JP2006218574A - Surface coated cemented carbide cutting tool having hard covering layer exhibiting superior chipping resistance in high speed cutting of difficult-to-cut material - Google Patents

Surface coated cemented carbide cutting tool having hard covering layer exhibiting superior chipping resistance in high speed cutting of difficult-to-cut material Download PDF

Info

Publication number
JP2006218574A
JP2006218574A JP2005034657A JP2005034657A JP2006218574A JP 2006218574 A JP2006218574 A JP 2006218574A JP 2005034657 A JP2005034657 A JP 2005034657A JP 2005034657 A JP2005034657 A JP 2005034657A JP 2006218574 A JP2006218574 A JP 2006218574A
Authority
JP
Japan
Prior art keywords
layer
cutting
cemented carbide
carbide
coated carbide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005034657A
Other languages
Japanese (ja)
Other versions
JP4771197B2 (en
Inventor
Akihiro Kondou
暁裕 近藤
Yusuke Tanaka
裕介 田中
Kazunori Sato
和則 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Original Assignee
Mitsubishi Materials Corp
Mitsubishi Materials Kobe Tools Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Mitsubishi Materials Kobe Tools Corp filed Critical Mitsubishi Materials Corp
Priority to JP2005034657A priority Critical patent/JP4771197B2/en
Publication of JP2006218574A publication Critical patent/JP2006218574A/en
Application granted granted Critical
Publication of JP4771197B2 publication Critical patent/JP4771197B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface coated cemented carbide cutting tool having a hard covering layer exhibiting superior chipping resistance in a high speed cutting of a difficult-to-cut material. <P>SOLUTION: This surface coated cemented carbide cutting tool is (a) constituted of an upper-part layer and a lower-part layer both of which are composed of (Ti, Al, V)N on the surface of a cemented carbide body, and the upper-part layer and the lower-part layer have the layer thicknesses of 0.5-1.5 μm and 2-6 μm respectively; (b) the upper-part layer is provided with an alternate-layer structure of a thin layer A and a thin layer B both of which have the layer thickness of 5-20 nm and are composed of the (Ti, Al, V)N layer satisfying specific composition formulas respectively; and (c) the lower-part layer is provided with a single phase structure, and is formed by vapor-depositing the hard covering layer composed of the (Ti, Al, V)N layer satisfying the composition formula: (Ti<SB>1-(E+F)</SB>Al<SB>E</SB>V<SB>F</SB>)N (wherein, E indicates 0.50-0.65 and F indicates 0.01-0.09 in terms of the atomic ratio). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、硬質被覆層がすぐれた潤滑性を有し、したがって特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高い発熱を伴う高速切削加工に用いた場合にも、切削時に切粉が切刃部に溶着することなく、すぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具(以下、被覆超硬工具という)に関するものである。   This invention has excellent lubricity of the hard coating layer, and therefore, even when used for high-speed cutting with high heat generation of difficult-to-cut materials with high viscosity such as mild steel, stainless steel, and even high manganese steel, The present invention relates to a surface-coated cemented carbide cutting tool (hereinafter referred to as a coated cemented carbide tool) that exhibits excellent chipping resistance without cutting chips adhering to the cutting edge during cutting.

一般に、被覆超硬工具には、各種の鋼や鋳鉄などの被削材の旋削加工や平削り加工にバイトの先端部に着脱自在に取り付けて用いられるスローアウエイチップ、前記被削材の穴あけ切削加工などに用いられるドリルやミニチュアドリル、さらに前記被削材の面削加工や溝加工、肩加工などに用いられるソリッドタイプのエンドミルなどがあり、また前記スローアウエイチップを着脱自在に取り付けて前記ソリッドタイプのエンドミルと同様に切削加工を行うスローアウエイエンドミル工具などが知られている。   In general, coated carbide tools include a throw-away tip that is attached to the tip of a cutting tool for turning and planing of various steels and cast irons, and drilling of the work material. There are drills and miniature drills used for processing, etc., and solid type end mills used for chamfering, grooving, shoulder processing, etc. of the work material. A slow-away end mill tool that performs cutting work in the same manner as a type end mill is known.

また、被覆超硬工具として、炭化タングステン(以下、WCで示す)基超硬合金または炭窒化チタン(以下、TiCNで示す)基サーメットで構成された超硬基体の表面に、単一相構造を有し、かつ、
組成式:(Ti1-(X+Y) AlX )N(ただし、原子比で、Xは0.50〜0.65、Yは0.01〜0.09を示す)、
を満足するTiとAlとVの複合窒化物[以下、(Ti,Al,V)Nで示す]層からなる硬質被覆層を2〜8μmの平均層厚で蒸着形成してなる被覆超硬工具が知られており、前記(Ti,Al,V)N層においては、構成成分であるAlによって高温硬さおよび耐熱性、同Tiによって高温強度、さらに同Vによって潤滑性が向上した特性をもつようになることも知られている。
In addition, as a coated carbide tool, a single-phase structure is formed on the surface of a cemented carbide substrate made of tungsten carbide (hereinafter referred to as WC) -based cemented carbide or titanium carbonitride (hereinafter referred to as TiCN) -based cermet. Have and
Composition formula: (Ti 1− (X + Y) Al X V Y ) N (wherein X is 0.50 to 0.65, Y is 0.01 to 0.09 in atomic ratio),
Coated carbide tool formed by vapor-depositing a hard coating layer composed of a composite nitride of Ti, Al, and V [hereinafter referred to as (Ti, Al, V) N] satisfying the above conditions with an average layer thickness of 2 to 8 μm The (Ti, Al, V) N layer has the characteristics that high temperature hardness and heat resistance are obtained by Al as a constituent component, high temperature strength is obtained by Ti, and lubricity is improved by V. It is also known that

さらに、上記の被覆超硬工具が、例えば図2に概略説明図で示される物理蒸着装置の1種であるアークイオンプレーティング装置に上記の超硬基体を装入し、ヒータで装置内を、例えば500℃の温度に加熱した状態で、アノード電極と所定組成を有するTi−Al−V合金がセットされたカソード電極(蒸発源)との間に、例えば電流:90Aの条件でアーク放電を発生させ、同時に装置内に反応ガスとして窒素ガスを導入して、例えば2Paの反応雰囲気とし、一方上記超硬基体には、例えば−100Vのバイアス電圧を印加した条件で、前記超硬基体の表面に、上記(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより製造されることも知られている。
特開平10−237628号公報
Furthermore, the above-mentioned coated carbide tool is, for example, the above-mentioned carbide substrate is inserted into an arc ion plating apparatus which is one type of physical vapor deposition apparatus schematically shown in FIG. For example, an arc discharge is generated between the anode electrode and a cathode electrode (evaporation source) on which a Ti—Al—V alloy having a predetermined composition is set, for example, at a current of 90 A, while being heated to a temperature of 500 ° C. At the same time, nitrogen gas is introduced into the apparatus as a reaction gas to form a reaction atmosphere of, for example, 2 Pa. On the other hand, the carbide substrate is applied to the surface of the carbide substrate under a condition that a bias voltage of, for example, −100 V is applied. It is also known that it is manufactured by vapor-depositing a hard coating layer composed of the (Ti, Al, V) N layer.
Japanese Patent Laid-Open No. 10-237628

近年の切削加工装置の高性能化はめざましく、一方で切削加工に対する省力化および省エネ化、さらに低コスト化の要求は強く、これに伴い、切削加工は高速化の傾向にあるが、上記の従来被覆超硬工具においては、これを炭素鋼や低合金鋼、さらに普通鋳鉄などの切削を高速切削加工条件で行うのに用いた場合には、通常の切削性能を示し問題はないが、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材などの切削加工を、高熱発生を伴なう高速切削加工条件で行うのに用いた場合には、特に硬質被覆層の潤滑性不足が原因で、切粉が切刃部に溶着し易くなり、これが原因でチッピング(微少欠け)が発生し、この結果比較的短時間で使用寿命に至るのが現状である。   In recent years, the performance of cutting devices has been dramatically improved, while on the other hand, there are strong demands for labor saving and energy saving and further cost reduction for cutting, and with this, cutting tends to be faster. In coated carbide tools, when used for cutting carbon steel, low alloy steel, and ordinary cast iron under high-speed cutting conditions, normal cutting performance is not a problem. Especially when cutting high-viscosity difficult-to-cut materials such as stainless steel and high-manganese steel under high-speed cutting conditions with high heat generation, the lubricity of the hard coating layer is insufficient. For this reason, the chips are likely to be welded to the cutting edge portion, which causes chipping (small chipping), and as a result, the service life is reached in a relatively short time.

