JP2006218377A - Electrostatic precipitator - Google Patents

Electrostatic precipitator Download PDF

Info

Publication number
JP2006218377A
JP2006218377A JP2005033048A JP2005033048A JP2006218377A JP 2006218377 A JP2006218377 A JP 2006218377A JP 2005033048 A JP2005033048 A JP 2005033048A JP 2005033048 A JP2005033048 A JP 2005033048A JP 2006218377 A JP2006218377 A JP 2006218377A
Authority
JP
Japan
Prior art keywords
high voltage
negative
positive
dust collector
electrostatic precipitator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005033048A
Other languages
Japanese (ja)
Other versions
JP4836468B2 (en
Inventor
Akio Zukeran
章朝 瑞慶覧
Koji Yasumoto
浩二 安本
Yoshihiro Kawada
吉弘 川田
Yoshihiro Kono
良宏 河野
Yasuo Ito
泰郎 伊藤
Yoshiyasu Ebara
由泰 江原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Systems Co Ltd filed Critical Fuji Electric Systems Co Ltd
Priority to JP2005033048A priority Critical patent/JP4836468B2/en
Publication of JP2006218377A publication Critical patent/JP2006218377A/en
Application granted granted Critical
Publication of JP4836468B2 publication Critical patent/JP4836468B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • Y02A50/2351Atmospheric particulate matter [PM], e.g. carbon smoke microparticles, smog, aerosol particles, dust

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrostatic precipitator which has a simpler structure of a high voltage generator to apply high voltage to each electrode of an electrostatic charge part and a dust collecting part of the electrostatic precipitator and which is capable of effectively controlling the re-scattering while maintaining high dust collecting capability. <P>SOLUTION: The high voltage generating means to generate high voltage of positive/negative dissymmetry having one-sided proportion of the negative or positive side is used as an application means of high voltage to the electrode of the dust collecting part of the electrostatic precipitator. As the positive/negative dissymmetry high voltage, it is preferable to use unsymmetrical square wave high voltage of which the output voltage value and output time of straight polarity and negative polarity are different and high voltage of straight polarity or negative polarity of which the output voltage is reduced to 0 V periodically and instantly and is restored again. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、例えばトンネル内の空気などを浄化するのに好適な電気集じん装置に関する。   The present invention relates to an electric dust collector suitable for purifying air in a tunnel, for example.

従来から知られている通り、自動車道トンネル内の空気は、自動車から排出される排気ガス中の有害ガス、煤煙、自動車の走行に伴って生じるタイヤや道路アスファルトの磨耗粉塵などのサブミクロンオーダの浮遊微粒子で汚染されている。そこで、この汚染空気中の煤煙・微粒子を除去するために、帯電部および集じん部によって構成された二段式電気集じん装置を用いた空気浄化設備が実用化されている。
図11は、一般的に知られている2段式電気集じん装置の構成を示す。本図に示す電気集じん装置100は、帯電部1と集じん部2から構成されている。帯電部1は、線−平板電極構造であり、1対の平板からなる接地電極3a,3bと、線状の高電圧電極4を有している。そして、電極間には直流高電圧を印加し、コロナ放電を発生させている。一方、集じん部2は平行平板電極構造であり、1対の平行平板からなる接地電極5a,5bと、1枚の平板からなる高電圧電極6を有している。この平行平板電極間に直流高電圧を印加することにより、静電界が形成される。これらの構成をもつ2段式電気集じん装置において、粒子は帯電部1において単極性に帯電し、集じん部2の静電界によって、接地電極5a,5b上に捕集される。
As is known in the art, the air in an expressway tunnel is in the order of submicron such as harmful gases in the exhaust gas exhausted from automobiles, soot, and tire and road asphalt wear dust generated by automobiles. Contaminated with airborne particles. Therefore, in order to remove the soot and particulates in the contaminated air, air purification equipment using a two-stage electric dust collector composed of a charging part and a dust collecting part has been put into practical use.
FIG. 11 shows a configuration of a generally known two-stage type electric dust collector. An electric dust collector 100 shown in the figure includes a charging unit 1 and a dust collecting unit 2. The charging unit 1 has a wire-plate electrode structure, and includes ground electrodes 3 a and 3 b made of a pair of flat plates and a linear high-voltage electrode 4. A high DC voltage is applied between the electrodes to generate corona discharge. On the other hand, the dust collecting portion 2 has a parallel plate electrode structure, and has ground electrodes 5a and 5b made of a pair of parallel plates and a high voltage electrode 6 made of one plate. An electrostatic field is formed by applying a DC high voltage between the parallel plate electrodes. In the two-stage electrostatic precipitator having these configurations, the particles are unipolarly charged in the charging unit 1 and are collected on the ground electrodes 5 a and 5 b by the electrostatic field of the dust collecting unit 2.

このような従来型の二段式電気集じん装置は、ナノメータ粒子に対しても集じん率が高く、また大流量処理に適している。
しかし、自動車道路トンネル内のように、浮遊粒子の主成分が、電気抵抗の低いカーボンなどである場合、集じん電極上に捕集された粒子が、再び飛散し、ガス流と共に電気集じん装置から排出される場合がある。この現象は再飛散現象と呼ばれている。再飛散現象は、大粒径粒子の集じん率を低下させるため、改善すべき大きな課題となっている。
再飛散現象のメカニズムを図12に基づいて説明する。なお、図12の説明においては、粒子は帯電部において負に単極帯電されるものとする。
まず、図12の(A)に示すように、帯電部内で負極性に帯電した粒子9は、集じん部接地電極8上に捕集される。接地電極8上に集じんされた粒子9は、直ちに電荷を失い接地極と同極性となる。このため、接地電極8上の集じん粒子9の近傍は電界が強くなる。さらに(B)に示すように、空間中の負極性帯電粒子9が接地電極8上に集じんされるとき、接地電極8上の粒子10と凝集するとともに、電界によるクーロン力によって、負極性の高電圧電極7方向へ数珠状凝集粒子10を形成する。接地電極8上の数珠状凝集粒子10は凝集肥大化するに従い(図12(C)参照)、流体抗力やクーロン力などの剥離力が強くなり、これらの力が接地電極8と凝集粒子10間の付着力より大きくなったとき再飛散する。
Such a conventional two-stage electrostatic precipitator has a high dust collection rate even with respect to nanometer particles, and is suitable for a large flow rate treatment.
However, if the main component of the suspended particles is carbon with low electrical resistance, as in an automobile road tunnel, the particles collected on the dust collection electrode will be scattered again and be collected together with the gas flow. May be discharged from. This phenomenon is called a re-scattering phenomenon. The re-scattering phenomenon is a big problem to be improved because it reduces the dust collection rate of the large particles.
The mechanism of the re-scattering phenomenon will be described with reference to FIG. In the description of FIG. 12, it is assumed that the particles are negatively monopolarly charged in the charging unit.
First, as shown in FIG. 12A, the particles 9 that are negatively charged in the charging portion are collected on the dust collection portion ground electrode 8. The particles 9 collected on the ground electrode 8 immediately lose their charge and have the same polarity as the ground electrode. For this reason, the electric field becomes strong in the vicinity of the dust collection particles 9 on the ground electrode 8. Further, as shown in (B), when the negatively charged particles 9 in the space are collected on the ground electrode 8, they aggregate with the particles 10 on the ground electrode 8, and are negatively charged by the Coulomb force due to the electric field. The bead-like aggregated particles 10 are formed in the direction of the high voltage electrode 7. As the bead-like aggregated particles 10 on the ground electrode 8 are agglomerated and enlarged (see FIG. 12C), peeling force such as fluid drag and Coulomb force becomes stronger, and these forces are generated between the ground electrode 8 and the aggregated particles 10. When it becomes larger than the adhesion force, it re-scatters.

かかる再飛散現象を極めて有効に防止する方法として、矩形波交流電気集じん装置が提案されている。(特許文献1)
図13は、矩形波交流電気集じん装置の概略構成を示す。本装置は、帯電部40と集じん部50から構成されている。帯電部40は線−平板電極構造であり、1対の平板からなる接地電極21,22と、線状の高電圧電極23を有する。この線−平板電極間に高電圧電源20から直流高電圧を印加し、帯電部40にコロナ放電を発生させる。直流高電圧の極性は正または負のいずれでも良く、またパルス電圧でもよい。
集じん部50は平行平板電極構造であり、1対の平板からなる接地電極31,32と、1枚の平板からなる高電圧電極33とを有する。この接地−高電圧電極間には、矩形波高電圧電源30から矩形波高電圧を印加する。なお、矩形波高電圧電源30の代わりに正弦波交流からなる交流高電圧電源を用いても良い。この種の矩形波高電圧電源の電圧範囲は、電極間1mmあたり3kV以下が適当であり、一般には1mmあたり約0.9kv程度である。また、印加電圧の周波数は数kHz以下の範囲とされており、周波数の下限値は限定されないが、数Hz〜0.1Hz程度とするのが良いとされている。
As a method for effectively preventing such a re-scattering phenomenon, a rectangular wave AC electrostatic precipitator has been proposed. (Patent Document 1)
FIG. 13 shows a schematic configuration of a rectangular wave AC electrostatic precipitator. This apparatus includes a charging unit 40 and a dust collection unit 50. The charging unit 40 has a wire-plate electrode structure, and includes grounding electrodes 21 and 22 composed of a pair of flat plates and a linear high voltage electrode 23. A DC high voltage is applied from the high voltage power supply 20 between the wire and the plate electrode to cause the charging unit 40 to generate corona discharge. The polarity of the DC high voltage may be positive or negative, and may be a pulse voltage.
The dust collection portion 50 has a parallel plate electrode structure, and includes ground electrodes 31 and 32 made of a pair of flat plates and a high voltage electrode 33 made of a single plate. A rectangular wave high voltage is applied from the rectangular wave high voltage power supply 30 between the ground and the high voltage electrode. Instead of the rectangular wave high voltage power supply 30, an AC high voltage power supply composed of a sinusoidal alternating current may be used. The voltage range of this type of rectangular wave high voltage power supply is suitably 3 kV or less per 1 mm between electrodes, and is generally about 0.9 kv per 1 mm. Further, the frequency of the applied voltage is in the range of several kHz or less, and the lower limit value of the frequency is not limited, but is supposed to be about several Hz to 0.1 Hz.

ここで、集じん部に矩形波高電圧を印加した場合の再飛散防止メカニズムを図14、図15に基づいて説明する。なお、帯電部40(図13参照)には負の直流高電圧が印加され、粒子はマイナスに帯電されているものとする。
図15は、集じん部に印加される矩形波高電圧の波形を示している。図15においては、集じん部に印加される電圧を3つの区間に分けて考えられている。aの区間は、集じん部に正の高電圧が印加されている領域である。bの区間は、集じん部への印加電圧が、正から負に変化した瞬間である。cの区間は、集じん部に負の高電圧が印加されている領域である。
矩形波高電圧が領域aのとき、帯電部で負に帯電した粒子は、図14(A)に示すように正極性の高電圧集じん電極板上に捕集される。捕集された粒子は、直ちに負から正に帯電し、数珠状の極板凝集粒子を形成する。次に、矩形波高電圧が領域bになると、電圧の極性が正から負に急激に変化するため、集じん電極板の極性も正から負に急激に変化し、数珠状の極板凝集粒子は、図14(B)に示すように静電界によって集じん電極板方向へ力を受け、矩形波高電圧が領域cになると、図14(C)に示すように球状の凝集粒子へと変化すると言われている。球状の凝集粒子に変化することによって、剥離力として働く風力や静電気が小さくなり、再飛散は起こらなくなる。
特開2004−121987号公報
Here, the re-scattering prevention mechanism when a rectangular wave high voltage is applied to the dust collection portion will be described with reference to FIGS. It is assumed that a negative DC high voltage is applied to the charging unit 40 (see FIG. 13) and the particles are negatively charged.
FIG. 15 shows a waveform of a rectangular high voltage applied to the dust collection portion. In FIG. 15, the voltage applied to the dust collector is considered divided into three sections. The section “a” is an area where a positive high voltage is applied to the dust collection portion. The interval b is the moment when the applied voltage to the dust collection portion changes from positive to negative. The section c is a region where a negative high voltage is applied to the dust collection portion.
When the rectangular high voltage is in the region a, the negatively charged particles in the charging unit are collected on the positive high voltage dust collecting electrode plate as shown in FIG. The collected particles are immediately charged from negative to positive to form bead-shaped electrode plate aggregated particles. Next, when the rectangular wave high voltage becomes the region b, the polarity of the voltage suddenly changes from positive to negative. Therefore, the polarity of the dust collecting electrode plate also suddenly changes from positive to negative. As shown in FIG. 14 (B), when a force is applied in the direction of the dust collecting electrode plate by the electrostatic field and the high voltage of the rectangular wave enters the region c, it changes to spherical aggregated particles as shown in FIG. 14 (C). It has been broken. By changing to spherical agglomerated particles, the wind force and static electricity acting as peeling force are reduced, and re-scattering does not occur.
JP 2004-121987

しかし、従来の矩形波電圧は、正極性高電圧および負極性高電圧をGNDレベルに対して対称に出力されているため、高電圧発生装置の構造が複雑になるという課題があった。
すなわち、正極性高電圧および負極性高電圧をGNDレベルに対して対称に出力するためには、高電圧発生装置内に、正極性直流高電圧発生回路及び負極性高電圧発生回路を各々設けるようにしなければならないため、構造が複雑にならざるを得なかった。
また、帯電部に正負対称の矩形波高電圧を印加すると、正極性および負極性コロナ放電の放電特性が異なるため、集じん性能が低下するという課題もあった。すなわち、同一構造の電気集じん装置の帯電部に高電圧を印加する場合、印加電圧の絶対値が同一であっても、正極性高電圧を印加した時よりも負極性高電圧を印加した時の方が放電電流は大きくなる。このため、負極性コロナ放電時の方が、粒子の帯電量が大きくなり集じん率は高くなる。コロナ放電の電圧特性に対する極性依存性を図16の特性図に示す。図16は、図17に示す帯電部の実験装置で実験を行った特性図である。図17の帯電部の実験装置は、タングステン製の線電極と、アルミニウム製の平板電極が交互に並んだ構造となっており、これらの電極間に高電圧を印加した。図16では、縦軸にコロナ放電電流Id、横軸に印加電圧Vpが目盛られており、正極性コロナ放電時に比べて、負極性コロナ放電電流が大きいことが分かる。
However, since the conventional rectangular wave voltage outputs the positive high voltage and the negative high voltage symmetrically with respect to the GND level, there is a problem that the structure of the high voltage generator is complicated.
That is, in order to output the positive high voltage and the negative high voltage symmetrically with respect to the GND level, a positive direct current high voltage generation circuit and a negative high voltage generation circuit are provided in the high voltage generator. Therefore, the structure has to be complicated.
In addition, when a positive and negative symmetric rectangular wave high voltage is applied to the charging portion, the discharge characteristics of the positive and negative corona discharges are different, which causes a problem that dust collection performance is deteriorated. That is, when a high voltage is applied to the charging part of an electrostatic precipitator with the same structure, even when the applied voltage has the same absolute value, when a negative high voltage is applied than when a positive high voltage is applied This increases the discharge current. For this reason, in the case of negative corona discharge, the charge amount of particles becomes larger and the dust collection rate becomes higher. The polarity dependence on the voltage characteristics of corona discharge is shown in the characteristic diagram of FIG. FIG. 16 is a characteristic diagram in which an experiment is performed using the charging unit experimental apparatus illustrated in FIG. 17 has a structure in which tungsten wire electrodes and aluminum plate electrodes are alternately arranged, and a high voltage is applied between these electrodes. In FIG. 16, the vertical axis indicates the corona discharge current Id, and the horizontal axis indicates the applied voltage Vp. It can be seen that the negative corona discharge current is larger than that during positive corona discharge.

上記課題を解決するために、本発明によれば、空気中に浮遊する粒子に帯電部にて電荷を与え、該電荷が与えられた粒子に集じん部で電界を加えることによって集じんを行う電気集じん装置において、集じん部の電極に高電圧を印加する手段として、正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いる構成とする。
このような電気集じん装置において、正負非対称の任意波形の高電圧を、負側または正側の割合が多くなるようにすると良い。
また、帯電部の高電圧発生手段は、直流高電圧発生手段、あるいは負側または正側の割合が多い正負非対称の高電圧を発生する高電圧発生手段を用いる構成とする。
帯電部の高電圧発生手段として、負側または正側の割合が多い正負非対称の高電圧を印加する高電圧発生手段を用いる場合には、帯電部および集じん部に対して共通に設ける構成とすることができる。
In order to solve the above-described problems, according to the present invention, dust is collected by applying a charge to a particle floating in the air at a charging portion and applying an electric field to the particle to which the charge is applied. In the electrostatic precipitator, the high voltage generating means for generating a high voltage with an arbitrary waveform that is asymmetrical between positive and negative is used as a means for applying a high voltage to the electrode of the dust collecting portion.
In such an electrostatic precipitator, it is preferable to increase the ratio of the negative or positive side of a high voltage having a positive and negative asymmetric arbitrary waveform.
Further, the high voltage generating means of the charging unit is configured to use a DC high voltage generating means or a high voltage generating means for generating a positive / negative asymmetric high voltage with a large ratio of the negative side or the positive side.
When using a high voltage generating means for applying a positive / negative asymmetric high voltage with a large ratio of the negative side or the positive side as the high voltage generating means of the charging unit, the charging unit and the dust collecting unit are provided in common. can do.

さらに、放電電極と集じん電極との空間で空気中に浮遊する粒子の荷電と集じんを同時に行う一段式電気集じん装置において、放電電極と集じん電極とに高電圧を印加する手段として、正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いる構成とする。この一段式電気集じん装置においても、正負非対称の任意波形の高電圧を、負側または正側の割合が多くなるようにすると良い。
さらに、上記の電気集じん装置において、正負非対称の任意波形の高電圧は、正極性および負極性高電圧の出力電圧値および出力時間が異なる非対称矩形波高電圧である構成とする。
さらに、上記の電気集じん装置において、正負非対称の任意波形の高電圧は、負極性または正極性の高電圧が、周期的に瞬時に出力電圧が0Vに低下し、再び出力電圧を復帰する負極性または正極性の高電圧である構成とする。
Furthermore, in the one-stage type electric dust collector that simultaneously charges and collects particles suspended in the air in the space between the discharge electrode and the dust collection electrode, as means for applying a high voltage to the discharge electrode and the dust collection electrode, A high voltage generating means for generating a high voltage having an arbitrary waveform that is positive and negative asymmetric is used. Also in this one-stage electrostatic precipitator, it is preferable that the positive or negative asymmetrical high voltage has a higher negative or positive ratio.
Further, in the above electric dust collector, the high voltage of the positive and negative asymmetric arbitrary waveform is an asymmetric rectangular wave high voltage having different output voltage values and output times of the positive and negative high voltages.
Furthermore, in the above electrostatic precipitator, the positive and negative asymmetrical arbitrary high voltage is a negative or positive high voltage, and the negative output voltage is reduced to 0V periodically and the output voltage is restored again. Or a high voltage with positive polarity.

さらに、上記の電気集じん装置において、正負非対称の任意波形の高電圧は、その周波数が0.01〜10HZである構成とする。   Further, in the above electric dust collector, the high voltage of an arbitrary waveform having a positive / negative asymmetric shape has a frequency of 0.01 to 10 Hz.

本発明によれば、電気集じん装置の集じん部の高電圧電源として、正負非対称の任意波形の高電圧を発生させる電源を用いることにより、高電圧発生装置をシンプルな構成にすることができる。また、帯電部にも任意波形の高電圧を用いることにより、帯電部の高電圧発生装置をシンプルな構成にすることができ、特に負側の割合が多い高電圧として負極性コロナ放電の割合を増加させることで、高い集じん性能を維持したまま再飛散を効果的に抑制することができる。   According to the present invention, the high voltage generator can be configured simply by using a power source that generates a high voltage with an asymmetrical positive and negative waveform as the high voltage power source of the dust collector of the electric dust collector. . In addition, by using a high voltage with an arbitrary waveform for the charging unit, the high voltage generator of the charging unit can be made simple, and the negative corona discharge ratio can be set to a high voltage with a large negative ratio. By increasing, re-scattering can be effectively suppressed while maintaining high dust collection performance.

図1は、本発明による交流電界形電気集じん装置の構成図であり、図11に示した従来の電気集じん装置と同じ構成要素には同じ符号を付与している。図1に示す本発明による電気集じん装置が、図11に示す従来の電気集じん装置と異なる点は、集じん部50の高電圧電源として、負側の割合が多い正負非対称の任意波形の高電圧を発生させることのできる高電圧電源60が用いられている点である。
この高電圧電源60は、正極性直流高電圧発生回路容量を小さく、または正極性直流高電圧発生回路を削除した構成とすることができる。このため、正極性高電圧および負極性高電圧をGNDレベルに対して対称に出力する従来の高電圧電源と比較して、構成を簡単にすることができる。
帯電部は、図11と同様に線−平板電極構造であり、1対の平板からなる接地電極21、22と、線状の高圧電極23を有する。集じん部50も図11と同様に、1対の平板からなる接地電極31、32と1枚の平板からなる高電圧電極33とを有する。
FIG. 1 is a configuration diagram of an AC electric field type electrostatic precipitator according to the present invention, and the same reference numerals are given to the same components as those of the conventional electrostatic precipitator shown in FIG. The electrostatic precipitator according to the present invention shown in FIG. 1 is different from the conventional electrostatic precipitator shown in FIG. 11 in that the high voltage power source of the dust collector 50 has a positive and negative asymmetric arbitrary waveform with a large negative ratio. The high voltage power supply 60 which can generate a high voltage is used.
The high voltage power supply 60 can be configured such that the positive direct current high voltage generating circuit capacity is reduced or the positive direct current high voltage generating circuit is omitted. For this reason, compared with the conventional high voltage power supply which outputs a positive high voltage and a negative high voltage symmetrically with respect to a GND level, a structure can be simplified.
The charging unit has a line-plate electrode structure as in FIG. 11, and includes ground electrodes 21 and 22 each composed of a pair of flat plates, and a linear high-voltage electrode 23. Similarly to FIG. 11, the dust collection portion 50 also includes ground electrodes 31 and 32 made of a pair of flat plates and a high voltage electrode 33 made of a single flat plate.

図2は、図1に記載されている高電圧電源60から発生される任意波形高電圧の一例の説明図である。本発明の電気集じん装置では、図2に示すように正極性時の電圧値V+と、負極性時の電圧値V−は任意に設定することができ、電圧値V+とV−の絶対値は等しくなくても良く、V−の絶対値をV+の絶対値よりも大きくすることにより、高電圧電源の構成を簡略化することができる。また、図2に示す電圧波形の時間軸に関しては、t0〜t6は任意に設定することができる。特に、t2−t1は、t5−t4と等しくしなくても良い。さらに、t0〜t1、t2〜t4、t5〜t6における電圧の時間的変化dV/dtは、直線的、指数関数的でも良いし、任意である。
以下、実験結果を用いて、本発明の効果について説明する。
図3は従来において用いられている正負対称の矩形波交流高電圧の波形図であり、図4は本発明において用いられる任意波形の高電圧の波形図であり、正極側の電圧をゼロとした負極性台形波である。なお、図3、図4においては、電圧の立上り、立下りをdV/dt=500V/msecとしている。
FIG. 2 is an explanatory diagram of an example of an arbitrary waveform high voltage generated from the high voltage power supply 60 shown in FIG. In the electric dust collector of the present invention, as shown in FIG. 2, the voltage value V + at the time of positive polarity and the voltage value V− at the time of negative polarity can be arbitrarily set, and the absolute value of the voltage values V + and V−. May not be equal, and by making the absolute value of V− larger than the absolute value of V +, the configuration of the high-voltage power supply can be simplified. Further, t0 to t6 can be arbitrarily set with respect to the time axis of the voltage waveform shown in FIG. In particular, t2−t1 may not be equal to t5−t4. Furthermore, the temporal change dV / dt of the voltage at t0 to t1, t2 to t4, and t5 to t6 may be linear, exponential, or arbitrary.
Hereinafter, the effects of the present invention will be described using experimental results.
FIG. 3 is a waveform diagram of a positive and negative symmetrical rectangular wave AC high voltage used in the prior art, and FIG. 4 is a waveform diagram of an arbitrary waveform high voltage used in the present invention, with the positive side voltage being zero. Negative trapezoidal wave. In FIGS. 3 and 4, the voltage rise and fall are set to dV / dt = 500 V / msec.

図3の正負対称の矩形波交流高電圧を印加した場合の集じん率の時間変化を図5、図4の任意波形の高電圧4を印加した場合の集じん率の時間変化を図6に示す。なお、集じん率は、流入側の粒子濃度に対する流出側の粒子濃度の割合である。
図5、図6の実験結果は、帯電部と集じん部の電極長さの和を816mm、送風機の風速を9m/sec、帯電部の印加電圧をDC−11kV、帯電部の電流を2.48mA,集じん部の印加電圧を―8kV、温度27℃、湿球温度23.5℃の条件で実験したものである。
正負対称の矩形波交流高電圧の実験結果である図5では、粒径0.3〜1μmの粒子は、集じん装置稼動後の集じん率は一定を示している。しかし、粒径1〜5μmの粒子は、稼動時間の経過に従い、集じん率は徐々に低下しているのがわかる。この原因は、再飛散現象である。
FIG. 5 shows the time variation of the dust collection rate when the positive and negative symmetric rectangular wave AC high voltage of FIG. 3 is applied, and FIG. 6 shows the time variation of the dust collection rate when the high voltage 4 of the arbitrary waveform of FIG. 4 is applied. Show. The dust collection rate is the ratio of the particle concentration on the outflow side to the particle concentration on the inflow side.
5 and 6 show that the sum of the electrode lengths of the charging part and the dust collecting part is 816 mm, the wind speed of the blower is 9 m / sec, the applied voltage of the charging part is DC-11 kV, and the current of the charging part is 2. The experiment was performed under the conditions of 48 mA, the applied voltage of the dust collection part being −8 kV, the temperature 27 ° C., and the wet bulb temperature 23.5 ° C.
In FIG. 5, which is an experimental result of positive and negative symmetrical rectangular wave AC high voltage, particles having a particle size of 0.3 to 1 μm show a constant dust collection rate after the dust collector operation. However, it can be seen that the particles having a particle diameter of 1 to 5 μm gradually decrease in the dust collection rate as the operation time elapses. This is due to the re-scattering phenomenon.

これに対して、本発明による任意波形の高電圧を用いた場合には、図6に示すように、粒径1〜5μmの粒子でも集じん装置稼動後の集じん率は一定を示している。これは、次の理由による。すなわち、図4に示す波形の印加電圧は、周期的に印加電圧をGNDレベルに低下させており、この時、捕集粒子は接地電極方向に引き倒される。このため、捕集粒子の形状が変化し、粒径が大きくなる。よって、捕集粒子と電極との接触点が多くなり付着力が強くなるためである。また、捕集粒子の形状が変化し、ガス流の影響を受けにくく剥離しにくくなるためである。
図7は集じん部の高電圧電源として矩形波電源、任意波形電源、直流電源を用いた場合の集じん率の粒径特性を示したものであり、縦軸に集じん率、横軸に粒径が目盛られている。図7に示すように、直流電源では、粒径が大きいほど集じん率は低下するが、任意波形電源では、何れの粒径においても高い集じん率を維持している。また、任意波形電源の集じん率は、矩形波電源の場合とほぼ同等である。
On the other hand, when a high voltage having an arbitrary waveform according to the present invention is used, the dust collection rate after operation of the dust collector is constant even for particles having a particle size of 1 to 5 μm, as shown in FIG. . This is due to the following reason. That is, the applied voltage having the waveform shown in FIG. 4 periodically reduces the applied voltage to the GND level, and at this time, the collected particles are pulled down toward the ground electrode. For this reason, the shape of the collected particles changes and the particle size becomes large. Therefore, the number of contact points between the collected particles and the electrode is increased, and the adhesion is increased. Moreover, it is because the shape of the collected particles changes, and it is difficult to be peeled off due to the influence of gas flow.
FIG. 7 shows the particle size characteristics of the dust collection rate when a rectangular wave power source, an arbitrary waveform power source, and a DC power source are used as a high voltage power source for the dust collection part. The vertical axis represents the dust collection rate and the horizontal axis represents the dust collection rate. The particle size is graduated. As shown in FIG. 7, in the DC power source, the dust collection rate decreases as the particle size increases, but the arbitrary waveform power source maintains a high dust collection rate at any particle size. Further, the dust collection rate of the arbitrary waveform power supply is almost the same as that of the rectangular wave power supply.

以上の説明においては、集じん部の高電圧電源として任意波形電源を用いた場合について説明したが、任意波形電源は集じん部の高電圧電源だけでなく、図8に示すように帯電部の高電圧電源として用いても良いことは勿論である。図8においては、図1と同じ構成要件は同じ符号で示されているが、図1と相違するのは、図1の高電圧電源20の代わりに任意波形の高電圧電源70が用いられている点である。
また、図8のように帯電部の高電圧電源として任意波形電源を用いる場合には、図9に示すように帯電部と集じん部に共通の高電圧電源80を用いることも可能である。
さらに、放電電極と集じん電極との空間でダストの荷電と集じんを同時に行う一段式電気集じん装置の場合にも、図10に示すように任意波形電源70を用いることができる。
なお、以上の実施の形態の説明では、正負非対称の任意波形の高電圧として、負側の割合が多い高電圧の例について説明したが、正側の割合が多い高電圧を用いても、極性が変わるだけであり、再飛散を効果的に抑制することができると共に、負極性直流高電圧発生回路容量を小さくできる、または負極性直流高電圧発生回路を削除することができる。このため、正極性高電圧および負極性高電圧をGNDレベルに対して対称に出力する従来の高電圧電源と比較して、構成を簡単にすることができるという効果を達成することができる。
In the above description, the case where an arbitrary waveform power source is used as the high voltage power source of the dust collection unit has been described. However, the arbitrary waveform power source is not limited to the high voltage power source of the dust collection unit, and as shown in FIG. Of course, it may be used as a high voltage power source. In FIG. 8, the same constituent elements as those in FIG. 1 are denoted by the same reference numerals. However, the difference from FIG. 1 is that a high voltage power supply 70 having an arbitrary waveform is used instead of the high voltage power supply 20 in FIG. It is a point.
Further, when an arbitrary waveform power source is used as the high voltage power source of the charging unit as shown in FIG. 8, a common high voltage power source 80 can be used for the charging unit and the dust collecting unit as shown in FIG.
Further, in the case of a one-stage electric dust collector that simultaneously charges and collects dust in the space between the discharge electrode and the dust collector electrode, an arbitrary waveform power source 70 can be used as shown in FIG.
In the above description of the embodiment, an example of a high voltage with a large negative ratio has been described as a high voltage with a positive and negative asymmetric arbitrary waveform. As a result, re-scattering can be effectively suppressed, and the negative-polarity DC high-voltage generation circuit capacity can be reduced, or the negative-polarity DC high-voltage generation circuit can be eliminated. Therefore, it is possible to achieve an effect that the configuration can be simplified as compared with the conventional high voltage power supply that outputs the positive high voltage and the negative high voltage symmetrically with respect to the GND level.

本発明による交流電界形電気集じん装置の構成図Configuration of AC electric field type electrostatic precipitator according to the present invention 任意波形高電圧の一例の説明図Illustration of an example of arbitrary waveform high voltage 従来において用いられている正負対称の矩形波交流高電圧の波形図、Waveform diagram of positive and negative symmetrical rectangular wave AC high voltage used in the past, 本発明において用いられる任意波形の高電圧の波形図Waveform diagram of high voltage of arbitrary waveform used in the present invention 正負対称の矩形波交流高電圧を印加した場合の集じん率の時間変化を示す図、The figure which shows the time change of the dust collection rate when applying the positive and negative symmetrical rectangular wave AC high voltage, 任意波形の高電圧を印加した場合の集じん率の時間変化を示す図、The figure which shows the time change of the dust collection rate when the high voltage of the arbitrary waveform is applied, 矩形波電源、任意波形電源、直流電源を用いた場合の集じん率の粒径特性図Particle size characteristics diagram of dust collection rate when using rectangular wave power source, arbitrary waveform power source, DC power source 本発明による交流電界形電気集じん装置の他の実施例を示す構成図The block diagram which shows the other Example of the alternating current electric field type electric dust collector by this invention 本発明による交流電界形電気集じん装置の他の実施例を示す構成図The block diagram which shows the other Example of the alternating current electric field type electric dust collector by this invention 本発明による交流電界形電気集じん装置の他の実施例を示す構成図The block diagram which shows the other Example of the alternating current electric field type electric dust collector by this invention 一般的に知られている2段式電気集じん装置の構成図Configuration diagram of a commonly known two-stage electrostatic precipitator 再飛散現象のメカニズムの説明図Explanatory diagram of re-scattering mechanism 矩形波交流電気集じん装置の概略構成図Schematic configuration diagram of rectangular wave AC electrostatic precipitator 集じん部に矩形波高電圧を印加した場合の再飛散防止メカニズムの説明図Explanatory drawing of re-scattering prevention mechanism when rectangular wave high voltage is applied to dust collection part 集じん部に印加される矩形波高電圧の波形図Waveform diagram of rectangular high voltage applied to the dust collector コロナ放電の電圧特性に対する極性依存性の特性図Characteristic diagram of polarity dependence on voltage characteristics of corona discharge 図16の特性を得るための実験装置の構成図Configuration diagram of an experimental apparatus for obtaining the characteristics of FIG.

符号の説明Explanation of symbols

1、40・・・帯電部
2、50・・・集じん部
3a,3b,5a,5b,8,21,22,31,32・・・接地電極
4、6、7,23、33・・・高電圧電極
9・・・粒子
30・・・矩形波高電圧電源
60、70・・・任意波形の高電圧電源
DESCRIPTION OF SYMBOLS 1, 40 ... Charging part 2, 50 ... Dust collection part 3a, 3b, 5a, 5b, 8, 21, 22, 31, 32 ... Ground electrode 4, 6, 7, 23, 33 ... -High voltage electrode 9 ... Particle 30 ... Rectangular wave high voltage power source 60, 70 ... Arbitrary waveform high voltage power source

Claims (14)

空気中に浮遊する粒子に帯電部にて電荷を与え、該電荷が与えられた粒子に集じん部で電界を加えることによって集じんを行う電気集じん装置において、
前記集じん部の電極に高電圧を印加する手段として、正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いることを特徴とする電気集じん装置。
In an electric dust collector that collects particles by applying an electric charge to particles suspended in the air at a charging unit and applying an electric field to the particles to which the electric charge is applied.
An electric dust collector using high voltage generating means for generating a high voltage having an arbitrary waveform that is asymmetrical between positive and negative as the means for applying a high voltage to the electrode of the dust collecting portion.
請求項1に記載の電気集じん装置において、
前記高電圧発生手段は、負側の割合が多い正負非対称の任意波形の高電圧を発生すること特徴とする電気集じん装置。
The electric dust collector according to claim 1,
The electrostatic precipitator according to claim 1, wherein the high voltage generating means generates a high voltage having an arbitrary waveform with a large negative ratio and a positive / negative asymmetric shape.
請求項1に記載の電気集じん装置において、
前記高電圧発生手段は、正側の割合が多い正負非対称の任意波形の高電圧を発生すること特徴とする電気集じん装置。
The electric dust collector according to claim 1,
The electrostatic precipitator is characterized in that the high voltage generating means generates a high voltage having an arbitrary waveform with a positive / negative asymmetrical ratio with a large positive ratio.
請求項1ないし請求項3の何れかの項に記載の電気集じん装置において、
前記帯電部の電極に高電圧を印加する手段として、負側の割合が多い正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 3,
An electrostatic precipitator that uses a high voltage generating means for generating a high voltage of an arbitrary waveform with a large negative ratio and a positive / negative asymmetric shape as means for applying a high voltage to the electrode of the charging unit.
請求項1ないし請求項3の何れかの項に記載の電気集じん装置において、
前記帯電部の電極に高電圧を印加する手段として、正側の割合が多い正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 3,
An electrostatic precipitator using high voltage generating means for generating a high voltage of an arbitrary waveform having a positive and negative asymmetric ratio with a large positive ratio as means for applying a high voltage to the electrode of the charging unit.
請求項1ないし請求項3の何れかの項に記載の電気集じん装置において、
前記帯電部の電極に高電圧を印加する手段として、直流高電圧発生手段を用いることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 3,
An electrostatic precipitator using a direct current high voltage generating means as means for applying a high voltage to the electrode of the charging unit.
請求項1ないし請求項5の何れかの項に記載の電気集じん装置において、
前記帯電部の高電圧発生手段と前記集じん部の高電圧発生手段は、共通に設けられることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 5,
The electrostatic precipitator is characterized in that the high voltage generator of the charging unit and the high voltage generator of the dust collector are provided in common.
放電電極と集じん電極との空間で空気中に浮遊する粒子の荷電と集じんを同時に行う一段式電気集じん装置において、
前記放電電極と集じん電極とに高電圧を印加する手段として、正負非対称の任意波形の高電圧を発生する高電圧発生手段を用いることを特徴とする電気集じん装置。
In a one-stage electrostatic precipitator that simultaneously charges and collects particles suspended in the air in the space between the discharge electrode and the dust collector electrode,
An electric dust collector using high voltage generating means for generating a high voltage having an arbitrary waveform asymmetrical between positive and negative as the means for applying a high voltage to the discharge electrode and the dust collecting electrode.
請求項8に記載の電気集じん装置において、
前記高電圧発生手段は、負側の割合が多い正負非対称の任意波形の高電圧を発生すること特徴とする電気集じん装置。
The electric dust collector according to claim 8,
The electrostatic precipitator according to claim 1, wherein the high voltage generating means generates a high voltage having an arbitrary waveform with a large negative ratio and a positive / negative asymmetric shape.
請求項8に記載の電気集じん装置において、
前記高電圧発生手段は、正側の割合が多い正負非対称の任意波形の高電圧を発生すること特徴とする電気集じん装置。
The electric dust collector according to claim 8,
The electrostatic precipitator is characterized in that the high voltage generating means generates a high voltage having an arbitrary waveform with a positive / negative asymmetrical ratio with a large positive ratio.
請求項1ないし請求項10の何れかの項に記載の電気集じん装置において、
前記正負非対称の任意波形の高電圧は、正極性および負極性高電圧の出力電圧値および出力時間が異なる非対称矩形波高電圧であることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 10,
The positive and negative asymmetrical arbitrary high voltage is an asymmetric rectangular wave high voltage having different output voltage values and output times of positive and negative high voltages.
請求項1ないし請求項10の何れかの項に記載の電気集じん装置において、
前記正負非対称の任意波形の高電圧は、負極性の高電圧が周期的に瞬時に出力電圧が0Vに低下し、再び出力電圧を復帰する負極性の高電圧であることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 10,
The positive and negative asymmetrical arbitrary high voltage is a negative high voltage in which the negative high voltage periodically and instantaneously drops the output voltage to 0 V and returns the output voltage again. Dust equipment.
請求項1ないし請求項10の何れかの項に記載の電気集じん装置において、
前記正負非対称の任意波形の高電圧は、正極性の高電圧が周期的に瞬時に出力電圧が0Vに低下し、再び出力電圧を復帰する正極性の高電圧であることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 10,
The positive and negative asymmetrical arbitrary high voltage is a positive high voltage in which a positive high voltage periodically and instantaneously drops the output voltage to 0 V, and restores the output voltage again. Dust equipment.
請求項1ないし請求項11の何れかの項に記載の電気集じん装置において、
前記正負非対称の任意波形の高電圧は、その周波数が0.01〜10HZであることを特徴とする電気集じん装置。
In the electric dust collector according to any one of claims 1 to 11,
The electrostatic precipitator according to claim 1, wherein the high voltage of the positive and negative asymmetric arbitrary waveform has a frequency of 0.01 to 10 Hz.
JP2005033048A 2005-02-09 2005-02-09 Electric dust collector Expired - Fee Related JP4836468B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005033048A JP4836468B2 (en) 2005-02-09 2005-02-09 Electric dust collector

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005033048A JP4836468B2 (en) 2005-02-09 2005-02-09 Electric dust collector

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011190844A Division JP2012020285A (en) 2011-09-01 2011-09-01 Electric precipitator

Publications (2)

Publication Number Publication Date
JP2006218377A true JP2006218377A (en) 2006-08-24
JP4836468B2 JP4836468B2 (en) 2011-12-14

Family

ID=36981037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005033048A Expired - Fee Related JP4836468B2 (en) 2005-02-09 2005-02-09 Electric dust collector

Country Status (1)

Country Link
JP (1) JP4836468B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448364A (en) * 1987-08-18 1989-02-22 Senichi Masuda Ionizer
JP2000005632A (en) * 1998-06-24 2000-01-11 Hiruta Kogyo Co Ltd Air cleaner
JP2001129433A (en) * 1999-11-05 2001-05-15 Fuji Electric Co Ltd Air cleaner
JP2004121987A (en) * 2002-10-02 2004-04-22 Fuji Electric Holdings Co Ltd Ac electric field precipitator and method for driving the electric precipitator

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6448364A (en) * 1987-08-18 1989-02-22 Senichi Masuda Ionizer
JP2000005632A (en) * 1998-06-24 2000-01-11 Hiruta Kogyo Co Ltd Air cleaner
JP2001129433A (en) * 1999-11-05 2001-05-15 Fuji Electric Co Ltd Air cleaner
JP2004121987A (en) * 2002-10-02 2004-04-22 Fuji Electric Holdings Co Ltd Ac electric field precipitator and method for driving the electric precipitator

Also Published As

Publication number Publication date
JP4836468B2 (en) 2011-12-14

Similar Documents

Publication Publication Date Title
Wang et al. Collection and charging characteristics of particles in an electrostatic precipitator with a wet membrane collecting electrode
CN101376034B (en) Electrode and circuit of high-efficient air purification device driven by electric dissociation
JPWO2006009187A1 (en) Electric dust collector and electric dust collection system
WO2017212688A1 (en) Charging device, electric dust collector, ventilation device, and air cleaner
JP3790394B2 (en) Air purification device
JP3943461B2 (en) Rectangle wave electrostatic precipitator and optimum driving method of rectangular wave electrostatic precipitator
CN111054168B (en) Device and method for efficiently removing multichannel fine particles
JP4836468B2 (en) Electric dust collector
JP2868757B1 (en) Electric dust collector
KR102079297B1 (en) Electric agglomerator and fine particle agglomeration method using the same
JP2012020285A (en) Electric precipitator
Lagarias Discharge electrodes and electrostatic precipitators
KR100944819B1 (en) Electric dust collecting apparatus
JP2011031127A (en) Dust collector
JP2004121987A (en) Ac electric field precipitator and method for driving the electric precipitator
JP3948415B2 (en) Electric dust collector
JP3943463B2 (en) AC electric field type electric dust collector and driving method of AC electric field type electric dust collector
JP4526201B2 (en) Electric dust collector
JPH07155641A (en) Electrostatic precipitator
RU2139146C1 (en) Electrostatic precipitator
JP2938423B1 (en) Electric dust collector
CN202983894U (en) Electrode and circuit for high efficiency ionization driving air purifying device
JP3012583B2 (en) Electric dust collector
JP3966551B2 (en) Filtration type dust collector using static electricity
JPH07108189A (en) Composite electrostatic precipitator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070413

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091112

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091117

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100118

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110310

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20110404

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20110422

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110705

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110927

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110927

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141007

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees