12-26 2014-07-02 核工业西南物理研究院 Glow discharge electrode with gap electrical insulation structure
CN103903931A (en) * 2012-12-26 2014-07-02 核工业西南物理研究院 Embedded glow discharge electrode

Also Published As

Publication number Publication date
JP3692367B1 (en) 2005-09-07

Similar Documents

Publication Publication Date Title
JP6139860B2 (en) Electrolytic machining tool and electrolytic machining system
JP3692367B1 (en) Surface treatment layer forming apparatus, surface treatment layer forming method, and nuclear reactor control rod having the surface treatment layer formed thereon
Sharma et al. Wire electrochemical micromachining: An overview
JP6071742B2 (en) Electrolytic machining tool, electrolytic machining system, and method for manufacturing perforated member
KR101152406B1 (en) arc plasma torch
JP6008792B2 (en) Electrochemical machining tool and electrolytic machining system
CN103386521A (en) Micro-hole electric discharge and electrolytic combined machining multi-channel symmetrical flushing device and method
JP2010285919A (en) Method of manufacturing impeller of centrifugal rotary machine and impeller of centrifugal rotary machine
CN103325432A (en) Liquid target system
Sharma et al. Through-holes micromachining of alumina using a combined pulse-feed approach in ECDM
Debnath et al. Wire electrochemical machining process: overview and recent advances
JPH11123562A (en) Outside cap for arc spot welding and welding torch using the same
US20170059676A1 (en) Gradient coil and manufacturing method
JP5940427B2 (en) Electrolytic machining tool and electrolytic machining system
Mishra et al. Fabrication of 3D microstructures in glass by direct writing electrochemical discharge machining
US9341367B2 (en) Tube sheet of steam generator having anticorrosive layer and manufacturing method thereof
KR101436240B1 (en) integral anode for electrolytic reduction
JP2014167880A (en) Electrode for submerged plasma and submerged plasma generator
Zhao et al. Fabrication of optimized streamlined micro nozzles by hybrid electrochemical techniques
JP2011129515A (en) Electrode for discharge lamp
CN111715955B (en) Large length-diameter ratio thick-wall array micro-flow channel pipe electrode, electroforming core mould and manufacturing method
KR101627368B1 (en) Filler metal shape for welding
JP2004200406A (en) Coil member
JP2007136446A (en) Plasma spray device and its electrode
JP2013170500A (en) Method of manufacturing impeller of centrifugal rotary machine

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050524

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050620

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3692367

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090624

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100624

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110624

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120624

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130624

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250