そこで、本発明者等は、上述のような観点から、特に上記難削材の高速切削加工で硬質被覆層がすぐれた潤滑性を発揮する被覆超硬工具を開発すべく、上記の従来被覆超硬工具の硬質被覆層を構成する(Ti,Al,V)N層に着目し、研究を行った結果、
(a)硬質被覆層を構成する(Ti,Al,V)N層において、V成分の含有割合を多くすれば潤滑性が向上するが、上記の従来(Ti,Al,V)N層における1〜9原子%程度のV含有割合では、粘性の高い難削材の高速切削加工に要求される高い潤滑性を確保することができず、これらの要求に満足に対応させるためには前記1〜9原子%をはるかに越えた50〜70原子%のV含有が必要であり、一方50〜70原子%のV成分を含有した(Ti,Al,V)N層を硬質被覆層として実用に供するためには、所定量のTiを含有させて所定の高温強度を確保する必要があるが、この場合Al成分の含有割合はきわめて低い状態となるのが避けられず、この結果高温硬さおよび耐熱性のきわめて低いものとなること。
In view of the above, the inventors of the present invention have developed the above-mentioned conventional coated super-hard tool in order to develop a coated carbide tool that exhibits excellent lubricity with a hard coating layer particularly in high-speed cutting of the difficult-to-cut material. As a result of conducting research by focusing on the (Ti, Al, V) N layer that constitutes the hard coating layer of hard tools,
(A) In the (Ti, Al, V) N layer constituting the hard coating layer, the lubricity is improved if the content ratio of the V component is increased, but 1 in the conventional (Ti, Al, V) N layer described above. When the V content is about 9 atomic%, high lubricity required for high-speed cutting of highly viscous difficult-to-cut materials cannot be ensured. To satisfy these requirements satisfactorily, It is necessary to contain 50 to 70 atomic% of V far exceeding 9 atomic%, while a (Ti, Al, V) N layer containing 50 to 70 atomic% of V component is put to practical use as a hard coating layer. In order to achieve this, it is necessary to contain a predetermined amount of Ti to ensure a predetermined high-temperature strength. In this case, however, it is inevitable that the content ratio of the Al component is extremely low. Be extremely low in nature.

(b)組成式:(Ti1-(A+B)Al)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する、V含有割合が50〜70原子%の(Ti,Al,V)N層と、
組成式:(Ti1-(C+D)Al)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する、相対的にAl成分の含有割合を多くした(Ti,Al,V)N層、
を、それぞれの層厚を5〜20nm(ナノメーター)の薄層とした状態で、交互積層すると、この結果の(Ti,Al,V)N層は、薄層の交互積層構造によって、上記の高V含有の(Ti,Al,V)N層(以下、薄層Aという)のもつすぐれた潤滑性と、前記薄層Aに比して相対的にV含有割合が低く、かつ相対的にAl含有割合が高い(Ti,Al,V)N層(以下、薄層Bという)のもつ所定の相対的に高い高温硬さおよび耐熱性を具備するようになること。
(B) the composition formula: (Ti 1- (A + B ) Al A V B) N ( provided that an atomic ratio, A is 0.01 to 0.10, B represents a 0.50 to 0.70) satisfies A (Ti, Al, V) N layer having a V content ratio of 50 to 70 atomic%;
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein, C is 0.25 to 0.40 and D is 0.20 to 0.35 in an atomic ratio), relative (Ti, Al, V) N layer with an increased Al component content,
Are alternately laminated in a state where each layer thickness is a thin layer of 5 to 20 nm (nanometers), the resulting (Ti, Al, V) N layer has the above-described structure due to the thin laminated layer structure. The excellent lubricity of the (Ti, Al, V) N layer (hereinafter referred to as the thin layer A) having a high V content, the V content ratio being relatively lower than that of the thin layer A, and relatively A predetermined relatively high high temperature hardness and heat resistance of the (Ti, Al, V) N layer (hereinafter referred to as the thin layer B) having a high Al content ratio.

(c)上記(b)の薄層Aと薄層Bの交互積層構造を有する(Ti,Al,V)N層は、難削材の高速切削加工で要求される、すぐれた潤滑性を具備するものの、十分満足な高温硬さおよび耐熱性を有するものでないので、これを硬質被覆層の上部層として設け、一方同下部層として、潤滑性は不十分であるが、相対的にAl成分の含有割合が高く、すぐれた高温硬さと耐熱性を具備する上記の従来硬質被覆層に相当する組成を有する(Ti,Al,V)N層、すなわち、
組成式:(Ti1-(E+F)Al)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する、単一相構造の(Ti,Al,V)N層、
を設けた構造にすると、この結果の硬質被覆層は、一段とすぐれた潤滑性に加えて、高温硬さと耐熱性、さらに高温強度を備えたものとなるので、この硬質被覆層を蒸着形成してなる被覆超硬工具は、上記の難削材の高い高熱発生を伴う高速切削加工でも、切刃部に切粉が溶着することがなく、この結果チッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するようになること。
以上(a)〜(c)に示される研究結果を得たのである。
(C) The (Ti, Al, V) N layer having the alternately laminated structure of the thin layer A and the thin layer B in (b) has excellent lubricity required for high-speed cutting of difficult-to-cut materials. However, since it does not have sufficiently satisfactory high-temperature hardness and heat resistance, it is provided as an upper layer of the hard coating layer, while the lower layer is insufficient in lubricity, but is relatively free of Al components. (Ti, Al, V) N layer having a high content ratio and having a composition corresponding to the above conventional hard coating layer having excellent high temperature hardness and heat resistance,
Compositional formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in terms of atomic ratio) (Ti, Al, V) N layer of single phase structure,
The resulting hard coating layer has high-temperature hardness, heat resistance, and high-temperature strength, in addition to excellent lubricity. The coated cemented carbide tool does not cause chips to adhere to the cutting edge even in high-speed cutting with the high heat generation of the above difficult-to-cut materials, resulting in excellent wear resistance without chipping. To come to show.
The research results shown in (a) to (c) above were obtained.

この発明は、上記の研究結果に基づいてなされたものであって、超硬基体の表面に、
(a)いずれも(Ti,Al,V)Nからなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)Al)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足する(Ti,Al,V)N層、
上記薄層Bは、
組成式:(Ti1-(C+D)Al)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足する(Ti,Al,V)N層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)Al)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足する(Ti,Al,V)N層、
からなる硬質被覆層を蒸着形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する被覆超硬工具に特徴を有するものである。
This invention was made based on the above research results, and on the surface of the carbide substrate,
(A) Both are composed of an upper layer and a lower layer made of (Ti, Al, V) N, the upper layer has a thickness of 0.5 to 1.5 μm, and the lower layer has a thickness of 2 to 6 μm. ,
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in terms of atomic ratio) (Ti , Al, V) N layer,
The thin layer B is
Composition formula: (Ti 1− (C + D) Al C V D ) N (wherein C is 0.25 to 0.40 and D is 0.20 to 0.35 in terms of atomic ratio) (Ti , Al, V) N layer,
(C) the lower layer has a single phase structure;
Composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E is 0.50 to 0.65 and F is 0.01 to 0.09 in atomic ratio) (Ti , Al, V) N layer,
It is characterized by a coated carbide tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials, which is formed by vapor-depositing a hard coating layer made of

