JP2006218549A - Rotary cutting tool - Google Patents

Rotary cutting tool Download PDF

Info

Publication number
JP2006218549A
JP2006218549A JP2005031753A JP2005031753A JP2006218549A JP 2006218549 A JP2006218549 A JP 2006218549A JP 2005031753 A JP2005031753 A JP 2005031753A JP 2005031753 A JP2005031753 A JP 2005031753A JP 2006218549 A JP2006218549 A JP 2006218549A
Authority
JP
Japan
Prior art keywords
flow path
cutting
cutting fluid
tool body
connection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005031753A
Other languages
Japanese (ja)
Other versions
JP4821125B2 (en
Inventor
Yoshiaki Hakamata
義昭 袴田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tungaloy Corp
Original Assignee
Tungaloy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tungaloy Corp filed Critical Tungaloy Corp
Priority to JP2005031753A priority Critical patent/JP4821125B2/en
Publication of JP2006218549A publication Critical patent/JP2006218549A/en
Application granted granted Critical
Publication of JP4821125B2 publication Critical patent/JP4821125B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/28Features relating to lubricating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/08Disc-type cutters

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Auxiliary Devices For Machine Tools (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a rotary cutting tool capable of efficiently supplying cutting fluid to a knife edge of a cutting blade. <P>SOLUTION: It is possible to efficiently supply the cutting fluid to the knife edges of all the cutting blades 11 as this rotary cutting tool has a single first channel 50 to introduce the cutting fluid to the inside of a tool main body 2, a single second channel 51 to open toward each of more than two of the cutting blades 11 and more than two of connecting channels 61A to 61D smoothly communicating end parts of the first channel 50 and the second channel 51 through to each other and making a curved line. It is possible to extremely facilitate and reduce cost of molding of the connecting channels 61A to 61D by forming the connecting channels 61A to 61D on a connecting member 60 installed on the tool main body 2 free to connect to and disconnect from it. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、切れ刃の刃先に切削用流体を供給するための流路を工具本体の内部に備えた転削工具に関する。 The present invention relates to a turning tool provided with a flow path for supplying a cutting fluid to a cutting edge of a cutting edge inside a tool body.

近年、切削加工においては環境対応の点から、少量の切削油剤を霧状にしたミストを切削点に噴射するミスト加工や極微量の高潤滑切削油剤と圧縮空気を混合した極微量切削剤(MQL:Minimum Quantity Lubrication)加工等のいわゆるセミドライ加工が増えつつある。 In recent years, in cutting work, from the viewpoint of environmental friendliness, mist processing that sprays a mist in which a small amount of cutting fluid is atomized onto the cutting point and a very small amount of cutting fluid (MQL) that mixes a very small amount of highly lubricated cutting fluid and compressed air. : Minimum Quantity Lubricating) so-called semi-dry processing is increasing.

セミドライ加工において、少量の切削油剤と圧縮空気とが混合した切削用流体を切削点に噴射する方式としては、外部に設けられたノズルから切削点へ噴射する外部給油方式及び切削工具の工具本体の内部に形成した流路(油穴)の開口部から切削点へ噴射する内部給油方式がある。後者を採用した切削工具を図8に例示する。図8の回転切削工具(1)において、工具本体(2)には、外部の切削油供給部(15)に連通し、工具本体(2)内部に切削油剤を導入する第1の油路(17)を形成する。ロケータ(4)には、前記第1の油路(17)に連通すると共に、前記穴付きスローアウェイチップ(3)の穴(3e)に連通し、切削油剤をチップすくい面(3a)に沿ってチップ刃先側(C)へ案内する油導入穴(19)及び掬い面側油溝(24)を形成する。楔(5)には、穴付きスローアウェイチップ(3)の穴(3e)に連通し、切削油剤をチップ背面(3b)に沿ってチップ逃げ面(3f)側へ案内する背面側油溝(26)を形成する。その結果、切削油剤をチップ掬い面(3a)側のチップ刃先近傍から噴射させることができると共に、切削油剤をチップ逃げ面(3f)側に噴射させることができる(例えば、特許文献1参照)。
特開平10−175114号公報
In semi-dry processing, the cutting fluid mixed with a small amount of cutting fluid and compressed air is sprayed to the cutting point as an external lubrication method in which the nozzle provided outside is sprayed to the cutting point and the tool body of the cutting tool. There is an internal oil supply system that injects into a cutting point from an opening of a flow path (oil hole) formed inside. A cutting tool employing the latter is illustrated in FIG. In the rotary cutting tool (1) of FIG. 8, the tool body (2) communicates with an external cutting oil supply section (15), and a first oil passage (introducing cutting oil into the tool body (2)) ( 17). The locator (4) communicates with the first oil passage (17) and also communicates with the hole (3e) of the throw-away tip (3) with the hole so that the cutting fluid is fed along the chip rake face (3a). Thus, an oil introduction hole (19) and a scooping surface side oil groove (24) for guiding to the tip edge side (C) are formed. The wedge (5) communicates with the hole (3e) of the throw-away tip (3) with a hole, and guides the cutting oil along the tip back surface (3b) to the tip clearance surface (3f) side (see FIG. 26). As a result, the cutting fluid can be sprayed from the vicinity of the tip edge on the chip scooping surface (3a) side, and the cutting fluid can be sprayed to the tip clearance surface (3f) side (see, for example, Patent Document 1).
JP 10-175114 A

セミドライ加工においては、切削油剤又は高潤滑切削油剤を切れ刃の刃先にピンポイントに塗布し刃先の発熱をおさえ切れ刃の寿命を向上させるため、いかにして損失なく効率良く刃先へ切削用流体を噴射するかが課題であった。しかしながら、図8の回転切削工具(1)においては、第1の油路(17)の途中にほぼ直角に屈折する屈曲部、及び第1の油路(17)と油導入穴(19)とがほぼ直角に交差する交差部があり、これら屈曲部、交差部において切削用流体の乱流及び流れに対する障害が生じるため、工具本体(2)内部を流通する過程で切削用流体が凝縮液化してしまい、刃先に切削油剤又は高潤滑切削油剤を効率良く供給する効果が得られないことがある。 In semi-dry machining, cutting fluid or high-lubricating cutting fluid is applied to the cutting edge of the cutting edge pinpoint to suppress the heat generation of the cutting edge and improve the life of the cutting edge. The issue was whether to inject. However, in the rotary cutting tool (1) of FIG. 8, a bent portion that is refracted substantially at right angles in the middle of the first oil passage (17), and the first oil passage (17) and the oil introduction hole (19) Are intersecting at almost right angles, and there are obstacles to the turbulent flow and flow of the cutting fluid at the bent and intersecting portions, so that the cutting fluid is condensed and liquefied in the process of circulating inside the tool body (2). Therefore, the effect of efficiently supplying the cutting fluid or the highly lubricated cutting fluid to the cutting edge may not be obtained.

本発明は、上記課題に鑑みてなされたもので、その目的は、切削用流体を切れ刃に効率良く供給することができる転削工具を提供することにある。 This invention is made | formed in view of the said subject, The objective is to provide the turning tool which can supply the cutting fluid to a cutting blade efficiently.

上記の課題を解決するため本発明の転削工具は、中心軸線(CL)まわりに回転する工具本体の先端外周部に、周方向に沿って2以上の切れ刃が設けられた転削工具において、前記工具本体の内部には、外部から供給された切削用流体を前記切れ刃に向けて噴射させるための流路が形成され、この流路は、少なくとも前記切削用流体を前記工具本体に内部に導入する単一の第1流路と、この第1流路から分岐して各々の切れ刃に向けて開口する2以上の第2流路と、前記第1流路及び第2流路の端部同士を滑らかに連通し且つ滑らかな曲線状をなす2以上の連結流路とから構成されていることを特徴とする転削工具である。前記流路に供給される前記切削用流体は切削油剤、圧縮空気、ミスト、又は、極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)のいずれかである。 In order to solve the above-described problems, the rolling tool of the present invention is a rolling tool in which two or more cutting edges are provided along the circumferential direction on the outer periphery of the tip of a tool body that rotates about a central axis (CL). A flow path for injecting a cutting fluid supplied from the outside toward the cutting edge is formed in the tool body, and the flow path includes at least the cutting fluid in the tool body. A single first flow path to be introduced into the first flow path, two or more second flow paths branched from the first flow path and opened toward the respective cutting edges, and the first flow path and the second flow path A rolling tool characterized in that it comprises two or more connecting flow paths that smoothly communicate with each other and form a smooth curved line. The cutting fluid supplied to the flow path is any one of a cutting fluid, compressed air, mist, or a very small amount of cutting fluid (MQL) obtained by mixing a very small amount of highly lubricated cutting fluid and compressed air.

