JP2006218834A - Manufacturing mold of fiber arrangement - Google Patents

Manufacturing mold of fiber arrangement Download PDF

Info

Publication number
JP2006218834A
JP2006218834A JP2005036680A JP2005036680A JP2006218834A JP 2006218834 A JP2006218834 A JP 2006218834A JP 2005036680 A JP2005036680 A JP 2005036680A JP 2005036680 A JP2005036680 A JP 2005036680A JP 2006218834 A JP2006218834 A JP 2006218834A
Authority
JP
Japan
Prior art keywords
mold
resin
fiber array
fiber
groove
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005036680A
Other languages
Japanese (ja)
Inventor
Osamu Maehara
修 前原
Toshinori Sumi
敏則 隅
Yasuo Hiromoto
泰夫 広本
Atsushi Takahashi
厚 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2005036680A priority Critical patent/JP2006218834A/en
Publication of JP2006218834A publication Critical patent/JP2006218834A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Separation Using Semi-Permeable Membranes (AREA)
  • Moulds For Moulding Plastics Or The Like (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a mold having a simple structure which enables a manufacture of a fiber arrangement without bubbles mixed in. <P>SOLUTION: The mold is used for manufacturing the fiber array which keeps a fiber bundle trimmed in a longitudinal direction of fibers fixed with a resin. The mold is constituted by at least two mold part groups able to be assembled. In at least one mold part of the mold part groups, a groove which reaches a cavity of the mold is provided in the vicinity of the bottom of a joint surface with the other adjacent mold part. In the other mold part, a through hole reaching from a place relative to the groove to the outside of the mold is provided. Thus, the mold is provided with a space passing through from outside of the mold to the mold cavity by assembling the mold parts. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、繊維の長手方向に引き揃えた繊維束を樹脂等で隙間なく充填した形態を呈する、繊維配列体の製造に用いる鋳型に関するものである。該繊維配列体中の各繊維に生体関連物質を固定化したものを、繊維軸に交差する方向にスライスして薄片とし、特定の生体関連物質の検査、検出に使用することができる。   The present invention relates to a mold used for manufacturing a fiber array, which has a form in which fiber bundles aligned in the longitudinal direction of fibers are filled with a resin or the like without gaps. A material in which a biological material is immobilized on each fiber in the fiber array can be sliced into a thin piece in a direction intersecting the fiber axis and used for inspection and detection of a specific biological material.

繊維の長手方向に引き揃えた繊維束の周囲を樹脂等で隙間なく充填した形態を呈する繊維配列体の製造には、一方向に引き揃えた繊維束の周囲に鋳型を設け、鋳型の中に流動性の良い樹脂等を注入し、樹脂が硬化した後に鋳型から取り出す方法が一般的である。鋳型は、繊維配列体を取り出す作業が容易となるよう、2個以上に分解できる構造のものが多く用いられている。   For the production of a fiber array having a form in which the periphery of a fiber bundle aligned in the longitudinal direction of the fiber is filled with a resin or the like without gaps, a mold is provided around the fiber bundle aligned in one direction, A general method is to inject a resin having good fluidity and take it out of the mold after the resin is cured. As the mold, a mold having a structure that can be decomposed into two or more is used in order to facilitate the work of taking out the fiber array.

樹脂の注入は、鋳型上部から行うと、樹脂中に気泡が混入し、繊維配列体の内部に残留しやすい。特に、繊維束の密度が高いものほど、繊維束の内部に気泡を混入しやすい。そのため、注入前の樹脂を減圧脱泡した上で、鋳型の底部側から空気を上方に追い出しながら注入するのが一般的である。   When the resin is injected from the upper part of the mold, bubbles are mixed in the resin and easily remain inside the fiber array. In particular, the higher the density of the fiber bundle, the easier it is for air bubbles to enter the fiber bundle. Therefore, it is common to inject the resin before injection after depressurizing under reduced pressure and then expelling air upward from the bottom side of the mold.

このような注入を行うためには、鋳型の上部開放口から注入ノズルを鋳型底部に導入して注入したり、特許文献1の如く鋳型の底面に注入用の貫通穴を設ける等の方法が用いられる。さらに気泡の混入を極力抑制したい場合には、特許文献2の如く注入した樹脂を鋳型ごと回転してその遠心力で脱泡したり、特許文献3の如く減圧雰囲気中で注入する等の方法が用いられる。
:特開2003−62436 :特開2002−286712 :特開平04−27421
In order to perform such injection, methods such as introducing an injection nozzle into the bottom of the mold from the upper opening of the mold and injecting it, or providing a through hole for injection on the bottom of the mold as in Patent Document 1 are used. It is done. Furthermore, when it is desired to suppress the mixing of bubbles as much as possible, a method such as rotating the mold injected with the resin as in Patent Document 2 and defoaming with the centrifugal force, or injecting in a reduced-pressure atmosphere as in Patent Document 3 can be used. Used.
: JP 2003-62436 A : JP 2002-286712 A : JP 04-27421

しかし、鋳型の底面もしくは底部側に樹脂注入用の貫通穴を設けた場合、繊維配列体に貫通穴部分の樹脂がブリッジ状に一体化してしまい、繊維配列体を取り出す作業が困難となり、また、繊維配列体から貫通穴部分の樹脂を除去する工程も必要となる。さらに、これらの作業において、繊維配列体が損傷を受ける恐れもある。このため、先述の公知技術では、線維配列体の製造にあたって、上記困難を解消するために貫通穴部分と一体化した繊維配列体の先端部分を切断している。   However, when a through hole for resin injection is provided on the bottom or bottom side of the mold, the resin in the through hole portion is integrated in a bridge shape with the fiber array, making it difficult to take out the fiber array, A step of removing the resin in the through hole portion from the fiber array is also required. Further, the fiber array may be damaged during these operations. For this reason, in the above-mentioned known technique, in manufacturing the fiber array, the tip portion of the fiber array integrated with the through hole portion is cut in order to eliminate the difficulty.

また、鋳型の上部開放口から注入ノズルを鋳型底部に導入する場合、ノズルの先端が繊維配列体に接触してしまい、配列精度を低下させる恐れがあるし、また、繊維配列体中に占める繊維束の体積比が高い場合は、ノズルの導入自体が困難となる。   In addition, when the injection nozzle is introduced into the bottom of the mold from the upper opening of the mold, the tip of the nozzle may come into contact with the fiber array, which may reduce the alignment accuracy, and the fibers occupied in the fiber array When the volume ratio of the bundle is high, it is difficult to introduce the nozzle itself.