つぎに、この発明の被覆超硬工具の硬質被覆層に関し、上記の通りに数値限定した理由を説明する。
(a)下部層の組成式および層厚
上記の通り、硬質被覆層を構成する(Ti,Al,V)N層におけるAl成分には高温硬さおよび耐熱性を向上させ、一方同Ti成分には高温強度、さらに同V成分には潤滑性を向上させる作用があり、下部層ではAl成分の含有割合を相対的に多くして、高い高温硬さおよび耐熱性を具備せしめるが、Alの含有割合を示すE値がTiとVとの合量に占める割合(原子比、以下同じ)で0.50未満では、相対的にTiの割合が多くなって、難削材の高速切削加工に要求されるすぐれた高温硬さおよび耐熱性を確保することができず、摩耗進行が急激に促進するようになり、一方Alの割合を示すE値が同0.65を越えると、相対的にTiの割合が少なくなり過ぎて、高温強度が急激に低下し、この結果チッピング(微少欠け)などが発生し易くなることから、E値を0.50〜0.65と定めた。
また、Vの割合を示すF値がTiとAlとの合量に占める割合で、0.01未満では、所定の潤滑性を確保することができず、一方同F値が0.09を超えると、高温硬さおよび耐熱性が急激に低下するようになることから、F値を0.01〜0.09と定めた。
さらに、その層厚が2μm未満では、自身のもつすぐれた高温硬さおよび耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が6μmを越えると、チッピングが発生し易くなることから、その層厚を2〜6μmと定めた。
Next, the reason why the numerical values of the hard coating layer of the coated carbide tool of the present invention are limited as described above will be described.
(A) Composition formula and layer thickness of the lower layer As described above, the Al component in the (Ti, Al, V) N layer constituting the hard coating layer improves high-temperature hardness and heat resistance, while the Ti component Has the effect of improving the high temperature strength and the lubricity of the V component, and the lower layer has a relatively high Al component content to provide high high temperature hardness and heat resistance. If the E value indicating the ratio is less than 0.50 in the ratio of the total amount of Ti and V (atomic ratio, the same shall apply hereinafter), the ratio of Ti is relatively high, which is required for high-speed cutting of difficult-to-cut materials. The excellent high-temperature hardness and heat resistance cannot be ensured, and the progress of wear is rapidly promoted. On the other hand, when the E value indicating the proportion of Al exceeds 0.65, relatively Ti As a result, the high-temperature strength suddenly drops Since chipping (slight chipping) or the like is likely to occur, the E value is set to 0.50 to 0.65.
Further, the F value indicating the proportion of V is the proportion of the total amount of Ti and Al, and if it is less than 0.01, the predetermined lubricity cannot be ensured, while the F value exceeds 0.09. Since the high temperature hardness and the heat resistance are drastically reduced, the F value is determined to be 0.01 to 0.09.
Furthermore, if the layer thickness is less than 2 μm, the excellent high-temperature hardness and heat resistance cannot be imparted to the hard coating layer over a long period of time, resulting in a short tool life, while if the layer thickness exceeds 6 μm Since the chipping is likely to occur, the layer thickness is set to 2 to 6 μm.

(b)上部層の薄層Aの組成式
上部層の薄層Aの(Ti,Al,V)NにおけるV成分は、上記の通り相対的に含有割合を著しく高くして、潤滑性を向上させ、もって高熱発生を伴う難削材の高速切削加工に適応させる目的で含有するものであり、したがってB値が0.50未満では所望のすぐれた潤滑性を確保することができず、一方B値が0.70を越えると、層自体が具備すべき高温強度を確保することができなくなり、チッピングが発生し易くなることから、B値を0.50〜0.70と定めた。
また、Alの割合を示すA値がTiとVとの合量に占める割合で、0.01未満では、最低限の高温硬さおよび耐熱性を確保することができず、摩耗促進の原因となり、一方同A値が0.10を超えると、高温強度に低下傾向が現れるようになり、チッピング発生の原因となることから、A値を0.01〜0.10と定めた。
(B) Composition formula of upper layer thin layer A The V component in (Ti, Al, V) N of the upper layer thin layer A is remarkably increased in content as described above to improve lubricity. Therefore, it is contained for the purpose of adapting to high-speed cutting of difficult-to-cut materials with high heat generation. Therefore, if the B value is less than 0.50, the desired excellent lubricity cannot be ensured. If the value exceeds 0.70, the high temperature strength that the layer itself should have cannot be secured, and chipping is likely to occur. Therefore, the B value was set to 0.50 to 0.70.
Further, the A value indicating the proportion of Al is the proportion of the total amount of Ti and V. If it is less than 0.01, the minimum high-temperature hardness and heat resistance cannot be ensured, which causes accelerated wear. On the other hand, when the A value exceeds 0.10, a tendency to decrease in high-temperature strength appears, which causes chipping. Therefore, the A value was determined to be 0.01 to 0.10.

(c)上部層の薄層Bの組成式
上部層の薄層Bにおいては、上記薄層Aに比してV成分の含有割合を相対的に低くし、かつAl成分の含有割合を相対的に高く維持することで、前記薄層Aに不足する高温硬さおよび耐熱性を具備せしめ、隣接する薄層Aの高温硬さおよび耐熱性不足を補強し、もって、前記薄層Aの有するすぐれた潤滑性と、前記薄層Bの有する相対的に高い高温硬さおよび耐熱性を具備した上部層を形成するものであるが、組成式におけるAlの含有割合を示すC値が0.25未満になると、所定の高温硬さおよび耐熱性を確保することができず、これが摩耗促進の原因となり、一方同C値が0.40を越えると、高温強度が急激に低下するようになり、上部層自体にチッピングが発生し易くなることから、C値を0.25〜0.40と定めた。
また、Vの割合を示すD値がTiとAlとの合量に占める割合で、0.20未満では、上部層全体の潤滑性低下が避けられず、一方同D値が0.35を超えると、上部層全体の高温強度が急激に低下することから、D値を0.20〜0.35と定めた。
(C) Composition formula of thin layer B of the upper layer In the thin layer B of the upper layer, the content ratio of the V component is relatively lower than that of the thin layer A, and the content ratio of the Al component is relatively By keeping the thin layer A high, the thin layer A has insufficient high-temperature hardness and heat resistance, reinforces the high-temperature hardness and heat resistance shortage of the adjacent thin layer A, and thus has the excellent thin layer A. The upper layer having a relatively high high-temperature hardness and heat resistance of the thin layer B is formed, but the C value indicating the Al content in the composition formula is less than 0.25. , The predetermined high temperature hardness and heat resistance cannot be ensured, which causes wear promotion. On the other hand, when the C value exceeds 0.40, the high temperature strength rapidly decreases, Since chipping is likely to occur in the layer itself, the C value is 0.25. It was set to ˜0.40.
Further, the D value indicating the ratio of V is the ratio of the total amount of Ti and Al. If the value is less than 0.20, the lubricity of the entire upper layer is inevitably deteriorated, while the D value exceeds 0.35. Then, since the high temperature strength of the entire upper layer is drastically reduced, the D value was set to 0.20 to 0.35.

(d)上部層の薄層Aと薄層Bの層厚
それぞれの層厚が5nm未満ではそれぞれの薄層を上記の組成で明確に形成することが困難であり、この結果上部層に所望のすぐれた潤滑性、さらに所定の高温硬さと耐熱性を確保することができなくなり、またそれぞれの層厚が20nmを越えるとそれぞれの薄層がもつ欠点、すなわち薄層Aであれば高温硬さと耐熱性不足、薄層Bであれば潤滑性不足が層内に局部的に現れ、これが原因でチッピングが発生し易くなったり、摩耗進行が促進されるようになることから、それぞれの層厚を5〜20nmと定めた。
(D) Layer thicknesses of upper layer thin layer A and layer B If each layer thickness is less than 5 nm, it is difficult to form each thin layer clearly with the above composition. Excellent lubricity, further high temperature hardness and heat resistance cannot be ensured, and if the thickness of each layer exceeds 20 nm, each thin layer has defects, ie, if it is thin layer A, high temperature hardness and heat resistance Insufficient lubricity, if thin layer B, insufficient lubricity will appear locally in the layer, which may cause chipping and promote the progress of wear. It was set to ˜20 nm.