上記の転削工具において、前記連結流路は少なくともその一部が前記工具本体に着脱自在に装着される連結部材によって形成され、前記連結部材を前記工具本体に装着することにより前記連結流路が形成されるのが好ましい。さらに、前記連結流路が連結部材の中心軸線(CLr)を中心として回転対称的に形成されるとともに、前記連結部材が前記中心軸線(CLr)を中心とした前記連結流路の中心軸線(CLa〜CLd)の回転軌跡で構成された曲面状の接合面を、互いに密着させた第1部材と第2部材とから構成されていることが好ましい。 In the above rolling tool, at least a part of the connection channel is formed by a connection member that is detachably attached to the tool body, and the connection channel is formed by attaching the connection member to the tool body. Preferably it is formed. Further, the connection flow path is formed rotationally symmetrically about the central axis (CLr) of the connection member, and the connection member is centered on the central axis (CLa) of the connection flow path centered on the central axis (CLr). It is preferable that the curved joint surface formed by the rotation trajectory of (CLd) is composed of a first member and a second member that are in close contact with each other.

上記の転削工具によれば、単一の第1流路及び2以上の第2流路を、曲線状をなす複数の連結流路によって滑らかに連通したことから、工具本体内部の流路を流通する切削用流体の乱流及び流れに対する障害が生じないため、切削油剤、圧縮空気、ミスト、又は極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)を切れ刃の刃先に効率良く供給することができる。特に、極微量切削剤(MQL)が工具本体内部を流通する過程において高潤滑切削油剤が凝縮液化しないため、切れ刃の刃先に高潤滑切削油剤を効率良く供給することができる。第1流路及び第2流路においては切削用流体の乱流及び流れに対する障害が生じないようにするため、それぞれの流路は直線状に形成されるのが好ましい。 According to the above rolling tool, since the single first flow path and the two or more second flow paths are smoothly communicated by the plurality of curved connection paths, the flow path inside the tool body is Because there is no obstacle to the turbulent flow and flow of the flowing cutting fluid, cutting fluid, compressed air, mist, or a very small amount of cutting fluid (MQL) mixed with a very small amount of highly lubricated cutting fluid and compressed air Can be efficiently supplied to the cutting edge. In particular, since the high-lubricating cutting fluid is not condensed and liquefied in the process in which a very small amount of cutting agent (MQL) flows through the inside of the tool body, the high-lubricating cutting fluid can be efficiently supplied to the cutting edge of the cutting edge. In the first flow path and the second flow path, it is preferable that each flow path is formed in a straight line so as not to cause an obstacle to the turbulent flow and flow of the cutting fluid.

連結流路は少なくともその一部が工具本体に着脱自在に装着される連結部材によって形成され、前記連結部材を前記工具本体に装着することにより前記連結流路が形成されるようにしてもよい。さらに、前記連結流路が連結部材の中心軸線(CLr)を中心として回転対称的に形成されるとともに、前記連結部材が前記中心軸線(CLr)を中心とした前記連結流路の中心軸線(CLa〜CLd)の回転軌跡で構成された曲面状の接合面を、互いに密着させた第1部材と第2部材とから構成されれば、前記連結流路を前記第1流路及び前記第2流路の端部に滑らかに連結し且つ滑らかな曲線状に成形することが極めて容易且つ低コストになる。 The connection channel may be formed by a connection member that is at least partially detachably attached to the tool body, and the connection channel may be formed by attaching the connection member to the tool body. Further, the connection flow path is formed rotationally symmetrically about the central axis (CLr) of the connection member, and the connection member is centered on the central axis (CLa) of the connection flow path centered on the central axis (CLr). ˜CLd), if the curved joint surface composed of the first member and the second member are brought into close contact with each other, the connection flow path is defined as the first flow path and the second flow. It is very easy and low-cost to smoothly connect to the end of the road and form a smooth curve.

次に、本発明をサイドカッタに適用した第1の実施の形態について図を参照しながら説明する。図1はサイドカッタの正面図である。図2は図1に示すサイドカッタの要部の一部断面側面図である。図3〜図8は連結部材を説明する図であり、図3は図1に示すサイドカッタに用いられる連結部材の図であり、(a)は正面図、(b)は一部断面側面図である。図4は図3に示す連結部材の第1部材の図であり、(a)は正面図、(b)はA−A線断面図である。図5は図3に示す連結部材の第2部材の図であり、(a)は正面図、(b)はB−B線断面図である。図6は図3に示す連結部材の分解斜視図である。 Next, a first embodiment in which the present invention is applied to a side cutter will be described with reference to the drawings. FIG. 1 is a front view of a side cutter. 2 is a partial cross-sectional side view of the main part of the side cutter shown in FIG. 3 to 8 are views for explaining the connecting member, FIG. 3 is a view of the connecting member used in the side cutter shown in FIG. 1, (a) is a front view, and (b) is a partially sectional side view. It is. 4A and 4B are views of the first member of the connecting member shown in FIG. 3, in which FIG. 4A is a front view, and FIG. FIGS. 5A and 5B are views of the second member of the connecting member shown in FIG. 3, wherein FIG. 5A is a front view and FIG. 6 is an exploded perspective view of the connecting member shown in FIG.

図1に例示するように、サイドカッタ(1)は、中心軸線(O)を中心として回転する工具本体(2)の先端外周部に、周方向に略等間隔に4箇所設けられたチップ取付け溝(3)にスローアウェイチップ(10)が装着されてなる。チップ取付け溝(3)は、工具本体(2)の先端外周部に凹設された切りくずポケット(4)の回転方向(K)前方側を向く壁面に切欠き形成される。チップ取付け溝(3)の底面(3a)にはチップ固定ねじ(20)が螺合する雌ねじ孔(6)が設けられている。スローアウェイチップ(10)は例えば超硬合金等の硬質材料を等脚台形平板状に成形したものであり、取付け穴(10a)が上下面を貫通して形成される。スローアウェイチップ(10)は、すくい面(10b)となる等脚台形状の上面を回転方向(K)前方に向け、対向する下面(10c)をチップ取付け溝(3)の底面(3a)に当接し、取付け穴(10a)に挿通したチップ固定ねじ(20)をチップ取付け溝(3)の底面(3a)に設けられた雌ねじ穴(6)にねじ込むことにより固定される。すくい面(10b)の辺稜部に形成される切れ刃(11)は、サイドカッタ(1)の径方向外方を向く外周刃(11a)、サイドカッタ(1)の両側面側にある側刃(11b)及び外周刃(11a)と側刃(11b)に挟まれたコーナ(11c)から構成される。外周刃(11a)、側刃(11b)及びコーナ(11c)に連なる逃げ面(12a、12b、12c)は、すくい面(10b)に対して鋭角に交差し正の逃げ角を有する。 As illustrated in FIG. 1, the side cutter (1) is provided with four tip attachments provided at substantially equal intervals in the circumferential direction on the outer periphery of the tip of the tool body (2) that rotates about the central axis (O). A throw-away tip (10) is mounted in the groove (3). The chip mounting groove (3) is notched in the wall surface facing the front side in the rotational direction (K) of the chip pocket (4) provided in the outer periphery of the tip of the tool body (2). The bottom surface (3a) of the chip mounting groove (3) is provided with a female screw hole (6) into which the chip fixing screw (20) is screwed. The throw-away tip (10) is formed by molding a hard material such as cemented carbide into an isosceles trapezoidal flat plate shape, and mounting holes (10a) are formed through the upper and lower surfaces. The throw-away tip (10) has a top surface of an isosceles trapezoidal shape that becomes a rake face (10b) facing forward in the rotational direction (K), and an opposite lower face (10c) on the bottom face (3a) of the tip mounting groove (3). The tip fixing screw (20) that is in contact with and inserted into the mounting hole (10a) is fixed by screwing into the female screw hole (6) provided in the bottom surface (3a) of the chip mounting groove (3). The cutting edges (11) formed on the side ridges of the rake face (10b) are the outer peripheral edges (11a) facing the radially outward side of the side cutter (1) and the sides on the both sides of the side cutter (1). It is comprised from the corner (11c) pinched | interposed into the blade (11b) and the outer periphery blade (11a), and the side blade (11b). The flank surfaces (12a, 12b, 12c) connected to the outer peripheral blade (11a), the side blade (11b), and the corner (11c) intersect with the rake face (10b) at an acute angle and have a positive clearance angle.

