JP2006217879A - Cholesterol for reducing lactobacillus - Google Patents

Cholesterol for reducing lactobacillus Download PDF

Info

Publication number
JP2006217879A
JP2006217879A JP2005035712A JP2005035712A JP2006217879A JP 2006217879 A JP2006217879 A JP 2006217879A JP 2005035712 A JP2005035712 A JP 2005035712A JP 2005035712 A JP2005035712 A JP 2005035712A JP 2006217879 A JP2006217879 A JP 2006217879A
Authority
JP
Japan
Prior art keywords
cholesterol
lactic acid
micelles
strain
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005035712A
Other languages
Japanese (ja)
Other versions
JP4662443B2 (en
Inventor
Takahiro Toba
隆宏 戸羽
Kyoichi Osada
恭一 長田
Suguru Shimizu
英 清水
Masaki Terahara
正樹 寺原
Masako Yajima
昌子 矢島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meiji Dairies Corp
Original Assignee
Meiji Milk Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meiji Milk Products Co Ltd filed Critical Meiji Milk Products Co Ltd
Priority to JP2005035712A priority Critical patent/JP4662443B2/en
Publication of JP2006217879A publication Critical patent/JP2006217879A/en
Application granted granted Critical
Publication of JP4662443B2 publication Critical patent/JP4662443B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Coloring Foods And Improving Nutritive Qualities (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicines Containing Material From Animals Or Micro-Organisms (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lactobacillus having high activity to reduce cholesterol level in vivo. <P>SOLUTION: A lactobacillus strain having high activity to reduce cholesterol level even by oral administration is obtained by selecting a lactobacillus strain having high activity to reduce cholesterol level in a cholesterol micelle even in a dead state. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、生体内のコレステロール低減作用を有する乳酸菌を含有する食品に係る発明である。   The present invention relates to a food containing a lactic acid bacterium having a cholesterol-reducing action in vivo.

現在までに、コレステロールを菌体に吸着する乳酸菌、生体内のコレステロール合成酵素を阻害する乳酸菌の存在が示され、コレステロールの生体内収支に直接的に作用することで生体内コレステロール値を低減させる乳酸菌が報告されている。   To date, the presence of lactic acid bacteria that adsorb cholesterol to bacterial bodies and lactic acid bacteria that inhibit in vivo cholesterol synthase has been shown, and it acts directly on the in vivo balance of cholesterol to reduce in vivo cholesterol levels. Has been reported.

例えば、特開2000−197469号(下記特許文献1)では、二次胆汁酸非生成であり且つ胆汁酸の一つであるタウロコール酸を吸着することが認められたLactobacillus casei TMC0409をもちいて血清コレステロール低下を狙っている。   For example, in Japanese Patent Laid-Open No. 2000-197469 (Patent Document 1 below), serum cholesterol is obtained using Lactobacillus casei TMC0409, which is non-produced by secondary bile acids and has been recognized to adsorb taurocholic acid, which is one of bile acids. Aiming for a decline.

また、Journal of the American College of Nutrition Vol.18, No.1, 43−50(1999)(下記非特許文献1) では、L. acidophilus の分離菌株(L1)を用い、実際に血中コレステロールを測定し、ヒトの血清中のコレステロール低下作用があることを報告している。   Also, Journal of the American College of Nutrition Vol. 18, no. 1, 43-50 (1999) (the following Non-Patent Document 1) Using an isolated isolate of L. acidophilus (L1), blood cholesterol was actually measured and reported to have a cholesterol-lowering effect in human serum.

また、Applied and Environmental Microbiology Vol.49, no.2, P.377−381(1985)(下記非特許文献2)には、胆汁の存在下で生育しコレステロールの資化能力がある菌株が、高コレステロール飼料を与えられた豚の血清コレステロールの増加を有意に阻害したことが報告されている。更に、特許第2992945号(下記特許文献2)においては、乳酸菌のコレステロール低下作用は、コレステロールの吸着及び胆汁酸脱抱合活性等によるものと考えられている。胆汁酸脱抱合能は、遊離のコール酸を生じて抱合胆汁酸のコレステロールの吸収能を阻害すると同時に他の栄養素の吸収も阻害し、また脱抱合された胆汁酸が二次胆汁酸と変換されると大腸癌リスクが高くなることから、胆汁酸脱抱合活性を有しないコレステロール低減作用を有する乳酸菌が開示されている。
さらに最近では、抱合型胆汁酸の吸着作用を有する乳酸菌(下記特許文献3)、脱抱合型胆汁酸の吸着作用を有する乳酸菌が見いだされている(下記特許文献4)。
Also, Applied and Environmental Microbiology Vol. 49, no. 2, P.M. 377-381 (1985) (Non-patent Document 2 below) shows that a strain that grows in the presence of bile and has the ability to assimilate cholesterol significantly inhibits the increase in serum cholesterol in pigs fed a high cholesterol diet. Has been reported. Furthermore, in Japanese Patent No. 2992945 (Patent Document 2 below), it is considered that the cholesterol lowering action of lactic acid bacteria is due to the adsorption of cholesterol and the bile acid deconjugation activity. The bile acid deconjugation ability produces free cholic acid, which inhibits the cholesterol absorption capacity of the conjugated bile acid, and at the same time inhibits the absorption of other nutrients, and the deconjugated bile acid is converted to secondary bile acid. Then, since the risk of colorectal cancer is increased, a lactic acid bacterium having an action of reducing cholesterol and having no bile acid deconjugation activity is disclosed.
More recently, lactic acid bacteria having an action of adsorbing conjugated bile acids (Patent Document 3 below) and lactic acid bacteria having an action of adsorbing deconjugated bile acids have been found (Patent Document 4).

特開2000−197469号公報JP 2000-197469 A 特許第2992945号Japanese Patent No. 2992945 特開2003−235501号公報JP 2003-235501 A 特開2004−208577号公報JP 2004-208577 A Journal of the American College of Nutrition Vol.18, No.1, 43−50 (1999)Journal of the American College of Nutrition Vol. 18, no. 1, 43-50 (1999) Applied and Environmental Microbiology Vol.49, no.2, P.377−381Applied and Environmental Microbiology Vol. 49, no. 2, P.M. 377-381

ところで、現在までの乳酸菌による、コレステロールの低減作用は、コレステロールの吸着又はコレステロールの吸収阻害など、体外から生体内へ吸収されるコレステロール量、もしくはコレステロールの代謝物を制御しようとするものであった。   By the way, the cholesterol reducing action by lactic acid bacteria to date has been to control the amount of cholesterol absorbed from outside the body, such as cholesterol adsorption or cholesterol absorption inhibition, or cholesterol metabolites.

ところが、生体内ではコレステロールはコレステロールミセルの状態で消化管から吸収されることが知られている(J. Nutr., 1999, 1725-1730)。したがって、効果的に生体内のコレステロールを下げるためには、コレステロールミセル中のコレステロールも減少させる必要がある。   However, it is known that cholesterol is absorbed from the digestive tract in the form of cholesterol micelles in vivo (J. Nutr., 1999, 1725-1730). Therefore, in order to effectively lower cholesterol in the living body, it is necessary to reduce cholesterol in cholesterol micelles.

乳酸菌がミセル中のコレステロールを低減させるとの報告はあるが、その作用は乳酸菌が抱合型胆汁酸を脱抱合型胆汁酸に変換することに起因すると考えられている(食品工業, 2001,26-33)。しかしながら、乳酸菌を経口摂取した場合、多くの乳酸菌は胃の酸により死滅し、菌体中の酵素も失活してしまうという問題があった。したがって、本願発明の解決する課題は、死滅後であってもミセル中のコレステロールを低減する作用を有する乳酸菌を選抜することにある。   Although it has been reported that lactic acid bacteria reduce cholesterol in micelles, it is thought that the action is caused by lactic acid bacteria converting conjugated bile acids to deconjugated bile acids (Food Industry, 2001, 26- 33). However, when lactic acid bacteria are ingested orally, many lactic acid bacteria are killed by acid in the stomach, and there is a problem that enzymes in the cells are also inactivated. Therefore, the problem to be solved by the present invention is to select lactic acid bacteria having an action of reducing cholesterol in micelles even after death.

本発明では加熱処理によって胆汁酸の脱抱合括性を失活させた乳酸菌でもミセル中コレステロールを減少する現象を見出し、本発明を完成させた。さらに、その作用メカニズムを解明するため、ミセルを形成する主要成分であるコレステロール、胆汁酸、およびレシチンに対する菌体の親和性を調べた。その結果、乳酸菌の中にはレシチンに高い親和性を有する菌が存在すること見出した。コレステロールは疎水性が強いため、レシチンや胆汁酸がミセルの表面に存在することが推測されている。   In the present invention, the inventors have found a phenomenon that cholesterol in micelles is reduced even in lactic acid bacteria whose bile acid deconjugating properties have been deactivated by heat treatment, thereby completing the present invention. Furthermore, in order to elucidate the mechanism of action, we examined the affinity of the cells for cholesterol, bile acid, and lecithin, which are the main components that form micelles. As a result, it was found that some lactic acid bacteria have a high affinity for lecithin. Since cholesterol is strongly hydrophobic, it is estimated that lecithin and bile acids are present on the surface of micelles.

すなわち、本発明は
[1] 乳酸菌のミセル中コレステロールを減少させる能力に優れた株を選択する工程を含む、生体内のコレステロールを低減させる作用を有する乳酸菌のスクリーニング方法、
[2] レシチンに対する親和性の高い株を選択することを特徴とする前記[1]記載のスクリーニング方法、
[3] 生菌および死菌でもミセル中コレステロールを10%以上減少できる株を選択する工程を含む前記[1]または[2]のいずれか記載のスクリーニング方法、
[4] レシチンに対する親和性が2倍以上高い株を選択することを特徴とする前記[2]記載のスクリーニング方法、
[5] 前記[1]〜[4]のいずれか1つに記載のスクリーニング方法により選抜された、生体内のコレステロールを低減させる乳酸菌、
[6] ミセル中コレステロールを10%以上減少する能力を有する、前記[5]記載のコレステロール低減作用を有するラクトバチルス属またはビフィドバクテリウム属菌株、
[7] Lactobacillus crispatus JCM 5810またはBifidobacterium bifidum OLB 6026である前記[6]記載のコレステロール低減作用を有する菌株、
[8] 前記[5]〜[7]いずれか1つ記載の乳酸菌を含有する飲食品、
[9] 前記[5]〜[7]いずれか1つ記載の乳酸菌を処理したコレステロール低減作用を有する組成物、
[10] 前記[1]〜[4]いずれか1つ記載の方法によりスクリーニングされた乳酸菌を含むことを特徴とするコレステロール低減剤、
に関する。
That is, the present invention
[1] A screening method for lactic acid bacteria having an action of reducing in vivo cholesterol, comprising a step of selecting a strain excellent in ability to reduce cholesterol in micelles of lactic acid bacteria,
[2] The screening method according to [1] above, wherein a strain having high affinity for lecithin is selected.
[3] The screening method according to any one of the above [1] or [2], comprising a step of selecting a strain that can reduce cholesterol in micelles by 10% or more even in live and dead bacteria,
[4] The screening method according to the above [2], wherein a strain having an affinity for lecithin of 2 times or more is selected.
[5] Lactic acid bacteria that are selected by the screening method according to any one of [1] to [4] and reduce in vivo cholesterol,
[6] The Lactobacillus or Bifidobacterium strain having the ability to reduce cholesterol in micelles by 10% or more and having the action of reducing cholesterol according to the above [5],
[7] A strain having a cholesterol-reducing action according to the above [6], which is Lactobacillus crispatus JCM 5810 or Bifidobacterium bifidum OLB 6026,
[8] A food or drink containing the lactic acid bacterium according to any one of [5] to [7],
[9] A composition having a cholesterol-reducing effect obtained by treating the lactic acid bacterium according to any one of [5] to [7],
[10] A cholesterol-reducing agent comprising a lactic acid bacterium screened by the method according to any one of [1] to [4],
About.

本発明の乳酸菌は、死滅後であってもミセル中のコレステロール低減作用を有するので、生体内で高いコレステロール低減作用を発揮できる。   Since the lactic acid bacteria of the present invention have a cholesterol-reducing action in micelles even after death, they can exert a high cholesterol-reducing action in vivo.

乳酸菌とは、資化した糖の50%以上を乳酸に変換する微生物(例えば、ラクトバチルス属、ロイコノストック属、ペディオコッカス属、およびストレプトコッカス属)をいうが、本発明では、これら乳酸菌に加え、ビフィドバクテリウム属菌(いわゆるビフィズス菌)も含むが、特にラクトバチルス属および/またはビフィドバクテリウム属菌が好ましい。   Lactic acid bacteria refer to microorganisms (for example, Lactobacillus genus, Leuconostoc genus, Pediococcus genus, Streptococcus genus) that convert 50% or more of the assimilated sugars to lactic acid. In addition, Bifidobacterium (so-called Bifidobacterium) is also included, but Lactobacillus and / or Bifidobacterium are particularly preferable.

ミセル中のコレステロール低減作用は、熱処理等の後でも活性が高いことが望ましく、低減率が10%以上、好ましくは15%以上、より好ましくは30%以上である。   The cholesterol-reducing action in micelles is desirably high even after heat treatment or the like, and the reduction rate is 10% or more, preferably 15% or more, more preferably 30% or more.

ミセル中のコレステロール低減作用の高い株は、レシチンへの吸着性も高いため、レシチンへの吸着作用でスクリーニングを行ってもよく、対照に比べ2倍以上、好ましくは5倍以上、より好ましくは10倍以上である株を選択すればよい。   A strain having a high cholesterol-reducing effect in micelles has a high adsorptivity to lecithin, and thus may be screened by an adsorbing effect on lecithin, and more than twice, preferably more than 5 times, more preferably 10 What is necessary is just to select the strain which is more than twice.

このようにスクリーニングにより分離された菌は、種々の飲食品に添加することができるほか、コレステロール含有食品を本願発明の乳酸菌で処理すること、又は、コレステロール含有食品を本願発明の乳酸菌で加工することにより、コレステロールを低減させることができる。   The bacteria thus isolated by screening can be added to various foods and beverages, and cholesterol-containing foods are treated with the lactic acid bacteria of the present invention, or cholesterol-containing foods are processed with the lactic acid bacteria of the present invention. Thus, cholesterol can be reduced.

例えば、ヨーグルト製品等の乳発酵製品の製造過程において、本願発明にかかる乳酸菌を、単独で又は他の乳酸菌と混合して発酵用乳酸菌として用いることができ、更に発酵過程後に添加することもできる。
又、特定保健用食品等の機能性食品として、これら菌体を、飲食し易い形態、例えば、固形、粉末、粒状に加工して、経口により投与するようにすることもできる。
For example, in the production process of a fermented milk product such as a yogurt product, the lactic acid bacteria according to the present invention can be used alone or mixed with other lactic acid bacteria as a lactic acid bacterium for fermentation, and can also be added after the fermentation process.
In addition, as functional foods such as foods for specified health use, these bacterial cells can be processed into forms that are easy to eat and drink, for example, solids, powders, and granules, and can be administered orally.

更に、本件発明の乳酸菌は、菌体を通常の加工手段により加工し、菌体抽出物、菌体破砕物などの形態で利用することもできる。   Furthermore, the lactic acid bacterium of the present invention can be used in the form of a microbial cell extract, microbial cell lysate, etc., by processing the microbial cell by a normal processing means.

(供試株および培養方法)
Bifidobacterium bifidum OLB 6026は、独立行政法人製品評価技術基盤機構 特許微生物寄託センターに平成17年2月3日付けで、受領番号NITE AP-74として寄託されている。また、JCM株は理化学研究所微生物株系統保存施設から入手したものであり、MEP株、MH株はそれぞれ、明治乳業株式会社、弘前大学戸羽研究室の保存株である。
Lactobacillus acidophilus、Lactobacillus crispatusとLactobacillus gasseriは37℃に設定したインキュベーター(EYELA、SLI-600N)内で5ml MRS broth(MERCK、1.10661)で16-18時間静置培養することを3回連続して行った。培養にはネジ口試験管(マルエム、NR-10)を用い、接種菌量は一白金耳とし、培養時、スクリュー栓は密栓した。継代培養して得られた3回目の培養液15ml(3%に相当)を500ml MRS brothに接種して37℃で静置培養した。培養時間は16-18時間とした。培養後、5℃、5,000rpmで20分間遠心分離し、得られた菌体を脱イオン水で洗浄した。平板培養の場合は5ml MRS brothで16-18時間静置培養することを2回連続して行った。2回連続して継代培養して得られた2回目の培養液100μlをMRS寒天平板(φ90mm)培地にコンラージ棒で全面塗抹して37℃で嫌気培養した。培養時間は48時間とした。培養後、MRS平板培地上に脱イオン水1.5ml加えてコンラージ棒で懸濁し、その懸濁液1mlを1.5ml遠沈管に採取して5℃、5,000rpmで10分間遠心分離した。得られた菌体を脱イオン水で洗浄した。菌体洗浄を3回繰り返し、−30℃で冷凍保存後、凍結乾燥機(EYELA、FD-5N)で凍結乾燥して凍結乾燥菌体を得た。凍結乾燥した乳酸菌体を脱イオン水に懸濁し、バクテリアカウンターで菌数を測定した。菌数の計算は下記の式で求めた。

菌数(cells/ml)の計算式=数えた合計菌数×20×20×50×1000×希釈倍率/数えた画数

Bifidobacterium bifidum、Bifidobacterium infantisおよびBifidobacterium longumは37℃に設定したインキュベーター中で2ml GAM broth(日水製薬、Code 05422)で24時間、アネロパック(三菱ガス化学、A-03)を用いて嫌気的に培養した。培養にはネジ口試験管(マルエム、NT-16)を用い、接種菌量100μlとし、培養時、スクリュー栓は緩めた状態にした。液体培養の場合は3回連続して行った培養液を培養液25ml(5%に相当)を500ml GAM brothに接種して37℃で嫌気培養した。培養時間は24時間とした。平板培養の場合は2回連続して継代培養して得られた2回目の培養液100μlをGAM寒天平板(φ90mm)培地にコンラージ棒で全面塗抹して37℃で嫌気培養した。培養時間は24時間とした。培養後、GAM平板培地上に脱イオン水1.5ml加えてコンラージ棒で懸濁し、その懸濁液1mlを1.5ml遠沈管に採取して5℃、5,000rpmで10分間遠心分離した。得られた菌体を脱イオン水で洗浄した。菌体洗浄を3回繰り返し、−30℃で冷凍保存後、凍結乾燥機で凍結乾燥して凍結乾燥菌体を得た。凍結乾燥後の菌体は乳酸菌体と同様の操作で菌数を測定した。
(Test strain and culture method)
Bifidobacterium bifidum OLB 6026 has been deposited as the receipt number NITE AP-74 on February 3, 2005 at the Patent Microorganism Depositary Center for Product Evaluation Technology. The JCM strain was obtained from the RIKEN Microbial Stock Storage Facility, and the MEP and MH strains are stocks of Meiji Dairies Co., Ltd. and Hirosaki University Toba Laboratory, respectively.
Lactobacillus acidophilus, Lactobacillus crispatus, and Lactobacillus gasseri were continuously cultured in an incubator set at 37 ° C (EYELA, SLI-600N) for 16-18 hours in 5 ml MRS broth (MERCK, 1.10661). . A screw test tube (Marem, NR-10) was used for the culture, the amount of inoculum was one platinum loop, and the screw stopper was tightly sealed during the culture. 15 ml (corresponding to 3%) of the third culture obtained by subculture was inoculated into 500 ml MRS broth and statically cultured at 37 ° C. The culture time was 16-18 hours. After culturing, the cells were centrifuged at 5 ° C. and 5,000 rpm for 20 minutes, and the resulting cells were washed with deionized water. In the case of plate culture, static culture was continued twice in 5 ml MRS broth for 16-18 hours. 100 μl of the second culture solution obtained by subculture twice in succession was smeared on a MRS agar plate (φ90 mm) medium with a congeal rod and anaerobically cultured at 37 ° C. The culture time was 48 hours. After culturing, 1.5 ml of deionized water was added to the MRS plate medium and suspended with a congeal rod. 1 ml of the suspension was collected in a 1.5 ml centrifuge tube and centrifuged at 5 ° C. and 5,000 rpm for 10 minutes. The obtained microbial cells were washed with deionized water. The microbial cell washing was repeated three times, stored frozen at −30 ° C., and then lyophilized with a freeze dryer (EYELA, FD-5N) to obtain a lyophilized microbial cell. Lyophilized lactic acid bacteria were suspended in deionized water, and the number of bacteria was measured with a bacterial counter. The number of bacteria was calculated by the following formula.

Calculation formula for the number of bacteria (cells / ml) = total number of bacteria counted x 20 x 20 x 50 x 1000 x dilution rate / number of fractions counted

Bifidobacterium bifidum, Bifidobacterium infantis, and Bifidobacterium longum were anaerobically cultured with 2 ml GAM broth (Nissui Pharmaceutical, Code 05422) for 24 hours in an incubator set at 37 ° C using an aneropack (Mitsubishi Gas Chemical, A-03) . A screw test tube (Marem, NT-16) was used for the culture, the inoculum was 100 μl, and the screw cap was loosened during the culture. In the case of liquid culture, 25 ml (corresponding to 5%) of the culture solution which had been continuously performed three times was inoculated into 500 ml GAM broth and anaerobically cultured at 37 ° C. The culture time was 24 hours. In the case of plate culture, 100 μl of the second culture solution obtained by subculture two times in succession was smeared on a GAM agar plate (φ90 mm) medium with a conage bar and anaerobically cultured at 37 ° C. The culture time was 24 hours. After the culture, 1.5 ml of deionized water was added to the GAM plate medium and suspended with a congeal rod, and 1 ml of the suspension was collected in a 1.5 ml centrifuge tube and centrifuged at 5 ° C. and 5,000 rpm for 10 minutes. The obtained microbial cells were washed with deionized water. The microbial cell washing was repeated three times, frozen and stored at −30 ° C., and then lyophilized with a freeze dryer to obtain lyophilized microbial cells. The cell count after freeze-drying was measured by the same procedure as that for lactic acid cells.

[試験例1]ミセル中コレステロール減少活性の評価法
1 コレステロールミセルの作成
0.5mM コレステロール(SIGMA、C-8667)を酢酸エチル(関東化学、Cat.No.14029-01)に溶解し、0.6mMホスファチジルコリン(SIGMA、P-7443)をメタノール(関東化学、Cat.No.25183-71)に溶解したものをネジ付試験管(IWAKI、8422CTF)中で混合した。15mM NaH2PO4・2H2O(関東化学、Cat.No.37239)と15mM Na2HPO4・12H2O(関東化学、Cat.No.37240-01)でリン酸緩衝液(pH7.4)を調製し、6.6mMタウロコール酸ナトリウム(SIGMA、T-9034)、132mM NaCl(関東化学、Cat.No.37144-01)を溶解させ、先のネジ付試験管に加えた。ネジ付試験管中の溶液に超音波発生機(TOMY、LD-120、発振棒径3mm)で超音波を照射後、37℃、24時間インキュベートした。ミセル調製時の試薬採取量の具体例を表1に示した。
[Test Example 1] Evaluation method of cholesterol-reducing activity in micelles
1 Making cholesterol micelles
0.5 mM cholesterol (SIGMA, C-8667) is dissolved in ethyl acetate (Kanto Chemical, Cat.No. 14029-01), and 0.6 mM phosphatidylcholine (SIGMA, P-7443) is dissolved in methanol (Kanto Chemical, Cat.No. 25183). -71) was mixed in a threaded test tube (IWAKI, 8422CTF). Phosphate buffer (pH 7.4) with 15 mM NaH 2 PO 4 · 2H 2 O (Kanto Chemical, Cat. No. 37239) and 15 mM Na 2 HPO 4 · 12H 2 O (Kanto Chemical, Cat. No. 37240-01) ), 6.6 mM sodium taurocholate (SIGMA, T-9034), 132 mM NaCl (Kanto Chemical Co., Cat. No. 37144-01) were dissolved and added to the above threaded test tube. The solution in the threaded test tube was irradiated with ultrasonic waves with an ultrasonic generator (TOMY, LD-120, oscillation rod diameter 3 mm), and then incubated at 37 ° C. for 24 hours. Specific examples of the amount of collected reagent at the time of micelle preparation are shown in Table 1.

Figure 2006217879
Figure 2006217879

2 コレステロールミセルと菌体あるいは菌体成分との混合振盪
ネジ口試験管(マルエム、NR-10)に凍結乾燥した検体50mg、1で作成したミセル溶液2.5mlを加えた。37℃の恒温水槽中に5分間静置した後、37℃に設定した低温恒温器(IWAKI、ICB-151LN)内でシェーカー(IWAKI、SHK-320N、旋回振盪120rpm)を用いて2時間振盪した。振盪時、試験管は横置きとした。振盪後、2,400rpm、10分間遠心分離(KOKUSAI、H-108m2)した。上清を0.2μmのフィルター(Whatman、Cat.No.6900-2502)で濾過し、pHメーターで濾液のpHを測定した。そして、濾液はコレステロールを抽出するまで冷凍保存(−4℃)した。
2 Cholesterol micelle and bacterial cells or bacterial cell components mixed shaking 50 mg of the freeze-dried specimen and 2.5 ml of the micelle solution prepared in 1 were added to a screw cap test tube (Marem, NR-10). After standing in a 37 ° C constant temperature water bath for 5 minutes, it was shaken for 2 hours in a low temperature thermostat set at 37 ° C (IWAKI, ICB-151LN) using a shaker (IWAKI, SHK-320N, swirl 120 rpm). . When shaking, the test tube was placed horizontally. After shaking, the mixture was centrifuged at 2,400 rpm for 10 minutes (KOKUSAI, H-108m2). The supernatant was filtered through a 0.2 μm filter (Whatman, Cat. No. 6900-2502), and the pH of the filtrate was measured with a pH meter. The filtrate was stored frozen (−4 ° C.) until cholesterol was extracted.

3 ミセル中コレステロールの抽出法
ネジ口試験管に濾液1ml、クロロホルム(関東化学、Cat.No.07278-01)8ml、メタノール4ml加えて、40℃に設定した恒温水槽で5分間静置後、40℃に設定した低温恒温器内でシェーカーを用いて30分間振盪した。振盪時、試験管は横置きとした。振盪後、試験管に脱イオン水2mlを加えて2,400rpm、10分間遠心分離した。上層をパスツールピペットで除去し、得られた下層に窒素ガスを吹き付け溶媒を留去した。残渣にヘキサン(関東化学、Cat.No.18041-01)5ml、脱イオン水5mlを加えてよく振盪し、2,400rpm、5分間遠心分離して上層のヘキサン層を採取した。ヘキサン抽出を3回繰り返し、ヘキサン抽出画分に窒素ガスを吹き付け、ヘキサンを留去した。残渣にHPLC用ヘキサン(関東化学、Cat.No.18041-2B)1mlを加えて溶解させ、0.5μmのフィルター(ADVANTEC、03JP050AN)で濾過し、濾液はHPLCによる測定まで−30℃で保存した。
3 Extraction method of cholesterol in micelles Add 1 ml of filtrate, 8 ml of chloroform (Kanto Kagaku, Cat. No. 07278-01), 4 ml of methanol to a screw test tube, and leave it in a constant temperature water bath set at 40 ° C. for 5 minutes. The mixture was shaken for 30 minutes using a shaker in a low-temperature incubator set to ° C. When shaking, the test tube was placed horizontally. After shaking, 2 ml of deionized water was added to the test tube and centrifuged at 2,400 rpm for 10 minutes. The upper layer was removed with a Pasteur pipette, and nitrogen gas was blown onto the obtained lower layer to distill off the solvent. To the residue, 5 ml of hexane (Kanto Kagaku, Cat. No. 18041-01) and 5 ml of deionized water were added and shaken well, followed by centrifugation at 2,400 rpm for 5 minutes to collect the upper hexane layer. Hexane extraction was repeated three times, nitrogen gas was blown into the hexane extraction fraction, and hexane was distilled off. The residue was dissolved by adding 1 ml of hexane for HPLC (Kanto Kagaku, Cat. No. 18041-2B), filtered through a 0.5 μm filter (ADVANTEC, 03JP050AN), and the filtrate was stored at −30 ° C. until measurement by HPLC.

4 HPLCによるコレステロールの定量
コレステロールの分析はHPLC(JASCO、PU-980)、検出器(JASCO、UV-975)、レコーダー(SHIMAZU、C-R6A)を使用し、カラムはDevelosil 100-5(NOMURA CHEMICAL、内径4.6mm×長さ150mm、1406240)、移動相はヘキサン:2-プロパノール(関東化学、Cat.No.32435-1B)(96:4、v/v)、検出波長は205nmとした。流速は1.0ml/min、カラム温度は室温、注入量は10μlで測定した。
抽出したコレステロール濃度を求めるために、あらかじめコレステロールの検量線を作成した。そして、この検量線と抽出液中のコレステロールのピーク高からコレステロール濃度を求めた。この値と、菌体を添加しないで振盪したミセル中のコレステロール濃度との差をコレステロール減少率(%)とした。
コレステロール減少作用を示すポジティブコントロールとして水溶性大豆繊維(不二製油)50mgをミセル溶液2.5mlに添加し、菌体と同様の操作方法で実験を行った。
4 Determination of cholesterol by HPLC Cholesterol is analyzed by HPLC (JASCO, PU-980), detector (JASCO, UV-975), recorder (SHIMAZU, C-R6A), and column is Develosil 100-5 (NOMURA CHEMICAL , Inner diameter 4.6 mm × length 150 mm, 1406240), mobile phase was hexane: 2-propanol (Kanto Chemical, Cat. No. 32435-1B) (96: 4, v / v), and detection wavelength was 205 nm. The flow rate was 1.0 ml / min, the column temperature was room temperature, and the injection volume was 10 μl.
In order to obtain the extracted cholesterol concentration, a calibration curve of cholesterol was prepared in advance. And the cholesterol concentration was calculated | required from this calibration curve and the peak height of the cholesterol in an extract. The difference between this value and the cholesterol concentration in the micelles shaken without adding bacterial cells was defined as the cholesterol reduction rate (%).
As a positive control showing a cholesterol-reducing action, 50 mg of water-soluble soybean fiber (Fuji Oil) was added to 2.5 ml of micellar solution, and an experiment was carried out by the same operation method as that for bacterial cells.

5 コレステロールの検量線の作成
コレステロール10mgをヘキサン10mlで溶解した。この溶液をヘキサンで段階希釈し、コレステロール濃度が10、50、100、200、500μg/mlであるように溶液を調製した。そして、この溶液を0.5μmのフィルターで濾過後、4の条件でコレステロールのピーク高さを測定し、検量線を作成した。
5 Preparation of cholesterol calibration curve Cholesterol 10 mg was dissolved in hexane 10 ml. This solution was serially diluted with hexane to prepare solutions so that the cholesterol concentrations were 10, 50, 100, 200, and 500 μg / ml. The solution was filtered through a 0.5 μm filter, and then the peak height of cholesterol was measured under the conditions of 4 to prepare a calibration curve.

[実施例1]ミセル中コレステロール減少作用の強い共試株のスクリーニング
液体培養および平板培養で得られた乳酸桿菌5菌株、ビフィズス菌9菌株の凍結乾燥菌体を用いて試験例1の方法でミセル中コレステロール減少作用の強い菌株のスクリーニングを行った。
乳酸桿菌およびビフィズス菌の添加がミセル中コレステロールの濃度に与える影響を調べた結果を図1に示した。その結果、供試したすべての菌株にコレステロール減少作用が認められ、15菌株中13菌株でポジティブコントロールとして用いた水溶性大豆繊維よりも強いコレステロール減少作用が認められた。
菌体を添加して振盪したミセル溶液のpHはすべての場合でpH5.8以上であった。
[Example 1] Screening of co-test strains with strong cholesterol-reducing action in micelles Micelles by the method of Test Example 1 using freeze-dried cells of 5 lactobacilli and 9 bifidobacteria obtained by liquid culture and plate culture Screening for strains with a strong effect of reducing medium cholesterol was performed.
The results of examining the effect of addition of lactobacilli and bifidobacteria on the cholesterol concentration in micelles are shown in FIG. As a result, all the strains tested showed a cholesterol-reducing action, and 13 of 15 strains showed a cholesterol-reducing action stronger than the water-soluble soybean fiber used as a positive control.
The pH of the micelle solution to which the cells were added and shaken was pH 5.8 or higher in all cases.

[実施例2]熱処理菌体によるコレステロール減少作用
凍結乾燥したL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株をそれぞれ約1×1010/mlになるようPBSに懸濁し、100℃、5分間熱処理し菌体を死滅させた。熱処理後の菌体を脱イオン水で3回菌体洗浄後、凍結乾燥した。凍結乾燥菌体菌体を用いて試験例1の方法でミセル中コレステロールに与える影響を検討した。
強いコレステロール減少作用が認められたL. crispatus JCM 5810、B. breve MEP171203、B. breve MEP171204、B. bifidum OLB 6026の4菌株を選び、熱処理がコレステロール減少作用に与える影響を調べた。その結果、図2に示したように、供試したすべての菌体で熱処理後もコレステロール減少作用が認められた。そのなかで、L. crispatus JCM 5810、B. bifidum OLB 6026の2菌株は熱処理菌体でも生菌体と同じ程度のコレステロール減少作用が認められたが、B. breve MEP171204、B. breve MEP171203の2菌株では熱処理を行うことでコレステロール減少作用が大きく減少した。
[Example 2] Cholesterol-reducing action by heat-treated cells The lyophilized L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203, and B. breve MEP171204 are each about 1 × 10 10 / ml. The cells were suspended in PBS and heat-treated at 100 ° C. for 5 minutes to kill the cells. The cells after heat treatment were washed three times with deionized water and then lyophilized. Using freeze-dried cells, the effect on micelle cholesterol was examined by the method of Test Example 1.
Four strains, L. crispatus JCM 5810, B. breve MEP171203, B. breve MEP171204, and B. bifidum OLB 6026, which showed a strong cholesterol-reducing action, were selected and the effect of heat treatment on the cholesterol-reducing action was examined. As a result, as shown in FIG. 2, the cholesterol-reducing action was observed even after heat treatment in all the cells tested. Among them, L. crispatus JCM 5810 and B. bifidum OLB 6026 had the same cholesterol-reducing effect as the living cells even in the heat-treated cells, but 2 of B. breve MEP171204 and B. breve MEP171203 In the strain, the effect of reducing cholesterol was greatly reduced by heat treatment.

[実施例3] 胆汁酸の分解および吸着活性の測定
1 供試株
強いコレステロール減少作用が認められたL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株を用いた。
[Example 3] Measurement of bile acid degradation and adsorption activity 1 Test strains Four strains of L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203, and B. breve MEP171204 that showed a strong cholesterol-reducing action Was used.

2 タウロコール酸あるいはコール酸と菌体の混合振盪
15mMリン酸緩衝液(pH7.4)に6.6mMタウロコール酸ナトリウムまたは6.6mMコール酸ナトリウム(半井化学薬品、Lot.M3B5596)を溶解させた。試薬採取の具体例を表2および表3に示した。この溶液1mlに凍結乾燥菌体20mgを添加後、37℃の恒温水槽中に5分間静置後、37℃に設定した恒温器(IWAKI、ICB-151LN)内でシェーカーを用いて2時間振盪(120rpm、旋回振盪)した。振盪時、試験管は横置きとした。振盪後、2,400rpm、10分間遠心分離後、上清を0.45μmのフィルター(ADVANTEC、03CP045AN)で濾過して、濾液はHPLCで測定するまで−30℃で保存した。
2 Taurocholic acid or mixed shaking of cholic acid and bacterial cells
6.6 mM sodium taurocholate or 6.6 mM sodium cholate (Harai Chemicals, Lot. M3B5596) was dissolved in 15 mM phosphate buffer (pH 7.4). Specific examples of reagent collection are shown in Tables 2 and 3. Add 20 mg of freeze-dried cells to 1 ml of this solution, leave it in a 37 ° C constant temperature water bath for 5 minutes, and shake for 2 hours using a shaker in a thermostat set at 37 ° C (IWAKI, ICB-151LN) 120 rpm, swirling and shaking). When shaking, the test tube was placed horizontally. After shaking and centrifugation at 2,400 rpm for 10 minutes, the supernatant was filtered through a 0.45 μm filter (ADVANTEC, 03CP045AN), and the filtrate was stored at −30 ° C. until measured by HPLC.

Figure 2006217879
Figure 2006217879

Figure 2006217879
Figure 2006217879

3 HPLCによる胆汁酸の定量
胆汁酸の分析はHPLC、検出器(JASCO、UV-970)、レコーダーを使用し、カラムはCOSMOSIL 5C18-AR-300(nacalai tesque、内径4.6mm×長さ150mm、37913-81)、移動相はメタノール:0.05M酢酸緩衝液(pH4.3)(70:30)、流速は1.0ml/min、カラム温度は室温、注入量は5μlで測定した。酢酸緩衝液の作成方法は酢酸(関東化学Cat.No.01021-71)0.58mlにミリQ水を加えて200mlにメスアップし、最終濃度を0.05Mにしたものと酢酸ナトリウム(関東化学、Cat.No.37093-01)0.82gをミリQ水溶解させて200mlにメスアップして最終濃度を0.05Mにしたものとを混合して最終pHを4.3に調製した。
胆汁酸濃度を求めるために、あらかじめ胆汁酸の検量線を作成した。そして、この検量線とHPLCのピーク高から胆汁酸濃度を求めた。
3 Quantitative analysis of bile acids by HPLC Analyzes of bile acids use HPLC, detector (JASCO, UV-970), recorder, column COSMOSIL 5C18-AR-300 (nacalai tesque, inner diameter 4.6 mm x length 150 mm, 37913 -81), the mobile phase was methanol: 0.05 M acetate buffer (pH 4.3) (70:30), the flow rate was 1.0 ml / min, the column temperature was room temperature, and the injection volume was 5 μl. The acetate buffer solution was prepared by adding Milli-Q water to 0.58 ml of acetic acid (Kanto Chemical Cat.No.01021-71) and making up to 200 ml. The final concentration was 0.05 M and sodium acetate (Kanto Chemical, Cat. No. 37093-01) 0.82 g was dissolved in Milli-Q water, made up to 200 ml and mixed with a final concentration of 0.05 M to adjust the final pH to 4.3.
In order to obtain the bile acid concentration, a calibration curve for bile acids was prepared in advance. The bile acid concentration was determined from the calibration curve and the peak height of HPLC.

4 タウロコール酸およびコール酸の検量線の作成
タウロコール酸ナトリウムあるいはコール酸ナトリウム50mgをミリQ水10mlに溶解した。この溶液をミリQ水で段階希釈し、最終濃度が0.5、1.0、2.0、4.0mg/mlである溶液を調製した。そして、0.45μmのフィルターで濾過後、2の条件で胆汁酸のピークの高さをHPLCで測定し、検量線を作成した。
4. Preparation of calibration curve for taurocholic acid and cholic acid 50 mg of sodium taurocholate or sodium cholate was dissolved in 10 ml of milli-Q water. This solution was serially diluted with milliQ water to prepare solutions with final concentrations of 0.5, 1.0, 2.0, and 4.0 mg / ml. Then, after filtration through a 0.45 μm filter, the height of the bile acid peak was measured by HPLC under the condition 2 to prepare a calibration curve.

5 無処理菌体を使った試験
強いコレステロール減少作用が認められたL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株の凍結乾燥菌体を用いて試験例1の方法でタウロコール酸およびコール酸の分解・吸着活性を測定した。1菌株につき3回試験を行い、結果は3回の平均値±標準偏差で表した。
5 Test using untreated cells
Taurocholic acid and chole by the method of Test Example 1 using lyophilized cells of 4 strains of L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203, and B. breve MEP171204, which showed a strong cholesterol-reducing action. Acid decomposition / adsorption activity was measured. Each strain was tested three times, and the results were expressed as the average value of three times ± standard deviation.

6 熱処理菌体を使った試験
凍結乾燥したL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株の菌体をそれぞれ40mg/mlになるようPBSに懸濁し、100℃、5分、10分間熱処理した。熱処理後の菌体を脱イオン水で3回洗浄後、凍結乾燥した。凍結乾燥菌体を使って2の方法でタウロコール酸およびコール酸の分解・吸着活性を検討した。1菌株につき3回試験を行い、結果は3回の平均値±標準偏差で表した。
実施例1で強いコレステロール減少作用が認められた菌株の中から4株を用いてタウロコール酸の分解および吸着活性を調べた。その結果、図3に示したように、供試したすべての菌株でコール酸を生成した。L. crispatus JCM5810はタウロコール酸を約7%脱抱合したのに対し、B. bifidum OLB6026、B. breve MEP171203、B. breve MEP171204の3菌株では100%の脱抱合活性が認められた。加熱処理後の菌体ではタウロコール酸の分解活性は認められなかった。
強いコレステロール減少作用が認められたL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株すべては、タウロコール酸溶液に添加し、37℃2時間振盪すると、上清中のタウロコール酸を消失または減少させた。消失あるいは減少したタウロコール酸と当モルのコール酸が生成したことから、これらの菌株にはタウロコール酸を結合する能力はなく、脱抱合活性のみが存在することが認められた。特に、ビフィズス菌3菌株には100%の脱抱合活性が認められた。しかし、熱処理を行うことですべての菌株で脱抱合活性が消失した。
また、コール酸に関してはすべての供試株で、生菌体および熱処理菌体のいずれを添加し37℃2時間振盪しても、上清中のコール酸の減少は認められなかった。
6 Tests using heat-treated cells The cells of 4 strains of freeze-dried L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203, and B. breve MEP171204 were suspended in PBS to 40 mg / ml each. And heat treatment at 100 ° C. for 5 minutes and 10 minutes. The cells after the heat treatment were washed with deionized water three times and then freeze-dried. Decomposition and adsorption activity of taurocholic acid and cholic acid were examined by two methods using freeze-dried cells. Each strain was tested three times, and the results were expressed as the average value of three times ± standard deviation.
Decomposition and adsorption activity of taurocholic acid was examined using 4 strains among strains in which strong cholesterol-reducing action was observed in Example 1. As a result, as shown in FIG. 3, cholic acid was produced in all the strains tested. L. crispatus JCM5810 decontaminated taurocholic acid by about 7%, whereas B. bifidum OLB6026, B. breve MEP171203, and B. breve MEP171204 showed 100% deconjugation activity. Degrading activity of taurocholic acid was not observed in the cells after the heat treatment.
All four strains of L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203, and B. breve MEP171204, which showed a strong cholesterol-reducing action, were added to the taurocholate solution and shaken at 37 ° C for 2 hours. The taurocholic acid in the clearing disappeared or decreased. Since disappeared or reduced taurocholic acid and equimolar amount of cholic acid were produced, it was confirmed that these strains had no ability to bind taurocholic acid and only had deconjugation activity. In particular, 100% deconjugation activity was observed in 3 strains of Bifidobacterium. However, deconjugation activity disappeared in all strains by heat treatment.
Regarding cholic acid, no decrease in cholic acid in the supernatant was observed in any of the test strains when either viable cells or heat-treated cells were added and shaken at 37 ° C. for 2 hours.

[実施例4]熱処理菌体による固定化コレステロール、ホスファチジルコリン、タウロコール酸への付着の評価
1 供試株
強いコレステロール減少作用が認められたL. crispatus JCM 5810、B. bifidum OLB 6026、B. breve MEP171203、B. breve MEP171204の4菌株を用いた。菌体は凍結乾燥後に滅菌PBSに懸濁し、100℃、5分間の熱処理を行い、バクテリアカウンターを使用して菌数を計測し、菌濃度が5×108cells/mlになるように滅菌PBSに懸濁させた。
[Example 4] Evaluation of adherence to immobilized cholesterol, phosphatidylcholine and taurocholic acid by heat-treated cells 1 Test strain L. crispatus JCM 5810, B. bifidum OLB 6026, B. breve MEP171203 in which strong cholesterol-reducing action was observed 4 strains of B. breve MEP171204 were used. The cells are lyophilized and then suspended in sterilized PBS, heat-treated at 100 ° C for 5 minutes, counted using a bacterial counter, and sterilized PBS so that the bacterial concentration is 5 x 10 8 cells / ml. Suspended in

2 熱処理菌体の固定化コレステロールへの付着試験
コレステロール4.2mgを酢酸エチル1mlで溶解した(42×102μg/ml)。この溶液を酢酸エチルで段階希釈し、コレステロール濃度が2.5(42×10-3μg/ml)、25(42×10-2μg/ml)、250(42×10-1μg/ml)、2500(42μg/ml)pMになるように溶液を調製した。また、コントロールとして0pM(酢酸エチルのみ)を用いた。
滅菌したPBSにBSA(Sigma、A-9647)を、0.1%および2%となるように溶解し、0.1% BSA-PBS、2% BSA-PBSを調製した。
テフロンプリントスライドガラス(フナコシ、ER-208L)の各ウェルにコレステロール溶液をマイクロシリンジで23μlずつ滴下し、室温で乾燥させた。コレステロールの各濃度につき2ウェルずつ滴下した。スライドガラスを染色槽に入れ、裏側から2% BSA-PBSを注ぎ、2時間室温で静置した。2時間後、スライドガラスを染色槽から取り出し、立てかけて自然乾燥させた。乾燥後、スライドガラス上のウェルに触れないようにウェルの周囲をキムワイプで拭き取った。1で調整した各菌懸濁液を23μlずつ、各ウェルに滴下し、スライドガラスを水蒸気で飽和させたタイトボックス中に室温で2時間静置した。2時間後、スライドガラスを染色槽に入れ、裏側から0.1% BSA-PBSを注ぎ、マイルドミキサー上で5分間穏やかに振盪した。振盪後、別の染色槽にスライドガラスを移し、同様の操作を3回行った。スライドガラスを染色槽から取り出して自然乾燥させ、火炎固定してグラム・クリスタルバイオレット溶液(MERCK、1.09218)で1分間染色した。染色後、裏から脱イオン水で洗浄して自然乾燥させた。そして、顕微鏡観察し、異なる視野を3箇所プリントし、1枚を4分して、1/4区画内(4.38×103μm2)の菌数を測定した。結果はプリント3枚分(12区画)の菌数の平均値±標準偏差で求めた。
熱処理菌体の固定化コレステロールへの付着性を、固定化するコレステロールの濃度を変化させて調べた。その結果、いずれの菌株でも、固定化するコレステロール濃度を高くしても熱処理菌体の付着菌数は増加しないことが認められた(図4)。
2 Adhesion test of heat-treated cells to immobilized cholesterol Cholesterol (4.2 mg) was dissolved in 1 ml of ethyl acetate (42 × 10 2 μg / ml). This solution was serially diluted with ethyl acetate, and cholesterol concentrations were 2.5 (42 × 10 −3 μg / ml), 25 (42 × 10 −2 μg / ml), 250 (42 × 10 −1 μg / ml), 2500 The solution was prepared to (42 μg / ml) pM. Further, 0 pM (ethyl acetate only) was used as a control.
BSA (Sigma, A-9647) was dissolved at 0.1% and 2% in sterilized PBS to prepare 0.1% BSA-PBS and 2% BSA-PBS.
Cholesterol solution was dropped into each well of Teflon-printed slide glass (Funakoshi, ER-208L) with a microsyringe and dried at room temperature. Two wells were added dropwise for each concentration of cholesterol. The slide glass was placed in a staining tank, and 2% BSA-PBS was poured from the back side, and allowed to stand at room temperature for 2 hours. After 2 hours, the slide glass was removed from the staining tank and stood to dry naturally. After drying, the periphery of the well was wiped with Kimwipe so as not to touch the well on the slide glass. 23 μl of each bacterial suspension prepared in 1 was dropped into each well, and the slide glass was allowed to stand at room temperature for 2 hours in a tight box saturated with water vapor. After 2 hours, the slide glass was placed in a staining tank, 0.1% BSA-PBS was poured from the back side, and gently shaken for 5 minutes on a mild mixer. After shaking, the slide glass was transferred to another staining tank, and the same operation was performed three times. The slide glass was removed from the staining tank, allowed to dry naturally, fixed with flame, and stained with Gram Crystal Violet solution (MERCK, 1.09218) for 1 minute. After dyeing, it was washed with deionized water from the back and dried naturally. Then, under microscopic observation, three different fields of view were printed, and one sheet was divided into four, and the number of bacteria in the 1/4 section (4.38 × 10 3 μm 2 ) was measured. The result was obtained as the average value ± standard deviation of the number of bacteria in three prints (12 sections).
The adhesion of heat-treated cells to immobilized cholesterol was examined by changing the concentration of cholesterol to be immobilized. As a result, it was confirmed that in any strain, the number of adherent cells of the heat-treated cells did not increase even when the cholesterol concentration to be immobilized was increased (FIG. 4).

3 熱処理菌体の固定化ホスファチジルコリンへの付着試験
ホスファチジルコリン9.3mgをメタノール1mlで溶解した(93×102μg/ml)。この溶液をメタノールで段階希釈し、ホスファチジルコリン濃度が2.5(93×10-3μg/ml)、25(93×10-2μg/ml)、250(93×10-1μg/ml)、2500(93μg/ml)pMになるように溶液を調製した。また、コントロールとして0pM(メタノールのみ)を用いた。
そして、2と同様な方法でホスファチジルコリンを固定化し、付着性を評価した。
熱処理菌体の固定化ホスファチジルコリンへの付着性を、固定化するホスファチジルコリン濃度を変化させて調べた。その結果、ホスファチジルコリン濃度が250pM以上でL. crispatus JCM 5810およびB. bifidum OLB 6026の2菌株はコントロールに比較して2倍以上の付着の菌数が認められ、その効果が顕著であることが確かめられた(図5)。
3 Adhesion test of heat-treated cells to immobilized phosphatidylcholine 9.3 mg of phosphatidylcholine was dissolved in 1 ml of methanol (93 × 10 2 μg / ml). This solution was serially diluted with methanol, and the phosphatidylcholine concentration was 2.5 (93 × 10 −3 μg / ml), 25 (93 × 10 −2 μg / ml), 250 (93 × 10 −1 μg / ml), 2500 ( 93 μg / ml) The solution was prepared to pM. In addition, 0 pM (methanol only) was used as a control.
Then, phosphatidylcholine was immobilized by the same method as 2 and the adhesion was evaluated.
The adhesion of heat-treated cells to immobilized phosphatidylcholine was examined by changing the concentration of immobilized phosphatidylcholine. As a result, it was confirmed that the phosphatidylcholine concentration was 250 pM or more and the two strains of L. crispatus JCM 5810 and B. bifidum OLB 6026 showed more than twice the number of adherent bacteria compared to the control, and the effect was remarkable. (FIG. 5).

4 熱処理菌体の固定化タウロコール酸への付着試験
タウロコール酸ナトリウム5.8mgをメタノール1mlで溶解した(58×102μg/ml)。この溶液をメタノールで段階希釈し、タウロコール酸濃度が2.5(58×10-3μg/ml)、25(58×10-2μg/ml)、250(58×10-1μg/ml)、2500(58μg/ml)pMになるように溶液を調製した。また、コントロールとして0pM(メタノールのみ)を用いた。
そして、2と同様な方法でタウロコール酸を固定化し、付着性を評価した。
4 Adhesion test of heat-treated cells to immobilized taurocholic acid 5.8 mg of sodium taurocholate was dissolved in 1 ml of methanol (58 × 10 2 μg / ml). This solution was serially diluted with methanol, and the taurocholic acid concentration was 2.5 (58 × 10 −3 μg / ml), 25 (58 × 10 −2 μg / ml), 250 (58 × 10 −1 μg / ml), 2500 The solution was prepared to (58 μg / ml) pM. In addition, 0 pM (methanol only) was used as a control.
Then, taurocholic acid was immobilized by the same method as 2 and the adhesion was evaluated.

熱処理菌体の固定化タウロコール酸への付着性を、固定化するタウロコール酸の濃度を変化させて調べた。その結果、固定化するタウロコール酸濃度を高くしても熱処理菌体の付着菌数は増加しないことが認められた(図6)。
実施例4では小腸からのコレステロール吸収のin vitroモデルとしてコレステロールミセルを人工的に調製している。ミセルの構成成分はコレステロール、ホスファチジルコリンおよびタウロコール酸である。B. bifidum OLB 6026、B. breve MEP171203およびB. breve MEP171204の生菌体ではミセルを構成しているタウロコール酸を脱抱合することにより、ミセルが不安定化することが、ミセル中コレステロールが減少する機構と考えられる。しかし、熱処理菌体ではタウロコール酸の脱抱合酵素が失活しているため、熱処理後もコレステロール減少活性があるB. bifidum OLB 6026、B. breve MEP171203およびL. crispatus JCM 5810では他のメカニズムによりミセルを不安定化し、ミセル中のコレステロールを減少させていると推定される。そこで、ミセル構成成分の菌体への結合を、より高感度で検出する方法として、ミセルを構成する各成分への付着試験を用いた。すなわち、ミセル構成成分をガラスウェル上に固定化し、熱処理菌体のそれぞれの成分に対する付着性を評価した。供試した4菌株のうちB. breve MEP171204のみは熱処理することで、他の3菌株よりもコレステロール減少作用が著しく低下したため、今回の実験ではネガティブコントロールとした。
コレステロールとタウロコール酸に対しては供試したすべての菌株で付着が認められなかった。しかし、ホスファチジルコリンに対しては、ホスファチジルコリン濃度が250pM以上の場合、L. crispatus JCM 5810とB. bifidum OLB 6026で顕著な付着が見られた。一方、ネガティブコントロールとして用いたB. breve MEP171204は付着しなかった。また、L. crispatus JCM 5810とB. bifidum OLB 6026と同程度のミセル中コレステロールを減少させたB. breve MEP171203はホスファチジルコリン濃度が250pM以上で若干の付着が見られた。
これらの結果より、L. crispatus JCM 5810とB. bifidum OLB 6026の熱処理菌体によるミセル中コレステロール減少作用のメカニズムとして、コレステロールミセルの外側に存在するホスファチジルコリンに結合することによりミセルを不安定化させることが確かめられた。
The adhesion of heat-treated cells to immobilized taurocholic acid was examined by changing the concentration of taurocholic acid to be immobilized. As a result, it was confirmed that even if the concentration of taurocholic acid to be immobilized was increased, the number of adherent cells of the heat-treated cells did not increase (FIG. 6).
In Example 4, cholesterol micelles are artificially prepared as an in vitro model of cholesterol absorption from the small intestine. The components of micelles are cholesterol, phosphatidylcholine and taurocholic acid. In the viable cells of B. bifidum OLB 6026, B. breve MEP171203 and B. breve MEP171204, deconjugation of taurocholic acid, which constitutes micelles, destabilizes micelles, which reduces cholesterol in micelles. It is considered a mechanism. However, since taurocholic acid deconjugating enzyme is inactivated in heat-treated cells, B. bifidum OLB 6026, B. breve MEP171203 and L. crispatus JCM 5810 have micelles by other mechanisms. Is destabilized, and it is estimated that cholesterol in micelles is reduced. Therefore, as a method for detecting the binding of the micelle constituents to the cells with higher sensitivity, an adhesion test to each component constituting the micelles was used. That is, the micelle component was immobilized on a glass well, and the adhesion of each heat-treated cell to each component was evaluated. Of the 4 strains tested, only B. breve MEP171204 was markedly reduced in cholesterol-lowering effect compared to the other 3 strains by heat treatment, and thus was used as a negative control in this experiment.
No adhesion was observed for cholesterol and taurocholic acid in all the strains tested. However, for phosphatidylcholine, L. crispatus JCM 5810 and B. bifidum OLB 6026 showed significant adhesion when the phosphatidylcholine concentration was 250 pM or higher. On the other hand, B. breve MEP171204 used as a negative control did not adhere. In addition, B. breve MEP171203, which reduced the cholesterol in micelles to the same extent as L. crispatus JCM 5810 and B. bifidum OLB 6026, showed slight adhesion at a phosphatidylcholine concentration of 250 pM or more.
From these results, as a mechanism of cholesterol-reducing action in micelles by heat-treated cells of L. crispatus JCM 5810 and B. bifidum OLB 6026, the micelles are destabilized by binding to phosphatidylcholine present outside the cholesterol micelles. Was confirmed.

本願発明は、コレステロール低減作用を有する乳酸菌を含有した飲食品を提供するものであり、コレステロールの過剰摂取の防止に役立つだけではなく、高脂血症患者用飲食品としても極めて優れている。   The present invention provides foods and drinks containing lactic acid bacteria having a cholesterol-reducing action, and is not only useful for preventing excessive intake of cholesterol, but also extremely excellent as foods and drinks for hyperlipidemic patients.

乳酸菌のミセル中のコレステロール低減作用を示す図である。It is a figure which shows the cholesterol reduction effect | action in the micelle of lactic acid bacteria. 乳酸菌の加熱処理前後のミセル中コレステロール低減作用を示す図である。It is a figure which shows the cholesterol reduction effect | action in a micelle before and behind heat processing of lactic acid bacteria. 乳酸菌の加熱処理前後のタウロコール酸脱抱合活性を示す図である。It is a figure which shows the taurocholic acid deconjugation activity before and behind the heat processing of lactic acid bacteria. 加熱菌体のコレステロールに対する親和性を示す図である。It is a figure which shows the affinity with respect to cholesterol of a heated microbial cell. 加熱菌体のホスファチジルコリンに対する親和性を示す図である。It is a figure which shows the affinity with respect to the phosphatidylcholine of a heating cell. 加熱菌体のタウロコール酸に対する親和性を示す図である。It is a figure which shows the affinity with respect to taurocholic acid of a heated microbial cell.

Claims (10)

乳酸菌のミセル中コレステロールを減少させる能力に優れた株を選択する工程を含む、生体内のコレステロールを低減させる作用を有する乳酸菌のスクリーニング方法。 A screening method for lactic acid bacteria having an action of reducing cholesterol in a living body, comprising a step of selecting a strain excellent in ability to reduce cholesterol in micelles of lactic acid bacteria. レシチンに対する親和性の高い株を選択することを特徴とする請求項1記載のスクリーニング方法。 The screening method according to claim 1, wherein a strain having high affinity for lecithin is selected. 生菌および死菌でもミセル中コレステロールを10%以上減少できる株を選択する工程を含む請求項1または2のいずれか記載のスクリーニング方法。 The screening method according to any one of claims 1 and 2, comprising a step of selecting a strain capable of reducing cholesterol in micelles by 10% or more even when viable and dead. レシチンに対する親和性が2倍以上高い株を選択することを特徴とする請求項2記載のスクリーニング方法。 The screening method according to claim 2, wherein a strain having an affinity for lecithin of 2 times or more is selected. 請求項1〜4のいずれか1項に記載のスクリーニング方法により選抜された、生体内のコレステロールを低減させる乳酸菌。 The lactic acid bacteria which reduce the cholesterol in the living body selected by the screening method of any one of Claims 1-4. ミセル中コレステロールを10%以上減少する能力を有する、請求項5記載のコレステロール低減作用を有するラクトバチルス属またはビフィドバクテリウム属菌株。 6. The Lactobacillus spp. Or Bifidobacterium spp. Strain having an effect of reducing cholesterol according to claim 5, which has the ability to reduce cholesterol in micelles by 10% or more. Lactobacillus crispatus JCM 5810またはBifidobacterium bifidum OLB 6026である請求項6記載のコレステロール低減作用を有する菌株。 The strain having a cholesterol-reducing effect according to claim 6, which is Lactobacillus crispatus JCM 5810 or Bifidobacterium bifidum OLB 6026. 請求項5〜7いずれか1項記載の乳酸菌を含有する飲食品。 Food-drinks containing the lactic acid bacteria of any one of Claims 5-7. 請求項5〜7いずれか1項記載の乳酸菌を処理したコレステロール低減作用を有する組成物。 The composition which has the cholesterol reduction effect | action which processed the lactic acid bacteria of any one of Claims 5-7. 請求項1〜4いずれか1項記載の方法によりスクリーニングされた乳酸菌を含むことを特徴とするコレステロール低減剤。 A cholesterol-reducing agent comprising a lactic acid bacterium screened by the method according to any one of claims 1 to 4.
JP2005035712A 2005-02-14 2005-02-14 Cholesterol-reducing lactic acid bacteria Active JP4662443B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005035712A JP4662443B2 (en) 2005-02-14 2005-02-14 Cholesterol-reducing lactic acid bacteria

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005035712A JP4662443B2 (en) 2005-02-14 2005-02-14 Cholesterol-reducing lactic acid bacteria

Publications (2)

Publication Number Publication Date
JP2006217879A true JP2006217879A (en) 2006-08-24
JP4662443B2 JP4662443B2 (en) 2011-03-30

Family

ID=36980596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005035712A Active JP4662443B2 (en) 2005-02-14 2005-02-14 Cholesterol-reducing lactic acid bacteria

Country Status (1)

Country Link
JP (1) JP4662443B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099170A1 (en) * 2015-12-11 2017-06-15 株式会社島津製作所 Electronic scale
JP2018503367A (en) * 2014-12-10 2018-02-08 バイオサーチ、ソシエダッド、アノニマBiosearch S.A. Probiotic strain having cholesterol absorption ability, method and use thereof
KR102256507B1 (en) * 2020-06-30 2021-05-26 일동제약(주) Novel Bifidobacterium breve IDCC 4401 strain having high resistance ability of acid and bile salt and effect of preventing or treating dyslipidemia, and their killed form ID-BBR4401

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065203A (en) * 2000-09-04 2002-03-05 Meiji Seika Kaisha Ltd Method for reducing or eliminating cholesterol by lactic acid bacterium
JP2004208577A (en) * 2002-12-27 2004-07-29 Meiji Milk Prod Co Ltd Method for selecting lactic acid bacterium for reducing cholesterol in living body, selected lactic acid bacterium and use thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002065203A (en) * 2000-09-04 2002-03-05 Meiji Seika Kaisha Ltd Method for reducing or eliminating cholesterol by lactic acid bacterium
JP2004208577A (en) * 2002-12-27 2004-07-29 Meiji Milk Prod Co Ltd Method for selecting lactic acid bacterium for reducing cholesterol in living body, selected lactic acid bacterium and use thereof

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
JOURNAL OF BACTERIOLOGY, vol. 182, no. 22, JPN6010064696, 2000, pages 6440 - 6450, ISSN: 0001774011 *
MOLECULAR MICROBIOLOGY, vol. 46, no. 2, JPN6010064695, 2002, pages 381 - 394, ISSN: 0001774010 *
日本農芸化学会誌, vol. 第72巻、臨時増刊号, JPN6010064694, 1998, pages 125 - 2, ISSN: 0001774009 *
食品工業, vol. 44, no. 4, JPN6010038341, 2001, pages 26 - 33, ISSN: 0001664371 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018503367A (en) * 2014-12-10 2018-02-08 バイオサーチ、ソシエダッド、アノニマBiosearch S.A. Probiotic strain having cholesterol absorption ability, method and use thereof
WO2017099170A1 (en) * 2015-12-11 2017-06-15 株式会社島津製作所 Electronic scale
WO2017098671A1 (en) * 2015-12-11 2017-06-15 株式会社島津製作所 Electronic scale
KR102256507B1 (en) * 2020-06-30 2021-05-26 일동제약(주) Novel Bifidobacterium breve IDCC 4401 strain having high resistance ability of acid and bile salt and effect of preventing or treating dyslipidemia, and their killed form ID-BBR4401
KR102301647B1 (en) * 2020-06-30 2021-09-13 일동제약(주) Novel Bifidobacterium breve IDCC 4401 strain having high resistance ability of acid and bile salt and effect of preventing or treating dyslipidemia, and their killed form ID-BBR4401
WO2022005035A1 (en) * 2020-06-30 2022-01-06 일동제약(주) Novel bifidobacterium breve idcc 4401 strain and its dead cell id-bbr4401 having excellent acid tolerance and bile tolerance and prophylactic or therapeutic effect on dyslipidemia

Also Published As

Publication number Publication date
JP4662443B2 (en) 2011-03-30

Similar Documents

Publication Publication Date Title
Ding et al. Screening for lactic acid bacteria in traditional fermented Tibetan yak milk and evaluating their probiotic and cholesterol-lowering potentials in rats fed a high-cholesterol diet
Lakra et al. Some probiotic potential of Weissella confusa MD1 and Weissella cibaria MD2 isolated from fermented batter
Klaver et al. The assumed assimilation of cholesterol by Lactobacilli and Bifidobacterium bifidum is due to their bile salt-deconjugating activity
Kumar et al. Characterization of Lactobacillus isolated from dairy samples for probiotic properties
Nath et al. In vitro screening of probiotic properties of Lactobacillus plantarum isolated from fermented milk product
Martins et al. Comparative study of Bifidobacterium animalis, Escherichia coli, Lactobacillus casei and Saccharomyces boulardii probiotic properties
Lye et al. Mechanisms of cholesterol removal by lactobacilli under conditions that mimic the human gastrointestinal tract
Gopal et al. Effects of the consumption of Bifidobacterium lactis HN019 (DR10TM) and galacto-oligosaccharides on the microflora of the gastrointestinal tract in human subjects
JP2992945B2 (en) Lactobacillus acidophilus lactic acid bacteria
Vasiee et al. Evaluation of probiotic potential of autochthonous lactobacilli strains isolated from Zabuli yellow kashk, an Iranian dairy product
CN102089422A (en) New probiotic bifidobacterium longum
Tavakoli et al. Characterization of probiotic abilities of lactobacilli isolated from Iranian Koozeh traditional cheese.
WO2014033307A1 (en) Exopolysaccharide-producing bacteria, and uses thereof for protecting heart health
Vantsawa et al. Isolation and identification of lactic acid bacteria with probiotic potential from fermented cow milk (nono) in Unguwar Rimi Kaduna State Nigeria
Gao et al. Screening of lactic acid bacteria with cholesterol-lowering and triglyceride-lowering activity in vitro and evaluation of probiotic function
JP2009232702A (en) New lactic acid bacterium strain and utilization thereof
Kimoto-Nira et al. Bile resistance in Lactococcus lactis strains varies with cellular fatty acid composition: analysis by using different growth media
Shehata et al. In vitro assessment of hypocholesterolemic activity of Lactococcus lactis subsp. lactis
Gautam et al. Evaluation of probiotic potential of new bacterial strain, Lactobacillus spicheri G2 isolated from Gundruk
El-Sayed et al. Identification of Lactobacillus strains from human mother milk and cottage cheese revealed potential probiotic properties with enzymatic activity
Qin et al. The intestinal colonization of Lactiplantibacillus plantarum AR113 is influenced by its mucins and intestinal environment
JP4662443B2 (en) Cholesterol-reducing lactic acid bacteria
Gulcin et al. Probable novel probiotics: Eps production, cholesterol removal and glycocholate deconjugation of lactobacillus plantarum ga06 and ga11 isolated from local handmade-cheese
CN110982736B (en) Food-derived extracellular polysaccharide-producing lactobacillus corynebacteria and application thereof
CN112708577B (en) Lactobacillus fermentum DALI02 with high intestinal adhesion and immunoregulation function and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100706

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100827

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101111

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101228

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101228

R150 Certificate of patent or registration of utility model

Ref document number: 4662443

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140114

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350