(e)上部層の層厚
その層厚が0.5μm未満では、自身のもつすぐれた潤滑性および所定の高温硬さと耐熱性を硬質被覆層に長期に亘って付与できず、工具寿命短命の原因となり、一方その層厚が1.5μmを越えると、チッピングが発生し易くなることから、その層厚を0.5〜1.5μmと定めた。
(E) Layer thickness of the upper layer If the layer thickness is less than 0.5 μm, it cannot provide its own excellent lubricity and predetermined high temperature hardness and heat resistance to the hard coating layer over a long period of time, resulting in a short tool life. On the other hand, if the layer thickness exceeds 1.5 μm, chipping tends to occur. Therefore, the layer thickness is set to 0.5 to 1.5 μm.

この発明の被覆超硬工具は、硬質被覆層が(Ti,Al,V)N層からなるが、硬質被覆層の上部層を薄層Aと薄層Bの交互積層構造とすることによって、所定の高温硬さと耐熱性を保持した状態で、すぐれた潤滑性を具備せしめ、同単一相構造の下部層がすぐれた高温硬さと耐熱性を有することから、特に切粉が切刃部に溶着し易く、これが原因でチッピングが発生し易くなる高熱発生を伴なう難削材の高速切削加工でも、前記硬質被覆層にチッピングの発生なく、すぐれた耐摩耗性を長期に亘って発揮するものである。   In the coated carbide tool of the present invention, the hard coating layer is composed of a (Ti, Al, V) N layer. The upper layer of the hard coating layer has an alternate laminated structure of the thin layer A and the thin layer B. With excellent lubricity while maintaining the high temperature hardness and heat resistance of the single-phase structure, the lower layer of the same phase structure has excellent high temperature hardness and heat resistance. Even in high-speed cutting of difficult-to-cut materials with high heat generation, which easily causes chipping due to this, the hard coating layer does not generate chipping and exhibits excellent wear resistance over a long period of time It is.

つぎに、この発明の被覆超硬工具を実施例により具体的に説明する。   Next, the coated carbide tool of the present invention will be specifically described with reference to examples.

原料粉末として、いずれも1〜3μmの平均粒径を有するWC粉末、TiC粉末、ZrC粉末、VC粉末、TaC粉末、NbC粉末、Cr3 2 粉末、TiN粉末、TaN粉末、およびCo粉末を用意し、これら原料粉末を、表1に示される配合組成に配合し、ボールミルで72時間湿式混合し、乾燥した後、100MPa の圧力で圧粉体にプレス成形し、この圧粉体を6Paの真空中、温度:1400℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったWC基超硬合金製の超硬基体A−1〜A−10を形成した。 WC powder, TiC powder, ZrC powder, VC powder, TaC powder, NbC powder, Cr 3 C 2 powder, TiN powder, TaN powder and Co powder all having an average particle diameter of 1 to 3 μm are prepared as raw material powders. These raw material powders are blended in the composition shown in Table 1, wet mixed by a ball mill for 72 hours, dried, and then pressed into a green compact at a pressure of 100 MPa. Medium, sintered at 1400 ° C for 1 hour, after sintering, WC-based carbide with honing of R: 0.03 on the cutting edge and chip shape of ISO standard CNMG120408 Alloy carbide substrates A-1 to A-10 were formed.

また、原料粉末として、いずれも0.5〜2μmの平均粒径を有するTiCN(質量比でTiC/TiN=50/50)粉末、Mo2 C粉末、ZrC粉末、NbC粉末、TaC粉末、WC粉末、Co粉末、およびNi粉末を用意し、これら原料粉末を、表2に示される配合組成に配合し、ボールミルで24時間湿式混合し、乾燥した後、100MPaの圧力で圧粉体にプレス成形し、この圧粉体を2kPaの窒素雰囲気中、温度:1500℃に1時間保持の条件で焼結し、焼結後、切刃部分にR:0.03のホーニング加工を施してISO規格・CNMG120408のチップ形状をもったTiCN基サーメット製の超硬基体B−1〜B−6を形成した。 In addition, as raw material powders, TiCN (mass ratio TiC / TiN = 50/50) powder, Mo 2 C powder, ZrC powder, NbC powder, TaC powder, WC powder, all having an average particle diameter of 0.5 to 2 μm. Co powder and Ni powder are prepared, and these raw material powders are blended in the blending composition shown in Table 2, wet mixed by a ball mill for 24 hours, dried, and then pressed into a compact at a pressure of 100 MPa. The green compact was sintered in a nitrogen atmosphere of 2 kPa at a temperature of 1500 ° C. for 1 hour, and after sintering, the cutting edge portion was subjected to a honing process of R: 0.03 to obtain ISO standard / CNMG120408. The carbide substrates B-1 to B-6 made of TiCN base cermet having the following chip shape were formed.

(a)ついで、上記の超硬基体A−1〜A−10およびB−1〜B−6のそれぞれを、アセトン中で超音波洗浄し、乾燥した状態で、図1に示されるアークイオンプレーティング装置内の回転テーブル上の中心軸から半径方向に所定距離離れた位置に外周部にそって装着し、一方側のカソード電極(蒸発源)として、それぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層A形成用Ti−Al−V合金、他方側のカソード電極(蒸発源)として、同じくそれぞれ表3,4に示される目標組成に対応した成分組成をもった上部層の薄層B形成用Ti−Al−V合金を前記回転テーブルを挟んで対向配置し、また前記両Ti−Al−V合金から90度ずれた位置に前記回転テーブルに沿ってカソード電極(蒸発源)として下部層形成用Ti−Al−V合金を装着し、
(b)まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記回転テーブル上で自転しながら回転する超硬基体に−1000Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−V合金によってボンバード洗浄し、
(c)装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加し、かつ前記下部層形成用Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって前記超硬基体の表面に、表3,4に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層を硬質被覆層の下部層として蒸着形成し、
(d)ついで、装置内に反応ガスとして窒素ガスを導入して2Paの反応雰囲気とすると共に、前記回転テーブル上で自転しながら回転する超硬基体に−100Vの直流バイアス電圧を印加した状態で、前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極との間に50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、前記超硬基体の表面に所定層厚の薄層Aを形成し、前記薄層A形成後、アーク放電を停止し、代って前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間に同じく50〜200Aの範囲内の所定の電流を流してアーク放電を発生させて、所定層厚の薄層Bを形成した後、アーク放電を停止し(この場合薄層Bの形成から開始してもよい)、再び前記薄層A形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Aの形成と、前記薄層B形成用Ti−Al−V合金のカソード電極とアノード電極間のアーク放電による薄層Bの形成を交互に繰り返し行い、もって前記超硬基体の表面に、層厚方向に沿って表3,4に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表3,4に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製スローアウエイチップ(以下、本発明被覆超硬チップと云う)1〜16をそれぞれ製造した。
(A) Next, each of the above carbide substrates A-1 to A-10 and B-1 to B-6 was ultrasonically cleaned in acetone and dried, and then the arc ion plate shown in FIG. Attached along the outer peripheral portion at a predetermined distance in the radial direction from the central axis on the rotary table in the coating apparatus, and used as a cathode electrode (evaporation source) on one side with the target compositions shown in Tables 3 and 4, respectively. As the upper layer Ti-Al-V alloy for forming the thin layer A having the corresponding component composition and the cathode electrode (evaporation source) on the other side, the component compositions corresponding to the target compositions shown in Tables 3 and 4 are also used. A Ti-Al-V alloy for forming a thin layer B, which is an upper layer, is arranged opposite to the rotary table, and a cathode is formed along the rotary table at a position shifted by 90 degrees from both the Ti-Al-V alloys. As an electrode (evaporation source) The section layer forming Ti-Al-V alloy is mounted,
(B) First, the inside of the apparatus is evacuated and kept at a vacuum of 0.1 Pa or less, and the inside of the apparatus is heated to 500 ° C. with a heater, and then the carbide substrate that rotates while rotating on the rotary table is set to −1000 V. And applying a current of 100 A between the Ti-Al-V alloy for forming the lower layer and the anode electrode to generate an arc discharge, so that the surface of the cemented carbide substrate is coated with the Ti-Al- Bombarded with V alloy,
(C) Introducing nitrogen gas as a reaction gas into the apparatus to make a reaction atmosphere of 3 Pa, applying a DC bias voltage of −100 V to a carbide substrate rotating while rotating on the rotary table, and A current of 100 A is passed between the Ti-Al-V alloy for layer formation and the anode electrode to generate an arc discharge, and the target composition and target layer thickness shown in Tables 3 and 4 are formed on the surface of the cemented carbide substrate. A (Ti, Al, V) N layer having a single phase structure is deposited as a lower layer of the hard coating layer,
(D) Next, nitrogen gas is introduced as a reaction gas into the apparatus to form a reaction atmosphere of 2 Pa, and a −100 V DC bias voltage is applied to a carbide substrate that rotates while rotating on the rotary table. A predetermined current in the range of 50 to 200 A is passed between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer A to generate arc discharge, and the surface of the cemented carbide substrate is generated. A thin layer A having a predetermined thickness is formed, and after the thin layer A is formed, the arc discharge is stopped, and instead, the same is applied between the cathode electrode and the anode electrode of the Ti-Al-V alloy for forming the thin layer B. A predetermined current within a range of 200 A is applied to generate arc discharge to form a thin layer B having a predetermined layer thickness, and then the arc discharge is stopped (in this case, the formation of the thin layer B may be started). , Ti-A for forming the thin layer A again -Formation of thin layer A by arc discharge between cathode electrode and anode electrode of -V alloy and formation of thin layer B by arc discharge between cathode electrode and anode electrode of Ti-Al-V alloy for forming thin layer B An upper layer comprising alternating layers of thin layers A and B having a target composition and a target layer thickness of one layer shown in Tables 3 and 4 along the layer thickness direction is repeated on the surface of the cemented carbide substrate. Similarly, by carrying out vapor deposition with an overall target layer thickness shown in Tables 3 and 4, the surface-coated carbide throwaway tip (hereinafter referred to as the present invention coated carbide tip) 1 as the present invention coated carbide tool. ~ 16 were produced respectively.

また、比較の目的で、これら超硬基体A−1〜A−10およびB−1〜B−6を、アセトン中で超音波洗浄し、乾燥した状態で、それぞれ図2に示されるアークイオンプレーティング装置に装入し、カソード電極(蒸発源)として、それぞれ表5に示される目標組成に対応した成分組成をもったTi−Al−V合金を装着し、まず、装置内を排気して0.1Pa以下の真空に保持しながら、ヒーターで装置内を500℃に加熱した後、前記超硬基体に−1000Vの直流バイアス電圧を印加し、かつカソード電極の前記Ti−Al−V合金とアノード電極との間に100Aの電流を流してアーク放電を発生させ、もって超硬基体表面を前記Ti−Al−V合金でボンバード洗浄し、ついで装置内に反応ガスとして窒素ガスを導入して3Paの反応雰囲気とすると共に、前記超硬基体に印加するバイアス電圧を−100Vに下げて、前記Ti−Al−V合金のカソード電極とアノード電極との間にアーク放電を発生させ、もって前記超硬基体A−1〜A−10およびB−1〜B−6のそれぞれの表面に、表5に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着形成することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製スローアウエイチップ(以下、比較被覆超硬チップと云う)1〜16をそれぞれ製造した。   For the purpose of comparison, these carbide substrates A-1 to A-10 and B-1 to B-6 were ultrasonically cleaned in acetone and dried, respectively, and the arc ion plate shown in FIG. A Ti—Al—V alloy having a component composition corresponding to the target composition shown in Table 5 was installed as a cathode electrode (evaporation source) as a cathode electrode (evaporation source). The apparatus was heated to 500 ° C. with a heater while maintaining a vacuum of 1 Pa or less, and then a −1000 V DC bias voltage was applied to the carbide substrate, and the Ti—Al—V alloy and anode of the cathode electrode were applied. A current of 100 A is passed between the electrodes to generate an arc discharge, and the surface of the carbide substrate is bombarded with the Ti—Al—V alloy, and then nitrogen gas is introduced into the apparatus as a reaction gas to 3 Pa. And a bias voltage applied to the cemented carbide substrate is lowered to -100 V to generate an arc discharge between the cathode electrode and the anode electrode of the Ti-Al-V alloy, thereby the cemented carbide substrate. Each of A-1 to A-10 and B-1 to B-6 has a (Ti, Al, V) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 5. By forming the hard coating layer by vapor deposition, comparative surface-coated carbide throw-away tips (hereinafter referred to as comparative coated carbide tips) 1 to 16 as comparative coated carbide tools corresponding to conventional coated carbide tools are respectively provided. Manufactured.

つぎに、上記の各種の被覆チップを、いずれも工具鋼製バイトの先端部に固定治具にてネジ止めした状態で、本発明被覆超硬チップ1〜16および比較被覆超硬チップ1〜16について、
被削材:JIS・SUS316の丸棒、
切削速度:240m/min.、
切り込み:1.2mm、
送り:0.2mm/rev.、
切削時間:10分、
の条件(切削条件A)でのステンレス鋼の乾式連続高速切削加工試験(通常の切削速度は120m/min.)、
被削材:JIS・SCMnH2の長さ方向等間隔4本縦溝入り丸棒、
切削速度:200m/min.、
切り込み:1.5mm、
送り:0.15mm/rev.、
切削時間:10分、
の条件(切削条件B)での高マンガン鋼の乾式断続高速切削加工試験(通常の切削速度は100m/min.)、
被削材:JIS・SS400の丸棒、
切削速度:400m/min.、
切り込み:1.5mm、
送り:0.4mm/rev.、
切削時間:10分、
の条件(切削条件C)での軟鋼の乾式連続高速切削加工試験(通常の切削速度は200m/min.)を行い、いずれの切削加工試験でも切刃の逃げ面摩耗幅を測定した。この測定結果を表6に示した。
Next, the coated carbide tips 1 to 16 of the present invention and the comparative coated carbide tips 1 to 16 of the present invention are screwed to the tip of the tool steel tool with a fixing jig. about,
Work material: JIS / SUS316 round bar,
Cutting speed: 240 m / min. ,
Cutting depth: 1.2mm,
Feed: 0.2 mm / rev. ,
Cutting time: 10 minutes,
Dry continuous high-speed cutting test of stainless steel under the conditions (cutting condition A) (normal cutting speed is 120 m / min.),
Work material: JIS · SCMnH2 lengthwise equidistant four round grooved round bars,
Cutting speed: 200 m / min. ,
Incision: 1.5mm,
Feed: 0.15 mm / rev. ,
Cutting time: 10 minutes,
Dry-intermittent high-speed cutting test of high manganese steel under the conditions (cutting condition B) (normal cutting speed is 100 m / min.),
Work material: JIS / SS400 round bar,
Cutting speed: 400 m / min. ,
Incision: 1.5mm,
Feed: 0.4 mm / rev. ,
Cutting time: 10 minutes,
The dry continuous high-speed cutting test (normal cutting speed was 200 m / min.) Of mild steel under the above conditions (cutting condition C) was carried out, and the flank wear width of the cutting edge was measured in any cutting test. The measurement results are shown in Table 6.