スローアウェイチップ(10)の内周側の側面(12d)は楔部材(30)の側面(30b)によって支持されている。チップ取付け溝(3)の内周側に連なって形成された楔部材挿入溝(5)には、楔部材(30)がねじ部材(40)によって装着されており、楔部材(30)の内周側の側面(30a)が楔部材挿入溝(5)の内周側の壁面(5b)に当接するとともに、ねじ部材(40)を操作することによって前記壁面(5b)に沿って移動可能とされている。ここで、前記壁面(5b)及びねじ部材(40)の中心軸線は、楔部材(30)を楔部材挿入溝(5)の底面(5a)側に移動させたとき、楔部材(30)がスローアウェイチップ(10)を外周側へ押圧するように、スローアウェイチップ(10)の内周側の側面(12d)に対して所定角度傾斜している。 The side surface (12d) on the inner peripheral side of the throw-away tip (10) is supported by the side surface (30b) of the wedge member (30). A wedge member (30) is mounted by a screw member (40) in a wedge member insertion groove (5) formed continuously to the inner peripheral side of the chip mounting groove (3). The circumferential side surface (30a) abuts on the inner circumferential wall surface (5b) of the wedge member insertion groove (5) and can be moved along the wall surface (5b) by operating the screw member (40). Has been. Here, the central axis of the wall surface (5b) and the screw member (40) is such that when the wedge member (30) is moved to the bottom surface (5a) side of the wedge member insertion groove (5), the wedge member (30) The throwaway tip (10) is inclined at a predetermined angle with respect to the inner peripheral side surface (12d) of the throwaway tip (10) so as to press the throwaway tip (10) toward the outer peripheral side.

図1及び図2に例示したように、工具本体(2)の中央部には、工具本体(2)の中心軸線(CL)に沿って直線状に延びる断面略円形状をなす単一の第1流路(50)が形成される。この第1流路(50)の導入側の端部(図示しない)は、例えば工作機械の主軸又は保持用ホルダを介して切削用流体が供給される場合には工具本体(2)の中央後端部に開口する。第1流路(50)の導入側の端部から導入された切削用流体は、工具本体(2)の先端側の中央部分に位置する下流側の端部(50b)に向かう。 As illustrated in FIG. 1 and FIG. 2, the central portion of the tool body (2) has a single first section having a substantially circular cross section that extends linearly along the central axis (CL) of the tool body (2). One flow path (50) is formed. An end (not shown) on the introduction side of the first flow path (50) is located at the center of the tool body (2) when a cutting fluid is supplied via, for example, a spindle of a machine tool or a holding holder. Open at the end. The cutting fluid introduced from the end portion on the introduction side of the first flow path (50) is directed to the downstream end portion (50b) located at the center portion on the tip end side of the tool body (2).

一方、工具本体(2)の先端側には、中心軸線(CL)付近から工具本体(2)の径方向外方に位置する4つのスローアウェイチップ(10)に向かって放射状且つ直線状に延びる4本の断面略円形状の第2流路(51)が設けられる。各々の第2流路(51)の下流側の端部(51b)はポケット(4)の壁面(4a)に開口し、この開口部がスローアウェイチップ(10)の切れ刃(11)側に向けられている。第1流路(50)の下流側の端部(50b)及び第2流路(51)の上流側の端部(51a)同士は、曲線状に形成された、断面略円形状の4本の連結流路(61A〜61D)によって連通され、第1流路(50)から導入された切削用流体は、連結流路(61A〜61D)を通って各々の第2流路(51)に供給されポケット(4)の壁面(4a)の開口部(51b)からスローアウェイチップ(10)の切れ刃(11)に向かって噴出される。切削用流体としては、切れ刃(11)の潤滑又は冷却を目的とした切削油剤、圧縮空気、ミスト、又は極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)が挙げられる。 On the other hand, on the tip side of the tool body (2), it extends radially and linearly from the vicinity of the central axis (CL) toward the four throw-away tips (10) positioned radially outward of the tool body (2). Four second flow paths (51) having a substantially circular cross section are provided. The downstream end (51b) of each second flow path (51) opens to the wall surface (4a) of the pocket (4), and this opening is on the cutting edge (11) side of the throw-away tip (10). Is directed. The downstream end portion (50b) of the first flow path (50) and the upstream end section (51a) of the second flow path (51) are formed in a curved shape and have a substantially circular cross section. The cutting fluid introduced from the first flow path (50) is communicated by the connection flow paths (61A to 61D) to the second flow paths (51) through the connection flow paths (61A to 61D). It is supplied and ejected from the opening (51b) of the wall surface (4a) of the pocket (4) toward the cutting edge (11) of the throw-away tip (10). As the cutting fluid, cutting fluid for the purpose of lubricating or cooling the cutting edge (11), compressed air, mist, or a very small amount of cutting fluid (MQL) in which a very small amount of high-lubricating cutting fluid and compressed air are mixed. Can be mentioned.

連結流路(61A〜61D)は、単一の第1流路(50)の下流側の端部(50b)から滑らかに4本に分岐し、それぞれが第2流路(51)の上流側の端部(51a)に向かって放射状且つ側面視で曲線状に延びており滑らかに前記端部(51a)に接続している。この実施の形態では、図1及び図2に例示したように、工具本体(2)の先端中央部に着脱可能に装着される連結部材(60)に形成した連結流路(61A〜61D)によって第1流路(50)と第2流路(51)とが連通されている。すなわち、工具本体(2)の先端面(2b)の中央部には略円柱状をなす凹部(6)が形成され、この凹部(6)の底面中央部には第1流路(50)の下流側の端部(50b)が開口するとともに、凹部(6)の内壁面には周方向に沿って略等間隔に各々の第2流路(51)の上流側の端部(51a)が開口する。前記凹部(6)に着脱可能に装着される略円柱状の連結部材(60)には連結流路(61A〜61D)が形成されていて、図3に例示するように、これら連結流路(61A〜61D)は、凹部(6)に開口した第1流路(50)の下流側の端部(50b)及び第2流路(51)の上流側の端部(51a)に対応するように、連結部材(60)の端面(60c)中央部に上流側の端部(62a)が開口するとともに、連結部材(60)の外周面(60a)に沿って周方向に略等間隔に下流側の端部(62b)が開口する。各々の連結流路(61A〜61B)は上流側の端部(62a)から4つに分岐し連結部材(60)の中心軸線(CLr)から下流側の端部(62b)に向かって正面視では放射状且つ側面視では曲線状に延設される。そして、工具本体(2)の凹部(6)に連結部材(60)を装着したとき、連結流路(61A〜61D)の上流側の端部(62a)及び下流側の端部(62b)がそれぞれ凹部(6)に開口する第1流路(50)の下流側の端部(50b)及び第2流路(51)の上流側の端部(51a)に連結することによって、第1流路(50)と第2流路(51)とが連通する。 The connecting flow paths (61A to 61D) smoothly branch into four from the downstream end (50b) of the single first flow path (50), each upstream of the second flow path (51). It extends radially toward the end (51a) and in a curved shape in a side view, and is smoothly connected to the end (51a). In this embodiment, as illustrated in FIGS. 1 and 2, the connection channel (61 </ b> A to 61 </ b> D) formed in the connection member (60) that is detachably attached to the center of the tip of the tool body (2). The first channel (50) and the second channel (51) are in communication. That is, a concave portion (6) having a substantially cylindrical shape is formed in the central portion of the tip surface (2b) of the tool body (2), and the first flow path (50) is formed in the central portion of the bottom surface of the concave portion (6). The downstream end (50b) is opened, and the upstream end (51a) of each second flow path (51) is provided at substantially equal intervals along the circumferential direction on the inner wall surface of the recess (6). Open. Connection channels (61A to 61D) are formed in a substantially columnar connection member (60) that is detachably mounted in the recess (6). As illustrated in FIG. 61A to 61D) correspond to the downstream end (50b) of the first flow path (50) and the upstream end (51a) of the second flow path (51) opened in the recess (6). In addition, an upstream end (62a) is opened at the center of the end surface (60c) of the connecting member (60), and downstream at substantially equal intervals along the outer peripheral surface (60a) of the connecting member (60). The side end (62b) opens. Each connection channel (61A-61B) branches into four from the upstream end (62a), and is viewed from the center axis (CLr) of the connection member (60) toward the downstream end (62b). Then, it extends radially and in a curved shape in a side view. When the connecting member (60) is mounted in the recess (6) of the tool body (2), the upstream end (62a) and the downstream end (62b) of the connecting channel (61A to 61D) are provided. By connecting to the downstream end (50b) of the first flow path (50) and the upstream end (51a) of the second flow path (51) respectively opening in the recess (6), the first flow The path (50) communicates with the second flow path (51).

