JP2006219708A - Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor - Google Patents

Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor Download PDF

Info

Publication number
JP2006219708A
JP2006219708A JP2005033026A JP2005033026A JP2006219708A JP 2006219708 A JP2006219708 A JP 2006219708A JP 2005033026 A JP2005033026 A JP 2005033026A JP 2005033026 A JP2005033026 A JP 2005033026A JP 2006219708 A JP2006219708 A JP 2006219708A
Authority
JP
Japan
Prior art keywords
solution
copper
copper etching
electrolyte
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005033026A
Other languages
Japanese (ja)
Inventor
Shunichi Tsukahara
俊一 塚原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daito Kakoki Kk
KURATA YOSHITADA
Original Assignee
Daito Kakoki Kk
KURATA YOSHITADA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daito Kakoki Kk, KURATA YOSHITADA filed Critical Daito Kakoki Kk
Priority to JP2005033026A priority Critical patent/JP2006219708A/en
Publication of JP2006219708A publication Critical patent/JP2006219708A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • ing And Chemical Polishing (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrolytic regeneration method in a non-diaphragm electrolytic solution tank for copper-etching deteriorated solution by a ferric chloride solution, and to provide an electrolytic regenerator therefor. <P>SOLUTION: In copper-etching reaction by a ferric chloride solution, copper is dissolved by ferric chloride, so as to be changed into cupric chloride, and the ferric chloride itself is reduced into ferrous chloride, and its etching capacity is deteriorated. The deteriorated solution is charged inside a non-diaphragm electrolytic solution tank, and reaction in a direction reverse to the etching reaction is allowed to occur. At that time, the cupric chloride in the deteriorated solution is decomposed and is returned to the original metal copper, and chlorine ions produced perform electrolytic regeneration reaction of oxidizing the ferrous chloride in the deteriorated solution and returning the same to the original ferric chloride, and self-feed a chlorine source required for the oxidation of the ferrous chloride, thus there is no need of feeding the whole quantity of the chlorine source required for the reaction such as hydrochloric acid and salt as in the case of a membrane electrolytic process. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、プリント基板製作における塩化第二鉄による銅エッチング工程で発生する劣化液を再生する電解再生方法及びその電解再生装置に関する。   The present invention relates to an electrolytic regeneration method and an electrolytic regeneration apparatus for regenerating a deteriorated liquid generated in a copper etching process using ferric chloride in printed circuit board production.

現在、塩化第二鉄による銅エッチング劣化液は、劣化液に直接塩素ガス吹き込む「塩素ガス吹き込み法」によって再生されている。上記塩素は液体塩素の形で貯蔵されるが、毒・劇物取締法、高圧ガス取締法などの対象になっている有毒で危険な物質であるため、現状は、精密作業である上記銅エッチング現場で塩素を使用して再生することはなく、現場から離れた場所にある塩素使用設備を有する工場に輸送して再生している。   At present, the copper etching deterioration liquid by ferric chloride is regenerated by the “chlorine gas blowing method” in which chlorine gas is directly blown into the deterioration liquid. Although the above chlorine is stored in the form of liquid chlorine, it is a toxic and dangerous substance that is subject to the Poisonous and Deleterious Substances Control Law, the High Pressure Gas Control Law, etc. They are not regenerated using chlorine at the site, but are transported and regenerated to a factory having a chlorine-using facility located away from the site.

上記劣化液を銅エッチング現場で、銅エッチングの劣化液を安全に再生できれば、エッチング機械における銅エッチングの入替えと再生工場との往復輸送の手間を省くことができるのみならず、再生電解液槽とエッチング機械とを連結して運転することにより、時間の経過に従って、銅エッチング液の銅エッチング能力が低下するのを防止し、銅エッチング速度を終始一定に保持することができる。   If the deterioration solution of copper etching can be safely regenerated at the copper etching site, it is possible not only to save the trouble of replacing the copper etching in the etching machine and the round-trip transportation with the recycling factory, By connecting and operating with an etching machine, it is possible to prevent the copper etching ability of the copper etching solution from decreasing with time, and to keep the copper etching rate constant throughout.

そこで、強腐食性の銅エッチングの劣化液を運搬する作業をなくして、危険物質である塩素ガスを使用しないで銅エッチング劣化液を再生する方法として、塩素酸ナトリウム法、オゾン法のような化学薬品を使用する方法、また特許第2689076号、特開2000−178768号などに示されているようなイオン交換膜を隔膜として使用する隔膜電解法が提案されている。
特許第2689076号特許公報 特開2000−178768号公開特許公報
Therefore, chemical methods such as the sodium chlorate method and the ozone method can be used to eliminate the work of transporting the highly corrosive copper etching deterioration solution and regenerate the copper etching deterioration solution without using chlorine gas, which is a hazardous substance. A method using a chemical, and a diaphragm electrolysis method using an ion exchange membrane as a diaphragm as disclosed in Japanese Patent No. 2689076 and Japanese Patent Laid-Open No. 2000-178768 have been proposed.
Japanese Patent No. 2689076 Japanese Patent Laid-Open No. 2000-178768

しかしながら、上記化学薬品による劣化液再生方法の場合、塩素酸ナトリウムは有機物と接触して火災を起こす恐れがある点で、又オゾン法はオゾン濃度20%以上で爆発する恐れがある点で、取扱い上の危険性が避けられない恐れがある。
また、隔膜電解液槽を使用する方法は、陽極と陰極とを陰イオン交換膜製の隔膜で仕切り、塩素イオン(Cl-)のみを陰極側から陽極側へ隔膜透過させて、陽極表面における酸化反応を利用するため、陰極側には反応に必要な塩素イオン全量分相当の塩酸ないし塩素化合物を外部から供給する必要がある。
However, in the case of the method for regenerating degraded liquids with the above chemicals, sodium chlorate is in contact with organic substances and may cause a fire, and the ozone method may cause explosion at an ozone concentration of 20% or more. The above danger may be unavoidable.
In addition, the method using a diaphragm electrolyte bath is to oxidize the anode surface by partitioning the anode and the cathode with a membrane made of an anion exchange membrane and allowing only chloride ions (Cl ) to permeate from the cathode side to the anode side. In order to use the reaction, it is necessary to supply hydrochloric acid or a chlorine compound corresponding to the total amount of chlorine ions required for the reaction from the outside to the cathode side.

更に、隔膜電解液槽では、隔膜によるIR(電圧)ドロップが避けられないため、その分消費電力が増大する不都合がある。
本発明は、このような点に鑑みなされたもので、上記銅エッチング劣化液を銅エッチング現場で再生して、再生工場との間の上記液往復輸送をなくすことにあり、そのために銅エッチング機械内で生じる劣化液の一部を電解再生槽に送って、ここで再生された銅エッチング溶液を銅エッチング機械に送り戻すという液循環をすれば、上記の銅エッチング反応と再生反応とが併行して同時進行することになり、銅エッチング溶液の劣化を阻止して銅エッチング能力の低下を防止することができるので、結果として上記銅エッチング機械における処理速度を一定に保持することができる塩化第二鉄による銅エッチング劣化液の電解再生方法及びその電解再生装置を提供することを目的としている。
Further, in the diaphragm electrolyte bath, IR (voltage) drop due to the diaphragm is unavoidable, and there is a disadvantage that the power consumption increases accordingly.
The present invention has been made in view of the above points, and is to regenerate the copper etching deterioration liquid at a copper etching site, thereby eliminating the liquid reciprocal transport between the recycling factory and the copper etching machine. If the liquid circulation of sending a part of the deteriorated liquid generated in the tank to the electrolytic regeneration tank and sending the regenerated copper etching solution back to the copper etching machine is performed, the above copper etching reaction and regeneration reaction are performed in parallel. As a result, it is possible to prevent the copper etching solution from deteriorating and prevent the copper etching performance from being lowered. As a result, the second chloride chloride can keep the processing speed constant in the copper etching machine. It is an object of the present invention to provide an electrolytic regeneration method and an electrolytic regeneration apparatus for a copper etching deterioration solution using iron.

このため、請求項1記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法は、塩化第二鉄による銅エッチング劣化液の電解再生方法において、上記銅エッチング劣化液内に固定陽極と回転するドラム型の回転陰極とが間隔を存して極間距離をもって設置され、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に形成され上記両極間を仕切る隔膜のない無隔膜電解液槽に、上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅エッチング劣化液を電解液として張り込み、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で上記電解液中の溶解塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを備えた上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転することを特徴としている。 For this reason, the electrolytic regeneration method of the copper etching deterioration solution with ferric chloride according to the first aspect of the present invention is the method of electrolytic regeneration of the copper etching deterioration solution with ferric chloride. And a drum-type rotating cathode rotating with a gap between them, and the stationary anode and the rotating cathode are formed in the copper etching deterioration solution, and there is no diaphragm separation between the electrodes. The ferric chloride is changed into ferrous chloride by the copper etching, and the copper etching deterioration solution in which the copper etching ability is deteriorated is put in the liquid tank as an electrolytic solution, and a part of the rotary cathode is the electrolytic solution. While rotating while immersed in the electrode, a voltage is applied between the two electrodes to oxidize the deteriorated ferrous chloride in the copper etching deterioration solution and to restore the original chloride chloride. Returning to iron, the fixed anode having the function of regenerating the copper etching degradation solution into a copper etching solution, and simultaneously decomposing the dissolved cupric chloride in the electrolyte solution by a reduction reaction to precipitate solid metal copper, While repeating the cycle operation of moving the deposited solid metal copper onto the electrolyte surface to remove and remove it, and submerging in the electrolyte again with the rotation of the rotating cathode to deposit the copper, the above-mentioned The above-mentioned diaphragm electrolyte bath equipped with the above-mentioned rotating cathode having a function of performing copper removal in the electrolyte solution is maintained at an electrolyte temperature of 15 to 35 ° C. and a free hydrochloric acid amount in the solution of 0.3 to 3.0%. The cathode current density is adjusted to a range of 10 to 25 A / dm 2 and the operation is performed.

請求項2記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法は、請求項1記載の方法において、陰極用電導ケーブルを中空構造の陰極回転軸内に設置して、上記陰極用電導ケーブルの一端を上記回転陰極と結線し、他端を上記中空構造の回転軸に設けた摺動コネクターの回転側端子に結線し、上記陰極用電導ケーブルは上記回転陰極とともに回転するので、上記回転陰極面全体は回転中も通電されていて、上記回転陰極面の電解液中部分において上記析出銅の形成が行われ、上記回転陰極が回転して上記電解液面から出た部分では、電解作用は行われないが通電されているので、上記析出銅は上記電解液を同伴してくる上記電解液によって再溶解されることなく上記回転陰極表面に付着した上記析出銅をスクレーパで機械的に剥離除去することを特徴としている。   According to a second aspect of the present invention, there is provided a method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride according to the first aspect of the present invention. Since one end of the conductive cable is connected to the rotary cathode, the other end is connected to the rotary terminal of the sliding connector provided on the rotary shaft of the hollow structure, and the negative electrode conductive cable rotates together with the rotary cathode. The entire rotating cathode surface is energized during rotation, and the formed copper is formed in the electrolyte solution portion of the rotating cathode surface, and in the portion where the rotating cathode rotates and exits from the electrolyte solution surface, Since the electrolytic action is not performed, but the current is energized, the deposited copper adheres to the surface of the rotating cathode without being redissolved by the electrolytic solution accompanying the electrolytic solution. It is characterized by separating and removing.

請求項3記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法は、請求項1又は2記載の方法において、上記塩化第二鉄による銅エッチングでは、上記銅は塩化第二鉄に溶解されて塩化第二銅に変化し、上記塩化第二鉄自身は上記塩化第一鉄に還元されて上記銅エッチング能力が劣化して、上記劣化液化するが、上記銅エッチング劣化液を無隔膜電解液槽に入れて外部から電気エネルギーを与えることにより、上記銅エッチング反応を逆方向に戻す反応を起生させ、上記銅エッチング劣化液中の上記塩化第二銅を分解して元の金属銅に戻し、そのときの分解反応で生じる塩素イオンを塩素源として自己供給して上記塩化第一鉄を酸化して元の上記塩化第二鉄に戻すことを特徴としている。   The method for electrolytic regeneration of a copper etching deterioration solution with ferric chloride according to the present invention as set forth in claim 3 is the method according to claim 1 or 2, wherein the copper is ferric chloride in the copper etching with ferric chloride. The ferric chloride itself is reduced to the ferrous chloride and the copper etching ability deteriorates and liquefies. By applying electric energy from the outside in a diaphragm electrolyte bath, a reaction for returning the copper etching reaction to the reverse direction is generated, and the cupric chloride in the copper etching deterioration solution is decomposed to decompose the original metal. Returning to copper, chlorine ions generated by the decomposition reaction at that time are self-supplied as a chlorine source to oxidize the ferrous chloride and return it to the original ferric chloride.

請求項4記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法は、請求項1〜3のいずれか1項に記載の方法において、上記無隔膜電解液層の再生電解液槽と上記エッチング機械の劣化液槽との間を上記電解液が循環するように経路を形成し上記の銅エッチング劣化液と再生電解液を少量づつ常時入れ替えることにより、上記銅エッチング液の劣化と上記銅エッチング劣化液の再生が同時進行し、上記銅エッチング速度を常時安定させることを特徴としている。   The method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride according to the present invention as set forth in claim 4 is the method according to any one of claims 1 to 3, wherein the regeneration electrolyte tank for the diaphragm electrolyte layer is used. The deterioration of the copper etching solution and the above are formed by forming a path so that the electrolyte solution circulates between the solution and the deterioration solution tank of the etching machine, and constantly replacing the copper etching deterioration solution and the regenerated electrolyte solution little by little. Regeneration of the copper etching deterioration solution proceeds simultaneously, and the copper etching rate is constantly stabilized.

請求項5記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生装置は、塩化第二鉄による銅エッチング劣化液の電解再生装置において、上記銅エッチング劣化液内に固定される固定陽極と上記固定陽極と間隔を存して極間距離をもって設置されるドラム型の回転陰極と、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に配設される上記両極間を仕切る隔膜のない無隔膜電解液槽と、上記固定陽極に上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅劣化液を上記無隔膜電解液槽に電解液として張り込まれた電解液とを備え、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で液中の溶解した上記塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを有する上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転することを特徴としている。 The electrolytic regeneration apparatus for a copper etching deterioration solution using ferric chloride according to the present invention according to claim 5 is the fixed anode fixed in the copper etching deterioration liquid in the electrolytic regeneration apparatus for copper etching deterioration solution using ferric chloride. A drum-type rotating cathode installed at a distance between the fixed anode and the fixed anode, and a diaphragm for partitioning the fixed electrode and the rotating cathode in the copper etching deterioration liquid. There is not a diaphragm electrolyte bath, and the copper anode solution in which the ferric chloride is changed to ferrous chloride by the copper etching and the copper etching ability is deteriorated in the fixed anode is electrolyzed in the diaphragm electrolyte bath. Deterioration of copper etching by applying a voltage between the electrodes while rotating a part of the rotating cathode immersed in the electrolytic solution. The fixed anode having the function of oxidizing the deteriorated ferrous chloride and returning it to the original ferric chloride to regenerate the copper etching deterioration solution into a copper etching solution, and simultaneously dissolving in the solution by a reduction reaction The cupric chloride is decomposed, solid metal copper is deposited, the deposited solid metal copper is moved onto the electrolyte surface, peeled and removed, and again in the electrolyte solution along with the rotation of the rotating cathode. The above-mentioned diaphragm electrolyte bath having the above-mentioned rotating cathode having a function of removing copper in the electrolytic solution while repeating a cycle operation of immersing and depositing the copper is attached to an electrolytic solution temperature of 15 to 35 ° C. The operation is characterized in that the amount of free hydrochloric acid in the liquid is maintained at 0.3 to 3.0%, and the cathode current density is adjusted in the range of 10 to 25 A / dm 2 .

請求項1記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法によれば塩化第二鉄による銅エッチング劣化液の電解再生方法において、上記銅エッチング劣化液内に固定陽極と回転するドラム型の回転陰極とが間隔を存して極間距離をもって設置され、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に形成され上記両極間を仕切る隔膜のない無隔膜電解液槽に、上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅エッチング劣化液を電解液として張り込み、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で上記電解液中の溶解塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを備えた上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転するので、上記電解電解液に溶解された溶解銅を回転陰極面上に析出させると、上記銅から分離された塩素イオンが上記銅エッチングで生じた塩化第一鉄と結合して、これを塩化第二鉄に容易に簡単に電解再生をすることができる。 According to the method for electrolytic regeneration of a copper etching deterioration solution with ferric chloride according to the present invention as set forth in claim 1, in the method for electrolytic regeneration of a copper etching deterioration solution with ferric chloride, a fixed anode and a rotation are placed in the copper etching deterioration solution. A drum-type rotating cathode with a gap between the electrodes, and the fixed anode and the rotating cathode are formed in the copper etching deterioration solution, and there is no diaphragm separating the two electrodes. In addition, the ferric chloride is changed into ferrous chloride by the copper etching, and the copper etching deterioration solution in which the copper etching ability is deteriorated is put as an electrolytic solution, and a part of the rotating cathode is put in the electrolytic solution. While rotating in the immersed state, by applying a voltage between the electrodes, the ferrous chloride deteriorated in the copper etching deterioration solution is oxidized to the original ferric chloride. Then, the fixed anode having a function of regenerating the copper etching deterioration solution into a copper etching solution, and simultaneously decomposing the dissolved cupric chloride in the electrolytic solution by a reduction reaction to precipitate solid metal copper, The above-mentioned electrolyte solution is repeatedly removed by moving the solid metal copper onto the electrolyte surface, peeling off and removing it, and immersing it again in the electrolyte solution with the rotation of the rotating cathode to deposit the copper. The above-mentioned diaphragm electrolyte bath provided with the above-mentioned rotating cathode having a function of performing copper removal inside is maintained at an electrolyte temperature of 15 to 35 ° C. and the amount of free hydrochloric acid in the solution at 0.3 to 3.0%, Since the cathode current density is adjusted to the range of 10 to 25 A / dm 2 and the operation is performed, when the dissolved copper dissolved in the electrolytic electrolyte is deposited on the rotating cathode surface, the chlorine ions separated from the copper are Bonded with ferrous chloride produced by copper etching In combination, this can be easily and electrolytically regenerated into ferric chloride.

請求項2記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法によれば、請求項1記載の方法において、陰極用電導ケーブルを中空構造の陰極回転軸内に設置して、上記陰極用電導ケーブルの一端を上記回転陰極と結線し、他端を上記中空構造の回転軸に設けた摺動コネクターの回転側端子に結線し、上記陰極用電導ケーブルは上記回転陰極とともに回転するので、上記回転陰極面全体は回転中も通電されていて、上記回転陰極面の電解液中部分において上記析出銅の形成が行われ、上記回転陰極が回転して上記電解液面から出た部分では、電解作用は行われないが通電されているので、上記析出銅は上記電解液を同伴してくる上記電解液によって再溶解されることなく上記回転陰極表面に付着した上記析出銅をスクレーパで機械的に剥離除去することができ、上記のように上記回転陰極面全体は回転中も通電されていて、上記回転陰極面の電解液中部分において上記析出銅の形成が行われ、上記回転陰極が回転して液面から出た部分では、電解作用は行われないが通電されているので、上記析出銅は同伴してくる上記電解液によって再溶解されることなく、上記析出銅剥離回収することができる。   According to the method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride according to the present invention described in claim 2, in the method according to claim 1, the cathode conductive cable is installed in the cathode rotating shaft having a hollow structure, One end of the cathode conductive cable is connected to the rotary cathode, and the other end is connected to a rotary terminal of a sliding connector provided on the rotary shaft of the hollow structure, and the cathode conductive cable rotates together with the rotary cathode. Therefore, the entire rotating cathode surface is energized during rotation, and the deposited copper is formed in the portion of the rotating cathode surface in the electrolyte solution, and the rotating cathode rotates to leave the electrolyte solution surface. Then, since the electrolysis is not performed, but the current is energized, the deposited copper adhered to the surface of the rotating cathode without being redissolved by the electrolyte accompanying the electrolyte is removed with a scraper. As described above, the entire rotating cathode surface is energized during rotation as described above, and the deposited copper is formed in the portion of the rotating cathode surface in the electrolyte, and the rotating cathode In the portion that is rotated out of the liquid surface, the electrolytic action is not performed, but the current is applied. Therefore, the deposited copper is separated and recovered without being redissolved by the accompanying electrolytic solution. be able to.

請求項3記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法によれば、請求項1又は2記載の方法において、上記塩化第二鉄による銅エッチングでは、上記銅は塩化第二鉄に溶解されて塩化第二銅に変化し、上記塩化第二鉄自身は上記塩化第一鉄に還元されて上記銅エッチング能力が劣化して、上記劣化液化するが、上記銅エッチング劣化液を無隔膜電解液槽に入れて外部から電気エネルギーを与えることにより、上記銅エッチング反応を逆方向に戻す反応を起生させ、上記銅エッチング劣化液中の上記塩化第二銅を分解して元の金属銅に戻し、そのときの分解反応で生じる塩素イオンを塩素源として自己供給して上記塩化第一鉄を酸化して元の上記塩化第二鉄に戻すので、上記逆方向に戻す反応により上記劣化液中の上記塩化第二銅を分解して元の金属銅に戻し、その分解で生じた塩素イオンを塩素源として自己供給して塩化第一鉄をを酸化して塩化第二鉄に再生するため、新たな塩素源が不要であり安全である。   According to the method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride according to the third aspect of the present invention, in the method according to claim 1 or 2, in the copper etching using ferric chloride, the copper is chlorinated. It is dissolved in ferric and converted to cupric chloride, and the ferric chloride itself is reduced to the ferrous chloride and the copper etching ability is deteriorated and liquefied. Is put into a non-diaphragm electrolyte bath to give electric energy from the outside, thereby causing a reaction to reverse the copper etching reaction, and decomposing the cupric chloride in the copper etching deterioration solution to It returns to the metallic copper, and the chlorine ion generated in the decomposition reaction at that time is self-supplied as a chlorine source to oxidize the ferrous chloride and return it to the original ferric chloride. The above in the deteriorated liquid In order to decompose cupric chloride and return it to the original copper metal, the chlorine ion generated in the decomposition is self-supplied as a chlorine source to oxidize ferrous chloride and regenerate it into ferric chloride. A chlorine source is unnecessary and safe.

請求項4記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生方法によれば、請求項1〜3のいずれか1項に記載の方法において、上記無隔膜電解液層の再生電解液槽と上記エッチング機械の劣化液槽との間を上記電解液が循環するように経路を形成し上記の銅エッチング劣化液と再生電解液を少量づつ常時入れ替えることにより、上記銅エッチング液の劣化と上記銅エッチング劣化液の再生が同時進行し、上記銅エッチング速度を常時安定させることができる。   According to the method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride according to the present invention as set forth in claim 4, in the method according to any one of claims 1 to 3, regeneration electrolysis of the diaphragm electrolyte layer is performed. Deterioration of the copper etching solution by forming a path so that the electrolyte circulates between the solution tank and the deterioration solution tank of the etching machine and constantly replacing the copper etching deterioration solution and the regenerated electrolyte solution little by little. And the regeneration of the copper etching deterioration solution proceed at the same time, and the copper etching rate can be constantly stabilized.

請求項5記載の本発明の塩化第二鉄による銅エッチング劣化液の電解再生装置によれば、塩化第二鉄による銅エッチング劣化液の電解再生装置において、上記銅エッチング劣化液内に固定される固定陽極と上記固定陽極と間隔を存して極間距離をもって設置されるドラム型の回転陰極と、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に配設される上記両極間を仕切る隔膜のない無隔膜電解液槽と、上記固定陽極に上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅劣化液を上記無隔膜電解液槽に電解液として張り込まれた電解液とを備え、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で液中の溶解した上記塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを有する上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転するので、上記電解液に溶解された溶解銅を上記回転陰極面上に析出させると上記塩化第一銅から分解された塩素イオンが上記銅エッチングで生じた塩化第一鉄と結合してこれを塩化第二鉄に簡単に電解再生することができる。 According to the electrolytic regeneration apparatus for ferric chloride copper etching deterioration liquid of the present invention according to claim 5, in the electrolytic regeneration apparatus for ferric chloride copper etching deterioration liquid, the copper etching deterioration liquid is fixed in the copper etching deterioration liquid. A fixed anode and a drum-type rotating cathode installed at a distance between the fixed anode and a gap, and the fixed anode and the rotating cathode are partitioned between the electrodes disposed in the copper etching deterioration solution. The diaphragm electrolyte bath without the diaphragm, and the copper degradation solution in which the ferric chloride is changed to ferrous chloride by the copper etching on the stationary anode and the copper etching ability is deteriorated is the diaphragm electrolyte bath. The copper etchant by applying a voltage between the two electrodes while rotating a part of the rotating cathode immersed in the electrolytic solution. The fixed anode having a function of oxidizing the deteriorated ferrous chloride in the deterioration solution and returning it to the original ferric chloride to regenerate the copper etching deterioration solution into a copper etching solution; The dissolved cupric chloride is decomposed, solid metal copper is precipitated, the deposited solid metal copper is moved onto the electrolyte surface, peeled and removed, and again with the rotation of the rotating cathode, the electrolyte solution again. The diaphragm electrolyte bath having the rotating cathode having the function of removing copper in the electrolyte while repeating the cycle operation of depositing and adhering the copper by submerging in the electrolyte, the electrolyte temperature being 15 to 35 ° C, the amount of free hydrochloric acid in the liquid is maintained at 0.3 to 3.0%, and the cathode current density is adjusted to the range of 10 to 25 A / dm 2 , so that the dissolved copper dissolved in the electrolytic solution is operated. Is deposited on the surface of the rotating cathode. Chlorine ions decomposed from monocopper can be combined with ferrous chloride produced by the above copper etching, and this can be easily electrolytically regenerated into ferric chloride.

以下、本発明の一実施形態について図面に基いて説明する。
図1は本発明の銅エッチング劣化液を再生する無隔膜電解液槽の概略平面図、図2は図1における2A−2A線に沿う断面の主要部を示すものであり、無隔膜電解液槽内で液中の溶解銅が回転陰極表面上に析出し、電解液面上で剥離される状態を示す概略説明図、図3は図1の概略側面を示し、銅エッチングしながら劣化液の再生を同時進行する無隔膜電解液槽とエッチング機械とを同時運転する概略説明図、図4は図3における無隔膜電解液槽とエッチング機械とを同時運転方法を示すプロセス・フローシートが示す構成の立体斜視の概略説明図、図5は図2、図4に示す本発明の上記無隔膜電解液槽の電解液のレベルを調整する調整手段である。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic plan view of a diaphragm electrolyte bath for regenerating the copper etching deterioration solution of the present invention, and FIG. 2 shows a main part of a cross section taken along line 2A-2A in FIG. FIG. 3 is a schematic explanatory view showing a state in which dissolved copper in the liquid is deposited on the surface of the rotating cathode and peeled off on the surface of the electrolytic solution. FIG. 3 is a schematic side view of FIG. FIG. 4 is a process flow sheet showing the simultaneous operation method of the diaphragm electrolyte bath and the etching machine in FIG. 3. 3 is a schematic explanatory view of a three-dimensional perspective view, and FIG. 5 is an adjusting means for adjusting the level of the electrolyte in the non-diaphragm electrolyte bath of the present invention shown in FIGS.

図1に示したように、上部開放の角型槽である無隔膜電解液槽1には、相対する2壁面上部に軸受架台6が設置され、その上の支持軸4Aの軸受7がドラム型の回転陰極3の回転電導軸4を支持している。無隔膜電解液槽1の液入口座16は配管で、無隔膜電解液液面高さを常時一定に保持するように、上記電解液出口座13は溢流方式になっている。
固定陽極2は、図2,図3に示したように、無隔膜電解液槽1の底面1aにボルトB,ナットNにより支持部材2Sを介してボルトB,ナットNにより締結され、ドラム型の回転陰極3と回転電導軸4とは一体構造でともに回転するが、無隔膜電解液槽1の液出口座13は、図1,図2,図4に示したように溢流方式で回転電導軸4より下側にあり、ドラム型の回転陰極3は、その一部が電解液中に没し、残部は液面から上方に出ている状態になる。
As shown in FIG. 1, in a diaphragm electrolyte bath 1 which is a square bath with an open top, a bearing mount 6 is installed on the two opposite wall surfaces, and a bearing 7 of a support shaft 4A thereon is a drum type. The rotary conductive shaft 4 of the rotary cathode 3 is supported. The liquid inlet account 16 of the diaphragm electrolyte bath 1 is a pipe, and the electrolyte outlet account 13 is an overflow type so that the height of the diaphragm electrolyte liquid surface is always kept constant.
2 and 3, the fixed anode 2 is fastened to the bottom surface 1a of the diaphragm electrolyte bath 1 by bolts B and nuts N via bolts B and nuts N via support members 2S. The rotating cathode 3 and the rotating conducting shaft 4 rotate together in an integral structure, but the liquid discharge account 13 of the diaphragm electrolyte bath 1 is rotated by the overflow method as shown in FIGS. A part of the drum-type rotary cathode 3 below the shaft 4 is immersed in the electrolytic solution, and the remaining part protrudes upward from the liquid surface.

回転電導軸4は、中空軸4aで中に陰極側電導ケーブル12Bを収納していて、一体構造であるドラム型の回転陰極3とともに回転しながら、回転陰極面3と電導ケーブル12Bとが導通する。
直流電源の+側端子と結線された固定陽極2側の電導ケーブル12Aは、図1,図2に示したように、無隔膜電解液槽1中に垂直に設置された固定陽極2側の電導ブス17の一端17aで結線されている。その他端17bは無隔膜電解液槽1の底面にある固定陽極2とボルトB・ナットNで締結されている。
The rotary conductive shaft 4 accommodates the cathode-side conductive cable 12B in the hollow shaft 4a, and the rotary cathode surface 3 and the conductive cable 12B conduct while rotating together with the drum-type rotary cathode 3 having an integral structure. .
As shown in FIGS. 1 and 2, the conductive cable 12A on the fixed anode 2 side connected to the + side terminal of the DC power supply is electrically connected to the fixed anode 2 side installed vertically in the non-diaphragm electrolyte bath 1. The bus 17 is connected at one end 17a. The other end 17 b is fastened to the fixed anode 2 on the bottom surface of the diaphragm electrolyte bath 1 with bolts B and nuts N.

直流電源の−側端子と結線された陰極側電導ケーブル12Bは、図1に示したように回転電導軸4にある摺動コネクター11の固定端子側に接続され、摺動コネクター11を通じて中空構造の回転電導軸4の中空軸4aの中空部分に設置された上記電導ケーブル12Bに接続する。電導ケーブル12Bの他端は、ドラム型の回転陰極3の内側にある、接続端子部3CにボルトB,ナットNで締結されているので、直流電源の一側端子と回転するドラム型の回転陰極3とは電気的に導通する。   The cathode side conductive cable 12B connected to the negative terminal of the DC power source is connected to the fixed terminal side of the sliding connector 11 on the rotary conductive shaft 4 as shown in FIG. The rotary conductive shaft 4 is connected to the conductive cable 12B installed in the hollow portion of the hollow shaft 4a. The other end of the conductive cable 12B is fastened with a bolt B and a nut N to the connection terminal portion 3C inside the drum-type rotary cathode 3, so that the drum-type rotary cathode that rotates with one side terminal of the DC power supply. 3 is electrically connected.

上記銅エッチング劣化液を無隔膜電解液槽1に入れて、固定陽極2と回転陰極3に電圧を印加して通電すると、液中の塩化第一鉄は固定陽極2の表面で酸化されて塩化第二鉄になって銅エッチング能力が再生する。一方、回転陰極3表面では、銅エッチングにより金属銅が溶解してできた塩化第二銅が還元されて、金属銅を析出して、上記電解液中の回転陰極3表面に付着する。回転陰極3の回転に伴い、回転陰極3に付着した析出銅は上記電解液面を離れて空気に接するが、この部分は通電しているが上記電解反応の及ばない場なので、図2,図3に示したようにスクレーパ9で剥離される。固定陽極2と回転陰極3の上記サイクル動作を反復しながら、劣化液再生を進行させる。   When the copper etching deterioration solution is put in the diaphragm electrolyte bath 1 and a voltage is applied to the fixed anode 2 and the rotating cathode 3, the ferrous chloride in the solution is oxidized on the surface of the fixed anode 2 and is chlorinated. It becomes ferric iron and copper etching ability is regenerated. On the other hand, on the surface of the rotating cathode 3, cupric chloride formed by dissolving copper metal by copper etching is reduced to deposit metallic copper and adhere to the surface of the rotating cathode 3 in the electrolytic solution. As the rotating cathode 3 rotates, the deposited copper adhering to the rotating cathode 3 leaves the electrolytic solution surface and comes into contact with air, but this portion is energized but does not reach the electrolytic reaction. As shown in FIG. While repeating the above-described cycle operation of the fixed anode 2 and the rotating cathode 3, regeneration of the deteriorated liquid proceeds.

上記銅エッチング劣化液の再生用の無隔膜電解液槽1には、図1,図2,図4に示したように無隔膜電解液槽1の付属設備とし無隔膜電解液槽1の外部にある循環ポンプ14があり、これで無隔膜電解液槽1内の電解液の一部を抜き出し再び無隔膜電解液槽1に戻す循環配管RPが設置されていて、無隔膜電解液槽1内の電極表面に常に新鮮な再生された電解液を供給し、図3,図4に示したこの循環配管RPの循環ポンプ14の吐出側の液槽戻り配管に液温指示調整計TIC、遊離塩酸量指示調整計AIC、エッチング機械E行き配管に液比重指示調整計DICが組み込まれ、電解液性状を上記請求項1記載の電解液条件に合致するよう自動的に調整保持した上で、無隔膜電解液槽1に張り込んだ上記劣化液全量を1回分として再生する回分再生の場合が示されている。現行のエッチング機械は回分運転であるから、再生も1回分として供給した上記劣化液ごとに行う。   As shown in FIGS. 1, 2, and 4, the diaphragm electrolyte tank 1 for regenerating the copper etching deterioration solution is provided as an accessory of the diaphragm electrolyte tank 1 and outside the diaphragm electrolyte tank 1. There is a circulation pump 14, and a circulation pipe RP for extracting a part of the electrolyte in the diaphragm electrolyte tank 1 and returning it to the diaphragm electrolyte tank 1 is installed. A freshly regenerated electrolytic solution is always supplied to the electrode surface, and a liquid temperature indicator / regulator TIC and a free hydrochloric acid amount are supplied to the liquid tank return pipe on the discharge side of the circulation pump 14 of the circulation pipe RP shown in FIGS. A liquid specific gravity indicator / regulator DIC is incorporated in the piping for the indicator / adjuster AIC and the etching machine E, and the electrolyte properties are automatically adjusted and maintained so as to meet the electrolyte conditions of the above-mentioned claim 1. Time to regenerate the entire amount of the above-mentioned deteriorated liquid stuck to the liquid tank 1 as one batch In the case of playback is shown. Since the current etching machine is a batch operation, regeneration is also performed for each of the deteriorated liquids supplied as one batch.

図4に示したように、上記自動的に調整保持することは、液温指示調整計TICの検出端で検出した液温度は、電気信号に変換されて操作盤30aに送られ、ここから電気信号で水調整弁40aに弁開度を指示し手所要量の冷却水を供給して液温を自動調整している。又、遊離塩酸量指示調整計AICの検出端で検出した塩酸濃度は、電気信号に変換されて操作盤30bに送られ、ここから電気信号で塩酸調整弁40bに弁開度を指示して手所要量の塩酸を供給して塩酸濃度を自動調整している。   As shown in FIG. 4, the automatic adjustment and holding means that the liquid temperature detected at the detection end of the liquid temperature indicating adjuster TIC is converted into an electric signal and sent to the operation panel 30a. The valve opening degree is instructed to the water adjustment valve 40a by a signal, and a required amount of cooling water is supplied to automatically adjust the liquid temperature. The hydrochloric acid concentration detected at the detection end of the free hydrochloric acid amount indicating regulator AIC is converted into an electric signal and sent to the operation panel 30b. The required amount of hydrochloric acid is supplied to automatically adjust the hydrochloric acid concentration.

これに対して、図3及び請求項5記載の銅エッチングしながら同時に劣化液の再生をするのが連続再生である。
銅エッチング機械Eの運転では、銅エッチング液は少しづつ劣化されて行くが、図3に示したようにこの劣化液の少量を電解再生装置100に入れると、劣化した部分は直ちに再生されるので、これを銅エッチング機械Eに戻せば、銅エッチング液の劣化は進まない。上記銅エッチング機械Eと本発明の無隔膜電解液槽1との間を、図3に示したように2本の配管P1,P2で結び、少量の液が銅エッチング機械Eから無隔膜電解液槽1へ流れ、同じ量の上記再生液がエッチング機械Eに戻せば、上記のエッチングと再生が併行して同時進行するので、連続再生となる。
On the other hand, the continuous regeneration is to regenerate the deteriorated solution simultaneously with the copper etching of FIG. 3 and claim 5.
In the operation of the copper etching machine E, the copper etching solution is gradually deteriorated. However, when a small amount of the deterioration solution is put into the electrolytic regeneration device 100 as shown in FIG. 3, the deteriorated portion is immediately regenerated. If this is returned to the copper etching machine E, the copper etchant will not deteriorate. The copper etching machine E and the diaphragm electrolyte bath 1 of the present invention are connected by two pipes P1 and P2 as shown in FIG. 3, and a small amount of liquid is passed from the copper etching machine E to the diaphragm electrolyte solution. If the same amount of the regenerated liquid flows back to the tank 1 and returns to the etching machine E, the above-described etching and regeneration proceed simultaneously and simultaneously, so that continuous regeneration is achieved.

無隔膜電解液槽1は、銅エッチング液に耐蝕性があり、電気を通電しない塩化ビニール樹脂などの材料で作られ、固定陽極2は電解液に対する耐蝕性があって、導電性の良いカーボンなどで作られる。ドラム型の回転陰極3の電極面はチタン単体を除く良電導性金属を使用する。チタン陰極は表面が不活性化して、通電できなくなる特性があり、陰極材料として不向きである。金属は通電中は全く腐食されないことは、電気化学的に周知の事実であるから、運転を終えた後には、微量の防食電流陰極を通電してドラムを防護する。   The diaphragm electrolyte bath 1 is made of a material such as vinyl chloride resin that is resistant to copper etchant and does not pass electricity, and the fixed anode 2 is resistant to electrolyte, such as carbon having good conductivity. Made with. The electrode surface of the drum-type rotating cathode 3 uses a highly conductive metal excluding titanium alone. The titanium cathode has a characteristic that the surface becomes inactive and cannot be energized, and is not suitable as a cathode material. It is an electrochemically well-known fact that metals are not corroded at all during energization. Therefore, after the operation is completed, a small amount of anticorrosive current cathode is energized to protect the drum.

又、回転陰極3は、連続的に反復運動を繰り返すが、その一部が上部析出銅剥離のため上記電解液面より上に出ている状態であることが必要である。また、固定陽極2は、回転陰極3と同心の円弧面にして極間距離を略一定に保持する形状に変更して、電流抵抗を減少することができる。
本発明の上記銅エッチング劣化液の電解再生法及びその電解再生装置では、無隔膜電解液槽を使用するので電解液に陽極液と陰極液とをの区分はなくて、直接上記銅エッチング劣化液を電解液とするもので、反応機構も隔膜電解槽とは異なり、上記電解液に上記銅エッチング反応と逆方向の反応を生起させて、これを元の銅エッチング液に戻す方法であり、再生そのものであるが、その上記銅エッチング反応は下記の通りである。
エッチング反応に関与する第二銅イオン(Cu2+)と第一および第二鉄イオン(Fe2+,Fe3+)の標準電極電位(V v.s. SHE)E0は次の通りである。
Further, the rotating cathode 3 continuously repeats repetitive movements, but a part of the rotating cathode 3 needs to be in a state where it protrudes above the electrolytic solution surface for peeling the upper deposited copper. Further, the fixed anode 2 can be changed to a shape having a circular arc surface concentric with the rotating cathode 3 so as to keep the distance between the electrodes substantially constant, thereby reducing the current resistance.
In the electrolytic regeneration method and the electrolytic regeneration apparatus of the copper etching deterioration solution of the present invention, since the diaphragm electrolyte bath is used, there is no distinction between the anolyte and the catholyte in the electrolyte, and the copper etching deterioration solution is directly used. Unlike the diaphragm electrolytic cell, the reaction mechanism is a method of causing the reaction in the opposite direction to the copper etching reaction to return to the original copper etching solution. As such, the copper etching reaction is as follows.
The standard electrode potentials (V vs SHE) E 0 of cupric ions (Cu 2+ ) and ferrous and ferric ions (Fe 2+ , Fe 3+ ) involved in the etching reaction are as follows.

Figure 2006219708
Figure 2006219708

電子(e-)の流れは電位の低い方(不安定側)から高い方(安定側)に移動するので、第二鉄が金属銅を溶解して第一鉄に還元され、金属銅は第二銅イオンになるというエッチング反応は自然な方向の反応であることが明白である。つまり、外部からエネルギーが与えられない限り、この反応方向は変らない。
本発明は、銅エッチング反応終了液の上記銅エッチング劣化液に外部から必要な電圧を与えることによって、電子(e-)を上記と逆方向(上記矢印の向きを逆)に移動させ、上記銅エッチングと逆方向の反応を惹起させて、温度と遊離塩酸量酸度とを一定に保持し、陰極電流密度を10〜25A/dm2の範囲に調整し制御することにより、上記銅エッチング劣化液を再生させるものである。
Since the flow of electrons (e ) moves from the lower potential (unstable side) to the higher potential (stable side), ferric iron dissolves metallic copper and is reduced to ferrous iron. It is clear that the etching reaction of becoming a cupric ion is a natural reaction. In other words, this reaction direction does not change unless energy is given from the outside.
The present invention moves the electrons (e ) in the opposite direction (the direction of the arrow is reversed) by applying a necessary voltage to the copper etching degradation liquid of the copper etching reaction termination liquid from the outside, By causing a reaction in the opposite direction to the etching, maintaining the temperature and free hydrochloric acid amount acidity constant, and adjusting and controlling the cathode current density in the range of 10 to 25 A / dm 2 , It is something to regenerate.

上記で説明のように、本発明の上記銅エッチング劣化液の電解再生反応は、銅エッチング反応終了した後の上記銅エッチング劣化液に対して、今度は上記銅エッチング反応と逆向きに反応を進行させるものであるから、固定陽極2の酸化に必要な塩素源は、新たに外部から供給するものではなく、上記銅エッチング反応により生成された上記銅エッチング劣化液中の塩化第二銅を塩素源とするもので、塩素自己供給方式の電解反応であり、下記の再生電解反応式もそれを裏付けている。上記電解液から回転陰極3上に析出した金属銅を剥離除去すれば、塩化第三鉄が残り再生液そのものであることを示している。   As described above, the electrolytic regeneration reaction of the copper etching deterioration solution of the present invention proceeds in the opposite direction to the copper etching reaction this time with respect to the copper etching deterioration solution after completion of the copper etching reaction. Therefore, the chlorine source necessary for the oxidation of the fixed anode 2 is not newly supplied from the outside, but the cupric chloride in the copper etching deterioration solution generated by the copper etching reaction is the chlorine source. This is a chlorine self-supply type electrolytic reaction, and the following regenerative electrolytic reaction formula supports it. If the copper metal deposited on the rotary cathode 3 is peeled and removed from the electrolytic solution, ferric chloride remains to be the regenerated solution itself.

Figure 2006219708
Figure 2006219708

回転陰極3では、電解の場は回転陰極3が上記電解液中に浸漬している部分であり、ここで金属銅は上記陰極表面に析出付着し、回転陰極3の回転とともに液面から空中に出てくるが、回転陰極3が通電状態であるため、析出銅は再溶解することはない。その上、上記回転陰極面の空気接触部分は電解の場を離れているので、付着銅をスクレーパで機械的に剥離して回収することができる。析出銅剥離後の回転陰極3の表面は、回転して再び電解液中に没して析出銅を付着させるというサイクル運転を繰り返す。   In the rotating cathode 3, the field of electrolysis is a portion where the rotating cathode 3 is immersed in the electrolyte solution. Here, the metallic copper is deposited on the cathode surface, and from the liquid surface into the air as the rotating cathode 3 rotates. Although it comes out, since the rotating cathode 3 is in an energized state, the deposited copper does not re-dissolve. In addition, since the air contact portion of the rotating cathode surface is away from the field of electrolysis, the deposited copper can be recovered by mechanically peeling it with a scraper. The surface of the rotating cathode 3 after peeling of the deposited copper is rotated and repeatedly cycled so that it is immersed again in the electrolyte and deposits the deposited copper.

上記電解液中には上記銅エッチングにより生成された塩化第二銅(CuCl2)のほか、少量であるが塩化第一銅(CuCl)があるとしても、この物質は化学的に不安定であり、塩酸の存在下では安定な錯塩([CuCl2-)を形成する。しかし、錯塩は電解作用により各元素に分解されてしまうので再生の妨げにはならない。つまり、遊離塩酸の存在は塩化第一銅を安定化する効果がある。 In addition to the cupric chloride (CuCl 2 ) produced by the copper etching in the electrolyte, the substance is chemically unstable even if there is a small amount of cuprous chloride (CuCl). In the presence of hydrochloric acid, a stable complex salt ([CuCl 2 ] ) is formed. However, since the complex salt is decomposed into each element by electrolytic action, it does not hinder regeneration. That is, the presence of free hydrochloric acid has the effect of stabilizing cuprous chloride.

遊離塩酸は、それ自体は上記銅をエッチングしないが、上記塩化第二鉄の銅エッチングを促進する性質があるので、JISで規定されるように上記エッチング液は本来的に遊離塩酸を含むものである。しかし、上記銅エッチング中に次第に揮発消失してしまう。したがって、上記再生液中に遊離塩酸が存在することは、むしろ必要なことである。
上記遊離塩酸存在のもう一つの効果は、水酸化第二鉄(Fe(OH)3)の生成を阻止することである。上記再生電解中に液中の塩酸量が0.3%以下(液のpH>2、25℃)になると、液中の上記塩化第二鉄(FeCl3)の一部が加水分解して固形の水酸化第二鉄を生成し始める。この物質は電気分解されないで再生後不純物として残留する。
Free hydrochloric acid itself does not etch the copper, but has the property of accelerating the copper etching of the ferric chloride. Therefore, as defined by JIS, the etching solution inherently contains free hydrochloric acid. However, volatilization disappears gradually during the copper etching. Therefore, it is rather necessary that free hydrochloric acid is present in the regenerated solution.
Another effect of the presence of free hydrochloric acid is to prevent the formation of ferric hydroxide (Fe (OH) 3 ). When the amount of hydrochloric acid in the liquid becomes 0.3% or less (pH of liquid> 2, 25 ° C.) during the regeneration electrolysis, a part of the ferric chloride (FeCl 3 ) in the liquid is hydrolyzed and solidified. Begins to produce ferric hydroxide. This material is not electrolyzed and remains as an impurity after regeneration.

上記のように、上記電解液中の遊離塩酸は本発明の電解槽運転上欠かせない存在であるが、塩酸は液温35℃を越えると急に揮発し易くなる性質がある。塩酸の揮発消失を防止する目的で電解液温度を35℃以下に保持する必要がある。上記電解作用における電力の損失分は熱エネルギーとなり、上記電解液温上昇を招くので、冷却器により液温度を保持調整する。逆に過度の冷却により液温が15℃以下になると、液の導電性が低下する。   As described above, free hydrochloric acid in the electrolytic solution is indispensable for the operation of the electrolytic cell of the present invention. However, hydrochloric acid has a property that it is likely to volatilize suddenly when the liquid temperature exceeds 35 ° C. It is necessary to keep the electrolyte temperature at 35 ° C. or lower for the purpose of preventing the volatilization of hydrochloric acid. Since the loss of electric power in the electrolytic action becomes thermal energy and causes the electrolyte temperature to rise, the liquid temperature is held and adjusted by a cooler. Conversely, when the liquid temperature is 15 ° C. or lower due to excessive cooling, the conductivity of the liquid is lowered.

上記回転陰極面に析出する銅の状態は、電流密度によって異なる。陰極材料は鉄、カーボン、ステンレス銅、銅が適用できる。鉄やステンレス銅の場合には、表面が銅メッキされた状態になる。陰極電流密度が低い場合には、析出銅は微細になり、陰極上に強く付着する。電流密度が高いと粗い粒状な銅がゆるく付着し、剥離が容易になる。運転に適した陰極電流密度のレベルは10〜25A/dm2である。 The state of copper deposited on the rotating cathode surface varies depending on the current density. The cathode material can be iron, carbon, stainless steel copper, or copper. In the case of iron or stainless steel, the surface is plated with copper. When the cathode current density is low, the deposited copper becomes fine and strongly adheres to the cathode. When the current density is high, coarse granular copper adheres loosely and peeling becomes easy. A suitable cathode current density level for operation is 10-25 A / dm 2 .

上記銅エッチング液は、塩化第二鉄濃度を液比重により間接測定しているので、再生液も液比重の管理は重要である。エッチングと再生の工程の中で、水が加わることはなく、むしろ蒸発して常に水は不足勝ちになるので、再生液出口には、加水方式の自動比重調整計を設置する。比重値はユーザーの管理数値になる。
上記銅エッチング機械と上記再生電解液槽を配管で連結して、相互に上記電解液を循環させれば、上記銅エッチングで劣化した分、直ちに再生されるので、上記銅エッチング液の劣化が進まない状態が実現することは、自明の理であるが、この状態で運転すれば、銅エッチング速度が一定に保持できることになり、安定した上記銅エッチング状態を提供することにもなる。
Since the copper etching solution indirectly measures the ferric chloride concentration by the liquid specific gravity, it is important to manage the liquid specific gravity of the regenerating liquid. In the etching and regeneration process, water is not added, but rather it evaporates and water always runs short. Therefore, a water-type automatic specific gravity adjustment meter is installed at the regeneration solution outlet. The specific gravity value is the user's management value.
If the copper etching machine and the regenerative electrolyte bath are connected by piping and the electrolyte is circulated between them, the copper etchant is immediately regenerated as much as the copper etch deteriorates. It is obvious that the absence of the state is realized, but if the operation is performed in this state, the copper etching rate can be kept constant, and the stable copper etching state can be provided.

上記電解液中の溶解銅が皆無になるまで除去する必要はないので、若干の銅を残して反応を終了させる。   Since it is not necessary to remove until there is no dissolved copper in the electrolytic solution, the reaction is terminated with some copper remaining.

濃度43%の上記塩化第二鉄水溶液を用いて、プリント基板をエッチングした銅濃度60g/リットルのエッチング廃液を、液温35〜40℃で図1と同じ構造の電解槽を使用して再生した。廃液2リットルを電解槽液槽に張り込み、液は循環ポンプ14で液槽から出て、また液槽に戻るようにして、常時液が電極表面を洗い新鮮な液が電極に接触できるようにした。   Using the above ferric chloride aqueous solution having a concentration of 43%, an etching waste solution having a copper concentration of 60 g / liter obtained by etching a printed circuit board was regenerated using an electrolytic cell having the same structure as that shown in FIG. . 2 liters of waste liquid was put into the electrolytic bath liquid tank, and the liquid was removed from the liquid tank by the circulation pump 14 and returned to the liquid tank so that the liquid could always wash the electrode surface and contact the fresh liquid with the electrode. .

実施例の再生電解液槽仕様および使用劣化液性状を次に記載する。
電解装置
液槽:165mm×280mm・高さ100mmの硬質塩化ビニール製
陽極:220mm×100mm・厚さ5mmの硬質グラファイトカーボン製
陰極:直径114.3mm×幅200mmのドラム型ステンレス(SUS316L)製
回転数 毎分1〜5回転(可変)
電極間最小距離:5mm
整流器:一次側 200V 2相 交流
二次側 0〜100A 直流
定電圧/定電流 切替型
循環ポンプ:毎分400ml
熱交換器:直径200mm×高さ500mmの円筒型 冷却水温度23℃
内径4mmのプラスチック管コイル巻き長さ3メートル 外側水冷却式
塩酸濃度計:1個
液温度計:1個
エッチングラインから採取した銅エッチング劣化液を使用したが、液1リットルあたり60グラムの銅が溶解していた。これを電解液として電解槽に張り込んで、ドラムの液浸漬率が30%になるようにした。冷却器で液温を23℃に保持し、塩酸濃度を約0.5%に調整しなら電解液槽を運転して、再生率約95%で運転を終了した。
The specifications of the regenerated electrolyte tank and the properties of the used deterioration liquid in the examples are described below.
Electrolyzer bath: 165 mm x 280 mm, 100 mm high hard vinyl chloride anode: 220 mm x 100 mm, 5 mm thick hard graphite carbon cathode: drum type stainless steel (SUS316L) with a diameter of 114.3 mm and a width of 200 mm 1-5 revolutions per minute (variable)
Minimum distance between electrodes: 5mm
Rectifier: Primary side 200V 2-phase AC secondary side 0-100A DC constant voltage / constant current switching circulation pump: 400ml per minute
Heat exchanger: Cylindrical type with a diameter of 200mm x height of 500mm Cooling water temperature 23 ° C
Coil winding length of plastic pipe with an inner diameter of 4 mm: 3 meters Outer water-cooled hydrochloric acid concentration meter: 1 piece Liquid thermometer: 1 piece The copper etching deterioration liquid collected from the etching line was used, but 60 grams of copper per liter of liquid It was dissolved. This was applied as an electrolytic solution to an electrolytic cell so that the liquid immersion rate of the drum was 30%. When the liquid temperature was maintained at 23 ° C. with a cooler and the hydrochloric acid concentration was adjusted to about 0.5%, the electrolyte bath was operated, and the operation was terminated at a regeneration rate of about 95%.

このとき、電解液槽の運転結果は次のようであった。
電圧:3.5V
電流:30A
電流密度:14.3A/dm2
塩素発生はなく、析出銅の剥離も容易であった。
At this time, the operation result of the electrolytic solution tank was as follows.
Voltage: 3.5V
Current: 30A
Current density: 14.3 A / dm 2
Chlorine was not generated and the deposited copper was easy to peel off.

本発明によれば、前記平板状の固定陽極と回転ドラム型の回転陰極とを備なえた無隔膜電解液槽を用い、銅エッチング劣化液を電解液として、これに塩酸を添加して塩酸濃度を0.3〜4%に保ち、冷却器で液温を30℃以下に保ちながら、電流密度20A/dm2で、電解液槽を運転したので、析出銅を容易に剥離でき、上記電解液は塩化第二鉄を主成分とする上記銅エッチング液に再生することが可能となる。 According to the present invention, a non-diaphragm electrolyte bath provided with the flat fixed anode and the rotating drum type rotating cathode is used, and a copper etching deterioration solution is used as an electrolyte, and hydrochloric acid is added thereto to add a hydrochloric acid concentration. The electrolyte bath was operated at a current density of 20 A / dm 2 while keeping the liquid temperature at 30 ° C. or less with a cooler while keeping the liquid temperature at 0.3 to 4%. Can be regenerated into the above-described copper etching solution containing ferric chloride as a main component.

したがって、エッチング機械と上記電解液槽を配管で接続して、双方の装置の間で液を循環させれば、上記銅エッチングしながら再生を継続できるので、上記電解液の上記銅エッチング能力を低下させることなく、これを一定に保持することができる。   Therefore, if the etching machine and the electrolytic solution tank are connected by piping and the liquid is circulated between the two apparatuses, the regeneration can be continued while the copper etching is performed, so the copper etching ability of the electrolytic solution is reduced. This can be kept constant without making it happen.

本発明の銅エッチング劣化液を再生する無隔膜電解液槽の概略平面図である。It is a schematic plan view of the diaphragm electrolyte bath which reproduces | regenerates the copper etching deterioration liquid of this invention. 図1における2A−2A線に沿う断面を示すものであり、無隔膜電解液槽内で電解液中の溶解銅が回転陰極表面上に析出し、電解液面上で剥離される状態を示す概略説明である。FIG. 2 is a cross-sectional view taken along line 2A-2A in FIG. 1, and schematically shows a state in which dissolved copper in the electrolytic solution is deposited on the surface of the rotating cathode and peeled off on the electrolytic solution surface in the non-diaphragm electrolytic solution tank. It is an explanation. 図1の概略側面を示し、上記銅エッチングしながら上記銅エッチング劣化液の再生を同時進行する無隔膜電解液槽とエッチング機械とを同時運転する概略説明図である。FIG. 2 is a schematic explanatory view showing a schematic side view of FIG. 1 and simultaneously operating a diaphragm membrane electrolytic bath and an etching machine that simultaneously perform regeneration of the copper etching deterioration solution while performing the copper etching. 図3における無隔膜電解液槽と上記エッチング機械とを同時運転方法を示すプロセス・フローシートが示す構成の立体斜視の概略説明図である。It is a schematic explanatory drawing of the three-dimensional perspective of the structure which the process flow sheet | seat which shows the simultaneous operation method of the non-diaphragm electrolyte solution tank in FIG. 3 and the said etching machine shows. 図2、図4に示す本発明の上記無隔膜電解液槽の電解液のレベルを調整する調整手段である。It is the adjustment means which adjusts the level of the electrolyte solution of the said diaphragm membrane electrolyte tank of this invention shown in FIG. 2, FIG.

符号の説明Explanation of symbols

1 無隔膜電解液槽
2 固定陽極
3 ドラム型の回転陰極
4 回転電導軸
4a 中空軸
5 減速電動機
6 軸受架台
7 軸受
8 スクレーパ固定バー
9 スクレーパ
10 スクレーパ押さえ
11 摺動コネクター
12A 陽極側固定電導ケーブル
12B 陰極側回転電導ケーブル
13 溢流方式の循環液液槽出口
14 循環ポンプ
16 廃液入口(回分・連続運転共用)
17 陽極電導ブス
19 析出銅計器
TIC 液温度指示調節計
AIC 遊離塩酸量指示調節計
DIC 液比重指示調節計c
P1 主循環配管
P2 主循環配管(再生液出口・連続運転用)
RP 循環配管

DESCRIPTION OF SYMBOLS 1 Non-diaphragm electrolyte bath 2 Fixed anode 3 Drum-type rotating cathode 4 Rotating conductive shaft 4a Hollow shaft 5 Reduction motor 6 Bearing mount 7 Bearing 8 Scraper fixing bar 9 Scraper 10 Scraper presser 11 Sliding connector 12A Anode-side fixed conductive cable 12B Cathode-side rotating conductive cable 13 Overflow-type circulating liquid tank outlet 14 Circulating pump 16 Waste liquid inlet (shared batch and continuous operation)
17 Anode conductive bus 19 Precipitated copper meter TIC Liquid temperature indicating controller AIC Free hydrochloric acid amount indicating controller DIC Liquid specific gravity indicating controller c
P1 Main circulation piping P2 Main circulation piping (recycled liquid outlet / for continuous operation)
RP circulation piping

Claims (5)

塩化第二鉄による銅エッチング劣化液の電解再生方法において、上記銅エッチング劣化液内に固定陽極と回転するドラム型の回転陰極とが間隔を存して極間距離をもって設置され、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に形成され上記両極間を仕切る隔膜のない無隔膜電解液槽に、上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅エッチング劣化液を電解液として張り込み、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で上記電解液中の溶解塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを備えた上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転することを特徴とする、塩化第二鉄による銅エッチング劣化液の電解再生方法。 In the electrolytic regeneration method of a copper etching deterioration solution by ferric chloride, a fixed anode and a rotating drum-type rotating cathode are installed in the copper etching deterioration solution with a distance between the electrodes with a space therebetween. And a rotating cathode formed in the copper etching deterioration solution, and a diaphragmless electrolyte solution tank that separates the electrodes from each other, the ferric chloride is changed to ferrous chloride by the copper etching, and the copper etching ability The copper etching deterioration solution is applied as an electrolytic solution, and the copper etching is performed by applying a voltage between the electrodes while rotating a part of the rotating cathode immersed in the electrolytic solution. The fixed positive electrode has a function of oxidizing the deteriorated ferrous chloride in the deterioration solution and returning it to the original ferric chloride to regenerate the copper etching deterioration solution into a copper etching solution. And at the same time, the dissolved cupric chloride in the electrolytic solution is decomposed by a reduction reaction, solid metal copper is deposited, the deposited solid metal copper is moved onto the electrolytic solution surface, peeled and removed, and rotated. The diaphragmless electrolysis comprising the rotating cathode having a function of performing copper removal in the electrolyte while repeating a cycle operation in which the copper is deposited again by being immersed in the electrolyte again with rotation of the cathode. The liquid tank is operated with an electrolyte temperature of 15 to 35 ° C., a free hydrochloric acid amount in the liquid of 0.3 to 3.0%, and a cathode current density adjusted to a range of 10 to 25 A / dm 2. A method for electrolytic regeneration of a copper etching deterioration solution using ferric chloride, which is characterized. 陰極用電導ケーブルを中空構造の陰極回転軸内に設置して、上記陰極用電導ケーブルの一端を上記回転陰極と結線し、他端を上記中空構造の回転軸に設けた摺動コネクターの回転側端子に結線し、上記陰極用電導ケーブルは上記回転陰極とともに回転するので、上記回転陰極面全体は回転中も通電されていて、上記回転陰極面の電解液中部分において上記析出銅の形成が行われ、上記回転陰極が回転して上記電解液面から出た部分では、電解作用は行われないが通電されているので、上記析出銅は上記電解液を同伴してくる上記電解液によって再溶解されることなく上記回転陰極表面に付着した上記析出銅をスクレーパで機械的に剥離除去することを特徴とする、請求項1記載の塩化第二鉄による銅エッチング劣化液の電解再生方法。   A cathode conductive cable is installed in a hollow structure cathode rotating shaft, one end of the cathode conducting cable is connected to the rotating cathode, and the other end is provided on the rotating shaft of the hollow structure. Since the cathode conductive cable is connected to the terminal and rotates together with the rotating cathode, the entire rotating cathode surface is energized during rotation, and the deposited copper is formed in the portion of the rotating cathode surface in the electrolyte. In the portion where the rotary cathode rotates and exits from the electrolyte surface, the electrolytic action is not performed but the current is applied. Therefore, the deposited copper is redissolved by the electrolyte solution accompanying the electrolyte solution. 2. The method for electrolytically regenerating a copper etching deterioration solution with ferric chloride according to claim 1, wherein the deposited copper adhering to the surface of the rotating cathode without mechanically peeling is removed mechanically with a scraper. 上記塩化第二鉄による銅エッチングでは、上記銅は塩化第二鉄に溶解されて塩化第二銅に変化し、上記塩化第二鉄自身は上記塩化第一鉄に還元されて上記銅エッチング能力が劣化して、上記劣化液化するが、上記銅エッチング劣化液を無隔膜電解液槽に入れて外部から電気エネルギーを与えることにより、上記銅エッチング反応を逆方向に戻す反応を起生させ、上記銅エッチング劣化液中の上記塩化第二銅を分解して元の金属銅に戻し、そのときの分解反応で生じる塩素イオンを塩素源として自己供給して上記塩化第一鉄を酸化して元の上記塩化第二鉄に戻すことを特徴とする、請求項1又は2記載の塩化第二鉄による銅エッチング劣化液の電解再生方法。   In the copper etching with ferric chloride, the copper is dissolved in ferric chloride and converted into cupric chloride, and the ferric chloride itself is reduced to the ferrous chloride so that the copper etching ability is reduced. Deteriorated and liquefied, but the copper etching deterioration solution is placed in a diaphragm electrolyte bath and electric energy is applied from the outside to cause a reaction to return the copper etching reaction in the reverse direction. The cupric chloride in the etching deterioration solution is decomposed and returned to the original metallic copper. Chlorine ions generated by the decomposition reaction at that time are self-supplied as a chlorine source to oxidize the ferrous chloride and oxidize the original The method for electrolytic regeneration of a copper etching deterioration solution with ferric chloride according to claim 1 or 2, wherein the ferric chloride is returned to ferric chloride. 上記無隔膜電解液層の再生電解液槽と上記エッチング機械の劣化液槽との間を上記電解液が循環するように経路を形成し上記の銅エッチング劣化液と再生電解液を少量づつ常時入れ替えることにより、上記銅エッチング液の劣化と上記銅エッチング劣化液の再生が同時進行し、上記銅エッチング速度を常時安定させることを特徴とする、請求項1〜3のいずれか1項に記載の塩化第二鉄による銅エッチング劣化液の電解再生方法。   A path is formed so that the electrolyte circulates between the regeneration electrolyte tank of the non-membrane electrolyte layer and the deterioration tank of the etching machine, and the copper etching deterioration solution and the regeneration electrolyte are constantly replaced little by little. The chlorination according to any one of claims 1 to 3, wherein the deterioration of the copper etching solution and the regeneration of the copper etching deterioration solution proceed simultaneously to stabilize the copper etching rate at all times. Electrolytic regeneration method of copper etching deterioration liquid by ferric iron. 塩化第二鉄による銅エッチング劣化液の電解再生装置において、上記銅エッチング劣化液内に固定される固定陽極と上記固定陽極と間隔を存して極間距離をもって設置されるドラム型の回転陰極と、上記の固定陽極と回転陰極を上記銅エッチング劣化液内に配設される上記両極間を仕切る隔膜のない無隔膜電解液槽と、上記固定陽極に上記塩化第二鉄が上記銅エッチングにより塩化第一鉄に変化して上記銅エッチング能力が劣化した上記銅劣化液を上記無隔膜電解液槽に電解液として張り込まれた電解液とを備え、上記回転陰極の一部が上記電解液中に浸漬した状態で回転させながら、上記両電極間に電圧を印加通電することによって、上記銅エッチング劣化液中の劣化した上記塩化第一鉄を酸化し元の上記塩化第二鉄に戻して上記銅エッチング劣化液を銅エッチング溶液に再生する機能を有する上記固定陽極と、同時に還元反応で液中の溶解した上記塩化第二銅を分解し、固形金属銅を析出させ、上記析出させた固形金属銅を上記電解液面上に移動して剥離除去し、上記回転陰極の回転とともに再び上記電解液中に没して上記銅を析出付着させるというサイクル操作を反復しながら、上記電解液中の脱銅を行う機能を持つ上記回転陰極とを有する上記無隔膜電解液槽を、電解液温度15〜35℃、液中遊離塩酸量を0.3〜3.0%に保持し、陰極電流密度を10〜25A/dm2の範囲に調整して運転することを特徴とする、塩化第二鉄による銅エッチング劣化液の電解再生装置。

In an electrolytic regeneration apparatus for a copper etching deterioration solution by ferric chloride, a fixed anode fixed in the copper etching deterioration solution, and a drum-type rotating cathode installed with a distance between the fixed anode and the fixed anode; The fixed anode and the rotating cathode are disposed in the copper etching deterioration solution, and the non-diaphragm electrolyte solution tank that separates the electrodes from each other, and the ferric chloride is chlorided on the fixed anode by the copper etching. An electrolytic solution in which the copper deterioration solution changed to ferrous iron and the copper etching ability has deteriorated is embedded as an electrolytic solution in the diaphragm electrolyte bath, and a part of the rotating cathode is in the electrolytic solution. While rotating in a state immersed in the electrode, by applying a voltage between the electrodes, the ferrous chloride deteriorated in the copper etching deterioration solution is oxidized and returned to the original ferric chloride. Copper etch The above-described fixed anode having a function of regenerating the degradation solution into a copper etching solution, and simultaneously dissolving the cupric chloride dissolved in the solution by a reduction reaction to precipitate solid metal copper, and the precipitated solid metal copper The copper is removed from the electrolyte solution by repeating a cycle operation in which the copper electrode is moved to the surface of the electrolyte solution, peeled and removed, and immersed in the electrolyte solution again with the rotation of the rotating cathode to deposit the copper. The above-mentioned diaphragm electrolyte bath having the above-mentioned rotating cathode having the function of carrying out the above operation is maintained at an electrolyte temperature of 15 to 35 ° C., the amount of free hydrochloric acid in the solution at 0.3 to 3.0%, and a cathode current density of 10 An electrolytic regeneration apparatus for a copper etching deterioration solution by ferric chloride, which is adjusted to operate in a range of ˜25 A / dm 2 .

JP2005033026A 2005-02-09 2005-02-09 Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor Pending JP2006219708A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033026A JP2006219708A (en) 2005-02-09 2005-02-09 Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033026A JP2006219708A (en) 2005-02-09 2005-02-09 Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor

Publications (1)

Publication Number Publication Date
JP2006219708A true JP2006219708A (en) 2006-08-24

Family

ID=36982221

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033026A Pending JP2006219708A (en) 2005-02-09 2005-02-09 Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor

Country Status (1)

Country Link
JP (1) JP2006219708A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166972A (en) * 2012-02-14 2013-08-29 Sanshin Seisakusho:Kk Heavy metal recovering apparatus and heavy metal recovering method
CN103710706A (en) * 2013-12-24 2014-04-09 沈阳师范大学 Purification and regeneration method of iron trichloride etching waste liquid
CN112251753A (en) * 2019-07-24 2021-01-22 叶涛 Electrolytic regeneration method for acidic etching waste liquid of printed circuit board
CN113754143A (en) * 2021-09-07 2021-12-07 中北大学 Device and method for treating dinitrotoluene wastewater by using reinforced iron-carbon microelectrolysis-catalytic ozonation method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013166972A (en) * 2012-02-14 2013-08-29 Sanshin Seisakusho:Kk Heavy metal recovering apparatus and heavy metal recovering method
CN103710706A (en) * 2013-12-24 2014-04-09 沈阳师范大学 Purification and regeneration method of iron trichloride etching waste liquid
CN103710706B (en) * 2013-12-24 2015-12-02 沈阳师范大学 The electrolysis method method of iron trichloride etching waste liquid
CN112251753A (en) * 2019-07-24 2021-01-22 叶涛 Electrolytic regeneration method for acidic etching waste liquid of printed circuit board
CN113754143A (en) * 2021-09-07 2021-12-07 中北大学 Device and method for treating dinitrotoluene wastewater by using reinforced iron-carbon microelectrolysis-catalytic ozonation method

Similar Documents

Publication Publication Date Title
JPH0514799B2 (en)
US4490224A (en) Process for reconditioning a used ammoniacal copper etching solution containing copper solute
WO2006126248A1 (en) Machining liquid quality control apparatus, method therefor, and electro-discharge machining apparatus
US4087337A (en) Rejuvenation of the efficiency of sea water electrolysis cells by periodic removal of anodic deposits
JP2009024216A (en) Method for electrolytically oxidizing waste liquid of etching solution
US6827832B2 (en) Electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JP2006219708A (en) Electrolytic regeneration method for copper-etching deteriorated solution by ferric chloride and electrolytic regenerator therefor
EP1633906B1 (en) Method for regenerating etching solutions containing iron for the use in etching or pickling copper or copper alloys and an apparatus for carrying out said method
JP2005187865A (en) Method and apparatus for recovering copper from copper etching waste solution by electrolysis
CA2016031A1 (en) Process for electroplating metals
Su et al. Electrochemical reclamation of silver from silver-plating wastewater using static cylinder electrodes and a pulsed electric field
US4508599A (en) Method and apparatus for regeneration of a copper-containing etching solution
US6942810B2 (en) Method for treating metal-containing solutions
JP4071980B2 (en) Method and apparatus for cleaning electronic parts
JP4184819B2 (en) Method for treating copper etch effluent
EP0138531B1 (en) Process for cleaning copper base materials and regenerating the cleaning solution
JP4038253B2 (en) Electrolyzer for production of acidic water and alkaline water
JP4053805B2 (en) Functional water, production method and production apparatus thereof
JP2006341213A (en) Apparatus and method for electrolyzing waste electroless copper plating liquid
KR20020042947A (en) A reduction apparatus and method using the electric ionization
JP2005270779A (en) Separation method for heavy metal and separation apparatus therefor
JP2005288238A (en) Cooling water treatment device and its operation method
CA2329553A1 (en) An electrochemical cell and process for reducing the amount of organic contaminants in metal plating baths
JPH01184281A (en) Chemical etching method with iodine
CN1215099A (en) Apparatus and process for regenrating CuClz etchant solution