さらに、遠心力による脱泡を行って樹脂を注入する場合には、鋳型を繊維束ごと回転させる必要があり、また、減圧雰囲気中で樹脂を注入する場合には、繊維束および鋳型ごと減圧容器内に収めて遠隔操作で注入操作を行うため、いずれも大規模な機械装置が必要となる。   Furthermore, when the resin is injected by defoaming by centrifugal force, it is necessary to rotate the mold together with the fiber bundle. When the resin is injected in a reduced pressure atmosphere, the fiber bundle and the mold together with the vacuum container In order to carry out the injection operation by remote operation, it is necessary to use a large-scale mechanical device.

そこで本発明は、上記問題点に鑑み、気泡混入のない繊維配列体の製造を可能とする簡便な構造の鋳型を提供することを目的とする。    In view of the above problems, an object of the present invention is to provide a mold having a simple structure that enables the production of a fiber array free from bubbles.

本発明者は、上記課題を解決するために鋭意研究を行った。そして、繊維配列体の製造工程において、鋳型の底面付近に樹脂が通過する溝を設けることにより、樹脂に気泡が混入せず、さらに樹脂硬化後の鋳型の取り外しが簡便となる本発明の鋳型を完成するに至った。   The present inventor has intensively studied to solve the above problems. Then, in the manufacturing process of the fiber array, by providing a groove through which the resin passes in the vicinity of the bottom surface of the mold, the mold of the present invention can be easily removed after the resin is cured without bubbles being mixed into the resin. It came to be completed.

すなわち、本発明は以下のとおりである。
(1)繊維の長手方向に引き揃えた繊維束が樹脂で固定された繊維配列体の製造用鋳型であって、該鋳型は、少なくとも2個の組み立て可能な鋳型部品群で構成され、該鋳型部品群の少なくとも1個の鋳型部品には、隣接する他の鋳型部品との接合面の底部付近に、鋳型の空洞に到達する溝を設け、当該他の鋳型部品には、該溝に相対する箇所から鋳型外部に到達する貫通穴を設け、これら鋳型部品を組み立てることにより鋳型外部から鋳型空洞まで貫通する空間を備えたことを特徴とする、前記鋳型。
That is, the present invention is as follows.
(1) A mold for manufacturing a fiber array in which fiber bundles aligned in the longitudinal direction of a fiber are fixed with a resin, and the mold is composed of at least two groups of mold parts that can be assembled. At least one mold part of the part group is provided with a groove reaching the cavity of the mold near the bottom of the joint surface with another adjacent mold part, and the other mold part is opposed to the groove. The mold according to claim 1, further comprising: a through-hole that reaches the outside of the mold from a location, and a space that penetrates from the outside of the mold to the mold cavity by assembling these mold parts.

(2)溝は、その全体が、または鋳型空洞に到達する直前部が狭路となっていることを特徴とする(1)に記載の鋳型。   (2) The mold according to (1), wherein the groove is a narrow path in its entirety or immediately before reaching the mold cavity.

(3)鋳型の材質を金属とし、その表面に離型性素材が被覆されたことを特徴とする、(1)に記載の鋳型。   (3) The mold according to (1), wherein the mold is made of metal and the surface thereof is coated with a releasable material.

(4)溝を有する鋳型部品の一部が樹脂と一体化し、当該樹脂と一体化した鋳型部品が他の鋳型部品と分離可能であることを特徴とする、(1)〜(3)のいずれか1項に記載の鋳型。
(4) Any one of (1) to (3), wherein a part of a mold part having a groove is integrated with a resin, and the mold part integrated with the resin is separable from other mold parts. 2. The mold according to item 1.

本発明の簡便な構造の鋳型を用いることにより、気泡混入のない繊維配列体の製造における分解および洗浄等の日常的な運用が、簡便なものとなる。さらに、鋳型材質を金属とした場合に、表面に離型性素材を被覆することで、繊維配列体の寸法精度を向上させることができる。   By using the mold having a simple structure of the present invention, daily operations such as disassembly and washing in the production of a fiber array free from bubbles are simplified. Furthermore, when the mold material is a metal, the dimensional accuracy of the fiber array can be improved by covering the surface with a releasable material.

また、鋳型構成部品の一部を硬化した樹脂と一体化させると、硬化樹脂をスライス等の二次加工を施す際、一体化した鋳型構成部品を加工機への固定部として用いることができるため、ワークの装着が容易となり、且つ正確な加工が可能となる。   Also, if a part of the mold component is integrated with the cured resin, the integrated mold component can be used as a fixing part to the processing machine when the cured resin is subjected to secondary processing such as slicing. Therefore, it becomes easy to mount the workpiece, and accurate machining is possible.

以下、本発明を詳細に説明する。  Hereinafter, the present invention will be described in detail.

図1は、2個の部品で構成した場合における本発明の鋳型の例である。   FIG. 1 shows an example of a mold according to the present invention in the case of two parts.

図1に示す態様の鋳型は、L字型の鋳型部品11a及び鋳型部品11bを備える。鋳型部品11aと鋳型部品11bとを組み立てると、各部品は隣接し、鋳型部品11aのp1-p2-p3-p4で囲まれた領域と、鋳型部品11bのp1'-p2'-p3'-p4'で囲まれた領域とが接合して密着するとともに、鋳型部品11aのq1-q2-q3-q4で囲まれた領域と、鋳型部品11bのq1'-q2'-q3'-q4'で囲まれた領域とが接合して密着する。その結果、上記鋳型部品で囲まれた領域Sを底面とする鋳型空洞(この鋳型空洞を「鋳型内部」ともいう)が形成される。   The mold of the embodiment shown in FIG. 1 includes an L-shaped mold part 11a and a mold part 11b. When the mold part 11a and the mold part 11b are assembled, the parts are adjacent to each other, the region surrounded by p1-p2-p3-p4 of the mold part 11a, and p1′-p2′-p3′-p4 of the mold part 11b. The region surrounded by 'is joined and closely adhered, and the region surrounded by q1-q2-q3-q4 of the mold part 11a and the region surrounded by q1'-q2'-q3'-q4' of the mold part 11b The bonded area is bonded and adhered. As a result, a mold cavity (the mold cavity is also referred to as “inside the mold”) is formed with the region S surrounded by the mold parts as a bottom surface.

鋳型部品11aの底部付近には貫通穴13が設けられており、貫通穴13は、鋳型部品11aを貫通し、外側から、鋳型部品11bとの接合面p1-p2-p3-p4まで達している。鋳型部品11bの鋳型部品11aとの接合面p1'-p2'-p3'-p4'には、鋳型部品11aに設けられた貫通穴13の位置と相対する位置に溝12が設けられている。図1において、貫通穴13の形状を円形とし、溝12の左端部を半円状とすると、貫通穴13と溝12との位置関係は、貫通穴13の円形部の中心と、溝12の半円の中心とが、中心線L上に存在するような関係となることが好ましい。   A through hole 13 is provided near the bottom of the mold part 11a. The through hole 13 penetrates the mold part 11a and reaches from the outside to the joint surface p1-p2-p3-p4 with the mold part 11b. . A groove 12 is provided at a position opposite to the position of the through hole 13 provided in the mold part 11a on the joint surface p1′-p2′-p3′-p4 ′ of the mold part 11b with the mold part 11a. In FIG. 1, when the shape of the through hole 13 is circular and the left end of the groove 12 is semicircular, the positional relationship between the through hole 13 and the groove 12 is such that the center of the circular portion of the through hole 13 and the groove 12 It is preferable that the relationship between the center of the semicircle and the center line L exists.

鋳型を組み立てた後に、硬化前の樹脂を貫通穴13の入り口から矢印a1方向に注入すると、樹脂は、貫通穴13を通って溝12に達した後、空洞部方向(矢印a2)に向きを変えて溝に沿って空洞部に入る。樹脂の注入を持続すれば、樹脂は空洞部の頂部まで達することができる。   After assembling the mold, when the resin before curing is injected from the entrance of the through hole 13 in the direction of the arrow a1, the resin reaches the groove 12 through the through hole 13, and then the direction of the resin in the direction of the cavity (arrow a2). Change and enter the cavity along the groove. If the resin injection is continued, the resin can reach the top of the cavity.

鋳型は、図1に示した2個の部品を組み立てた態様のほかにも、4個の略平板を組み立てた態様もある。その場合、樹脂と接する鋳型表面が平面で構成されるため鋳型の加工、表面処理は容易で加工精度も高く、分解、洗浄等も容易となる。   In addition to the mode in which the two parts shown in FIG. 1 are assembled, the mold has a mode in which four substantially flat plates are assembled. In this case, since the mold surface in contact with the resin is a flat surface, the mold can be easily processed and surface-treated with high processing accuracy, and can be easily disassembled and cleaned.

鋳型を構成する各部品11の材質としては、製作時における寸法精度発現性に優れ、繰り返しの使用における耐久性を有するものが好ましい。例えばステンレス等の鉄鋼、アルミ合金等の非鉄金属、ポリアセタール等の樹脂が挙げられる。   The material of each component 11 constituting the mold is preferably a material having excellent dimensional accuracy at the time of manufacture and durability in repeated use. Examples thereof include steels such as stainless steel, non-ferrous metals such as aluminum alloys, and resins such as polyacetal.

これらの材質を有する各部品11に離型性素材を被覆した場合、鋳型を分解して繊維配列体を取り出す作業が非常に簡便なものとなる。離型性素材としては、テフロン(登録商標)に代表されるフッ素系樹脂が挙げられる。近年の技術では、フッ素系樹脂をニッケル等の金属と混合してメッキする方法があり、非常に高い耐久性を有する被覆が可能である。また、テープ状のフッ素系樹脂に粘着材を塗布した形態のものが市販されており、鋳型を構成する各部品に該テープを貼付する方法は、製作時に安価且つ簡便な点で好ましい。   When each part 11 having these materials is coated with a releasable material, the work of disassembling the mold and taking out the fiber array becomes very simple. Examples of the releasable material include fluorine-based resins represented by Teflon (registered trademark). In recent technology, there is a method in which a fluorine-based resin is mixed with a metal such as nickel and plated, and a coating having extremely high durability is possible. A tape-shaped fluororesin in which an adhesive material is applied is commercially available, and the method of sticking the tape to each part constituting the mold is preferable because it is inexpensive and simple at the time of production.

繊維配列体が特に高い寸法精度を必要とする場合には、鋳型を構成する各部品にピン穴やインロー等の位置決め機構を設け、その案内により組み立てを行えばよい。好ましくは、位置決め機構が不要となるように設計時に留意する。   If the fiber array requires particularly high dimensional accuracy, a positioning mechanism such as a pin hole or an inlay may be provided in each component constituting the mold, and assembly may be performed by the guide. Preferably, care is taken during design so that a positioning mechanism is not required.

テフロン(登録商標)に代表されるフッ素樹脂やポリプロピレン等を鋳型の組成とする場合、これらの成分が離型性に優れた材質を付与する。従って、上記物質は、鋳型を構成する各部品11の表面に離型性素材を被覆する必要がなくなる点で好ましい。上記フッ素樹脂やポリプロピレン等は、製作時における寸法精度発現性、あるいは繊維配列体の寸法精度を保持できる範囲内で使用することができる。   When a fluororesin represented by Teflon (registered trademark), polypropylene, or the like is used as a mold composition, these components impart a material having excellent releasability. Therefore, the said substance is preferable at the point which does not need to coat | cover a release material on the surface of each component 11 which comprises a casting_mold | template. The fluororesin, polypropylene, and the like can be used within a range in which the dimensional accuracy at the time of production or the dimensional accuracy of the fiber array can be maintained.

鋳型を構成する各部品11の表面品位は、該部品同士の合わせ面となる面については、樹脂等を注入した際の気密性を保つため、研削加工やラップ加工により平滑な面とすることが好ましい。鋳型を組み立てる際にシリコングリス等の油脂類を塗布したり、パッキンやOリング等のシール部品を使用したりすることでさらに高い気密性を得ることができる。   The surface quality of each part 11 constituting the mold should be a smooth surface by grinding or lapping in order to maintain airtightness when the resin or the like is injected with respect to the surface serving as a mating surface between the parts. preferable. When assembling the mold, it is possible to obtain higher airtightness by applying oils and fats such as silicone grease or using seal parts such as packing and O-rings.

図1において、溝12は、鋳型外部から注入された樹脂が鋳型内部へ注入されるための流路を形成する。上述したように、樹脂中の気泡の混入を抑えるためには、樹脂を鋳型の底部側から空気の気泡を上方に追い出しながら注入することが好ましい。そのため、溝12は鋳型部品11bの下位部に設置される。「下位部」とは、鋳型部品11bの底部付近を意味する。   In FIG. 1, the groove 12 forms a flow path for the resin injected from the outside of the mold to be injected into the mold. As described above, in order to suppress the mixing of bubbles in the resin, it is preferable to inject the resin from the bottom side of the mold while expelling air bubbles upward. Therefore, the groove 12 is installed at the lower part of the mold part 11b. “Lower part” means the vicinity of the bottom of the mold part 11b.

溝12の断面形状は、半円形、矩形等が考えられるが、鋳型を分解することにより、溝12に残る樹脂等を、工具や溶剤等を用いず手作業で容易に除去することが可能であれば、特に限定されるものではない。そして、鋳型を分解して繊維配列体を取り出す際に繊維配列体を折り取ることが容易となるよう、溝12の全部または一部を狭路とすることができる。狭路の寸法は、用いる樹脂の粘度や硬化後の破断強度に応じて適宜決定することができる。溝12の断面形状や断面積を、長さ方向で連続的または不連続的に変化させてもよい。溝12を局部的に縮小させて狭路とする場合は、狭路部を鋳型内部に到達する直前に配置する。   The cross-sectional shape of the groove 12 may be semicircular, rectangular or the like, but by disassembling the mold, it is possible to easily remove the resin remaining in the groove 12 manually without using tools or solvents. If there is, it will not be specifically limited. Then, all or a part of the grooves 12 can be narrowed so that the fiber array can be easily folded when the mold is disassembled and the fiber array is taken out. The dimension of the narrow path can be appropriately determined according to the viscosity of the resin used and the breaking strength after curing. The cross-sectional shape and cross-sectional area of the groove 12 may be changed continuously or discontinuously in the length direction. When the groove 12 is locally reduced to form a narrow path, the narrow path portion is disposed immediately before reaching the inside of the mold.

樹脂は貫通穴13から溝12を通り、鋳型内部に流れ込む。貫通穴13の内径は、接続する管やシリンジ先端等の外径に適合し、気密性が得られる口径とする。好ましくは工具等を用いず手作業で抜き差し可能な程度とする。接続する管やシリンジ先端等の内径は、樹脂の流量・流速や粘度によって任意に決めることができる。また、貫通穴13の代わりにねじ穴を設け、そこに市販の管継手等を装着することで、さらに高い気密性を得ることもできる。   The resin flows from the through hole 13 through the groove 12 into the mold. The inner diameter of the through-hole 13 is adapted to the outer diameter of the pipe to be connected, the tip of the syringe, etc., and is a diameter that can provide airtightness. Preferably, it is set to such an extent that it can be manually inserted and removed without using a tool or the like. The inner diameter of the pipe or syringe tip to be connected can be arbitrarily determined by the flow rate / flow velocity and viscosity of the resin. Further, by providing a screw hole instead of the through hole 13 and attaching a commercially available pipe joint or the like to the screw hole, it is possible to obtain higher airtightness.

本発明において用いる樹脂は、鋳型の空洞部で硬化する前は、繊維束の各繊維間の空隙を隙間なく充填することができるように、低粘度で流動性に優れるものが好ましい。例えば、2液を混合して反応硬化させるウレタン樹脂が挙げられる。また、用いる繊維が熱に弱いものでなければ、加熱によって溶融した樹脂でもよい。このような樹脂としては、例えばパラフィンが挙げられる。樹脂の選定の際には、用いる繊維の材質を勘案し、樹脂に含有される溶剤等で繊維を劣化させないものを選定する。   The resin used in the present invention is preferably a resin having a low viscosity and excellent fluidity so that the voids between the fibers of the fiber bundle can be filled without gaps before being cured in the cavity of the mold. For example, a urethane resin in which two liquids are mixed and reacted and cured can be used. Moreover, if the fiber to be used is not heat-sensitive, it may be a resin melted by heating. Examples of such a resin include paraffin. When selecting the resin, a material that does not deteriorate the fiber with a solvent or the like contained in the resin is selected in consideration of the material of the fiber to be used.

図2は、繊維の長手方向に引きそろえた繊維束を、2個の部品からなる鋳型(図1と同じ形態の部品からなる鋳型)に配置させた図である。   FIG. 2 is a diagram in which fiber bundles aligned in the longitudinal direction of the fiber are arranged in a mold composed of two parts (a mold composed of parts having the same form as in FIG. 1).

繊維束22を引き揃える方法としては、多孔板23a及び23bに繊維を通して両端を引っ張る方法や、複数枚の溝基盤に繊維を配置して溝基盤を積層する方法などが挙げられるが、本発明においては特に限定されるものではない。   Examples of the method for aligning the fiber bundle 22 include a method of pulling both ends of the porous plates 23a and 23b through the fibers, a method of arranging the fibers on a plurality of groove bases, and laminating the groove bases. Is not particularly limited.

鋳型部品を組み立てた状態を維持するには、鋳型部品同士のねじによる締結、スナップ錠による締結、プレス機等の機械による固定等が考えられるが、ねじによる締結が簡便且つ強力な締結力が得られる点で好ましい。   In order to maintain the assembled state of the mold parts, it can be considered that the mold parts are fastened with screws, fastened with a snap lock, fixed with a machine such as a press machine, etc., but fastening with screws is simple and provides a strong fastening force. This is preferable.

図3は、鋳型部品の一部を硬化樹脂により固めて一体化させるときの鋳型の態様を示す図である。図3において、鋳型部品31bは貫通穴13を有する部品であり、鋳型部品33は溝12を設けるとともに、中心部が凹んだ形態を有する部品である。また、鋳型部品33の凹部は、繊維束22が配置され、樹脂が注入される領域であり、樹脂と接する凹部の内壁面は、硬化樹脂と噛みあいアンカー効果を発揮するような幾何学形状が形成されている。アンカー効果とは、樹脂と部品33とが一体化して樹脂が部品33からはずれないように両者を固定させる効果を意味する。鋳型部品32a及び32bは、組み立ての際に鋳型部品33の上に配置させ、鋳型部品31a及び鋳型部品31bと接合して密着する。   FIG. 3 is a view showing a mode of a mold when a part of a mold part is solidified and integrated with a cured resin. In FIG. 3, the mold part 31 b is a part having the through hole 13, and the mold part 33 is a part having a form in which the groove 12 is provided and the center part is recessed. The concave portion of the mold part 33 is a region where the fiber bundle 22 is arranged and resin is injected, and the inner wall surface of the concave portion in contact with the resin has a geometric shape that engages with the cured resin and exhibits an anchor effect. Is formed. The anchor effect means an effect of fixing the resin and the component 33 so that the resin and the component 33 are integrated and the resin is not detached from the component 33. The mold parts 32a and 32b are arranged on the mold part 33 at the time of assembling, and are joined and adhered to the mold part 31a and the mold part 31b.

図3に例示するように、繊維束22が通された多孔板23bの上に、鋳型部品31a、31b、鋳型部品33を配置し、鋳型部品33の上に鋳型部品32a及び32bを配置することにより、鋳型を形成する。鋳型部品31bの貫通穴から樹脂を注入し、鋳型部品33に形成させた溝12を通して鋳型の空洞部に樹脂を導入する。その結果、樹脂を硬化させると鋳型部品33と樹脂とは一体化する。樹脂の硬化後、鋳型部品31a及び31b並びに鋳型部品32a及び32bは、樹脂から分離される。   As illustrated in FIG. 3, the mold parts 31 a and 31 b and the mold part 33 are arranged on the perforated plate 23 b through which the fiber bundle 22 is passed, and the mold parts 32 a and 32 b are arranged on the mold part 33. To form a mold. Resin is injected from the through hole of the mold part 31 b and introduced into the cavity of the mold through the groove 12 formed in the mold part 33. As a result, when the resin is cured, the mold part 33 and the resin are integrated. After the resin is cured, the mold parts 31a and 31b and the mold parts 32a and 32b are separated from the resin.

そして硬化樹脂の二次加工(繊維束のスライス加工等)の際には、この一体化鋳型部品33を加工機に固定し、位置決めとして用いることができる。   In the case of secondary processing of the cured resin (slicing processing of fiber bundles, etc.), this integrated mold part 33 can be fixed to a processing machine and used for positioning.

本発明を以下の実施例により具体的に説明する。但し、本発明はこれら実施例によりその技術的範囲が限定されるものではない。   The present invention will be specifically described by the following examples. However, the technical scope of the present invention is not limited by these examples.

鋳型として、縦60mm×横21mm×高さ80mmのA2017製ブロックを2個、縦26mm×横8mm×高さ80mmのA2017製ブロックを2個の計4個で構成するものを用い、繊維として外径0.29mm×内径0.18mm×長さ800mmのポリカーボネート製中空繊維を144本、樹脂として2液混合型ポリウレタン樹脂であるコロネート4403とニッポラン4276(いずれも日本ポリウレタン工業株式会社製)6:4で混合しカーボンブラックMA−100(三菱化学株式会社製)を質量比2.5%混合したものを用いて、以下の通り繊維配列体を製造した。   The mold is composed of 2 blocks of A2017 made of 60mm x 21mm x 80mm in height and 2 blocks of A2017 made of 26mm x 8mm x 80mm in height. 144 hollow polycarbonate fibers having a diameter of 0.29 mm, an inner diameter of 0.18 mm, and a length of 800 mm, and Coronate 4403, which is a two-component mixed polyurethane resin, and NIPPOLAN 4276 (both manufactured by Nippon Polyurethane Industry Co., Ltd.) 6: 4 A fiber array was manufactured as follows using a mixture of carbon black MA-100 (manufactured by Mitsubishi Chemical Co., Ltd.) and a mass ratio of 2.5%.

縦26mm×横8mm×高さ80mmのA2017製ブロックの1個に、幅4mm×長さ10mm×深さ1mmの溝を鋳型底部から2mmの場所に設け、該溝と合わせ面になる縦60mm×横21mm×高さ80mmのA2017製ブロックの1個に、内径6mmの貫通穴を設けた。また、各ブロックには位置合わせを目的とした内径4mmのピン穴を設け、鋳型を組み立てた際に鋳型内部の寸法が縦8mm×横8mm×高さ80mmとなるようにした。各ブロックの鋳型内部となる面には、繊維配列体の離型を目的としてニトフロン粘着テープ903(日東電工株式会社製)を貼付し、貫通穴部にかかるテープを一般事務作業用のカッターでくりぬいた。そして貫通穴には、長さ150mmに切断したポリウレタンチューブUB0640(株式会社日本ピスコ製)の一端を挿入した。   One A2017 block 26mm long x 8mm wide x 80mm high is provided with a groove 4mm wide x 10mm long x 1mm deep at a location 2mm from the bottom of the mold. A through hole having an inner diameter of 6 mm was provided in one A2017 block having a width of 21 mm and a height of 80 mm. Each block was provided with a pin hole having an inner diameter of 4 mm for the purpose of alignment, and when the mold was assembled, the dimensions inside the mold were 8 mm long × 8 mm wide × 80 mm high. Nittofuron adhesive tape 903 (manufactured by Nitto Denko Co., Ltd.) is affixed to the inner surface of each block for the purpose of releasing the fiber array, and the tape applied to the through hole is cut with a general office cutter. It was. One end of a polyurethane tube UB0640 (manufactured by Nippon Pisco Co., Ltd.) cut to a length of 150 mm was inserted into the through hole.

また、中空繊維を1方向に引き揃えて繊維束とする治具として、0.42mm間隔で縦12個×横12個=144個の0.32mmの貫通穴を設けた、縦36mm×横36mm×厚さ0.1mmのSUS304製多孔板を2枚用いた。   In addition, as a jig for aligning hollow fibers in one direction to form a fiber bundle, a length of 36 mm × width of 36 mm provided with 0.32 mm through holes of 12 × length × 144 = 144 at intervals of 0.42 mm. X Two SUS304 perforated plates with a thickness of 0.1 mm were used.

まず、多孔板を2枚重ね、144個の貫通穴全てに中空繊維を1本ずつ通過させた。次いで、中空繊維を通したまま2枚の多孔板の間隔を天地方向に90mmに広げて保持し、中空繊維の両端を軽く引っ張って弛みを除いた後、多孔板の間に鋳型を組み立てて、鋳型各ブロックをM5ねじで締結した。さらに鋳型の下面にある多孔板を、鋳型の下面にM4ねじで締結して、鋳型の組み立てを完了した。   First, two porous plates were stacked, and one hollow fiber was passed through all 144 through holes. Next, the gap between the two perforated plates is extended to 90 mm in the vertical direction while passing the hollow fibers, and after loosening by removing both ends of the hollow fibers lightly, a mold is assembled between the perforated plates. The block was fastened with M5 screws. Further, the perforated plate on the lower surface of the mold was fastened to the lower surface of the mold with M4 screws to complete the assembly of the mold.

次いで、混合した樹脂を、テルモシリンジ30mL(テルモ株式会社製)に装填し、シリンジ先端をポリウレタンチューブの末端に接続し、シリンジを押して樹脂を鋳型内部に5cc注入した。注入後、室温22℃で48時間、さらに加熱容器中で、50℃で48時間かけて樹脂を硬化させた。   Next, the mixed resin was loaded into a Terumo syringe 30 mL (manufactured by Terumo Corporation), the syringe tip was connected to the end of the polyurethane tube, and the syringe was pushed to inject 5 cc of resin into the mold. After the injection, the resin was cured at room temperature of 22 ° C. for 48 hours, and further in a heating vessel at 50 ° C. for 48 hours.

硬化後、鋳型を分解して、繊維配列体を取り出した。繊維配列体の取り出しは、手作業で容易に行うことが可能であった。なお、溝に残った樹脂は手作業で完全に取り出すことができなかったが、鋳型部品をアセトン中に16時間浸漬することにより溶解除去することができた。得られた繊維配列体の外形寸法は、縦8mm×横8mm×高さ72mmであった。   After curing, the mold was disassembled and the fiber array was taken out. Removal of the fiber array could be easily performed manually. The resin remaining in the groove could not be completely removed manually, but could be dissolved and removed by immersing the mold part in acetone for 16 hours. The outer dimensions of the obtained fiber array were 8 mm long × 8 mm wide × 72 mm high.

得られた繊維配列体を、繊維束と直交する方向に厚さ0.25mmにスライスして、228枚の繊維配列体薄片を得た。228枚全ての外観を目視にて気泡の数を検査したところ、繊維配列部に発生した気泡は1個もなく、周囲の樹脂部に発生した気泡はわずか1個見られただけであった。   The obtained fiber array was sliced to a thickness of 0.25 mm in a direction perpendicular to the fiber bundle to obtain 228 fiber array flakes. When the number of bubbles was visually inspected for the appearance of all 228 sheets, there was no single bubble generated in the fiber array portion, and only one bubble was generated in the surrounding resin portion.

実施例1で使用した鋳型部品である各ブロック表面全面にテフロン(登録商標)をコーティングして、実施例1と同じ中空繊維、同じ樹脂を用いて、実施例1と同じ方法で鋳型の組み立てを完了した。
次いで、実施例1と同じ方法で樹脂を鋳型内部に5cc注入した。注入後、実施例1と同じ方法で樹脂を硬化させ、鋳型を分解して、繊維配列体を取り出した。繊維配列体の取り出しは、手作業で容易に行うことが可能であり、溝に残った樹脂も手作業で容易に取り外すことができた。得られた繊維配列体の外形寸法は、縦8mm×横8mm×高さ72mmであった。得られた繊維配列体を、実施例1と同様にスライスして、228枚の繊維配列体薄片を得た。228枚全ての外観を目視にて気泡の数を検査したところ、繊維配列部に発生した気泡は1個もなく、周囲の樹脂部に発生した気泡が1個見られただけであった。
Teflon (registered trademark) is coated on the entire surface of each block, which is the mold part used in Example 1, and the same hollow fiber and the same resin as in Example 1 are used to assemble the mold in the same manner as in Example 1. Completed.
Next, 5 cc of resin was injected into the mold in the same manner as in Example 1. After the injection, the resin was cured by the same method as in Example 1, the mold was disassembled, and the fiber array was taken out. The fiber array body can be easily taken out manually, and the resin remaining in the groove can be easily removed manually. The outer dimensions of the obtained fiber array were 8 mm long × 8 mm wide × 72 mm high. The obtained fiber array was sliced in the same manner as in Example 1 to obtain 228 fiber array flakes. When the number of bubbles was visually inspected for the appearance of all 228 sheets, one bubble was not generated in the fiber array portion, and only one bubble was generated in the surrounding resin portion.

鋳型部品として、各ブロック表面全面にテフロン(登録商標)をコーティングした、縦60mm×横21mm×高さ80mmのA2017製ブロックを2個、縦26mm×横8mm×高さ70mmのA2017製ブロックを2個と、縦60mm×横8mm×高さ10mmの中央部に縦8mm×幅7mmの凹状の開口部を有し、開口部内面に硬化樹脂とのアンカー効果を発揮させるための微細な横溝が多数形成され、凹状の開口部に樹脂を流入させるための流路が形成された、凹状の開口部のみテフロン(登録商標)コーティングを施していない有磁性ステンレスSUS430製のブロックを1個、計5個で構成されるものを用いた。そして、実施例1と同じ中空繊維、同じ樹脂を用い、縦60mm×横8mm×高さ10mmのブロックの凹の開口部内に144本の繊維束が位置し、このブロックに設けられた樹脂流入部が縦60mm×横21mm×高さ80mmのブロックに設けられた樹脂注入口と一致する位置関係で鋳型を組み立てた。   As mold parts, two A2017 blocks 60mm long x 21mm wide x 80mm high, and two A2017 blocks 26mm long x 8mm wide x 70mm high coated with Teflon (registered trademark) on the entire surface of each block. Each has a concave opening with a length of 60 mm x width 8 mm x height 10 mm and a height of 8 mm x width 7 mm, and there are many fine transverse grooves on the inner surface of the opening to exert the anchor effect with the cured resin. A block made of magnetic stainless steel SUS430, which is formed and has a flow path for allowing the resin to flow into the concave opening, and only the concave opening is not coated with Teflon (registered trademark), a total of five blocks What was comprised was used. And, using the same hollow fiber and the same resin as in Example 1, 144 fiber bundles are located in the concave opening of the block of length 60 mm × width 8 mm × height 10 mm, and the resin inflow portion provided in this block Was assembled in a positional relationship that coincided with a resin injection port provided in a block 60 mm long × 21 mm wide × 80 mm high.

次いで、実施例2と同じ方法で樹脂を鋳型内部に注入、硬化させ、鋳型を分解して、底部がSUS430製のブロックと一体化した繊維配列体を取り出した。繊維配列体の取り出しは、手作業で容易に行うことが可能であり、溝に残った樹脂も手作業で容易に取り外すことができた。得られた繊維配列体の外形寸法は、縦8mm×横8mm×高さ72mmで、一体化した底部金属ブロックは縦60mm×横8mm×高さ10mmであった。   Next, the resin was poured into the mold and cured in the same manner as in Example 2, the mold was disassembled, and a fiber array whose bottom portion was integrated with a block made of SUS430 was taken out. The fiber array body can be easily taken out manually, and the resin remaining in the groove can be easily removed manually. The outer dimensions of the obtained fiber array were length 8 mm × width 8 mm × height 72 mm, and the integrated bottom metal block was length 60 mm × width 8 mm × height 10 mm.

そして、得られた繊維配列体を厚さ0.25mmにスライスするに際し、被加工物保持部に電磁チャックを有したスライス装置を用いた。まず装置の電磁チャック部に金属ブロックと一体化した繊維配列体の金属ブロックを位置決めし、電磁チャックをONにすることで繊維配列体を簡単に正確かつ強固に保持できた。その状態で繊維束と直交する方向に厚さ0.25mmにスライスして、208枚の繊維配列体薄片を得た。スライス加工完了後、電磁チャックをOFFすることで繊維配列体を装置から簡単に取り外すことができた。   Then, when slicing the obtained fiber array to a thickness of 0.25 mm, a slicing device having an electromagnetic chuck in the workpiece holding part was used. First, by positioning the metal block of the fiber array integrated with the metal block in the electromagnetic chuck portion of the apparatus and turning on the electromagnetic chuck, the fiber array could be easily and accurately held firmly. In that state, sliced into a thickness of 0.25 mm in a direction perpendicular to the fiber bundle, and 208 fiber array flakes were obtained. After completion of slicing, the fiber array could be easily removed from the apparatus by turning off the electromagnetic chuck.

比較例1
鋳型部品として実施例1と同じ寸法のブロックを用い、その一部に鋳型内部の繊維配列体と直接接続する貫通穴を設けた。各ブロック表面全面にテフロン(登録商標)をコーティングして、実施例1と同じ中空繊維、同じ樹脂を用いて、実施例1と同じ方法で鋳型の組み立てを完了した。
Comparative Example 1
A block having the same size as that of Example 1 was used as a mold part, and a through-hole directly connected to the fiber array inside the mold was provided in a part thereof. The entire surface of each block was coated with Teflon (registered trademark), and the assembly of the mold was completed in the same manner as in Example 1 using the same hollow fiber and the same resin as in Example 1.

次いで、実施例1と同じ方法で樹脂を鋳型内部に5cc注入した。注入後、実施例1と同じ方法で樹脂を硬化させ、鋳型を分解して、繊維配列体を取り出した。   Next, 5 cc of resin was injected into the mold in the same manner as in Example 1. After the injection, the resin was cured by the same method as in Example 1, the mold was disassembled, and the fiber array was taken out.

繊維配列体の取り出しは、貫通穴の樹脂が硬化して繊維配列体と一体化しているために非常に困難となり、貫通穴の外側から直径5mmのSUS304製丸棒をあてがい、丸棒をハンマで叩くことにより繊維配列体を取り出すことができた。さらに、一体化している貫通穴の樹脂を鋸で切断することにより、所望する形状の繊維配列体が得られた。   Removal of the fiber array becomes very difficult because the resin in the through hole is cured and integrated with the fiber array, and a SUS304 round bar with a diameter of 5 mm is applied from the outside of the through hole. The fiber array could be removed by tapping. Furthermore, the fiber array body of a desired shape was obtained by cutting the resin of the integrated through hole with a saw.

得られた繊維配列体の外形寸法は、縦8mm×横8mm×高さ72mmであった。得られた繊維配列体を、実施例1と同様にスライスして、114枚の繊維配列体薄片を得た。114枚全ての外観を目視にて気泡の数を検査したところ、繊維配列部に発生した気泡は1個もなく、周囲の樹脂部に発生した気泡が1個見られた。   The outer dimensions of the obtained fiber array were 8 mm long × 8 mm wide × 72 mm high. The obtained fiber array was sliced in the same manner as in Example 1 to obtain 114 fiber array flakes. When the number of bubbles was visually inspected for the appearance of all 114 sheets, no bubbles were generated in the fiber array portion, and one bubble was generated in the surrounding resin portion.

比較例2
鋳型部品として実施例1と同じ寸法で溝と貫通穴がないテフロン(登録商標)製のものを用い、中空繊維と樹脂として実施例1と同じものを用いて、実施例1と同じ方法で鋳型の組み立てを完了した。
Comparative Example 2
A mold made of Teflon (registered trademark) having the same dimensions as in Example 1 and having no grooves and through holes is used as the mold part, and the same mold as that in Example 1 is used as the hollow fiber and the resin. Completed assembly.

次いで、混合した樹脂を、実施例1と同じシリンジに装填し、シリンジを押して樹脂を鋳型の上部開放口から鋳型内部に5cc注入した。注入後、実施例1と同じ方法で樹脂を硬化させ、鋳型を分解して、繊維配列体を取り出した。繊維配列体の取り出しは、手作業で容易に行うことが可能であった。得られた繊維配列体の外形寸法は、縦7.8mm×横8mm×高さ72mmであった。得られた繊維配列体を、実施例1と同様にスライスして、114枚の繊維配列体薄片を得た。 114枚全ての外観を目視にて気泡の数を検査したところ、繊維配列部に発生した気泡が6個、周囲の樹脂部に発生した気泡が69個見られた。   Next, the mixed resin was loaded into the same syringe as in Example 1, and the syringe was pushed to inject 5 cc of resin into the mold from the upper opening of the mold. After the injection, the resin was cured by the same method as in Example 1, the mold was disassembled, and the fiber array was taken out. Removal of the fiber array could be easily performed manually. The outer dimensions of the obtained fiber array were 7.8 mm long × 8 mm wide × 72 mm high. The obtained fiber array was sliced in the same manner as in Example 1 to obtain 114 fiber array flakes. When the number of bubbles was visually inspected for the appearance of all 114 sheets, 6 bubbles were generated in the fiber array portion, and 69 bubbles were generated in the surrounding resin portion.

2個の部品で構成した場合の本発明の鋳型の例である。It is an example of the casting_mold | template of this invention at the time of comprising by two parts. 1方向に引き揃えた繊維束の周囲に、2個の部品で構成した場合の本発明の鋳型を組み立てた状態の例である。It is an example of the state which assembled the casting_mold | template of this invention at the time of comprising with two components around the fiber bundle arranged in one direction. 鋳型部品の一部を硬化樹脂により固めて一体化させるときの鋳型の態様を示す図である。It is a figure which shows the aspect of a casting_mold | template when solidifying and integrating a part of casting_mold | template part with hardening resin.

符号の説明Explanation of symbols

11・・・・・鋳型部品
12・・・・・溝
13・・・・・貫通穴
21・・・・・鋳型部品
22・・・・・繊維束
23a・・・・・多孔板
23b・・・・・多孔板
31a・・・・・鋳型部品
31b・・・・・鋳型部品
32a・・・・・鋳型部品
32b・・・・・鋳型部品
33・・・・・一体化鋳型部品
11 ... Mold part 12 ... Groove 13 ... Through hole 21 ... Mold part 22 ... Fiber bundle 23a ... Perforated plate 23b ... ... Perforated plate 31a ... Mold part 31b ... Mold part 32a ... Mold part 32b ... Mold part 33 ... Integrated mold part

Claims (4)

繊維の長手方向に引き揃えた繊維束が樹脂で固定された繊維配列体の製造用鋳型であって、該鋳型は、少なくとも2個の組み立て可能な鋳型部品群で構成され、該鋳型部品群の少なくとも1個の鋳型部品には、隣接する他の鋳型部品との接合面の底部付近に、鋳型の空洞に到達する溝を設け、当該他の鋳型部品には、該溝に相対する箇所から鋳型外部に到達する貫通穴を設け、これら鋳型部品を組み立てることにより鋳型外部から鋳型空洞まで貫通する空間を備えたことを特徴とする、前記鋳型。   A mold for producing a fiber array in which fiber bundles aligned in the longitudinal direction of a fiber are fixed with a resin, and the mold is composed of at least two mold parts that can be assembled. At least one mold part is provided with a groove reaching the cavity of the mold in the vicinity of the bottom of the joint surface with another adjacent mold part. The mold according to claim 1, further comprising a space penetrating from the outside of the mold to the mold cavity by providing a through hole reaching the outside and assembling these mold parts. 溝は、その全体が、または鋳型空洞に到達する直前部が狭路となっていることを特徴とする請求項1に記載の鋳型。   2. The mold according to claim 1, wherein the groove is narrow as a whole or just before reaching the mold cavity. 鋳型の材質を金属とし、その表面に離型性素材が被覆されたことを特徴とする、請求項1に記載の鋳型。   2. The mold according to claim 1, wherein the mold is made of metal and the surface thereof is coated with a releasable material. 溝を有する鋳型部品の一部が樹脂と一体化し、当該樹脂と一体化した鋳型部品が他の鋳型部品と分離可能であることを特徴とする、請求項1〜3のいずれか1項に記載の鋳型。   The mold part having a groove is partly integrated with a resin, and the mold part integrated with the resin is separable from other mold parts. Mold.
JP2005036680A 2005-02-14 2005-02-14 Manufacturing mold of fiber arrangement Pending JP2006218834A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005036680A JP2006218834A (en) 2005-02-14 2005-02-14 Manufacturing mold of fiber arrangement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005036680A JP2006218834A (en) 2005-02-14 2005-02-14 Manufacturing mold of fiber arrangement

Publications (1)

Publication Number Publication Date
JP2006218834A true JP2006218834A (en) 2006-08-24

Family

ID=36981456

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005036680A Pending JP2006218834A (en) 2005-02-14 2005-02-14 Manufacturing mold of fiber arrangement

Country Status (1)

Country Link
JP (1) JP2006218834A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158689A (en) * 2012-02-03 2013-08-19 Mitsubishi Rayon Cleansui Co Ltd Method for manufacturing hollow fiber membrane module
KR101813842B1 (en) * 2017-10-16 2018-01-02 하대환 Eco-friendly drawing product molding system using fast curing two liquid polyurethane resin and product

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013158689A (en) * 2012-02-03 2013-08-19 Mitsubishi Rayon Cleansui Co Ltd Method for manufacturing hollow fiber membrane module
KR101813842B1 (en) * 2017-10-16 2018-01-02 하대환 Eco-friendly drawing product molding system using fast curing two liquid polyurethane resin and product

Similar Documents

Publication Publication Date Title
Owens et al. High-precision modular microfluidics by micromilling of interlocking injection-molded blocks
Wilson et al. Fabrication of circular microfluidic channels by combining mechanical micromilling and soft lithography
JP4656149B2 (en) Flow cell and manufacturing method thereof
EP1473077B1 (en) Fluid mixing apparatus
US8697236B2 (en) Fine line bonding and/or sealing system and method
JP2006119155A (en) Electrochemical sensor and forming method therefor
JPWO2012124449A1 (en) Manufacturing method of resin molding die, resin molding die, resin molding die set, manufacturing method of microchip substrate, and microchip manufacturing method using this die
JP2006218834A (en) Manufacturing mold of fiber arrangement
WO2004052541A1 (en) Micro-fluidic structure, method and apparatus for its production, and use thereof
CN101977749A (en) Injection molding method and injection molding die
CN103723676A (en) Manufacturing method of micro-fluid channel
US20100075109A1 (en) Microchip, Molding Die and Electroforming Master
WO2014103842A1 (en) Method for producing microchannel and microchannel
US8747778B2 (en) Method of producing microfluidic device
JP2019187117A (en) Apparatus and method for manufacturing rotor core
JP2019161850A (en) Rotor core manufacturing apparatus and manufacturing method
JP7063040B2 (en) Rotor core manufacturing equipment, rotor core manufacturing method, and cal plate
US20100074815A1 (en) Master and Microreactor
CN102951605B (en) A kind of manufacture method of Micro-fluidic chip die
CN208772492U (en) Lathe tool fixture
JP4011947B2 (en) Molding method for long resin
US3089193A (en) Apparatus for and methods of assembling record engaging styli
EP1602623B1 (en) Method of moulding a microfluidic structure and mould
Novotný Bioanalytical techniques using microfluidics and nanotechnology
JP2018069126A (en) Centrifugal potting tool