図3〜図5に例示するように、本実施の形態では、連結流路(61A〜61D)は側面視で一定の曲率半径(R)の円弧状をなす中心軸線(CLa〜CLd)に沿って断面円形状に形成されるとともに、連結部材(60)の中心軸線(CLr)を中心として回転対称的に形成されている。さらに、連結流路(61A〜61D)の上流側の端部(62a)において、各々の連結流路(61A〜61D)の中心軸線(CLa〜CLd)と、第1流路(50)の下流側の端部(50b)の中心軸線(CLu)とのなす角度(α)は0°〜30°の範囲に設定され、急激に屈曲することなく滑らかに連結する。同様に連結流路(61A〜61D)の下流側の端部(62b)において、各々の連結流路(61A〜61D)の中心軸線(CLa〜CLd)と、第2流路(51)の上流側の端部(51a)の中心軸線とのなす角度は0°〜30°の範囲に設定され、急激に屈曲することなく滑らかに連結する。側面視における連結流路(61A〜61D)の中心軸線(CLa〜CLd)の形状は、一定の曲率半径(R)の円弧状に限定されず、2つ以上の異なる曲率半径の円弧を組み合わせた形状、又は1つ以上の円弧と1つ以上の直線とを組み合わせた形状であってもよい。このとき、円弧同士の接続部又は円弧と直線との接続部における接線同士のなす角度は好ましくは30°以下、より好ましくは20°以下、特に好ましくは10°以下に設定され前記接続部が滑らかに接続されるのが好ましい。また、連結流路(61A〜61D)と第2流路(51)とは全長にわたってほぼ同一の内径に設定されるのが好ましく、第1流路(50)及び第2流路(51)は直線状に形成されるのが好ましい。 As illustrated in FIGS. 3 to 5, in the present embodiment, the connection flow paths (61 </ b> A to 61 </ b> D) are along a central axis (CLa to CLd) forming an arc shape with a constant curvature radius (R) in a side view. Are formed in a circular cross section and are rotationally symmetrical about the central axis (CLr) of the connecting member (60). Further, at the upstream end (62a) of the connection channel (61A to 61D), the central axis (CLa to CLd) of each connection channel (61A to 61D) and the downstream of the first channel (50). The angle (α) formed with the central axis (CLu) of the end portion (50b) on the side is set in the range of 0 ° to 30 ° and is smoothly connected without being bent suddenly. Similarly, at the downstream end portion (62b) of the connection channel (61A to 61D), the central axis (CLa to CLd) of each connection channel (61A to 61D) and the upstream of the second channel (51). The angle formed with the central axis of the end (51a) on the side is set in a range of 0 ° to 30 ° and is smoothly connected without being bent suddenly. The shape of the central axis (CLa to CLd) of the connection channel (61A to 61D) in the side view is not limited to the circular arc shape having a constant curvature radius (R), and two or more circular arcs having different curvature radii are combined. It may be a shape or a combination of one or more arcs and one or more straight lines. At this time, the angle formed by the tangents in the connecting portion between the arcs or in the connecting portion between the arc and the straight line is preferably set to 30 ° or less, more preferably 20 ° or less, and particularly preferably 10 ° or less. It is preferable to be connected to. Moreover, it is preferable that a connection flow path (61A-61D) and a 2nd flow path (51) are set to substantially the same internal diameter over the whole length, and a 1st flow path (50) and a 2nd flow path (51) are It is preferable to form it linearly.

図4及び図5に例示するように、連結部材(60)は、中心軸線(CLr)を中心とした連結流路(61A〜61D)の中心軸線(CLa〜CLd)の回転軌跡で構成された曲面状の接合面(64a、65a)を、互いに密着させた第1部材(64)と第2部材(65)とから構成されている。すなわち、図4に例示した第1部材(64)は、連結部材(60)の中心軸線(CLr)を中心とした連結流路(61A〜61D)の中心軸線(CLa〜CLd)の回転軌跡により形成された、逆富士山状をなす凹曲面状の接合面(64a)が形成され、この接合面(64a)と中央底部と、対向する端面(60c)中央部とを貫通する連結流路(61A〜61D)の上流側の端部(62a)が形成され、さらに、接合面(64a)の表面に沿って連結流路(61A〜61D)の断面を略2等分した断面半円形状の溝(64A〜64D)が、上流側の端部(62a)から外周面(60a)の4箇所に開口する各々の下流側の端部(62b)にわたって延設される。一方の第2部材(65)は、図5に例示したように、連結部材(60)の中心軸線(CLr)を中心とした連結流路(61A〜61D)の中心軸線(CLa〜CLd)の回転軌跡により形成された、富士山状をなす凸曲面状の接合面(65a)が形成され、接合面(65a)の表面に沿って連結流路(61A〜61D)の断面を略2等分した断面半円形状の溝(65A〜65D)が、第2部材(65)の外周面(60a)の4箇所に開口する各々の下流側の端部(62b)から中央部の隆起最高点まで延設される。 As illustrated in FIG. 4 and FIG. 5, the connecting member (60) is configured by a rotation locus of the central axis (CLa to CLd) of the connecting flow path (61A to 61D) with the central axis (CLr) as the center. A curved joint surface (64a, 65a) is composed of a first member (64) and a second member (65) which are brought into close contact with each other. That is, the first member (64) illustrated in FIG. 4 is based on the rotation trajectory of the central axes (CLa to CLd) of the connection flow paths (61A to 61D) around the central axis (CLr) of the connection member (60). A formed concave curved joint surface (64a) having an inverted Mt. Fuji shape is formed, and a connecting flow path (61A) passing through the joint surface (64a), the central bottom portion, and the opposite end surface (60c) central portion. ~ 61D) upstream end (62a) is formed, and the groove having a semicircular cross section obtained by dividing the cross section of the connection channel (61A ~ 61D) into approximately two equal parts along the surface of the joint surface (64a) (64A to 64D) are extended from the upstream end portion (62a) to the respective downstream end portions (62b) that are opened at four locations on the outer peripheral surface (60a). As illustrated in FIG. 5, one second member (65) has a central axis (CLa to CLd) of the connection channel (61 </ b> A to 61 </ b> D) centered on the central axis (CLr) of the connection member (60). A convex curved joint surface (65a) having a Mt. Fuji shape formed by the rotation trajectory is formed, and the cross section of the connection channel (61A to 61D) is substantially bisected along the surface of the joint surface (65a). Grooves (65A to 65D) having a semicircular cross section extend from the respective downstream end portions (62b) opening at four locations on the outer peripheral surface (60a) of the second member (65) to the highest peak of the central portion. Established.

連結部材(60)を構成する第1部材(64)及び第2部材(65)の製作方法の例について以下に説明する。両部材(64、65)ともに略円柱状の素材が用いられ、この素材の一端面には、第1部材(64)では逆富士山状の凹曲面状の接合面(64a)、第2部材(65)では富士山状の凸曲面状の接合面(64a、65a)が旋削加工により形成される。そして、図4及び図5に例示したように、各々の接合面(64a、65a)の表面に沿って連結流路(61A〜61D)の断面を略2等分した断面半円形状の溝(64A〜64D、65A〜65D)をボールエンドミル(70)の先端ボール刃を用いた切削加工により形成する。このようにして製作された第1部材(64)及び第2部材(65)は、互いの断面半円形状の溝(64A〜64D、65A〜65D)が合致し且つ互いの接合面(64a、65a)同士が密着した状態で連結することにより連結部材(60)を構成する。 An example of a manufacturing method of the first member (64) and the second member (65) constituting the connecting member (60) will be described below. Both members (64, 65) are made of a substantially columnar material. The first member (64) has an inverted Mt.-shaped concave curved joint surface (64a) and a second member (64a). 65), a convexly curved joint surface (64a, 65a) having a Mt. Fuji shape is formed by turning. And as illustrated in FIGS. 4 and 5, a semicircular groove having a semicircular cross section in which the cross section of the connection channel (61 </ b> A to 61 </ b> D) is substantially divided into two along the surface of each joint surface (64 a, 65 a). 64A to 64D, 65A to 65D) are formed by cutting using the tip ball blade of the ball end mill (70). In the first member (64) and the second member (65) manufactured in this way, the grooves (64A to 64D, 65A to 65D) having a semicircular cross section match each other and the joint surfaces (64a, 65a) A connecting member (60) is formed by connecting the members in close contact with each other.

図6に例示するように、第2部材(65)の端面(60b)と接合面(65a)とを貫通する2つのざぐり穴(66A)が設けられる一方、第1部材(64)の接合面(64a)には前記ざぐり穴(66A)に対応する雌ねじ穴(66B)が設けられる。前記ざぐり穴(66A)に挿通されたねじ部材(68)を前記雌ねじ穴(66B)に螺着することにより双方の部材(64、65)は接合面(64a、65a)同士を密着した状態で連結される。双方の部材(64、65)は上記のねじ部材(68)による連結に加え、接合面(64a、65a)同士が接着材又はシール材を介して連結されるようにすれば、接合面(64a、65a)間の気密性が高められ切削用流体の外部への漏れや圧力の低下等が確実に防止できる。 As illustrated in FIG. 6, two counterbore holes (66A) penetrating the end surface (60b) and the joint surface (65a) of the second member (65) are provided, while the joint surface of the first member (64) is provided. (64a) is provided with a female screw hole (66B) corresponding to the counterbore (66A). By screwing the screw member (68) inserted through the counterbore (66A) into the female screw hole (66B), both the members (64, 65) are brought into close contact with each other (64a, 65a). Connected. If both the members (64, 65) are connected to each other through the adhesive member or the sealing material in addition to the connection by the screw member (68), the connection surfaces (64a) can be obtained. , 65a), and the leakage of cutting fluid to the outside and the decrease in pressure can be reliably prevented.

また、図6に例示した連結部材(60)には、両端面(60b、60c)を貫通するざぐり穴(67)が中心軸線(CLr)を中心として対称的に2ヶ所に設けられる。連結部材(60)を収容する工具本体(2)の凹部(6)の底面には、前記ざぐり穴(67)に挿通した六角穴付きボルト等のねじ部材(69)を前記凹部(6)の底面に設けられた雌ねじ穴(図示しない)にねじ込むことにより工具本体(2)に固定される。ここで工具本体(2)に対する連結部材(60)の円周方向の位置決めは、図1に例示するように、工具本体(2)の先端面(2b)における凹部(6)の開口縁部と、連結部材(60)の先端面(60b)とにそれぞれ設けられた位置合わせマーク(7)を一致させた状態で固定されることにより行われる。 Further, in the connecting member (60) illustrated in FIG. 6, counterbore holes (67) penetrating both end faces (60b, 60c) are provided symmetrically at two positions with the central axis (CLr) as the center. On the bottom surface of the recess (6) of the tool body (2) that accommodates the connecting member (60), a screw member (69) such as a hexagon socket bolt inserted into the counterbore (67) is provided in the recess (6). It is fixed to the tool body (2) by being screwed into a female screw hole (not shown) provided on the bottom surface. Here, the circumferential positioning of the connecting member (60) with respect to the tool main body (2) is performed with the opening edge of the recess (6) in the tip surface (2b) of the tool main body (2) as illustrated in FIG. This is done by fixing the alignment marks (7) provided on the front end surface (60b) of the connecting member (60) in a state where they coincide with each other.

図1及び図2から参照されるように、以上に説明したサイドカッタ(1)は、直接又はホルダ等を介して工作機械の主軸に取付けられ中心軸線(CL)まわりに回転されるとともに前記中心軸線(CL)に直交する方向に送りが与えられることにより、被削材に溝加工又は平面加工を行う。外部の供給部から例えば工作機械の主軸等を介して供給された切削用流体は、第1流路(50)の導入側の端部(図示しない)から連結流路(61A〜61D)を経て第2流路(51)の下流側の端部(51b)の開口部から切れ刃(11)に向かって噴出される。直線状をなす単一の第1流路(50)と4本の第2流路(51)とを、曲線状をなす4本の連結流路(61A〜61D)によって連結したことから、工具本体(2)内部の流路を流通する切削用流体の乱流及び流れに対する障害が生じないため、切削油剤、圧縮空気、ミスト、又は極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)を切れ刃(11)の刃先に効率良く供給することができる。特に、極微量切削剤(MQL)が工具本体(2)内部を流通する過程において高潤滑切削油剤が凝縮液化しないため、切れ刃(11)の刃先に高潤滑切削油剤を効率良く供給することができる。第1流路(50)及び第2流路(51)においては切削用流体の乱流及び流れに対する障害が生じないようにするため、それぞれの流路(50、51)は直線状に形成されるのが好ましい。 As can be seen from FIGS. 1 and 2, the side cutter (1) described above is attached to the spindle of the machine tool directly or via a holder or the like and is rotated about a central axis (CL) and the center. By applying feed in a direction orthogonal to the axis (CL), the workpiece is grooved or flattened. The cutting fluid supplied from an external supply unit, for example, via a spindle of a machine tool or the like passes from the end portion (not shown) of the first flow path (50) through the connection flow paths (61A to 61D). It ejects toward the cutting edge (11) from the opening of the end (51b) on the downstream side of the second flow path (51). Since the single first flow path (50) forming a straight line and the four second flow paths (51) are connected by four connection flow paths (61A to 61D) forming a curved line, the tool Since there is no obstacle to the turbulent flow and flow of the cutting fluid flowing through the flow path inside the main body (2), the pole is a mixture of cutting fluid, compressed air, mist, or a trace amount of highly lubricated cutting fluid and compressed air. A small amount of cutting agent (MQL) can be efficiently supplied to the cutting edge of the cutting edge (11). In particular, since the high-lubricating cutting fluid does not condense in the process in which a very small amount of cutting agent (MQL) flows through the inside of the tool body (2), the high-lubricating cutting fluid can be efficiently supplied to the cutting edge of the cutting edge (11). it can. In the first flow path (50) and the second flow path (51), each flow path (50, 51) is formed in a straight line so as not to obstruct the turbulent flow and flow of the cutting fluid. It is preferable.

工具本体(2)の内部に曲線状の連結流路(61A〜61D)を鋳造や射出成形等の成形方法により形成した場合には、連結流路(61A〜61D)及び工具本体(2)の金型を要するため製造コストの点で問題があるが、本実施の形態によれば、連結流路(61A〜61D)は、連結部材(60)を構成する第1部材(64)及び第2部材(65)のそれぞれの接合面(64a、65a)に切削加工により形成した断面半円形状の溝(64A〜64D、65A〜65D)を相互に組み合わせて形成していることから、製造コストが大幅に低減するほか、連結流路(61A〜61D)ならびに第1流路及び第2流路の横断面形状や縦断面形状の自由度が高く、これらの形状変更が比較的簡単且つ容易になる。 When the curved connection channel (61A to 61D) is formed in the tool body (2) by a molding method such as casting or injection molding, the connection channel (61A to 61D) and the tool body (2) Since a mold is required, there is a problem in terms of manufacturing cost. However, according to the present embodiment, the connection flow paths (61A to 61D) include the first member (64) and the second member constituting the connection member (60). Since the semicircular grooves (64A to 64D, 65A to 65D) formed by cutting are formed in combination with each other on the respective joint surfaces (64a and 65a) of the member (65), the manufacturing cost is reduced. In addition to a significant reduction, the degree of freedom of the cross-sectional shape and vertical cross-sectional shape of the connecting flow path (61A to 61D) and the first flow path and the second flow path is high, and it is relatively easy and easy to change these shapes. .

次に、他の実施の形態について図7を用いて説明する。図7は第2の実施の形態であるサイドカッタの側面図であり、第1の実施の形態と同一構成には同一符号を付し、その説明を省略する。第1の実施の形態において、連結部材(60)に形成された連結流路(61A〜61D)を構成する断面半円形状の溝(64A〜64D)が、第2の実施の形態では、工具本体(2)に直接形成されている。言い換えれば、第1の実施の形態における連結部材(60)の第1部材(64)に形成された接合面(64a)及び断面半円形状の溝(64A〜64D)を工具本体(2)に直接形成したものである。詳細には、図7に例示したように、工具本体(2)の先端中央部に形成された凹部(6)には、その底面中央部に開口する第1流路(50)の下流側の端部(50b)と、内壁面(6a)の4箇所に開口する第2流路(51)の上流側の端部(51a)との間に、連結流路(61A〜61D)の中心軸線(CLa〜CLd)に沿う逆富士山状をなす凹曲面状の接合面(64a)が形成され、この接合面(64a)の表面に沿って連結流路(61A〜61D)の断面を略2等分した断面半円形状の溝(64A〜64D)が第1流路(50)の下流側の端部(50b)から第2流路(51)の上流側の端部(51a)にわたって延設される。第1の実施の形態に用いられた第2部材(65)は、その接合面(65a)を工具本体(2)の凹部(6)の接合面(64a)に向けて前記凹部(6)内に収容される。第2部材(65)を工具本体(2)の凹部(6)内に固定するには、第1の実施の形態と同様にねじ部材(68)を用いて行えばよい。このとき、凹部(6)及び第2部材(65)は、互いの接合面(64a、65a)同士が密着し且つ互いの断面半円形状の溝(64A〜64D、65A〜65D)が合致した状態で固定されていて、第1流路(50)と第2流路(51)とを連通する断面円形状の連結流路(61A〜61D)が形成される。 Next, another embodiment will be described with reference to FIG. FIG. 7 is a side view of the side cutter according to the second embodiment. The same components as those in the first embodiment are denoted by the same reference numerals, and description thereof is omitted. In the first embodiment, the grooves (64A to 64D) having a semicircular cross section constituting the connection flow paths (61A to 61D) formed in the connection member (60) are formed as tools in the second embodiment. It is formed directly on the main body (2). In other words, the joining surface (64a) formed in the first member (64) of the connecting member (60) and the semicircular cross-sectional grooves (64A to 64D) in the first embodiment are provided in the tool body (2). Directly formed. Specifically, as illustrated in FIG. 7, the recess (6) formed in the center of the tip of the tool body (2) has a downstream side of the first flow path (50) opened in the center of the bottom surface. Between the end portion (50b) and the end portion (51a) on the upstream side of the second flow channel (51) opened at four locations on the inner wall surface (6a), the central axis of the connecting flow channel (61A to 61D) A concave curved joint surface (64a) having an inverted Mt. Fuji shape along (CLa to CLd) is formed, and the cross-section of the connection channel (61A to 61D) is approximately 2 etc. along the surface of the joint surface (64a). Divided semicircular grooves (64A to 64D) extend from the downstream end (50b) of the first flow path (50) to the upstream end (51a) of the second flow path (51). Is done. In the second member (65) used in the first embodiment, the joint surface (65a) faces the joint surface (64a) of the recess (6) of the tool body (2) and the inside of the recess (6). Is housed in. In order to fix the second member (65) in the recess (6) of the tool body (2), the screw member (68) may be used as in the first embodiment. At this time, as for the recessed part (6) and the 2nd member (65), mutual mutual joining surfaces (64a, 65a) closely_contact | adhered, and the mutually cross-sectional semicircle-shaped groove | channel (64A-64D, 65A-65D) corresponded. The connection channels (61A to 61D) having a circular cross section that are fixed in a state and communicate with the first channel (50) and the second channel (51) are formed.

上記の実施の形態によれば、直線状をなす単一の第1流路(50)と4本の第2流路(51)とを、曲線状をなす4本の連結流路(61A〜61D)によって連結したことから、工具本体(2)内部の流路を流通する切削用流体の乱流及び流れに対する障害が生じないため、切削油剤、圧縮空気、ミスト、又は極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)を第2流路(51)の下流側の端部(51b)の開口部から切れ刃(11)の刃先に効率良く供給することができる。特に、極微量切削剤(MQL)が工具本体(2)内部を流通する過程において高潤滑切削油剤が凝縮液化しないため、切れ刃(11)の刃先に高潤滑切削油剤を効率良く供給することができる。第1流路(50)及び第2流路(51)においては切削用流体の乱流及び流れに対する障害が生じないようにするため、それぞれの流路(50、51)は直線状に形成されるのが好ましい。 According to the above-described embodiment, a single first flow path (50) having a linear shape and four second flow paths (51) are connected to four connection flow paths (61A to 61A to be curved). 61D), since there is no obstacle to the turbulent flow and flow of the cutting fluid flowing through the flow path inside the tool body (2), cutting fluid, compressed air, mist, or a very small amount of highly lubricated cutting A very small amount of cutting agent (MQL), which is a mixture of oil and compressed air, can be efficiently supplied from the opening at the downstream end (51b) of the second flow path (51) to the cutting edge of the cutting edge (11). it can. In particular, since the high-lubricating cutting fluid does not condense in the process in which a very small amount of cutting agent (MQL) flows through the inside of the tool body (2), the high-lubricating cutting fluid can be efficiently supplied to the cutting edge of the cutting edge (11). it can. In the first flow path (50) and the second flow path (51), each flow path (50, 51) is formed in a straight line so as not to obstruct the turbulent flow and flow of the cutting fluid. It is preferable.

工具本体(2)の内部に曲線状の連結流路(61A〜61D)を鋳造や射出成形等の成形方法により形成した場合には、連結流路(61A〜61D)及び工具本体(2)の金型を要するため製造コストの点で問題があるが、本実施の形態によれば、連結流路(61A〜61D)は、工具本体(2)の凹部(6)及び第2部材(65)のそれぞれの接合面(64a、65a)に切削加工により形成した断面半円形状の溝(64A〜64D、65A〜65D)を相互に組み合わせて形成していることから、製造コストが大幅に低減するほか、連結流路(61A〜61D)ならびに第1流路及び第2流路の横断面形状や縦断面形状の自由度が高く、これらの形状変更が比較的簡単且つ容易になる。 When the curved connection channel (61A to 61D) is formed in the tool body (2) by a molding method such as casting or injection molding, the connection channel (61A to 61D) and the tool body (2) Although a mold is required, there is a problem in terms of manufacturing cost, but according to the present embodiment, the connection flow paths (61A to 61D) are provided with the recess (6) and the second member (65) of the tool body (2). Since the grooves (64A to 64D and 65A to 65D) having a semicircular cross section formed by cutting are formed on the respective joint surfaces (64a and 65a) of each other in combination, the manufacturing cost is greatly reduced. In addition, the degree of freedom of the cross-sectional shape and the vertical cross-sectional shape of the connection flow channel (61A to 61D) and the first flow channel and the second flow channel is high.

本発明は、以上に説明したサイドカッタに限定されることはなく、工具本体(2)の内部に流路を有し、複数の切れ刃(11)に切削用流体を供給する転削工具に適用可能である。また、本発明の要旨を逸脱しない範囲において、以上の実施の形態に記載しなかった種々の変更、追加が可能であることは言うまでもない。 The present invention is not limited to the side cutter described above, and is a rolling tool that has a flow path inside the tool body (2) and supplies cutting fluid to the plurality of cutting edges (11). Applicable. Further, it goes without saying that various modifications and additions not described in the above embodiments can be made without departing from the gist of the present invention.

第1の実施の形態であるサイドカッタの正面図である。It is a front view of the side cutter which is 1st Embodiment. 図1に示すサイドカッタの要部の一部断面側面図である。It is a partial cross section side view of the principal part of the side cutter shown in FIG. 図1に示すサイドカッタに用いられる連結部材の図であり、(a)は正面図、(b)は一部断面側面図である。It is a figure of the connection member used for the side cutter shown in FIG. 1, (a) is a front view, (b) is a partial cross section side view. 図3に示す連結部材の第1部材の図であり、(a)は正面図、(b)はA−A線断面図である。It is a figure of the 1st member of the connection member shown in FIG. 3, (a) is a front view, (b) is an AA sectional view. 図3に示す連結部材の第2部材の図であり、(a)は正面図、(b)はB−B線断面図である。It is a figure of the 2nd member of the connection member shown in FIG. 3, (a) is a front view, (b) is a BB sectional drawing. 図3に示す連結部材の分解斜視図である。It is a disassembled perspective view of the connection member shown in FIG. 第2の実施の形態であるサイドカッタの要部の一部断面側面図である。It is a partial cross section side view of the principal part of the side cutter which is 2nd Embodiment. 従来の油穴付き回転工具の側面図である。It is a side view of the conventional rotary tool with an oil hole.

符号の説明Explanation of symbols

1 サイドカッタ
2 工具本体
3 チップ取付け溝
5 楔部材挿入溝
6 凹部
7 位置合わせマーク
10 スローアウェイチップ
11 切れ刃
30 楔部材
50 第1流路
51 第2流路
50b 第1流路の下流側の端部
51a 第2流路の上流側の端部
51b 第2流路の下流側の端部
60 連結部材
61A〜61D 連結流路
62a 連結流路の上流側の端部
62b 連結流路の下流側の端部
64 第1部材
65 第2部材
64a、65a 接合面
64A〜64D、65A〜65D 断面半円形状の溝
CL サイドカッタの中心軸線
CLr 連結部材の中心軸線
CLa〜CLd 連結流路の中心軸線
DESCRIPTION OF SYMBOLS 1 Side cutter 2 Tool main body 3 Tip attachment groove 5 Wedge member insertion groove 6 Recess 7 Alignment mark 10 Throw away tip 11 Cutting edge 30 Wedge member 50 First flow path 51 Second flow path 50b On the downstream side of the first flow path End 51a Upstream end 51b Second flow path downstream end 60 Second flow path downstream end 60 Connecting members 61A to 61D Connection flow path 62a Upstream side end 62b Downstream of the connection flow path End portion 64 First member 65 Second member 64a, 65a Joint surfaces 64A to 64D, 65A to 65D Semi-circular grooves CL Central axis CLr of side cutter Central axis CLa to CLd of connecting member Central axis of connecting channel

Claims (5)

中心軸線(CL)まわりに回転する工具本体の先端外周部に、周方向に沿って2以上の切れ刃が設けられた転削工具において、
前記工具本体の内部には、外部から供給された切削用流体を前記切れ刃に向けて噴射させるための流路が形成され、この流路は、少なくとも前記切削用流体を前記工具本体に内部に導入する単一の第1流路と、この第1流路から分岐して各々の切れ刃に向けて開口する2以上の第2流路と、前記第1流路及び第2流路の端部同士を滑らかに連通し且つ滑らかな曲線状をなす2以上の連結流路とから構成されていることを特徴とする転削工具。
In a rolling tool in which two or more cutting edges are provided along the circumferential direction on the outer periphery of the tip of a tool body that rotates about a central axis (CL),
A flow path for injecting a cutting fluid supplied from the outside toward the cutting edge is formed inside the tool body, and the flow path includes at least the cutting fluid in the tool body. A single first flow channel to be introduced, two or more second flow channels that branch from the first flow channel and open toward the respective cutting edges, and ends of the first flow channel and the second flow channel A rolling tool characterized in that it comprises two or more connecting flow paths that smoothly communicate with each other and have a smooth curved shape.
前記流路に供給される前記切削用流体が切削油剤、圧縮空気、ミスト、又は、極微量の高潤滑切削油剤と圧縮空気とを混合した極微量切削剤(MQL)のいずれかであることを特徴とする請求項1記載の転削工具。 The cutting fluid supplied to the flow path is any one of a cutting fluid, compressed air, mist, or a very small amount of cutting fluid (MQL) obtained by mixing a very small amount of high-lubricating cutting fluid and compressed air. The turning tool according to claim 1, wherein 前記連結流路は少なくともその一部が前記工具本体に着脱自在に装着される連結部材によって形成されていることを特徴とする請求項1又は2記載の転削工具。 The rolling tool according to claim 1 or 2, wherein at least a part of the connection flow path is formed by a connection member that is detachably attached to the tool body. 前記連結部材を前記工具本体に装着することにより前記連結流路が形成されることを
特徴とする請求項3記載の転削工具。
The rolling tool according to claim 3, wherein the connecting flow path is formed by mounting the connecting member on the tool body.
前記連結流路が連結部材の中心軸線(CLr)を中心として回転対称的に形成されるとともに、前記連結部材が前記中心軸線(CLr)を中心とした前記連結流路の中心軸線(CLa〜CLd)の回転軌跡で構成された曲面状の接合面を、互いに密着させた第1部材と第2部材とから構成されていることを特徴とする請求項3又は4記載の転削工具。 The connection flow path is formed rotationally symmetrically about the central axis (CLr) of the connection member, and the connection member is centered on the central flow line (CLr). 5. The rolling tool according to claim 3, comprising a first joining member and a second member that are in close contact with each other and having a curved joining surface constituted by a rotation locus.
JP2005031753A 2005-02-08 2005-02-08 Turning tool Active JP4821125B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005031753A JP4821125B2 (en) 2005-02-08 2005-02-08 Turning tool

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005031753A JP4821125B2 (en) 2005-02-08 2005-02-08 Turning tool

Publications (2)

Publication Number Publication Date
JP2006218549A true JP2006218549A (en) 2006-08-24
JP4821125B2 JP4821125B2 (en) 2011-11-24

Family

ID=36981198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005031753A Active JP4821125B2 (en) 2005-02-08 2005-02-08 Turning tool

Country Status (1)

Country Link
JP (1) JP4821125B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105115A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Cutting tool
WO2010020234A1 (en) * 2008-08-21 2010-02-25 Gühring Ohg Cutting toll with minimal amount lubrication (mms)
WO2010128930A1 (en) 2009-05-07 2010-11-11 Seco Tools Ab Milling tool with fluid flow arrangement
CN102029421A (en) * 2010-12-16 2011-04-27 保定天威集团有限公司 Moulding milling cutter
US20110262234A1 (en) * 2010-04-23 2011-10-27 Michael Schuffenhauer Coolant distributor
US20120275876A1 (en) * 2011-04-29 2012-11-01 Sandvik Intellectual Property Ab Milling Tool
EP2625367A1 (en) * 2010-10-04 2013-08-14 Michigan Technological University Micro-jet cooling of cutting tools
JP2014117762A (en) * 2012-12-14 2014-06-30 Kanefusa Corp Rotary cutting tool, and rotary grinding tool
AT13711U1 (en) * 2013-05-23 2014-07-15 Ceratizit Austria Gmbh Rotating tool
US20150078851A1 (en) * 2013-09-13 2015-03-19 Gleason-Pfauter Maschinenfabrik Gmbh Coolant delivery system, skiving machine equipped with the system, and skiving method performed with the system
EP2929967A1 (en) * 2014-04-11 2015-10-14 Sandvik Intellectual Property AB A slot milling disc and a rotatable mounting shaft for such a milling disc
EP3192600A1 (en) * 2016-01-18 2017-07-19 Sandvik Intellectual Property AB Metal cutting tool holder comprising fluid passages
CN109500442A (en) * 2018-12-10 2019-03-22 陕西航空电气有限责任公司 A kind of reducing wire rod quality knife handle tool
WO2021125338A1 (en) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 Attachment member of slotting cutter provided with coolant hole
JP2021094679A (en) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 Slotting cutter with coolant hole, and fitting member for slotting cutter with coolant hole
US11484955B2 (en) * 2017-05-02 2022-11-01 Komet Deutschland Gmbh Cutting tool having coolant deflection
JP7483218B1 (en) 2023-12-07 2024-05-15 株式会社タンガロイ Fastening parts

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10052731B2 (en) * 2016-09-16 2018-08-21 Syntec Optics Flycutter having forced air cleaning

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166716U (en) * 1985-04-05 1986-10-16
JP2003522038A (en) * 2000-02-11 2003-07-22 サンドビック アクティエボラーグ Machine tool

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61166716U (en) * 1985-04-05 1986-10-16
JP2003522038A (en) * 2000-02-11 2003-07-22 サンドビック アクティエボラーグ Machine tool

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008105115A (en) * 2006-10-24 2008-05-08 Mitsubishi Materials Corp Cutting tool
WO2010020234A1 (en) * 2008-08-21 2010-02-25 Gühring Ohg Cutting toll with minimal amount lubrication (mms)
WO2010128930A1 (en) 2009-05-07 2010-11-11 Seco Tools Ab Milling tool with fluid flow arrangement
CN102421558A (en) * 2009-05-07 2012-04-18 山高刀具公司 Milling tool with fluid flow arrangement
US8845242B2 (en) * 2010-04-23 2014-09-30 Kennametal Inc. Coolant distributor
US20110262234A1 (en) * 2010-04-23 2011-10-27 Michael Schuffenhauer Coolant distributor
EP2625367A1 (en) * 2010-10-04 2013-08-14 Michigan Technological University Micro-jet cooling of cutting tools
EP2625367A4 (en) * 2010-10-04 2014-04-30 Univ Michigan Tech Micro-jet cooling of cutting tools
CN102029421A (en) * 2010-12-16 2011-04-27 保定天威集团有限公司 Moulding milling cutter
US20120275876A1 (en) * 2011-04-29 2012-11-01 Sandvik Intellectual Property Ab Milling Tool
US9238273B2 (en) * 2011-04-29 2016-01-19 Sandvik Intellectual Property Ab Milling tool
JP2014117762A (en) * 2012-12-14 2014-06-30 Kanefusa Corp Rotary cutting tool, and rotary grinding tool
AT13711U1 (en) * 2013-05-23 2014-07-15 Ceratizit Austria Gmbh Rotating tool
WO2014186812A1 (en) * 2013-05-23 2014-11-27 Ceratizit Austria Rotating tool with an internal coolant and/or lubricant supply line
US9573234B2 (en) * 2013-09-13 2017-02-21 Gleason-Pfauter Maschinenfabrik Gmbh Coolant delivery system and skiving machine equipped with the system
US20150078851A1 (en) * 2013-09-13 2015-03-19 Gleason-Pfauter Maschinenfabrik Gmbh Coolant delivery system, skiving machine equipped with the system, and skiving method performed with the system
US9676043B2 (en) 2014-04-11 2017-06-13 Sandvik Intellectual Proprty Ab Slot milling disc and a rotatable mounting shaft for such a milling disc
EP2929967A1 (en) * 2014-04-11 2015-10-14 Sandvik Intellectual Property AB A slot milling disc and a rotatable mounting shaft for such a milling disc
EP3192600A1 (en) * 2016-01-18 2017-07-19 Sandvik Intellectual Property AB Metal cutting tool holder comprising fluid passages
WO2017125220A1 (en) * 2016-01-18 2017-07-27 Sandvik Intellectual Property Ab Metal cutting tool holder comprising fluid passages
CN108463302A (en) * 2016-01-18 2018-08-28 山特维克知识产权股份有限公司 Metal cutting tool frame including fluid passage
US20190009344A1 (en) * 2016-01-18 2019-01-10 Sandvik Intellectual Property Ab Metal cutting tool holder comprising fluid passages
JP2019501788A (en) * 2016-01-18 2019-01-24 サンドビック インテレクチュアル プロパティー アクティエボラーグ Metal cutting tool holder including fluid passage
US10710165B2 (en) 2016-01-18 2020-07-14 Sandvik Intellectual Property Ab Metal cutting tool holder comprising fluid passages
US11484955B2 (en) * 2017-05-02 2022-11-01 Komet Deutschland Gmbh Cutting tool having coolant deflection
CN109500442A (en) * 2018-12-10 2019-03-22 陕西航空电气有限责任公司 A kind of reducing wire rod quality knife handle tool
CN109500442B (en) * 2018-12-10 2020-08-11 陕西航空电气有限责任公司 Variable-diameter disc milling cutter handle tool
WO2021125338A1 (en) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 Attachment member of slotting cutter provided with coolant hole
JP2021094679A (en) * 2019-12-19 2021-06-24 三菱マテリアル株式会社 Slotting cutter with coolant hole, and fitting member for slotting cutter with coolant hole
JP7419792B2 (en) 2019-12-19 2024-01-23 三菱マテリアル株式会社 Slotting cutter with coolant hole and mounting member for the slotting cutter with coolant hole
JP7494466B2 (en) 2019-12-19 2024-06-04 三菱マテリアル株式会社 Mounting material for slotting cutter with coolant holes
JP7483218B1 (en) 2023-12-07 2024-05-15 株式会社タンガロイ Fastening parts

Also Published As

Publication number Publication date
JP4821125B2 (en) 2011-11-24

Similar Documents

Publication Publication Date Title
JP4821125B2 (en) Turning tool
KR101162942B1 (en) Cutting tool and associated tool head
US10537943B2 (en) Modular rotary tool and modular tool system
US9925596B2 (en) Turning tool holder and cutting tool insert
US8439609B2 (en) Micro-jet cooling of cutting tools
KR101779621B1 (en) Milling tool
US20080003072A1 (en) Indexable Type Cutting Tool
WO2015056406A1 (en) Cutting tool holder and cutting tool
US10710165B2 (en) Metal cutting tool holder comprising fluid passages
CN102896339A (en) Cutting tool
JP2016508889A (en) Drill system for deep holes
CN1953831A (en) Lathe tool
JP2005028570A (en) Coolant nozzle
JP2005118940A (en) Deep hole cutting tool
CN101743081A (en) Modular tool system
JP2008221400A (en) Cutting device
US20110020083A1 (en) Reamer
JP7494466B2 (en) Mounting material for slotting cutter with coolant holes
JP4141297B2 (en) Deep hole cutting tool
WO2024075522A1 (en) Cutting tip holder and cutting tool
JP2005034954A (en) Cutting tool with oil hole and cutting method
CZ309545B6 (en) Machining tool
JP2004283971A (en) Deep hole cutting tool
SK166795A3 (en) Rotating milling and reamer tool

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100415

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110201

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110809

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110822

R150 Certificate of patent or registration of utility model

Ref document number: 4821125

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140916

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250