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

原料粉末として、平均粒径:5.5μmを有する中粗粒WC粉末、同0.8μmの微粒WC粉末、同1.3μmのTaC粉末、同1.2μmのNbC粉末、同1.2μmのZrC粉末、同2.3μmのCr32粉末、同1.5μmのVC粉末、同1.0μmの(Ti,W)C[質量比で、TiC/WC=50/50]粉末、および同1.8μmのCo粉末を用意し、これら原料粉末をそれぞれ表7に示される配合組成に配合し、さらにワックスを加えてアセトン中で24時間ボールミル混合し、減圧乾燥した後、100MPaの圧力で所定形状の各種の圧粉体にプレス成形し、これらの圧粉体を、6Paの真空雰囲気中、7℃/分の昇温速度で1370〜1470℃の範囲内の所定の温度に昇温し、この温度に1時間保持後、炉冷の条件で焼結して、直径が8mm、13mm、および26mmの3種の超硬基体形成用丸棒焼結体を形成し、さらに前記の3種の丸棒焼結体から、研削加工にて、表7に示される組合せで、切刃部の直径×長さがそれぞれ6mm×13mm、10mm×22mm、および20mm×45mmの寸法、並びにいずれもねじれ角30度の4枚刃スクエア形状をもったWC基超硬合金製の超硬基体(エンドミル)C−1〜C−8をそれぞれ製造した。 As raw material powders, medium coarse WC powder having an average particle diameter of 5.5 μm, fine WC powder of 0.8 μm, TaC powder of 1.3 μm, NbC powder of 1.2 μm, ZrC of 1.2 μm Powder, 2.3 μm Cr 3 C 2 powder, 1.5 μm VC powder, 1.0 μm (Ti, W) C [by mass ratio, TiC / WC = 50/50] powder, and 1 Prepare 8 .mu.m Co powder, mix these raw material powders with the composition shown in Table 7, add wax, ball mill in acetone for 24 hours, dry under reduced pressure, and then press at a pressure of 100 MPa. The green compacts were press-molded, and these green compacts were heated to a predetermined temperature in the range of 1370 to 1470 ° C. at a rate of temperature increase of 7 ° C./min in a 6 Pa vacuum atmosphere. After holding at temperature for 1 hour, sintering under furnace cooling conditions Three types of sintered carbide rod forming bodies for forming a carbide substrate having diameters of 8 mm, 13 mm, and 26 mm were formed, and further, the three types of round rod sintered bodies described above were subjected to grinding and shown in Table 7. Made of WC-base cemented carbide with a combination of 4 blade square shape with diameter and length of 6mm × 13mm, 10mm × 22mm, and 20mm × 45mm respectively, and a twist angle of 30 degrees. Carbide substrates (end mills) C-1 to C-8 were produced.

ついで、これらの超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表8に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる下部層と、同じく層厚方向に沿って表8に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表8に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製エンドミル(以下、本発明被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   Then, the surfaces of these carbide substrates (end mills) C-1 to C-8 were ultrasonically cleaned in acetone and dried, and then charged into the arc ion plating apparatus shown in FIG. Under the same conditions as in Example 1, a lower layer composed of a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 8 is also shown along the layer thickness direction. A coated carbide tool of the present invention is formed by vapor-depositing an upper layer composed of alternating layers of thin layers A and B having a target composition shown in FIG. The present invention surface-coated carbide end mills (hereinafter referred to as the present invention coated carbide end mills) 1 to 8 were produced.

また、比較の目的で、上記の超硬基体(エンドミル)C−1〜C−8の表面をアセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表9に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製エンドミル(以下、比較被覆超硬エンドミルと云う)1〜8をそれぞれ製造した。   For the purpose of comparison, the surfaces of the above-mentioned carbide substrates (end mills) C-1 to C-8 are ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. The hard coating layer made of (Ti, Al, V) N layer having a single phase structure having the target composition and target layer thickness shown in Table 9 is deposited under the same conditions as in Example 1 above. Thus, comparative surface-coated carbide end mills (hereinafter referred to as comparative coated carbide end mills) 1 to 8 as comparative coated carbide tools corresponding to conventional coated carbide tools were produced, respectively.

つぎに、上記本発明被覆超硬エンドミル1〜8および比較被覆超硬エンドミル1〜8のうち、本発明被覆超硬エンドミル1〜3および比較被覆超硬エンドミル1〜3については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS304の板材、
切削速度:60m/min.、
溝深さ(切り込み):1.5mm、
テーブル送り:240mm/分、
の条件でのステンレス鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆超硬エンドミル4〜6および比較被覆超硬エンドミル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH2の板材、
切削速度:70m/min.、
溝深さ(切り込み):3.5mm、
テーブル送り:230mm/分、
の条件での高マンガン鋼の乾式高速溝切削加工試験(通常の切削速度は30m/min.)、本発明被覆超硬エンドミル7,8および比較被覆超硬エンドミル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SS400の板材、
切削速度:200m/min.、
溝深さ(切り込み):8mm、
テーブル送り:480mm/分、
の条件での軟鋼の乾式高速溝切削加工試験(通常の切削速度は100m/min.)をそれぞれ行い、いずれの溝切削加工試験でも切刃部の外周刃の逃げ面摩耗幅が使用寿命の目安とされる0.1mmに至るまでの切削溝長を測定した。この測定結果を表8,9にそれぞれ示した。
Next, of the present invention coated carbide end mills 1-8 and comparative coated carbide end mills 1-8, the present invention coated carbide end mills 1-3 and comparative coated carbide end mills 1-3 are as follows:
Work material-Plane: 100 mm x 250 mm, thickness: 50 mm, JIS / SUS304 plate,
Cutting speed: 60 m / min. ,
Groove depth (cut): 1.5 mm,
Table feed: 240 mm / min,
With respect to the dry high-speed grooving test of stainless steel under the conditions (normal cutting speed is 30 m / min.), The present invention coated carbide end mills 4-6 and comparative coated carbide end mills 4-6,
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 70 m / min. ,
Groove depth (cut): 3.5 mm,
Table feed: 230 mm / min,
For high manganese steel dry high-speed grooving test (normal cutting speed is 30 m / min.), Coated carbide end mills 7 and 8 of the present invention and comparative coated carbide end mills 7 and 8
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 200 m / min. ,
Groove depth (cut): 8 mm,
Table feed: 480 mm / min,
The dry high-speed grooving test of mild steel under normal conditions (normal cutting speed is 100 m / min.) Is performed, and the flank wear width of the outer peripheral edge of the cutting edge is an indication of the service life in each grooving test. The cutting groove length up to 0.1 mm was measured. The measurement results are shown in Tables 8 and 9, respectively.

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

上記の実施例2で製造した直径が8mm(超硬基体C−1〜C−3形成用)、13mm(超硬基体C−4〜C−6形成用)、および26mm(超硬基体C−7、C−8形成用)の3種の丸棒焼結体を用い、この3種の丸棒焼結体から、研削加工にて、溝形成部の直径×長さがそれぞれ4mm×13mm(超硬基体D−1〜D−3)、8mm×22mm(超硬基体D−4〜D−6)、および16mm×45mm(超硬基体D−7、D−8)の寸法、並びにいずれもねじれ角30度の2枚刃形状をもったWC基超硬合金製の超硬基体(ドリル)D−1〜D−8をそれぞれ製造した。   The diameters produced in Example 2 above were 8 mm (for forming carbide substrates C-1 to C-3), 13 mm (for forming carbide substrates C-4 to C-6), and 26 mm (for carbide substrates C-). 7, for C-8 formation), from these three types of round bar sintered bodies, the diameter x length of the groove forming portion is 4 mm x 13 mm (by grinding), respectively. Carbide substrates D-1 to D-3), 8 mm × 22 mm (Carbide substrates D-4 to D-6), and 16 mm × 45 mm (Carbide substrates D-7 and D-8), and all Carbide substrates (drills) D-1 to D-8 made of a WC-base cemented carbide having a two-blade shape with a twist angle of 30 degrees were produced.

ついで、これらの超硬基体(ドリル)D−1〜D−8の切刃に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図1に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、表10に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる下部層と、同じく層厚方向に沿って表10に示される目標組成および一層目標層厚の薄層Aと薄層Bの交互積層からなる上部層を同じく表10に示される全体目標層厚で蒸着形成することにより、本発明被覆超硬工具としての本発明表面被覆超硬製ドリル(以下、本発明被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   Next, the cutting edges of these carbide substrates (drills) D-1 to D-8 are subjected to honing, ultrasonically cleaned in acetone and dried, and the arc ion plating apparatus shown in FIG. 1 is also used. A lower layer composed of a (Ti, Al, V) N layer having a single-phase structure having a target composition and a target layer thickness shown in Table 10 under the same conditions as in Example 1, and the same layer By vapor-depositing an upper layer composed of alternating layers of the thin layer A and the thin layer B having the target composition shown in Table 10 and a single target layer thickness along the thickness direction, with the overall target layer thickness also shown in Table 10, The surface coated carbide drills (hereinafter referred to as the present invention coated carbide drills) 1 to 8 as the present invention coated carbide tools were produced, respectively.

また、比較の目的で、上記の超硬基体(ドリル)D−1〜D−8の表面に、ホーニングを施し、アセトン中で超音波洗浄し、乾燥した状態で、同じく図2に示されるアークイオンプレーティング装置に装入し、上記実施例1と同一の条件で、同じく表11に示される目標組成および目標層厚の単一相構造を有する(Ti,Al,V)N層からなる硬質被覆層を蒸着することにより、従来被覆超硬工具に相当する比較被覆超硬工具としての比較表面被覆超硬製ドリル(以下、比較被覆超硬ドリルと云う)1〜8をそれぞれ製造した。   For comparison purposes, the surfaces of the above-mentioned carbide substrates (drills) D-1 to D-8 are honed, ultrasonically cleaned in acetone, and dried, and the arc shown in FIG. A hard material comprising a (Ti, Al, V) N layer having a single-phase structure with the target composition and target layer thickness shown in Table 11 under the same conditions as in Example 1 above, while charging the ion plating apparatus. By vapor-depositing the coating layer, comparative surface-coated carbide drills (hereinafter referred to as comparative coated carbide drills) 1 to 8 as comparative coated carbide tools corresponding to conventional coated carbide tools were produced, respectively.

つぎに、上記本発明被覆超硬ドリル1〜8および比較被覆超硬ドリル1〜8のうち、本発明被覆超硬ドリル1〜3および比較被覆超硬ドリル1〜3については、
被削材−平面:100mm×250、厚さ:50mmの寸法をもったJIS・SS400の板材、
切削速度:90m/min.、
送り:0.2mm/rev、
穴深さ:6mm、
の条件での軟鋼の湿式高速穴あけ切削加工試験(通常の切削速度は45m/min.)、本発明被覆超硬ドリル4〜6および比較被覆超硬ドリル4〜6については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SUS316の板材、
切削速度:55m/min.、
送り:0.1mm/rev、
穴深さ:10mm、
の条件でのステンレス鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、本発明被覆超硬ドリル7,8および比較被覆超硬ドリル7,8については、
被削材−平面:100mm×250mm、厚さ:50mmの寸法をもったJIS・SCMnH2の板材、
切削速度:50m/min.、
送り:0.15mm/rev、
穴深さ:20mm、
の条件での合金工具鋼の湿式高速穴あけ切削加工試験(通常の切削速度は25m/min.)、をそれぞれ行い、いずれの湿式高速穴あけ切削加工試験(水溶性切削油使用)でも先端切刃面の逃げ面摩耗幅が0.3mmに至るまでの穴あけ加工数を測定した。この測定結果を表8にそれぞれ示した。
Next, of the present invention coated carbide drills 1-8 and comparative coated carbide drills 1-8, for the present invention coated carbide drills 1-3 and comparative coated carbide drills 1-3,
Work material-Plane: 100 mm × 250, thickness: 50 mm JIS / SS400 plate material,
Cutting speed: 90 m / min. ,
Feed: 0.2mm / rev,
Hole depth: 6mm,
About the wet high speed drilling cutting test of mild steel under the conditions of (normal cutting speed is 45 m / min.), The present invention coated carbide drills 4-6 and comparative coated carbide drills 4-6,
Work material-Plane: 100 mm × 250 mm, thickness: 50 mm JIS / SUS316 plate material,
Cutting speed: 55 m / min. ,
Feed: 0.1 mm / rev,
Hole depth: 10mm,
With respect to the stainless steel wet high speed drilling cutting test (normal cutting speed is 25 m / min.), The coated carbide drills 7 and 8 of the present invention and the comparative coated carbide drills 7 and 8
Work material-plane: 100 mm × 250 mm, thickness: 50 mm JIS / SCMnH2 plate material,
Cutting speed: 50 m / min. ,
Feed: 0.15mm / rev,
Hole depth: 20mm,
Wet high-speed drilling machining test (normal cutting speed is 25 m / min.) Of alloy tool steel under the above conditions, and the tip cutting edge surface in any wet high-speed drilling machining test (using water-soluble cutting oil) The number of drilling processes until the flank wear width was 0.3 mm was measured. The measurement results are shown in Table 8, respectively.

Figure 2006218574
Figure 2006218574

Figure 2006218574
Figure 2006218574

この結果得られた本発明被覆超硬工具としての本発明被覆超硬チップ1〜16、本発明被覆超硬エンドミル1〜8、および本発明被覆超硬ドリル1〜8の(Ti,Al,V)Nからなる硬質被覆層を構成する上部層の薄層Aおよび薄層B、さらに同下部層の組成、並びに従来被覆超硬工具に相当する比較被覆超硬工具としての比較被覆超硬チップ1〜16、比較被覆超硬エンドミル1〜8、および比較被覆超硬ドリル1〜8の(Ti,Al,V)Nからなる硬質被覆層の組成を、透過型電子顕微鏡を用いてのエネルギー分散型X線分析法により測定したところ、それぞれ目標組成と実質的に同じ組成を示した。   (Ti, Al, V) of the coated carbide tips 1 to 16 of the present invention, the coated carbide end mills 1 to 8 of the present invention, and the coated carbide drills 1 to 8 of the present invention obtained as the coated carbide tools of the present invention obtained as a result. ) Comparison of coated carbide tip 1 as a comparative coated carbide tool equivalent to the conventional coated carbide tool, and the composition of the lower layer A and thin layer B constituting the hard coating layer made of N and the lower layer. -16, comparative coated carbide end mills 1 to 8 and comparative coated carbide drills 1 to 8 with a hard coating layer composed of (Ti, Al, V) N and an energy dispersion type using a transmission electron microscope When measured by X-ray analysis, each showed substantially the same composition as the target composition.

また、上記の硬質被覆層の構成層の平均層厚を透過型電子顕微鏡を用いて断面測定したところ、いずれも目標層厚と実質的に同じ平均値(5ヶ所の平均値)を示した。   Further, when the average layer thickness of the constituent layers of the hard coating layer was subjected to cross-sectional measurement using a transmission electron microscope, all showed the same average value (average value of five locations) as the target layer thickness.

表3〜11に示される結果から、本発明被覆超硬工具は、いずれも硬質被覆層がそれぞれ組成の異なる、(Ti,Al,V)Nからなる単一相構造の下部層と、層厚がそれぞれ5〜20nmの薄層Aと薄層Bの交互積層構造を有する上部層で構成され、前記下部層がすぐれた高温硬さおよび耐熱性、さらに前記上部層がすぐれた潤滑性を有し、硬質被覆層はこれらのすぐれた特性を兼ね備えたものとなるので、特に軟鋼やステンレス鋼、さらに高マンガン鋼などの粘性の高い難削材の高い発熱を伴う高速切削加工に用いた場合にも、すぐれた潤滑性を発揮し、切削時に切粉が切刃部に溶着することがなく、すぐれた耐チッピング性を発揮するの対して、硬質被覆層が単一相構造の(Ti,Al,V)N層からなる比較被覆超硬工具は、前記難削材の高速切削加工では、特に潤滑性不足が原因で切刃部にチッピングが発生し、比較的短時間で使用寿命に至ることが明らかである。   From the results shown in Tables 3 to 11, each of the coated carbide tools of the present invention has a single-phase lower layer composed of (Ti, Al, V) N, each having a hard coating layer having a different composition, and a layer thickness. Is composed of an upper layer having an alternating laminated structure of thin layers A and B each having a thickness of 5 to 20 nm, the lower layer has excellent high temperature hardness and heat resistance, and the upper layer has excellent lubricity. Since the hard coating layer combines these excellent properties, it is especially suitable for high-speed cutting with high heat generation of highly viscous difficult-to-cut materials such as mild steel, stainless steel, and high manganese steel. It exhibits excellent lubricity, chips do not adhere to the cutting edge during cutting, and exhibits excellent chipping resistance, whereas the hard coating layer has a single-phase structure (Ti, Al, V) The comparative coated carbide tool composed of the N layer The high-speed cutting of wood, chipping occurs in the cutting edge due to particularly lubricity shortage, it is apparent that lead to a relatively short time service life.

上述のように、この発明の被覆超硬工具は、特に各種の炭素鋼や低合金鋼、さらに普通鋳鉄などの高速切削条件での切削加工は勿論のこと、特に難削材の高熱発生を伴なう高速切削加工でもすぐれた耐チッピング性を発揮し、長期に亘ってすぐれた切削性能を示すものであり、被削材に対して広い汎用性を有するものであるから、切削加工の省力化および省エネ化、さらに低コスト化に十分満足に対応できるものである。   As described above, the coated cemented carbide tool of the present invention is not only used for cutting under high-speed cutting conditions such as various carbon steels, low alloy steels, and ordinary cast iron, and particularly with high heat generation of difficult-to-cut materials. Therefore, it exhibits excellent chipping resistance even in high-speed cutting, exhibits excellent cutting performance over a long period of time, and has wide versatility with work materials, saving labor in cutting. And it can cope with energy saving and cost reduction sufficiently satisfactorily.

本発明被覆超硬工具を構成する硬質被覆層を形成するのに用いたアークイオンプレーティング装置を示し、(a)は概略平面図、(b)は概略正面図である。The arc ion plating apparatus used for forming the hard coating layer which comprises this invention coated carbide tool is shown, (a) is a schematic plan view, (b) is a schematic front view. 通常のアークイオンプレーティング装置の概略説明図である。It is a schematic explanatory drawing of a normal arc ion plating apparatus.

Claims (1)

炭化タングステン基超硬合金または炭窒化チタン基サーメットで構成された超硬基体の表面に、
(a)いずれもTiとAlとV(バナジウム)の複合窒化物からなる上部層と下部層で構成し、前記上部層は0.5〜1.5μm、前記下部層は2〜6μmの層厚をそれぞれ有し、
(b)上記上部層は、いずれも5〜20nm(ナノメ−タ−)の層厚を有する薄層Aと薄層Bの交互積層構造を有し、
上記薄層Aは、
組成式:(Ti1-(A+B)Al)N(ただし、原子比で、Aは0.01〜0.10、Bは0.50〜0.70を示す)を満足するTiとAlとVの複合窒化物層、
上記薄層Bは、
組成式:(Ti1-(C+D)Al)N(ただし、原子比で、Cは0.25〜0.40、Dは0.20〜0.35を示す)を満足するTiとAlとVの複合窒化物層、からなり、
(c)上記下部層は、単一相構造を有し、
組成式:(Ti1-(E+F)Al)N(ただし、原子比で、Eは0.50〜0.65、Fは0.01〜0.09を示す)を満足するTiとAlとVの複合窒化物層、
からなる硬質被覆層を蒸着形成してなる、難削材の高速切削加工で硬質被覆層がすぐれた耐チッピング性を発揮する表面被覆超硬合金製切削工具。
On the surface of the cemented carbide substrate composed of tungsten carbide based cemented carbide or titanium carbonitride based cermet,
(A) All are composed of an upper layer and a lower layer made of a composite nitride of Ti, Al, and V (vanadium), the upper layer being 0.5 to 1.5 μm and the lower layer being 2 to 6 μm in thickness. Each with
(B) Each of the upper layers has an alternately laminated structure of thin layers A and B having a layer thickness of 5 to 20 nm (nanometer),
The thin layer A is
Ti satisfying the composition formula: (Ti 1− (A + B) Al A V B ) N (wherein A is 0.01 to 0.10 and B is 0.50 to 0.70 in atomic ratio) A composite nitride layer of Al and V;
The thin layer B is
Ti satisfying the composition formula: (Ti 1- (C + D) Al C V D ) N (wherein C represents 0.25 to 0.40 and D represents 0.20 to 0.35 in atomic ratio) A composite nitride layer of Al and V,
(C) the lower layer has a single phase structure;
Ti satisfying the composition formula: (Ti 1− (E + F) Al E V F ) N (wherein E represents 0.50 to 0.65 and F represents 0.01 to 0.09 in atomic ratio) A composite nitride layer of Al and V;
A surface-coated cemented carbide cutting tool that exhibits excellent chipping resistance in high-speed cutting of difficult-to-cut materials, formed by vapor-depositing a hard coating layer made of
JP2005034657A 2005-02-10 2005-02-10 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials Expired - Fee Related JP4771197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034657A JP4771197B2 (en) 2005-02-10 2005-02-10 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034657A JP4771197B2 (en) 2005-02-10 2005-02-10 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Publications (2)

Publication Number Publication Date
JP2006218574A true JP2006218574A (en) 2006-08-24
JP4771197B2 JP4771197B2 (en) 2011-09-14

Family

ID=36981220

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034657A Expired - Fee Related JP4771197B2 (en) 2005-02-10 2005-02-10 Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials

Country Status (1)

Country Link
JP (1) JP4771197B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JPH10237628A (en) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd Coated tool and its production
JP2003034858A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08134629A (en) * 1994-09-16 1996-05-28 Sumitomo Electric Ind Ltd Hyperfine particle laminated film and laminated high hardness material for tool with same
JPH08127862A (en) * 1994-10-28 1996-05-21 Sumitomo Electric Ind Ltd Laminated body
JPH08209337A (en) * 1995-01-31 1996-08-13 Hitachi Tool Eng Ltd Coated hard alloy
JPH10237628A (en) * 1997-02-20 1998-09-08 Sumitomo Electric Ind Ltd Coated tool and its production
JP2003034858A (en) * 2001-07-23 2003-02-07 Kobe Steel Ltd Hard coating for cutting tool, manufacturing method therefor, and target for forming hard coating

Also Published As

Publication number Publication date
JP4771197B2 (en) 2011-09-14

Similar Documents

Publication Publication Date Title
JP4702520B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP2009101491A (en) Surface-coated cutting tool having hard coating layer exerting excellent lubricity and wear resistance in high-speed cutting
JP2009061520A (en) Surface-coated cutting tool with hard coating layer exhibiting excellent abrasion resistance in high-speed cutting
JP4697661B2 (en) Surface coated cutting tool with excellent wear resistance with hard coating layer in high speed cutting of heat resistant alloy
JP4645821B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4706915B2 (en) Surface-coated cutting tool with excellent wear resistance with hard coating layer in high-speed cutting of heat-resistant alloys
JP2009125832A (en) Surface-coated cutting tool
JP5196122B2 (en) Surface coated cutting tool
JP4687965B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2006334740A (en) Surface coated cemented carbide cutting tool with hard coated layer exhibiting excellent abrasive resistance in high speed cutting of highly reactive cut material
JP4771198B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-hardness coating in high-reactive work materials
JP4756445B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4697662B2 (en) Surface coated cutting tool with excellent wear resistance due to high hard coating layer in high speed cutting of high hardness steel
JP2007105839A (en) Surface coated cutting tool having hard coated layer exhibiting excellent wear resistance in high speed cutting for high hardness steel
JP2007021650A (en) Cutting tool made of surface coated cemented carbide having coated layer exhibiting excellent chipping resistance in heavy cutting work of hard-to-cut material
JP4771199B2 (en) Surface-coated cermet cutting tool with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4678582B2 (en) Cutting tool made of surface-coated cemented carbide that provides excellent wear resistance with a hard coating layer in high-speed cutting of hardened steel
JP4766443B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4706921B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4645818B2 (en) Cutting tool made of surface-coated cemented carbide with excellent wear resistance due to high-speed cutting of heat-resistant alloys
JP4720996B2 (en) Surface-coated cutting tool with excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4771197B2 (en) Surface-coated cermet cutting tool that exhibits excellent chipping resistance with a hard coating layer in high-speed cutting of difficult-to-cut materials
JP4720993B2 (en) Surface coated high speed tool steel cutting tool with excellent chipping resistance in high speed heavy cutting of difficult-to-cut materials
JP2007152458A (en) Surface coated cutting tool having hard coating layer having excellent chipping resistance in high-speed cutting material hard to machine
JP2008188739A (en) Surface-coated cutting tool in which hard coating layer shows excellent chipping resistance in heavy cutting of difficult-to-cut material

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20071226

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110217

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110404

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110527

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110609

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140701

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4771197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees