JP2006218442A - Apparatus and method for b/f separation in immunoassay - Google Patents

Apparatus and method for b/f separation in immunoassay Download PDF

Info

Publication number
JP2006218442A
JP2006218442A JP2005035877A JP2005035877A JP2006218442A JP 2006218442 A JP2006218442 A JP 2006218442A JP 2005035877 A JP2005035877 A JP 2005035877A JP 2005035877 A JP2005035877 A JP 2005035877A JP 2006218442 A JP2006218442 A JP 2006218442A
Authority
JP
Japan
Prior art keywords
antibody
antigen
solid phase
separation
magnet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005035877A
Other languages
Japanese (ja)
Inventor
Masaru Muto
武藤勝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP2005035877A priority Critical patent/JP2006218442A/en
Publication of JP2006218442A publication Critical patent/JP2006218442A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an apparatus and a method for B/F separation in immunoassay using a small, lightweight magnet by which a high gradient magnetic field can be obtained. <P>SOLUTION: There is provided a method for B/F separation in immunoassay in which an antigen-antibody reaction is performed between a solid-phase antibody (or a solid-phase antigen) and a target antigen (or antibody), and a target antigen (or antibody) and a labeled antibody (or a labeled antigen) using a magnetic material as a solid phase, and then the solid-phase antibody (or the solid-phase antigen) is B/F separated using a magnet device, wherein the solid-phase antibody (or the solid-phase antigen) is B/F separated by using a pair of magnets of which the same poles that are repellent to each other are arranged to face each other and placing a separation container in the vicinity of a space between the magnetic poles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、免疫測定法において、固相抗体(または固相抗原)に結合しなかった目的の抗原(または抗体)、及び目的の抗原(または抗体)に結合しなかった標識抗体(または標識抗原)を反応容器から分離除去するB/F分離技術に関する。   The present invention relates to a target antigen (or antibody) that did not bind to a solid phase antibody (or solid phase antigen) and a labeled antibody (or labeled antigen) that did not bind to the target antigen (or antibody) in an immunoassay. ) From the reaction vessel.

酵素免疫測定法(Enzyme immunoassay法、EIA法)は、「鍵と鍵穴」に例えられる特異的な抗原抗体反応を利用して、生体内の特定の抗原または抗体を定量する免疫測定法の一つである。検出感度が極めて高いので、癌マーカー、各種感染症の抗原、ホルモン等、生体内に微量に存在する物質の定量に幅広く利用されている。測定対象となる試料は、血液(特に血清)、尿、唾液、髄液などの体液である。   The enzyme immunoassay method (Enzyme immunoassay method, EIA method) is one of immunoassay methods for quantifying a specific antigen or antibody in a living body by utilizing a specific antigen-antibody reaction similar to “key and keyhole”. It is. Because of its extremely high detection sensitivity, it is widely used for the quantification of substances present in trace amounts in the living body, such as cancer markers, antigens of various infectious diseases, and hormones. Samples to be measured are body fluids such as blood (particularly serum), urine, saliva, spinal fluid.

図1は、EIA法の原理の一例を示したものである。図1(a)は、EIA法の最初の状態を示している。図中1は磁性粒子固相である。例えば、強磁性体などで作られた磁性粒子が用いられる。磁性粒子固相1の表面には、抗体(たんぱく質の一種)が吸着されていて、固相抗体2を形成している。そこに、測定したい抗原3を含んだ試料を添加して、磁性粒子固相1と一定時間反応させると、抗原3は固相抗体2と抗原抗体反応を起こして、磁性粒子固相1の表面に結合し、図1(b)のように、抗原-抗体複合物4を形成する。この状態の抗原を、結合型抗原5(Bound form、Bと略す)と呼び、磁性粒子固相1の洗浄によっても結合が切られることはない。一方、固相抗体2に対して未結合の抗原3は遊離型抗原(Free form、Fと略す)と呼ばれ、磁性粒子固相1を洗浄することによって容易に反応容器の中から取り除くことができる。この結合型抗原5と遊離型抗原3を洗浄によって分ける操作をB/F分離と呼ぶ。B/F分離後は、図1(c)に示すように、結合型抗原5のみが反応容器中に残ることになる。   FIG. 1 shows an example of the principle of the EIA method. FIG. 1A shows an initial state of the EIA method. In the figure, 1 is a magnetic particle solid phase. For example, magnetic particles made of a ferromagnetic material are used. On the surface of the magnetic particle solid phase 1, an antibody (a kind of protein) is adsorbed to form a solid phase antibody 2. When a sample containing the antigen 3 to be measured is added thereto and reacted with the magnetic particle solid phase 1 for a certain period of time, the antigen 3 causes an antigen-antibody reaction with the solid phase antibody 2, and the surface of the magnetic particle solid phase 1. To form an antigen-antibody complex 4 as shown in FIG. The antigen in this state is referred to as a bound antigen 5 (abbreviated as Bound form, B), and the binding is not cut by washing of the magnetic particle solid phase 1. On the other hand, the antigen 3 unbound to the solid phase antibody 2 is called free form (abbreviated as F), and can be easily removed from the reaction vessel by washing the magnetic particle solid phase 1. it can. The operation of separating the bound antigen 5 and the free antigen 3 by washing is called B / F separation. After the B / F separation, only the bound antigen 5 remains in the reaction vessel as shown in FIG.

次に、EIA法では、抗原-抗体複合物4を形成している結合型抗原5に対して、適当な酵素(例えば、HRP、即ち、西洋ワサビペルオキシダーゼ)によって標識された抗体(酵素標識抗体)6を抗原抗体反応で結合させ、結合型抗原5を酵素で標識する操作を行なう。図1(d)は、その様子を示したものである。標識酵素7で標識された酵素標識抗体6を反応容器に添加し、磁性粒子固相1と一定時間反応させると、酵素標識抗体6は、結合型抗原5を固相抗体2との間でサンドイッチ状に挟んで、酵素標識抗体-抗原-抗体複合物8を形成する。このとき、EIA法では、固相抗体2に結合した結合型抗原5を十分に標識化するために、過剰量の酵素標識抗体6を添加するのを通例としている。従って、結合型抗原5と酵素標識抗体6の抗原抗体反応によって結合型抗原5の標識化を行なった後には、抗原に結合した酵素標識抗体9と抗原に結合しなかった余分の遊離型酵素標識抗体6とを分ける操作、即ちB/F分離を再び行なう必要がある。このB/F分離後は、図1(e)に示すように、酵素によって標識化された酵素標識抗体-抗原-抗体複合物8のみが磁性粒子固相1の表面に残ることになる。これは、磁性粒子固相1の表面に残った結合型抗原5の数だけ標識酵素7が残っていることを意味する。   Next, in the EIA method, an antibody (enzyme-labeled antibody) labeled with an appropriate enzyme (for example, HRP, ie, horseradish peroxidase) against the bound antigen 5 forming the antigen-antibody complex 4 6 is bound by an antigen-antibody reaction, and the bound antigen 5 is labeled with an enzyme. FIG. 1 (d) shows this situation. When enzyme-labeled antibody 6 labeled with labeling enzyme 7 is added to the reaction vessel and reacted with magnetic particle solid phase 1 for a certain period of time, enzyme-labeled antibody 6 sandwiches bound antigen 5 with solid-phase antibody 2. The enzyme-labeled antibody-antigen-antibody complex 8 is formed by sandwiching them in the shape. At this time, in the EIA method, in order to sufficiently label the bound antigen 5 bound to the solid phase antibody 2, an excess amount of the enzyme-labeled antibody 6 is typically added. Therefore, after labeling the bound antigen 5 by the antigen-antibody reaction between the bound antigen 5 and the enzyme-labeled antibody 6, the enzyme-labeled antibody 9 bound to the antigen and the extra free enzyme label not bound to the antigen. It is necessary to perform the operation of separating the antibody 6, that is, the B / F separation again. After this B / F separation, only the enzyme-labeled antibody-antigen-antibody complex 8 labeled with an enzyme remains on the surface of the magnetic particle solid phase 1 as shown in FIG. This means that as many labeled enzymes 7 as the number of bound antigens 5 remaining on the surface of the magnetic particle solid phase 1 remain.

磁性粒子固相1の表面に結合された標識酵素7の量は、図1(f)に示すように、該酵素の基質となり得る発色試薬(例えば、OPDA、即ち、オルトフェニレンジアミン)10を加えて標識酵素7と反応させ、生成する発色後の発色試薬11の量を測定することにより、定量することができる。   As shown in FIG. 1 (f), the amount of the labeling enzyme 7 bound to the surface of the magnetic particle solid phase 1 is added with a coloring reagent (for example, OPDA, that is, orthophenylenediamine) 10 that can be a substrate for the enzyme. Then, it can be quantified by reacting with the labeling enzyme 7 and measuring the amount of the coloring reagent 11 after coloring that is generated.

尚、上記の例では、固相抗体と酵素標識抗体を用いて抗原を定量する方法について説明したが、固相抗体と酵素標識抗体の代わりに固相抗原と酵素標識抗原を用いて同様の操作を行なえば、試料中の抗体を定量することもできる。   In the above example, the method for quantifying an antigen using a solid phase antibody and an enzyme-labeled antibody has been described. However, the same operation is performed using a solid phase antigen and an enzyme-labeled antigen instead of the solid phase antibody and the enzyme-labeled antibody. Can be used to quantify the antibody in the sample.

以上に説明したように、EIA法においては、抗原抗体反応によって磁性粒子固相に結合した抗原(または抗体)と未結合の遊離した抗原(または抗体)を分離するB/F分離、及び、抗原抗体複合物に結合した標識抗体(または標識抗原)と未結合の遊離した標識抗体(または標識抗原)を分離するB/F分離が測定の精度を決める重要な鍵となっている。   As described above, in the EIA method, B / F separation for separating an antigen (or antibody) bound to a magnetic particle solid phase by an antigen-antibody reaction and an unbound free antigen (or antibody), and an antigen B / F separation for separating the labeled antibody (or labeled antigen) bound to the antibody complex from the unbound free labeled antibody (or labeled antigen) is an important key for determining the accuracy of the measurement.

磁気分離固相法のB/F分離装置の構成を図2に示す。図中12は、磁性粒子固相である。通常、磁気分離固相法では、分離容器13の側壁外側のA位置に磁石14を配置し、磁性粒子固相12に磁界を与えて磁化し、磁性粒子固相12を磁気的に吸引して、分離容器13の内壁側面に集合保持させる。そこへ給排水ノズル15を分離容器13内に挿入して、遊離した抗原(または抗体)を含んだ溶液を吸引除去する。次に、磁石14をB位置に遠ざけ、新たな洗浄液を注入して、磁性粒子固相12を再懸濁して洗浄する。その後、再び、磁石14をA位置に戻して磁性粒子固相12を分離容器13の内壁側面に集合保持させ、洗浄液を吸引除去する。これを複数回繰り返し、B/F分離を行なう。   FIG. 2 shows the configuration of a B / F separation apparatus for the magnetic separation solid phase method. In the figure, 12 is a magnetic particle solid phase. Normally, in the magnetic separation solid phase method, a magnet 14 is disposed at the position A outside the side wall of the separation container 13, the magnetic particle solid phase 12 is magnetized by applying a magnetic field, and the magnetic particle solid phase 12 is magnetically attracted. Then, they are held together on the inner wall side surface of the separation container 13. The water supply / drainage nozzle 15 is inserted into the separation container 13 and the solution containing the released antigen (or antibody) is removed by suction. Next, the magnet 14 is moved away from the position B, a new cleaning solution is injected, and the magnetic particle solid phase 12 is resuspended and cleaned. Thereafter, the magnet 14 is returned to the A position again, and the magnetic particle solid phase 12 is gathered and held on the side surface of the inner wall of the separation container 13, and the cleaning liquid is sucked and removed. This is repeated a plurality of times to perform B / F separation.

特開平7−181188号公報JP 7-181188 A 特開平8−62224号公報JP-A-8-62224 特開平8−178931号公報JP-A-8-178931 特開平9−218201号公報JP-A-9-218201 特開平9−325148号公報JP 9-325148 A 特開平10−96732号公報Japanese Patent Laid-Open No. 10-96732 特開平10−123136号公報Japanese Patent Laid-Open No. 10-123136 特開平11−262678号公報JP-A-11-262678 特開平11−326338号公報JP 11-326338 A 特開2001−91521号公報JP 2001-91521 A 特表平11−502625号公報Japanese National Patent Publication No. 11-502625 特表2001−510893号公報JP 2001-510893 A 特表2002−528705号公報JP-T-2002-528705 特表2002−531811号公報JP-T-2002-531811

ところで、磁性分別の効率(磁力F)は、式(1)で示されるように、第1項の粒子質量[m]×加速度と、第2項の粒子断面積[S]×速度×粘性係数[σ]の和として与えられる。   By the way, the efficiency of magnetic fractionation (magnetic force F) is expressed by the equation (1): the first term particle mass [m] × acceleration and the second term particle cross section [S] × velocity × viscosity coefficient. It is given as the sum of [σ].

Figure 2006218442
Figure 2006218442

式(1)の磁気モーメント[M]は、真空の透磁率[μ0]と磁化率[Xm]と磁界[H]の積として、式(2)で与えられる。ここで、真空の透磁率[μ0]と磁化率[Xm]は、定数である。 The magnetic moment [M] of equation (1) is given by equation (2) as the product of vacuum permeability [μ 0 ], magnetic susceptibility [X m ], and magnetic field [H]. Here, the magnetic permeability [μ 0 ] and the magnetic susceptibility [X m ] of the vacuum are constants.

Figure 2006218442
Figure 2006218442

磁性ビーズ径がサブミクロンから数ミクロンのものを高速で磁性分別するためには、式(1)の第3項、磁界グラディエント[dH/dX]が大きい磁気回路を設計すれば良いことになる。ハイスループットのB/F分離装置を提供するためには、磁性粒子を短時間で集合させる必要がある。そのためには、磁性分別の原理で示されるように、磁界グラディエント[dH/dX]の大きい、高い磁場勾配の磁石が必要である。それは、分離容器と磁束方向を図3に示すように、磁石(●)よりZ方向の高勾配磁場が必要ということである。   In order to magnetically separate magnetic beads having a diameter of submicron to several microns at a high speed, a magnetic circuit having a large third term, magnetic field gradient [dH / dX] in equation (1) may be designed. In order to provide a high-throughput B / F separator, it is necessary to gather magnetic particles in a short time. For that purpose, as shown by the principle of magnetic separation, a magnet with a high magnetic field gradient [dH / dX] and a high magnetic field gradient is required. That is, a high gradient magnetic field in the Z direction is required from the magnet (●) as shown in FIG.

一例として、ネオジム磁石の重ね枚数と磁石表面の磁場強度との関係を図4に示す。図から明らかなように、ネオジム磁石を1枚から10枚と重ねても、表面磁場の増加率は、ネオジム磁石の枚数を増やすにつれて低下し、効率の良い磁場強度の増加が得られない。したがって、高勾配磁場の磁石を構成するためには、大型の磁石が必要となる。   As an example, the relationship between the number of superposed neodymium magnets and the magnetic field strength on the magnet surface is shown in FIG. As is apparent from the figure, even if one to ten neodymium magnets are stacked, the increase rate of the surface magnetic field decreases as the number of neodymium magnets increases, and an efficient increase in magnetic field strength cannot be obtained. Therefore, a large magnet is required to configure a magnet with a high gradient magnetic field.

実験では、入手可能な最も高い磁場強度を持つネオジム磁石を10枚用いても、液層5mmφの分離容器中の磁性粒子を5秒以内に集合させ得る強度の高勾配磁場は得られなかった。   In the experiment, even when ten neodymium magnets having the highest magnetic field strength available were used, a high gradient magnetic field with which the magnetic particles in the separation vessel having a liquid layer of 5 mmφ could be assembled within 5 seconds was not obtained.

この問題の解決のためには、より大型の重い磁石が必要となり、スペースファクターが劣るという新たな問題が発生する。また、大型の重い磁石は、高速駆動がむつかしく、トラブル発生を誘発する恐れが大きい。   In order to solve this problem, a larger and heavier magnet is required, resulting in a new problem that the space factor is inferior. In addition, large heavy magnets are difficult to drive at high speed, and there is a high risk of causing trouble.

本発明の目的は、上述した点に鑑み、磁性粒子を5秒以内に集合させ、ハイスループットを可能とする、小型軽量で高勾配磁場が得られる磁石を用いた免疫測定におけるB/F分離装置および方法を提供することにある。   In view of the above-described points, the object of the present invention is to provide a B / F separation apparatus for immunoassay using a small, lightweight and high-gradient magnetic field that allows high-throughput by collecting magnetic particles within 5 seconds. And to provide a method.

この目的を達成するため、
本発明にかかる免疫測定におけるB/F分離装置および方法は、
磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
反発し合う同極同士を対向配置させた磁石対を用い、その磁極間の空隙に近接させて分離容器を配置することにより、固相抗体(または固相抗原)をB/F分離することを特徴としている。
To achieve this goal,
The B / F separation device and method in the immunoassay according to the present invention include:
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
B / F separation of solid-phase antibody (or solid-phase antigen) is performed by using a magnet pair in which repulsive same polarities are opposed to each other and placing a separation container close to the gap between the magnetic poles. It is a feature.

また、前記対向配置させた磁極間の距離(空隙距離)と、該対向軸方向の磁石の長さとの比は、0.001〜0.5であることを特徴としている。   Further, the ratio of the distance between the magnetic poles arranged opposite to each other (gap distance) and the length of the magnet in the opposite axial direction is 0.001 to 0.5.

また、反発し合う同極同士を対向配置させた磁石を分離容器の移動方向に合わせて複数個連続配置させ、複数の分離容器でB/F分離を一度に行なうことを特徴としている。   In addition, a plurality of magnets in which repulsive same poles are arranged to face each other are continuously arranged according to the moving direction of the separation container, and B / F separation is performed at once by the plurality of separation containers.

また、磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
磁石の周りを分離容器の反対側端面から分離容器の対向面側に向けてヨークで取り囲んで漏洩磁場を抑えるとともに、磁石の分離容器側端面の周囲をヨークの先端で囲んで磁束を集中させた磁石装置を用いて固相抗体(または固相抗原)をB/F分離することを特徴としている。
In addition, using a magnetic substance as a solid phase, a solid phase antibody (or solid phase antigen) and an antigen of interest (or antibody) are reacted with an antigen, and then an excessive amount of labeled antibody (or labeled antigen) labeled with a labeling substance is used. In the immunoassay method in which the antigen (or antibody) is labeled by adding
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
The magnet is surrounded by a yoke from the opposite end surface of the separation container to the opposite surface side of the separation container to suppress the leakage magnetic field, and the periphery of the separation container side end surface of the magnet is surrounded by the tip of the yoke to concentrate the magnetic flux. B / F separation of solid phase antibodies (or solid phase antigens) is performed using a magnet device.

また、前記磁石装置において、磁石の分離容器とは反対側の端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは同極性、また、磁石の分離容器側端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは逆極性であることを特徴としている。   In the magnet device, the end surface of the magnet opposite to the separation container and the end of the yoke surrounding the magnet separation container side end face have the same polarity, and the magnet separation container side end surface and the magnet This is characterized in that it has a reverse polarity to the tip of the yoke surrounding the periphery of the separation container side end surface.

本発明の免疫測定におけるB/F分離装置および方法によれば、
磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
反発し合う同極同士を対向配置させた磁石対を用い、その磁極間の空隙に近接させて分離容器を配置することにより、固相抗体(または固相抗原)をB/F分離することを特徴とするので、
磁性粒子を5秒以内に集合させ、ハイスループットを可能とする、小型軽量で高勾配磁場が得られる磁石を用いたB/F分離装置および方法を提供することができる。
According to the B / F separation device and method for immunoassay of the present invention,
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or when solid phase antigen) is B / F separated using a magnetic device,
B / F separation of solid-phase antibody (or solid-phase antigen) is performed by using a magnet pair in which repulsive same polarities are opposed to each other and placing a separation container close to the gap between the magnetic poles. Because it features
It is possible to provide a B / F separation apparatus and method using a magnet that collects magnetic particles within 5 seconds and enables high throughput, and is small and light and can obtain a high gradient magnetic field.

また、磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
磁石の周りをヨークで取り囲んで漏洩磁場を抑えるとともに、磁石の端面の周囲をヨークで取り囲ませて磁束を集中させた磁石装置を用いて固相抗体(または固相抗原)をB/F分離することを特徴とするので、
磁性粒子を5秒以内に集合させ、ハイスループットを可能とする、小型軽量で高勾配磁場が得られる磁石を用いたB/F分離装置および方法を提供することができる。
In addition, using a magnetic substance as a solid phase, a solid phase antibody (or solid phase antigen) and an antigen of interest (or antibody) are reacted with an antigen, and then an excessive amount of labeled antibody (or labeled antigen) labeled with a labeling substance is used. In the immunoassay method in which the antigen (or antibody) is labeled by adding
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
The magnet is surrounded by a yoke to suppress the leakage magnetic field, and the solid phase antibody (or solid phase antigen) is subjected to B / F separation using a magnet device in which the periphery of the magnet is surrounded by the yoke and the magnetic flux is concentrated. Because it is characterized by
It is possible to provide a B / F separation apparatus and method using a magnet that collects magnetic particles within 5 seconds and enables high throughput, and is small and light and can obtain a high gradient magnetic field.

以下、図面を参照して、本発明の実施の形態を説明する。図5は、本発明にかかる免疫測定におけるB/F分離装置および方法の一実施例である。本実施例では、磁石のN極とN極、またはS極とS極を対向させてB/F分離用磁石を構成する。磁束方向は、磁石の対向軸に直交し、対向した磁石の空隙面に沿った矢印方向となる。磁石の対向面で挟まれた空隙の中心点の磁界強度は、理論的には2倍となる。また、磁石を対向させて配置し、裏面同士をヨークでつないだ場合も、中心点の磁界強度は、理論的に2倍になる。対向配置させた磁石間の距離(空隙距離)と、該対向軸方向の磁石の長さとの比は、0.001〜0.5、より好ましくは、0.01〜0.05に保つ。   Embodiments of the present invention will be described below with reference to the drawings. FIG. 5 shows an embodiment of a B / F separation apparatus and method in immunoassay according to the present invention. In this embodiment, the B / F separation magnet is configured by making the N pole and N pole of the magnet or the S pole and S pole face each other. The direction of magnetic flux is perpendicular to the opposing axis of the magnet and is the direction of the arrow along the gap surface of the opposing magnet. The magnetic field strength at the center point of the gap sandwiched between the opposing surfaces of the magnet is theoretically doubled. Also, when the magnets are arranged to face each other and the back surfaces are connected by a yoke, the magnetic field strength at the center point theoretically doubles. The ratio between the distance (gap distance) between the magnets arranged opposite to each other and the length of the magnet in the opposite axial direction is kept at 0.001 to 0.5, more preferably 0.01 to 0.05.

対向磁石と分離容器の構成例を図6に示す。Aはネオジム磁石、Bは磁石ホルダ、Cは分離容器、Dは磁性粒子である。分離容器Cは、2つのネオジム磁石Aの対向軸と平行に、空隙に近接して配置される。分離容器Cの内径は5mm、磁石Aの長さは10mm、空隙距離は0.5mmである。0.5mmの空隙をB/F分離用磁場発生源として用いた場合、得られた磁場勾配(液層5mmφ)の実測値は、単独磁石を使用した場合の1.5倍、磁性粒子の集合時間は3秒だった。   A configuration example of the counter magnet and the separation container is shown in FIG. A is a neodymium magnet, B is a magnet holder, C is a separation container, and D is a magnetic particle. The separation container C is disposed in parallel to the opposing axes of the two neodymium magnets A and close to the gap. The inner diameter of the separation container C is 5 mm, the length of the magnet A is 10 mm, and the gap distance is 0.5 mm. When a 0.5 mm gap was used as the magnetic field generation source for B / F separation, the measured value of the magnetic field gradient (liquid layer 5 mmφ) was 1.5 times that when a single magnet was used. The time was 3 seconds.

同じ分離容器Cを用いて磁性粒子Dを集合させる実験では、ネオジム磁石5枚を単独に配置した場合で6秒、電磁石を用いて1600アンペア・ターンの電流を流した場合で5秒、電磁石を用いて2000アンペア・ターンの電流を流した場合でも3.5秒の集合時間を要するので、本実施例の効果は大きい。   In the experiment in which the magnetic particles D are assembled using the same separation container C, the electromagnet is turned on for 6 seconds when five neodymium magnets are arranged alone, and for 5 seconds when a current of 1600 ampere turns is passed using the electromagnet. Even when a current of 2000 ampere turns is used, an assembly time of 3.5 seconds is required, so the effect of this embodiment is great.

図7は、本発明にかかる免疫測定におけるB/F分離装置および方法の別の実施例である。本実施例では、直方体のネオジム磁石A−1の上に、角錐体の先端を平らに削平した台形状のネオジム磁石A−2を載せ、磁石の周りを分離容器の反対側端面から分離容器の対向面側に向けてヨークEで取り囲むことにより、漏洩磁場を抑えるとともに、ネオジム磁石A−2の先端面とヨークEの先端面を一致させながら、ネオジム磁石A−2の分離容器側端面の周囲をヨークEの先端で囲んで、ヨークEで磁束を集中させる。   FIG. 7 shows another embodiment of the B / F separation apparatus and method in the immunoassay according to the present invention. In this embodiment, a trapezoidal neodymium magnet A-2 with the tip of a pyramid flattened flat is placed on a rectangular neodymium magnet A-1, and the periphery of the magnet is separated from the opposite end surface of the separation container. Surrounding by the yoke E toward the facing surface side, while suppressing the leakage magnetic field, the tip end surface of the neodymium magnet A-2 and the tip end surface of the yoke E are matched, and the periphery of the separation container side end surface of the neodymium magnet A-2 Is surrounded by the tip of the yoke E, and the magnetic flux is concentrated by the yoke E.

このときの磁極の極性は、磁石の分離容器とは反対側の端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは同極性、また、磁石の分離容器側端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは逆極性になるように配置される。すなわち、図7に基づいて説明すれば、ネオジム磁石A−1のヨークE側がN極、ネオジム磁石A−1の反対側、すなわちネオジム磁石A−2側がS極、ネオジム磁石A−2のネオジム磁石A−1側がN極、ネオジム磁石A−2の分離容器C側がS極、ネオジム磁石A−2の分離容器C側周囲を囲むヨークEの先端がN極である。尚、これらの磁極は、N極とS極が逆であっても良い。   The polarity of the magnetic pole at this time is the same polarity as the end surface of the magnet opposite to the separation container side and the tip of the yoke surrounding the magnet separation container side end surface, and the magnet separation container side end surface, It arrange | positions so that it may become reverse polarity with the front-end | tip of the yoke surrounding the circumference | surroundings of the separation container side end surface of a magnet. That is, based on FIG. 7, the yoke E side of the neodymium magnet A-1 is the north pole, the opposite side of the neodymium magnet A-1, that is, the neodymium magnet A-2 side is the south pole, and the neodymium magnet A-2 neodymium magnet. The A-1 side is the N pole, the neodymium magnet A-2 separation container C side is the S pole, and the tip of the yoke E surrounding the separation container C side periphery of the neodymium magnet A-2 is the N pole. These magnetic poles may have the N pole and the S pole reversed.

このような磁気回路を構成することにより、ネオジム磁石A−1、A−2からの漏洩磁場を抑えるとともに、ヨークEの先端でネオジム磁石A−2の分離容器C側に磁束を集中させるようにした。この方法により、得られた磁場勾配(液相5mm)の実測値は、単独磁石を使用した場合の1.2〜1.3倍となった。   By configuring such a magnetic circuit, the leakage magnetic field from the neodymium magnets A-1 and A-2 is suppressed, and the magnetic flux is concentrated on the separation container C side of the neodymium magnet A-2 at the tip of the yoke E. did. By this method, the measured value of the magnetic field gradient (liquid phase 5 mm) obtained was 1.2 to 1.3 times that when a single magnet was used.

分離容器Cは、ヨークEの先端で磁束を集中させたネオジム磁石A−2の先端に対向させて、ネオジム磁石A−2の先端に近接する位置に配置させる。このとき、ネオジム磁石A−2の先端面とヨークEの先端面を予め一致させてあるので、ネオジム磁石A−2と分離容器Cとの距離を最小にすることができる。これにより、磁性粒子Dは、分離容器Cの内側壁面に容易に集合させることができる。   The separation container C is disposed at a position close to the tip of the neodymium magnet A-2 so as to face the tip of the neodymium magnet A-2 where the magnetic flux is concentrated at the tip of the yoke E. At this time, since the tip surface of the neodymium magnet A-2 and the tip surface of the yoke E are matched in advance, the distance between the neodymium magnet A-2 and the separation container C can be minimized. Thereby, the magnetic particles D can be easily assembled on the inner wall surface of the separation container C.

尚、ネオジム磁石A−1は、直方体ではなく、円柱状であっても良い。また、ネオジム磁石A−2は、角錐体の先端を平らに削平した台形状ではなく、円錐体の先端を平らに削平したポールピース状であっても良い。   The neodymium magnet A-1 may be a columnar shape instead of a rectangular parallelepiped. Further, the neodymium magnet A-2 may not have a trapezoidal shape in which the tip of the pyramid is flattened, but may have a pole piece shape in which the tip of the cone is flattened.

図8は、本発明にかかる免疫測定におけるB/F分離装置および方法の別の実施例である。本実施例では、反発し合う同極同士を磁石の両端部で対向配置させた磁石を分離容器Cの移動方向に合わせて複数個連続配置させ、それを1つの磁石ホルダB―2で固定した構成となっている。B/F分離は、通常、複数回繰り返して行なわれる。そこで、分離容器Cが位置a→位置b→位置c→位置dに逐次進むごとにB/F分離が行なわれる構成とした。このような構成とすることで、複数本の分離容器Cを一度にB/F分離させることができ、スペースファクタの高いB/F分離装置を提供することができる。   FIG. 8 shows another embodiment of the B / F separation apparatus and method in the immunoassay according to the present invention. In the present embodiment, a plurality of magnets in which repulsive same poles are arranged opposite to each other at both ends of the magnet are continuously arranged according to the moving direction of the separation container C, and are fixed by one magnet holder B-2. It has a configuration. B / F separation is usually repeated a plurality of times. Therefore, B / F separation is performed each time the separation container C sequentially advances from position a → position b → position c → position d. By setting it as such a structure, the multiple separation container C can be B / F-separated at once, and a B / F separation apparatus with a high space factor can be provided.

対向磁石と分離容器Cの移動方法は、等間隔で並んだ対向磁石を固定している磁石ホルダB−2側を動かすようにしても良いが、逆に、等間隔で並んだ分離容器C側を動かすようにしても良い。   The moving method of the counter magnet and the separation container C may be such that the magnet holder B-2 side fixing the counter magnets arranged at equal intervals may be moved, but conversely, the separation container C side arranged at equal intervals. You may make it move.

尚、図8の例では、対向磁石と分離容器Cは平面状に並んでいるが、これは、数十本ないし数百本の分離容器が円周方向に並んで載った反応回転テーブル、あるいは、数本の分離容器が載った円盤状のB/F分離ユニットの外周または内周に沿って、分離容器と同心円状に対向磁石ホルダを配置させるようにしても良い。分離容器群と対向磁石群とが相互に回転できる構成にすることで、効果的なB/F分離機構を備えた自動免疫分析装置を提供することができる。   In the example of FIG. 8, the counter magnet and the separation container C are arranged in a plane, but this is a reaction rotary table in which several tens to several hundreds of separation containers are arranged in the circumferential direction, or The counter magnet holder may be arranged concentrically with the separation container along the outer periphery or inner periphery of the disc-shaped B / F separation unit on which several separation containers are placed. By adopting a configuration in which the separation container group and the counter magnet group can rotate relative to each other, an automatic immunological analyzer equipped with an effective B / F separation mechanism can be provided.

尚、図8の対向磁石のN極とS極の並びは、同じ極を対向させてあれば、どちらの極が先頭であっても良い。   In addition, as for the arrangement | positioning of the north-pole and south pole of the opposing magnet of FIG. 8, as long as the same pole is made to oppose, either pole may be the head.

自動免疫分析装置および方法に、広く利用できる。   Widely applicable to automatic immunoassay devices and methods.

EIA法の測定原理を示す図である。It is a figure which shows the measurement principle of EIA method. 従来のB/F分離装置の一例を示す図である。It is a figure which shows an example of the conventional B / F separation apparatus. 分離容器と磁場方向の関係を示す図である。It is a figure which shows the relationship between a separation container and a magnetic field direction. ネオジム磁石の重ね枚数と磁石表面の磁場強度との関係を示す図である。It is a figure which shows the relationship between the number of neodymium magnets piled up, and the magnetic field intensity of the magnet surface. 本発明にかかるB/F分離装置の一実施例を示す図である。It is a figure which shows one Example of the B / F separation apparatus concerning this invention. 本発明にかかるB/F分離装置の対向磁石と分離容器の構成例である。It is an example of composition of a counter magnet and a separation container of a B / F separation device concerning the present invention. 本発明にかかるB/F分離装置の別の実施例を示す図である。It is a figure which shows another Example of the B / F separation apparatus concerning this invention. 本発明にかかるB/F分離装置の別の実施例を示す図である。It is a figure which shows another Example of the B / F separation apparatus concerning this invention.

符号の説明Explanation of symbols

1:固相(磁性ビーズ固相)、2:固相抗体、3:固相抗体に未結合の抗原、4:抗原-抗体複合物、5:固相抗体に結合した抗原、6:抗原-抗体複合物に未結合の酵素標識抗体、7:標識酵素、8:酵素標識抗体-抗原-抗体複合物、9:抗原-抗体複合物に結合した酵素標識抗体、10:発色試薬(発色前)、11:発色試薬(発色後)、12:磁性粒子固相、13:分離容器、14:磁石、15:給排水ノズル、A:磁石、B:磁石ホルダ、C:分離容器、D:磁性粒子、E:ヨーク 1: solid phase (magnetic bead solid phase), 2: solid phase antibody, 3: antigen not bound to solid phase antibody, 4: antigen-antibody complex, 5: antigen bound to solid phase antibody, 6: antigen- Enzyme-labeled antibody not bound to antibody complex, 7: labeled enzyme, 8: enzyme-labeled antibody-antigen-antibody complex, 9: enzyme-labeled antibody bound to antigen-antibody complex, 10: coloring reagent (before color development) 11: Coloring reagent (after color development), 12: Magnetic particle solid phase, 13: Separation container, 14: Magnet, 15: Water supply / drainage nozzle, A: Magnet, B: Magnet holder, C: Separation container, D: Magnetic particle, E: York

Claims (10)

磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
反発し合う同極同士を対向配置させた磁石対を用い、その磁極間の空隙に近接させて分離容器を配置することにより、固相抗体(または固相抗原)をB/F分離することを特徴とする免疫測定におけるB/F分離装置。
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
B / F separation of solid-phase antibody (or solid-phase antigen) is performed by using a magnet pair in which repulsive same polarities are opposed to each other and placing a separation container close to the gap between the magnetic poles. A B / F separator for immunoassay.
前記対向配置させた磁極間の距離(空隙距離)と、該対向軸方向の磁石の長さとの比は、0.001〜0.5であることを特徴とする請求項1記載の免疫測定におけるB/F分離装置。 2. The immunoassay according to claim 1, wherein a ratio of a distance (gap distance) between the opposed magnetic poles to a length of the magnet in the opposite axis direction is 0.001 to 0.5. B / F separator. 反発し合う同極同士を対向配置させた磁石を分離容器の移動方向に合わせて複数個連続配置させ、複数の分離容器でB/F分離を一度に行なうことを特徴とする請求項1または2記載の免疫測定におけるB/F分離装置。 3. A plurality of magnets in which repulsive same poles are arranged to face each other are continuously arranged in accordance with the moving direction of the separation container, and B / F separation is performed at a time by the plurality of separation containers. The B / F separation apparatus in the immunoassay described. 磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
磁石の周りを分離容器の反対側端面から分離容器の対向面側に向けてヨークで取り囲んで漏洩磁場を抑えるとともに、磁石の分離容器側端面の周囲をヨークの先端で囲んで磁束を集中させた磁石装置を用いて固相抗体(または固相抗原)をB/F分離することを特徴とする免疫測定におけるB/F分離装置。
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
The magnet is surrounded by a yoke from the opposite end surface of the separation container to the opposite surface side of the separation container to suppress the leakage magnetic field, and the periphery of the separation container side end surface of the magnet is surrounded by the tip of the yoke to concentrate the magnetic flux. A B / F separation device for immunoassay, wherein a solid phase antibody (or solid phase antigen) is subjected to B / F separation using a magnet device.
前記磁石装置において、磁石の分離容器とは反対側の端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは同極性、また、磁石の分離容器側端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは逆極性であることを特徴とする請求項4記載の免疫測定におけるB/F分離装置。 In the magnet device, the end surface of the magnet opposite to the separation container side and the tip of the yoke surrounding the periphery of the magnet separation container side end have the same polarity, and the magnet separation container side end surface is separated from the magnet. 5. The B / F separation apparatus for immunoassay according to claim 4, wherein the B / F separation apparatus has an opposite polarity to a tip of a yoke surrounding the periphery of the container side end surface. 磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
反発し合う同極同士を対向配置させた磁石対を用い、その磁極間の空隙に近接させて分離容器を配置することにより、固相抗体(または固相抗原)をB/F分離することを特徴とする免疫測定におけるB/F分離方法。
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
B / F separation of solid-phase antibody (or solid-phase antigen) is performed by using a magnet pair in which repulsive same polarities are opposed to each other and placing a separation container close to the gap between the magnetic poles. B / F separation method in immunoassay characterized.
前記対向配置させた磁極間の距離(空隙距離)と、該対向軸方向の磁石の長さとの比は、0.001〜0.5であることを特徴とする請求項6記載の免疫測定におけるB/F分離方法。 The ratio of the distance (gap distance) between the magnetic poles arranged opposite to each other and the length of the magnet in the opposite axis direction is 0.001 to 0.5. B / F separation method. 反発し合う同極同士を対向配置させた磁石を分離容器の移動方向に合わせて複数個連続配置させ、複数の分離容器でB/F分離を一度に行なうことを特徴とする請求項6または7記載の免疫測定におけるB/F分離方法。 8. A plurality of magnets in which repulsive same poles are arranged to face each other are continuously arranged in accordance with the moving direction of the separation container, and B / F separation is performed at once by the plurality of separation containers. The B / F separation method in the immunoassay described. 磁性体を固相に用い、固相抗体(または固相抗原)と目的の抗原(または抗体)を抗原抗体反応させた後、標識物質によって標識された過剰量の標識抗体(または標識抗原)を添加して抗原(または抗体)の標識化を行なう免疫測定法において、
固相抗体(または固相抗原)と目的の抗原(または抗体)の間、及び目的の抗原(または抗体)と標識抗体(または標識抗原)の間で抗原抗体反応させた後、固相抗体(または固相抗原)を磁石装置を用いてB/F分離する際に、
磁石の周りを分離容器の反対側端面から分離容器の対向面側に向けてヨークで取り囲んで漏洩磁場を抑えるとともに、磁石の分離容器側端面の周囲をヨークの先端で囲んで磁束を集中させた磁石装置を用いて固相抗体(または固相抗原)をB/F分離することを特徴とする免疫測定におけるB/F分離方法。
After using a magnetic substance as a solid phase and reacting a solid phase antibody (or solid phase antigen) with the target antigen (or antibody) by antigen-antibody reaction, an excess amount of labeled antibody (or labeled antigen) labeled with a labeling substance is added. In an immunoassay method that adds and labels an antigen (or antibody),
After the antigen-antibody reaction between the solid phase antibody (or solid phase antigen) and the target antigen (or antibody) and between the target antigen (or antibody) and the labeled antibody (or labeled antigen), the solid phase antibody ( Or solid phase antigen) using a magnetic device for B / F separation,
The magnet is surrounded by a yoke from the opposite end surface of the separation container to the opposite surface side of the separation container to suppress the leakage magnetic field, and the periphery of the separation container side end surface of the magnet is surrounded by the tip of the yoke to concentrate the magnetic flux. A B / F separation method in an immunoassay, wherein a solid phase antibody (or solid phase antigen) is subjected to B / F separation using a magnet device.
前記磁石装置において、磁石の分離容器とは反対側の端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは同極性、また、磁石の分離容器側端面と、磁石の分離容器側端面の周囲を囲むヨ−クの先端とは逆極性であることを特徴とする請求項9記載の免疫測定におけるB/F分離方法。
In the magnet device, the end surface of the magnet opposite to the separation container side and the tip of the yoke surrounding the periphery of the magnet separation container side end have the same polarity, and the magnet separation container side end surface is separated from the magnet. 10. The B / F separation method for immunoassay according to claim 9, wherein the polarity is opposite to that of the yoke tip surrounding the periphery of the container side end surface.
JP2005035877A 2005-02-14 2005-02-14 Apparatus and method for b/f separation in immunoassay Pending JP2006218442A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035877A JP2006218442A (en) 2005-02-14 2005-02-14 Apparatus and method for b/f separation in immunoassay

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035877A JP2006218442A (en) 2005-02-14 2005-02-14 Apparatus and method for b/f separation in immunoassay

Publications (1)

Publication Number Publication Date
JP2006218442A true JP2006218442A (en) 2006-08-24

Family

ID=36981097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035877A Pending JP2006218442A (en) 2005-02-14 2005-02-14 Apparatus and method for b/f separation in immunoassay

Country Status (1)

Country Link
JP (1) JP2006218442A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514152A (en) * 2011-04-27 2014-06-19 ベクトン・ディキンソン・アンド・カンパニー Apparatus and method for separating magnetically labeled portions in a sample
EP2805169A1 (en) * 2012-01-17 2014-11-26 Eppendorf AG Laboratory apparatus for treating a sample reception section with a magnetic tool device, magnetic tool device, sample reception device for use with the magnetic tool device and method for performing a work step on at least one fluid sample using a magnetic field
WO2016043291A1 (en) * 2014-09-19 2016-03-24 協和メデックス株式会社 Method for cleaning magnetic carrier particles, device for cleaning magnetic carrier particles, and immunoassay method using magnetic carrier particles
JP2021067460A (en) * 2019-10-17 2021-04-30 キヤノンメディカルシステムズ株式会社 Specimen inspection device
WO2022085770A1 (en) * 2020-10-23 2022-04-28 シチズン時計株式会社 Detecting device and detecting method for substance being measured

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384771U (en) * 1989-12-20 1991-08-28
JPH0540122A (en) * 1990-06-27 1993-02-19 Fujirebio Inc Automatic apparatus for enzyme immunoassay
US5466574A (en) * 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
JPH1068731A (en) * 1994-06-16 1998-03-10 Boehringer Mannheim Gmbh Method for magnetically separating component to be detected in liquid
JP2002292305A (en) * 2001-04-02 2002-10-08 Univ Niigata Magnetic separation method and apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0384771U (en) * 1989-12-20 1991-08-28
JPH0540122A (en) * 1990-06-27 1993-02-19 Fujirebio Inc Automatic apparatus for enzyme immunoassay
US5466574A (en) * 1991-03-25 1995-11-14 Immunivest Corporation Apparatus and methods for magnetic separation featuring external magnetic means
JPH1068731A (en) * 1994-06-16 1998-03-10 Boehringer Mannheim Gmbh Method for magnetically separating component to be detected in liquid
JP2002292305A (en) * 2001-04-02 2002-10-08 Univ Niigata Magnetic separation method and apparatus

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014514152A (en) * 2011-04-27 2014-06-19 ベクトン・ディキンソン・アンド・カンパニー Apparatus and method for separating magnetically labeled portions in a sample
US9885642B2 (en) 2011-04-27 2018-02-06 Becton, Dickinson And Company Devices and methods for separating magnetically labeled moieties in a sample
US10444125B2 (en) 2011-04-27 2019-10-15 Becton, Dickinson And Company Devices and methods for separating magnetically labeled moieties in a sample
EP2805169A1 (en) * 2012-01-17 2014-11-26 Eppendorf AG Laboratory apparatus for treating a sample reception section with a magnetic tool device, magnetic tool device, sample reception device for use with the magnetic tool device and method for performing a work step on at least one fluid sample using a magnetic field
JP2015505372A (en) * 2012-01-17 2015-02-19 エッペンドルフ アクチェンゲゼルシャフト Performing a work phase on at least one fluid sample using a laboratory apparatus for handling a sample receiving compartment with a magnetic tool device, a magnetic tool device, a sample receiving device for use with a magnetic tool device, and a magnetic field how to
WO2016043291A1 (en) * 2014-09-19 2016-03-24 協和メデックス株式会社 Method for cleaning magnetic carrier particles, device for cleaning magnetic carrier particles, and immunoassay method using magnetic carrier particles
JPWO2016043291A1 (en) * 2014-09-19 2017-08-03 協和メデックス株式会社 Magnetic carrier particle cleaning method, magnetic carrier particle cleaning device, and immunological measurement method using magnetic carrier particles
JP2021067460A (en) * 2019-10-17 2021-04-30 キヤノンメディカルシステムズ株式会社 Specimen inspection device
JP7321881B2 (en) 2019-10-17 2023-08-07 キヤノンメディカルシステムズ株式会社 Laboratory test device
WO2022085770A1 (en) * 2020-10-23 2022-04-28 シチズン時計株式会社 Detecting device and detecting method for substance being measured

Similar Documents

Publication Publication Date Title
US8685754B2 (en) Droplet actuator devices and methods for immunoassays and washing
JP5311445B2 (en) Fast and sensitive biosensing
Tekin et al. Attomolar protein detection using a magnetic bead surface coverage assay
WO2016063690A1 (en) Automatic analysis device and separation and cleaning method
JP2008209330A (en) Magnetic separator and analyzing apparatus using the same
US20030095897A1 (en) Flow-controlled magnetic particle manipulation
US20140021105A1 (en) Non-linear magnetophoretic separation device, system and method
JP2017106927A (en) Biosensor system for actuating magnetic particles
US20100300978A1 (en) Device, system and method for washing and isolating magnetic particles in a continous fluid flow
JP5205807B2 (en) Magnetic signal measuring device
JP2009042104A (en) Substance fixing device, substance detector and substance fixing method
JP2016117032A (en) Device for operating magnetic material grains
JP2009543088A (en) Magnetic sensor element
US20110050215A1 (en) System for applying magnetic forces to a biosensor surface by mechanically moving at least one magnet
JP2013223820A (en) Magnetic separator, automatic analyzer with the same, and separation method
WO2016113883A1 (en) Device for manipulating magnetic particles and method for manipulating magnetic particles
KR101576624B1 (en) Transporting, trapping and escaping manipulation device for magnetic bead biomaterial comprising micro-magnetophoretic circuit
TW201634925A (en) Magnetic bead-based digital microfluidic immunoanalysis device and method thereof
JP2006218442A (en) Apparatus and method for b/f separation in immunoassay
RU2520607C2 (en) Actuation with pulsed magnetic field for sensitive analysis
US7514270B2 (en) Immunoassay probe
WO2023021904A1 (en) Sample analyzer
CN108918500B (en) SERS sorting method based on immunomagnetic bead labeling
JP2010002397A (en) Target material detection method
US9933340B2 (en) Method for performing immunoassays under weightlessness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101116

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329