JP2006217026A - Antenna system and communication apparatus using the same - Google Patents

Antenna system and communication apparatus using the same Download PDF

Info

Publication number
JP2006217026A
JP2006217026A JP2005025051A JP2005025051A JP2006217026A JP 2006217026 A JP2006217026 A JP 2006217026A JP 2005025051 A JP2005025051 A JP 2005025051A JP 2005025051 A JP2005025051 A JP 2005025051A JP 2006217026 A JP2006217026 A JP 2006217026A
Authority
JP
Japan
Prior art keywords
electrode
antenna
radiation electrode
radiation
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005025051A
Other languages
Japanese (ja)
Other versions
JP4534199B2 (en
Inventor
Hiroshi Aoyama
博志 青山
Kazuo Kazama
和夫 風間
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2005025051A priority Critical patent/JP4534199B2/en
Publication of JP2006217026A publication Critical patent/JP2006217026A/en
Application granted granted Critical
Publication of JP4534199B2 publication Critical patent/JP4534199B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an antenna system for a triple band with a broad bandwidth and a high average gain and to provide a communication apparatus using the antenna system. <P>SOLUTION: The antenna system is provided with: a mount board 2 having a ground part 21 and a non-ground part 22; a chip antenna that is provided with a first radiation electrode 12 formed to one part of a base 11 mounted on the non-ground part 22, a first feeding electrode 13 connected to one end of the first radiation electrode 12 or not connected thereto, a second radiation electrode 16 formed to the other part of the base 11, a second feeding electrode 17 connected to one end of the second radiation electrode or not connected thereto, and a gap 10 for ensuring isolation between the first radiation electrode 12 and the second radiation electrode 16; and at least a third radiation electrode 3 made of a conductor pattern formed on the non-ground part 22 of the mount board 2, and one end of which is connected to the other end of the first radiation electrode 12 or not connected thereto, and the other end of which acts as an open end 30. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、携帯電話や無線LAN(Local Area Network)などに用いられるマルチバンド、特にトリプルバンドに対応できる小型で帯域幅の広いアンテナ装置に関する。   The present invention relates to a small-sized and wide-band antenna device that can be used for a multiband, particularly a triple band, used in a mobile phone, a wireless LAN (Local Area Network), and the like.

携帯電話やパソコンなどの通信機器、電子機器に対する小型化の要請から、使用されるアンテナ装置も小型化する必要がある。そこで、誘電体や磁性体などの基体の表面或いは内部に、給電用電極、放射電極を設けたチップアンテナが使われるようになってきた。
一方、携帯電話のシステムには、例えば主に欧州で盛んなEGSM(Extended Global System for Mobile Communications)方式およびDCS(Digital Cellular System)方式、米国で盛んなPCS(Personal Communication Service)方式、日本で採用されているPDC(Personal Digital Cellular )方式などの時分割マルチプルアクセス(TDMA)を用いた様々なシステムがある。昨今の携帯電話の急激な普及に伴い、特に先進国の主要な大都市部においては各システムに割り当てられた周波数帯域ではシステム利用者を賄いきれず、接続が困難であったり、通話途中で接続が切断するなどの問題が生じている。そこで、利用者が複数のシステムを利用できるようにして、実質的に利用可能な周波数の増加を図り、さらにサービス区域の拡充や各システムの通信インフラを有効活用することが提唱されている。その為、1個のアンテナで2つ以上の周波数帯を共用するマルチバンド(multi-band)のニーズが増大している。例えば、携帯電話の多機能化のニーズに伴い、通話向けシステムであるセルラ(Cellular:国によって異なるが例えば送信周波数:824〜849 MHz、受信周波数:869〜894 MHz)と、位置検出の機能を果すGPS(Global Positioning System:中心周波数1575MHz帯)のデュアルバンド(dual-band)、また、あるいはEGSM(送信周波数:880〜915MHz、受信周波数:925〜960MHz)と、DCS(送信周波数:1710〜1785MHz、受信周波数:1805〜1880MHz)及びPCS(送信周波数:1850〜1910MHz、受信周波数:1930〜1990MHz)の各システムを取り扱うトリプルバンドに対応できるようなマルチバンド対応の小型アンテナ装置が望まれている。
In response to the demand for miniaturization of communication devices such as mobile phones and personal computers, and electronic devices, it is necessary to miniaturize the antenna device used. Therefore, a chip antenna having a feeding electrode and a radiation electrode provided on the surface or inside of a substrate such as a dielectric or a magnetic material has been used.
On the other hand, for mobile phone systems, for example, EGSM (Extended Global System for Mobile Communications) method and DCS (Digital Cellular System) method, which are popular in Europe, PCS (Personal Communication Service) method, which is popular in the United States, are adopted in Japan. There are various systems using time division multiple access (TDMA) such as the PDC (Personal Digital Cellular) system. With the rapid spread of mobile phones in recent years, especially in major metropolitan areas in developed countries, it is difficult to connect system users in the frequency bands allocated to each system, making it difficult to connect, or connecting in the middle of a call There are problems such as disconnection. Therefore, it has been proposed that the user can use a plurality of systems to increase the number of frequencies that can be substantially used, and further expand the service area and effectively use the communication infrastructure of each system. For this reason, there is an increasing need for a multi-band in which two or more frequency bands are shared by one antenna. For example, in response to the need for multi-function mobile phones, cellular (Cellular: transmission frequency: 824 to 849 MHz, reception frequency: 869 to 894 MHz) varies depending on the country. The resulting GPS (Global Positioning System: center frequency 1575 MHz band) dual band, or EGSM (transmission frequency: 880 to 915 MHz, reception frequency: 925 to 960 MHz) and DCS (transmission frequency: 1710 to 1785 MHz) , Reception frequency: 1805 to 1880 MHz) and PCS (transmission frequency: 1850 to 1910 MHz, reception frequency: 1930 to 1990 MHz), a multi-band small antenna device capable of supporting a triple band is desired.

従来、図6に示すような、2つの放射電極を備えて2つの共振周波数に対応するチップアンテナを並設したデュアルバンドのアンテナ装置が提案された(例えば、特許文献1参照)。図6において、アンテナ装置90は、基板91と、基板91の一方主面92aに搭載された2つのチップアンテナ93a、93bで構成される。基板91の一方主面92aには給電線94と接地電極95が形成されている。接地電極95と2つのチップアンテナ93a、93bとは近接して配置される。給電線94の一端は2つに分けられ、それぞれ2つのチップアンテナ93a、93bの給電用電極96a、96bに接続され、他端は高周波信号源(図示せず)に接続されている。チップアンテナ93a、93bの基体上に形成された放射電極の他端は開放端となり、各々、第1放射電極97a、第2放射電極97bを構成してアンテナ装置となしている。   Conventionally, as shown in FIG. 6, a dual-band antenna device has been proposed in which two radiation electrodes are provided and chip antennas corresponding to two resonance frequencies are arranged in parallel (see, for example, Patent Document 1). In FIG. 6, the antenna device 90 includes a substrate 91 and two chip antennas 93 a and 93 b mounted on one main surface 92 a of the substrate 91. A power supply line 94 and a ground electrode 95 are formed on one main surface 92 a of the substrate 91. The ground electrode 95 and the two chip antennas 93a and 93b are arranged close to each other. One end of the power supply line 94 is divided into two parts, which are connected to the power supply electrodes 96a and 96b of the two chip antennas 93a and 93b, respectively, and the other end is connected to a high-frequency signal source (not shown). The other ends of the radiation electrodes formed on the bases of the chip antennas 93a and 93b are open ends, and the first radiation electrode 97a and the second radiation electrode 97b are configured to form an antenna device.

しかし、特許文献1のアンテナ装置では、長方体状のチップアンテナを2個用いている。小型化するために、チップアンテナ93bを基板91の他方主面92bに搭載することも提案されているが、その場合、実装基板の厚みも加わって薄型化のニーズには合わない。また、このとき接地電極95とチップアンテナ93aとの対向する面積の増加によりこれらの静電容量が大きくなることから帯域幅は減少方向となる。以上のことより、特許文献1では小型化・省スペース化と広帯域化の両立ができていなかった。   However, the antenna device of Patent Document 1 uses two rectangular chip antennas. In order to reduce the size, it has also been proposed to mount the chip antenna 93b on the other main surface 92b of the substrate 91. However, in this case, the thickness of the mounting substrate is added, which does not meet the needs for thickness reduction. At this time, since the electrostatic capacity increases due to an increase in the area where the ground electrode 95 and the chip antenna 93a face each other, the bandwidth decreases. From the above, Patent Document 1 cannot achieve both a reduction in size, space saving, and a wide band.

他方、特許文献2では、基体に形成された放射電極と、放射電極の一端が接続される給電用電極と、放射電極の他端が接続される端子電極とを備えたチップアンテナと、このチップアンテナを搭載し、その表面上に形成された放射導体を備えた実装基板とからなるアンテナ装置が開示されている。このアンテナ装置によればチップアンテナの放射電極と実装基板の放射導体とを接続するため、導体の実効長を長くすることができ、その結果アンテナ装置の放射電界が強くなり高利得及び広帯域幅が実現できるとある。   On the other hand, in Patent Document 2, a chip antenna including a radiation electrode formed on a base, a feeding electrode to which one end of the radiation electrode is connected, and a terminal electrode to which the other end of the radiation electrode is connected, and this chip There is disclosed an antenna device including an antenna and a mounting substrate having a radiation conductor formed on the surface thereof. According to this antenna device, since the radiation electrode of the chip antenna and the radiation conductor of the mounting substrate are connected, the effective length of the conductor can be increased. As a result, the radiated electric field of the antenna device is strengthened, resulting in high gain and wide bandwidth. It can be realized.

さらに、特許文献3に開示されたアンテナ装置では、実装基板上に搭載したチップアンテナとこれに隣接する高周波回路との間のグランド部に切り欠き状のスリットを設けることが提案されている。このアンテナ装置の場合、切り欠きスリットによりチップアンテナから高周波回路側に流れる高周波電流の流れを抑制し、その結果放射特性を改善することができるとある。   Furthermore, in the antenna device disclosed in Patent Document 3, it has been proposed to provide a notch-shaped slit in the ground portion between the chip antenna mounted on the mounting substrate and the high-frequency circuit adjacent thereto. In the case of this antenna device, the notch slit suppresses the flow of high-frequency current flowing from the chip antenna to the high-frequency circuit side, and as a result, radiation characteristics can be improved.

特開平11−4117号公報Japanese Patent Laid-Open No. 11-4117 特開平11−330830号公報Japanese Patent Laid-Open No. 11-330830 特開2001−274719号公報JP 2001-274719 A

特許文献2には広帯域化の提案があるが、低周波数帯域で帯域幅の劣化を抑えるだけで、マルチバンドに対応できない。また、特許文献3に開示されたアンテナ装置は、切り欠きスリットにより、放射特性が改善されるとあるが、切り欠きスリットによりグランド電極に流れる高周波電流の経路を限定するだけで、広帯域化やマルチバンド化には対応できない。よって、従来のアンテナ装置には、小型化、省スペース化及び広帯域化を全て満たすことができないという問題がある。
また、従来のアンテナ基体に複数の放射電極を形成してマルチバンド化する場合、放射電極間に生じる静電容量のため、アイソレーションを保つことには困難が生じる。具体的には、放射電極間の静電容量が増加するほど、互いの高周波電流が多く反対方向に流れる結果、電磁波の放射を互いに弱め合うことになり、利得(感度)が低下するという問題がある。マルチバンド対応のアンテナ装置にあっては、複数の周波数帯域においてそれぞれが広帯域かつ高利得であるのが望ましいが、特許文献1及び特許文献2ではそのような検討はされていない。
また、最近では、健康面から携帯電話等から放射された電磁波が人体(頭部)に与える影響の軽減化が重要になってきており、電磁波の比吸収率SAR(Specific Absorption Rate)が低いアンテナ装置が望まれている。
Japanese Patent Laid-Open No. 2003-228867 proposes a wide band, but cannot cope with multiband only by suppressing the deterioration of the bandwidth in the low frequency band. In addition, the antenna device disclosed in Patent Document 3 is said to have improved radiation characteristics due to the notch slit. However, by limiting the path of the high-frequency current flowing through the ground electrode due to the notch slit, it is possible to increase the bandwidth and It cannot cope with banding. Therefore, the conventional antenna device has a problem that it cannot satisfy all of downsizing, space saving, and wide band.
In addition, when a plurality of radiation electrodes are formed on a conventional antenna base to form a multiband, it is difficult to maintain isolation due to the capacitance generated between the radiation electrodes. Specifically, as the capacitance between the radiation electrodes increases, the amount of high-frequency current flowing in the opposite direction increases. As a result, the radiation of electromagnetic waves weakens each other and the gain (sensitivity) decreases. is there. In a multiband antenna device, it is desirable that each of a plurality of frequency bands has a wide bandwidth and a high gain. However, Patent Document 1 and Patent Document 2 do not make such studies.
In recent years, it has become important to reduce the influence of electromagnetic waves radiated from mobile phones on the human body (head) from the health aspect, and antennas with low specific absorption rate (SAR) of electromagnetic waves. An apparatus is desired.

そこで、本発明は、小型化・省スペース化を図ると共に、複数の周波数帯域においてもアイソレーションを保って利得の低下を防ぐと共に、各周波数帯において帯域幅が広く且つ平均利得も高いマルチバンド対応のアンテナ装置及びこれを用いた通信機器の提供を目的とする。   Therefore, the present invention achieves miniaturization and space saving, maintains isolation in a plurality of frequency bands to prevent gain reduction, and supports a wide band with a wide bandwidth and high average gain in each frequency band. It is an object of the present invention to provide an antenna device and a communication device using the antenna device.

本発明は、グランド部及び非グランド部を有する実装基板と、基体の一方側に形成された第1の放射電極と、前記第1の放射電極の一端に接続又は非接続にされた第1の給電電極と、前記基体の他方側に形成された第2の放射電極と、前記第2の放射電極の一端に接続又は非接続にされた第2の給電電極と、を有するチップアンテナと、前記実装基板の非グランド部に導体パターンで形成された少なくとも1つの第3の放射電極とを有し、前記第3の放射電極は、その一端が前記非グランド部に搭載された前記チップアンテナの第1の放射電極又は第2の放射電極の他端に接続又は非接続とされ、他端が開放端となしたアンテナ装置である。   The present invention provides a mounting substrate having a ground portion and a non-ground portion, a first radiation electrode formed on one side of a base, and a first radiation connected to or disconnected from one end of the first radiation electrode. A chip antenna having a feed electrode, a second radiation electrode formed on the other side of the base, and a second feed electrode connected to or disconnected from one end of the second radiation electrode; And at least one third radiation electrode formed in a conductor pattern on a non-ground portion of the mounting substrate, the third radiation electrode having a first end mounted on the non-ground portion. The antenna device is connected or disconnected to the other end of one radiation electrode or the second radiation electrode, and the other end is an open end.

本発明のアンテナ装置において、チップアンテナに設けた前記第1の放射電極と第2の放射電極との間にアイソレーションを確保するための所定の間隔を設けることが重要である。例えば、チップアンテナの基体の比誘電率をEr、第1の放射電極12と第2の放射電極16の共振周波数をfh[Hz]、第1の放射電極12と第2の放射電極16との間隔(アイソレーション確保部)10の長さをWa[m]とすると、次式が得られる。
Wa>(3×10)/fh×√Er/100
ここで、北米の携帯電話で使われる最も高い周波数帯fh=1.9[GHz]、チップアンテナ基体のEr=8とし、これらを上式に代入すると、Wa>4.5[mm]が得られる。このようにしてアイソレーション確保部を設定することが好ましい。
In the antenna device of the present invention, it is important to provide a predetermined interval for ensuring isolation between the first radiation electrode and the second radiation electrode provided on the chip antenna. For example, the dielectric constant of the substrate of the chip antenna is Er, the resonance frequency of the first radiation electrode 12 and the second radiation electrode 16 is fh [Hz], and the first radiation electrode 12 and the second radiation electrode 16 are When the length of the interval (isolation securing portion) 10 is Wa [m], the following equation is obtained.
Wa> (3 × 10 8 ) / fh × √Er / 100
Here, Wa> 4.5 [mm] is obtained by substituting Er = 8 for the highest frequency band fh = 1.9 [GHz] used in mobile phones in North America and chip antenna base. It is done. Thus, it is preferable to set the isolation ensuring part.

また、前記第3の放射電極は、前記実装基板のチップアンテナ搭載面と対向する面の非グランド部に形成しても良い。このとき、前記チップアンテナ搭載面のチップアンテナと対向面に形成されている第3の放射電極との接続をスルーホールで行うことが望ましい。
また、前記第1の給電電極と第2の給電電極のそれぞれに独立した電源回路を設けることが好ましい。
そして、前記第3の放射電極は、その開放端が前記第1の給電電極に近づくように形成することで2共振モードを得やすい。さらに、前記チップアンテナと実装基板のグランド部との間に溝穴を設けることで広帯域化ができる。
The third radiation electrode may be formed on a non-ground portion of a surface of the mounting substrate that faces the chip antenna mounting surface. At this time, it is desirable that the chip antenna on the chip antenna mounting surface and the third radiation electrode formed on the opposing surface be connected through a through hole.
In addition, it is preferable that an independent power supply circuit is provided for each of the first feeding electrode and the second feeding electrode.
The third radiating electrode is formed so that the open end of the third radiating electrode approaches the first feeding electrode, so that it is easy to obtain the two resonance modes. Furthermore, it is possible to increase the bandwidth by providing a slot between the chip antenna and the ground portion of the mounting substrate.

本発明は、上記した何れかのアンテナ装置を搭載したことを特徴とする携帯電話等の通信機器である。   The present invention is a communication device such as a mobile phone, which is equipped with any of the antenna devices described above.

本発明に係るアンテナ装置は、アンテナ基体に第1、2の放射電極を並べて設けると共に実装基板に第3の放射電極を設けている。これにより広帯域化と小型化が図られる。このとき基体に設けた個々の放射電極間に適宜の間隔を保って配置することによりアイソレーションのとれたマルチバンド対応のアンテナ装置となる。
本発明に係るアンテナ装置において、第3の放射電極を実装基板のチップアンテナ搭載面と対向面(裏面)に設けた場合、基板スペースを有効利用し、より小型化が可能となる。
本発明のアンテナ装置では、放射電極を実装基板側にも設けているので人体頭部に近接される電界分布の集中が緩和される。この結果、SAR値の小さい携帯電話等の通信機を提供できる。
In the antenna device according to the present invention, the first and second radiation electrodes are provided side by side on the antenna base, and the third radiation electrode is provided on the mounting substrate. As a result, a wider band and a smaller size can be achieved. At this time, an antenna device corresponding to a multiband with isolation can be obtained by arranging each radiation electrode provided on the substrate with an appropriate interval.
In the antenna device according to the present invention, when the third radiation electrode is provided on the mounting surface of the mounting substrate on the chip antenna mounting surface (back surface), the board space can be effectively used and further miniaturization can be achieved.
In the antenna device of the present invention, since the radiation electrode is also provided on the mounting substrate side, the concentration of the electric field distribution close to the human head is reduced. As a result, a communication device such as a mobile phone having a small SAR value can be provided.

図1、図2は本発明の一実施例によるアンテナ装置100を示す。実装基板2は、グランド電極パターンを有するグランド部21(チップアンテナ搭載面に設けられたグランド部21a、及びチップアンテナ搭載面の対向面(裏面)に設けられたグランド部21b)と、グランド電極パターンが形成されていない非グランド部22(チップアンテナ搭載面に設けられた非グランド部22a、及びチップアンテナ搭載面の対向面上の非グランド部22b)とからなる。また、実装基板20の非グランド部22aには、チップアンテナ1と、チップアンテナ1の搭載面に設けられた線状導体パターンからなる第3の放射電極3とが形成されており、これらによりアンテナ装置100を構成している。   1 and 2 show an antenna device 100 according to an embodiment of the present invention. The mounting substrate 2 includes a ground portion 21 having a ground electrode pattern (a ground portion 21a provided on the chip antenna mounting surface and a ground portion 21b provided on the opposite surface (back surface) of the chip antenna mounting surface), and a ground electrode pattern Is formed of a non-ground portion 22 (a non-ground portion 22a provided on the chip antenna mounting surface and a non-ground portion 22b on the opposite surface of the chip antenna mounting surface). The non-ground portion 22a of the mounting substrate 20 is formed with a chip antenna 1 and a third radiation electrode 3 made of a linear conductor pattern provided on the mounting surface of the chip antenna 1, and thereby the antenna The apparatus 100 is configured.

チップアンテナ1は、略直方体状の基体11の一方の端部領域にヘリカルタイプのモノポールアンテナを形成し、他方の端部領域に逆Fタイプのモノポールアンテナを形成している。ヘリカルタイプのモノポールアンテナは、他端が開放端15(図3参照)である第1の放射電極12と、第一の放射電極12の一端が接続された給電電極13とを有し、給電電極13には接続用の電極41を介して第1の給電電源51が接続される。基体11の側面に設けた端子電極14(図3参照)は、チップアンテナ1に形成された第1の放射電極12を第3の放射電極3と接続する場合に使用する。この場合、第1の放射電極12の開放端15と端子電極14とは半田付け等で直接接続しても良いし、また非接続として容量結合させても良い。同様に端子電極14と第3の放射電極3の間も、接続又は非接続のいずれでも良い。非接続とすると、容量が増え、放射電極を短くできる。
一方、逆Fタイプのモノポールアンテナは、他端が開放端18である第2の放射電極16と、第2の放射電極16の一端が接続された給電電極17とを有している。給電電極17には接続用の電極42を介して第2の給電電源52が接続される。ここでは第2の放射電極16の開放端18側の非グランド部22aにはグランド部21aに接続されたグランド電極43を有している。
The chip antenna 1 has a helical monopole antenna formed in one end region of a substantially rectangular parallelepiped base 11, and an inverted F type monopole antenna formed in the other end region. The helical monopole antenna has a first radiating electrode 12 whose other end is an open end 15 (see FIG. 3) and a feeding electrode 13 to which one end of the first radiating electrode 12 is connected. A first power supply 51 is connected to the electrode 13 via a connection electrode 41. The terminal electrode 14 (see FIG. 3) provided on the side surface of the substrate 11 is used when the first radiation electrode 12 formed on the chip antenna 1 is connected to the third radiation electrode 3. In this case, the open end 15 of the first radiation electrode 12 and the terminal electrode 14 may be directly connected by soldering or the like, or may be capacitively coupled so as not to be connected. Similarly, the terminal electrode 14 and the third radiation electrode 3 may be connected or not connected. If not connected, the capacity increases and the radiation electrode can be shortened.
On the other hand, the inverted F type monopole antenna has a second radiating electrode 16 whose other end is an open end 18 and a feeding electrode 17 to which one end of the second radiating electrode 16 is connected. A second power supply 52 is connected to the power supply electrode 17 via a connection electrode 42. Here, the non-ground portion 22a on the open end 18 side of the second radiation electrode 16 has a ground electrode 43 connected to the ground portion 21a.

そして、第1の放射電極12と第2の放射電極16との間にはこれらの共振回路間の干渉が生じないようにアイソレーションを確保するための間隔(アイソレーション確保部)10を設けている。アイソレーション確保部10を介し、放射電極12と放射電極16或は給電電極の間では静電容量が生じることにより、この静電容量が大きくなるほどアイソレーションは減少する。したがって静電容量を小さくしアイソレーションを増加するためには、確保部10を長くとれば良いのだが、反面、アンテナが大型化するため好ましくない。この問題を解決するため、以下に述べるようなアイソレーション確保部の条件を見出すに至った。即ち、第1の放射電極と第2の放射電極がアイソレーション確保部10を介して直列に結合することから、これらの直列共振周波数foが各々の放射電極を持つアンテナの共振周波数と異なるよう、確保部10の長さを調節すれば良いのである。また、基体上もしくは基体内部に複数の放射電極を設けたマルチバンド式のアンテナの場合、高周波に伴って放射電極の相互間の静電結合が強くなるためアイソレーションの劣化が起こりやすい。さらに、チップアンテナ基体の誘電率による波長短縮効果によって、比誘電率が大きいほど放射電極が短くなり小形化を図れるものの、反面、放射電極相互間の静電容量が大きくなるため、アイソレーションが劣化し易くなることを実験により明らかにした。この問題を解決するためには、放射電極相互の間隔を大きくしアイソレーションを増加するのが望ましいが、限られたアンテナ体積により制約がある。従って、アイソレーションと小形化のトレードオフの問題を解決するため、本実施例に示すようなアンテナ構造の発明に至り、アイソレーション確保部10の最適条件を求めた。例えば、上述したようにチップアンテナの基体の比誘電率をEr、第1の放射電極12と第2の放射電極16のうち、比較的高い共振周波数をfh[Hz]を対象としてアイソレーションを選び、第1の放射電極12と第2の放射電極16との間隔(アイソレーション確保部)10の長さをWa[m]とすると、次式が得られることを見出した。
Wa>(3×10)/fh×√Er/100
例えば、北米の携帯電話で使われる最も高い周波数帯fh=1.9[GHz]、チップアンテナ基体のEr=8とし、これらを上式に代入すると、Wa>4.5[mm]が得られる。ここでは実施例として、アイソレーション確保部10の長さWaを5mmに設定している。
An interval (isolation securing portion) 10 for securing isolation is provided between the first radiation electrode 12 and the second radiation electrode 16 so that interference between these resonance circuits does not occur. Yes. Capacitance is generated between the radiation electrode 12 and the radiation electrode 16 or the power feeding electrode via the isolation securing section 10, and the isolation decreases as the capacitance increases. Therefore, in order to reduce the capacitance and increase the isolation, it is sufficient to make the securing portion 10 long, but it is not preferable because the antenna becomes large. In order to solve this problem, the inventors have found the conditions for the isolation securing section as described below. That is, since the first radiating electrode and the second radiating electrode are coupled in series via the isolation securing unit 10, the series resonance frequency fo is different from the resonance frequency of the antenna having each radiating electrode. The length of the securing part 10 may be adjusted. Further, in the case of a multiband antenna provided with a plurality of radiation electrodes on or inside the substrate, the electrostatic coupling between the radiation electrodes becomes stronger with high frequency, so that the isolation is likely to deteriorate. Furthermore, due to the wavelength shortening effect due to the dielectric constant of the chip antenna substrate, the larger the relative dielectric constant, the shorter the radiation electrode and the smaller the size. However, the capacitance between the radiation electrodes increases, but the isolation deteriorates. It became clear by experiment that it became easy to do. In order to solve this problem, it is desirable to increase the distance between the radiation electrodes and increase the isolation, but there are limitations due to the limited antenna volume. Therefore, in order to solve the problem of the trade-off between isolation and miniaturization, the present invention of the antenna structure as shown in the present embodiment has been reached, and the optimum conditions for the isolation securing unit 10 have been obtained. For example, as described above, the dielectric constant of the substrate of the chip antenna is Er, and the first radiating electrode 12 and the second radiating electrode 16 are selected with the relatively high resonance frequency as the target for fh [Hz]. When the length of the distance (isolation securing portion) 10 between the first radiation electrode 12 and the second radiation electrode 16 is Wa [m], it has been found that the following equation is obtained.
Wa> (3 × 10 8 ) / fh × √Er / 100
For example, if the highest frequency band fh = 1.9 [GHz] used in North American mobile phones and Er = 8 of the chip antenna base are substituted into the above equation, Wa> 4.5 [mm] is obtained. . Here, as an example, the length Wa of the isolation securing portion 10 is set to 5 mm.

また、本発明のアンテナ装置は、実装基板に搭載したチップアンテナと、チップアンテナと同じ搭載面又はその対向面に形成した第3の放射電極とを組み合わせることにより、例えばチップアンテナに形成した第1の放射電極により第1の周波数帯域(高帯域側)で共振するようにし、さらに、この第1の放射電極から実装基板上の第3の放射電極を経由して流れる共振電流により第2の周波数帯域(低帯域側)で共振するようにしてデュアルバンド対応となすことができる。さらに、チップアンテナの他方に形成した第2の放射電極により第3の周波数帯域(高帯域側)で共振するようにする。よって、トリプルバンドに用いることができる。
ここで、デュアルバンドの共振モードについては、第1の放射電極の自己インダクタンスと、第1の放射電極と実装基板のグランド電極との間の静電容量と第1の放射電極と第3の放射電極との間の静電容量とで構成されるLC共振回路により、第1の共振モードが得られ、一方、第3の放射電極の自己インダクタンスと、第3の放射電極とグランド電極との間の静電容量と、第1の放射電極と第3の放射電極との間の静電容量と、さらに第3の放射電極の開放端と給電電極との間の静電容量とで構成されるLC共振回路により、第2の共振モードが得られる。第3の放射電極の開放端を給電電極側に近づけると、2つの共振モードが確実に得られるので好ましい。このとき、2共振モード間でのアイソレーションをとるために、第3の放射電極は実装基板の裏面に設ける方が良い。何故ならば第3の放射電極を裏面に形成した場合、導体パターンは基板を介して放射電極として機能するので、基板の厚さだけ第1の放射電極と第3の放射電極との幾何学的距離が大きくなり、両者間の静電容量が減少する。その分両者間の結合が弱まるのでアイソレーションを確保でき、同時に帯域幅も広がる。例えば、約3 mmの厚さのチップアンテナを約0.6 mmの厚さの基板(比誘電率εr=5の銅張積層基板)に実装すると、静電容量を形成する電極間の間隔は3.6 mmになる。その結果、第3の放射電極と第1の放射電極との結合は弱まり、さらに広帯域化がなされる。
Further, the antenna device of the present invention combines, for example, a chip antenna mounted on a mounting substrate and a third radiation electrode formed on the same mounting surface as the chip antenna or on the surface facing the chip antenna. The resonance electrode is configured to resonate in the first frequency band (high band side), and further, the second frequency is generated by the resonance current flowing from the first radiation electrode via the third radiation electrode on the mounting substrate. Dual band support can be achieved by resonating in the band (low band side). Further, the second radiation electrode formed on the other side of the chip antenna is caused to resonate in the third frequency band (high band side). Therefore, it can be used for a triple band.
Here, for the dual-band resonance mode, the self-inductance of the first radiation electrode, the capacitance between the first radiation electrode and the ground electrode of the mounting substrate, the first radiation electrode, and the third radiation. The first resonance mode is obtained by the LC resonance circuit composed of the capacitance between the electrode and the electrode, while the self-inductance of the third radiation electrode and between the third radiation electrode and the ground electrode. , A capacitance between the first radiation electrode and the third radiation electrode, and a capacitance between the open end of the third radiation electrode and the feeding electrode. A second resonance mode is obtained by the LC resonance circuit. It is preferable to bring the open end of the third radiation electrode closer to the feeding electrode side because two resonance modes can be obtained with certainty. At this time, in order to achieve isolation between the two resonance modes, the third radiation electrode is preferably provided on the back surface of the mounting substrate. This is because when the third radiating electrode is formed on the back surface, the conductor pattern functions as a radiating electrode through the substrate. Therefore, the geometrical relationship between the first radiating electrode and the third radiating electrode is equal to the thickness of the substrate. The distance increases and the capacitance between them decreases. As a result, the coupling between the two is weakened, so that isolation can be secured and the bandwidth is increased at the same time. For example, when a chip antenna with a thickness of about 3 mm is mounted on a substrate with a thickness of about 0.6 mm (a copper-clad laminate with a relative dielectric constant εr = 5), the distance between the electrodes forming the capacitance is 3.6 mm. become. As a result, the coupling between the third radiating electrode and the first radiating electrode is weakened, and the bandwidth is further increased.

さて、本実施例のアンテナ装置100は、実装基板20の非グランド部22a上にチップアンテナ1を実装することにより第1の放射電極12による、例えばPCS(1.9GHz)帯の共振と、第1の放射電極12と第3の放射電極3による、例えばセルラ(0.8GHz)帯の共振の帯域をカバーするデュアルバンドを送受信するアンテナとなしている。一方、逆Fタイプの第2の放射電極16はシングルバンド、例えばGPS(1.5GHz帯)を受信するアンテナとなし、合わせてトリプルバンドアンテナを構成している。よって、デュアルバンドアンテナ部分は第1の給電電源51から給電することにより、セルラとPCSをカバーする周波数帯で共振し、放射抵抗分がアンテナより空中に放射される。逆に受信波は共振回路を介して電圧に変換される。一方、シングルバンドアンテナ部分はGPSの受信専用となっており、受信波が共振回路を介して電圧に変換される。本例ではそれぞれの電源を並列に機能させる2電源構造をとっている。この他には両アンテナの送受信を切り換えるスイッチ回路を設けて1電源で共用することが考えられる。しかしこの場合、スイッチやアンテナ共用器を用いて、セルラ、PCS及びGPSの搬送信号をそれぞれ分離する必要があるので、電力損失や信号の歪(スプリアス)が生じるし、回路構成が複雑となる欠点がある。この点で2電源方式はこれら周波数分離のための回路素子を低減することができ、回路構成を簡素化して高信頼性かつ高効率の無線装置を実現できる点で望ましい。
また、デュアルバンドの送信信号、とりわけGPS帯に近いPCSや、セルラから発せられる高調波の送信信号の一部がGPS側に漏れるアイソレーション障害を起こすことがある。マルチバンドを有するアンテナにおいて、アイソレーションの向上のためにより高い共振周波数を対象とするのが一般であるが、前記GPSアンテナのように受信専用の周波数帯域に合わせアイソレーションを改善する場合もある。このときアイソレーション特性を十分得るためには上記したように第1の放射電極と第2の放射電極間の間隔を所定量確保することがまず必要である。さらにここで電源を2つに分けて干渉を避けると言う回避手段も有効であり、この場合は2電源方式が好ましい。
Now, the antenna device 100 according to the present embodiment is configured such that, for example, PCS (1.9 GHz) band resonance by the first radiating electrode 12 by mounting the chip antenna 1 on the non-ground portion 22a of the mounting substrate 20, and the first For example, the antenna is configured to transmit and receive a dual band covering the resonance band of the cellular (0.8 GHz) band, for example, by the radiation electrode 12 and the third radiation electrode 3. On the other hand, the second radiation electrode 16 of the inverted F type serves as a single band antenna, for example, a GPS (1.5 GHz band) receiving antenna, and constitutes a triple band antenna together. Therefore, when the dual-band antenna portion is fed from the first feeding power source 51, it resonates in a frequency band covering cellular and PCS, and the radiation resistance is radiated from the antenna into the air. Conversely, the received wave is converted into a voltage via the resonance circuit. On the other hand, the single-band antenna part is dedicated to GPS reception, and the received wave is converted into a voltage via a resonance circuit. In this example, a dual power supply structure is used in which the respective power supplies function in parallel. In addition to this, it is conceivable to provide a switch circuit for switching between transmission and reception of both antennas and share them with one power source. However, in this case, it is necessary to separate the cellular, PCS, and GPS carrier signals using a switch or antenna duplexer, so that power loss and signal distortion (spurious) occur and the circuit configuration is complicated. There is. In this respect, the dual power supply system is desirable in that it can reduce circuit elements for frequency separation, and can realize a highly reliable and highly efficient wireless device by simplifying the circuit configuration.
In addition, a dual band transmission signal, in particular, a PCS close to the GPS band or a part of a harmonic transmission signal emitted from a cellular may cause an isolation failure that leaks to the GPS side. In an antenna having a multiband, a higher resonance frequency is generally targeted for improvement of isolation, but isolation may be improved in accordance with a dedicated reception frequency band like the GPS antenna. At this time, in order to obtain sufficient isolation characteristics, it is first necessary to secure a predetermined amount of the space between the first radiation electrode and the second radiation electrode as described above. Furthermore, an avoiding means of dividing the power supply into two parts to avoid interference is also effective. In this case, a two-power supply system is preferable.

また、シングルバンド対応、又は一つの共振で比較的近い複数の帯域をカバーするデュアルバンド対応の場合、表面実装型のチップアンテナが好ましい。図3(a)〜(c)はチップアンテナ1に設ける第1の放射電極12あるいは第2の放射電極16の好ましい形状を示している。図面上は1つの放射電極しか図示していないが、このような放射電極構造を並列的に設けることができると言う意味である。上記実施例では、図3(a) のヘリカルタイプのモノポールアンテナを用いたが、代わりに、L字状(図3(b))、コ字状又はクランク状の放射電極や、図3(c) に示すようなミアンダ状放射電極、又はそれらの組合せを用いることができる。また放射電極を台形状、階段状、曲線状等にしても良い。ヘリカル又はミアンダ構造の場合、放射電極が長くなり、低い共振周波数まで対応できるし、第3の放射電極と組み合わせることにより、さらに低い周波数まで対応できる。尚、本発明においては、第1、第2の放射電極と、第1、第2の給電用電極と、端子電極と、グランド電極などとそれぞれ機能的な名称を付しているが、実際にはこれらの電極はパターン印刷により一体形成するので外見上区別されるものではない。   Further, in the case of single band support or dual band support that covers a plurality of relatively close bands by one resonance, a surface mount type chip antenna is preferable. FIGS. 3A to 3C show a preferable shape of the first radiation electrode 12 or the second radiation electrode 16 provided on the chip antenna 1. Although only one radiation electrode is shown in the drawing, this means that such a radiation electrode structure can be provided in parallel. In the above embodiment, the helical monopole antenna of FIG. 3 (a) was used, but instead, an L-shaped (FIG. 3 (b)), U-shaped or crank-shaped radiation electrode, FIG. A meandering radiation electrode as shown in c) or a combination thereof can be used. The radiation electrode may be trapezoidal, stepped, curved or the like. In the case of a helical or meander structure, the radiation electrode becomes long and can cope with a low resonance frequency, or by combining with the third radiation electrode, it can cope with a lower frequency. In the present invention, functional names such as the first and second radiation electrodes, the first and second power supply electrodes, the terminal electrode, and the ground electrode are given. Since these electrodes are integrally formed by pattern printing, they are not distinguished in appearance.

本発明のアンテナ装置において、第1の放射電極と第3の放射電極との間には端子電極を設けている。このとき第1の放射電極の一端と端子電極との間、また端子電極と第2の放射電極との間はそれぞれ直接接続した構造をとることも出来るし、あるいは非接続の構造をとることもできる。前者の場合、第1の放射電極と端子電極は区別せず一体の導体パターンで構成すれば良いし、第3の放射電極との間は半田等で電気的に接続すればよい。また、第3の放射電極を基板裏面に設けた場合はスルーホールを用いると簡便で確実である。この場合もスルーホール内に半田等を充填しても良いし、しなくても良い。一方、後者の非接続の場合は、容量結合を形成し電極間の静電容量は逆に増加する。本発明は小型化を図りつつ放射電極間の容量結合量を調整するものであるが、この場合は小型化の観点から容量結合を増加させ放射電極の長さを短くしてチップアンテナ自体を小型にすることを意図している。
また、場合によっては、第1、第2の放射電極の一端とそれぞれの給電用電極との間を非接続に形成して容量結合を図ることも出来る。この場合の意図は、給電電極と放射電極に直列接続した静電容量により、給電側で広帯域のインピーダンス整合を図るためである。これによって、アンテナ給電側では外付けの整合回路が不要となることから、アンテナ周辺回路の簡素や電力損失の低減が図れるため、アンテナ回路全体の効率向上を実現できる。
また、チップアンテナとグランド部の間の実装基板に溝穴を設けると、チップアンテナとグランド部との結合、及び第3の放射電極とグランド部との結合が弱くなり、帯域幅を広くする効果がある。
In the antenna device of the present invention, a terminal electrode is provided between the first radiation electrode and the third radiation electrode. At this time, the first radiating electrode and the terminal electrode, and the terminal electrode and the second radiating electrode may be directly connected, or may be disconnected. it can. In the former case, the first radiating electrode and the terminal electrode may be formed of an integral conductor pattern without being distinguished from each other, and may be electrically connected to the third radiating electrode with solder or the like. Further, when the third radiation electrode is provided on the back surface of the substrate, it is simple and reliable to use a through hole. In this case, solder or the like may be filled in the through hole. On the other hand, in the case of the latter non-connection, capacitive coupling is formed and the capacitance between the electrodes increases conversely. The present invention adjusts the amount of capacitive coupling between the radiation electrodes while reducing the size, but in this case, from the viewpoint of miniaturization, the capacitive coupling is increased, the length of the radiation electrode is shortened, and the chip antenna itself is reduced in size. Is intended to be.
In some cases, capacitive coupling can be achieved by forming the first and second radiation electrodes and the respective power feeding electrodes in a disconnected state. The intention in this case is to achieve broadband impedance matching on the power supply side by the capacitance connected in series with the power supply electrode and the radiation electrode. This eliminates the need for an external matching circuit on the antenna feeding side, so that the antenna peripheral circuit can be simplified and power loss can be reduced, so that the efficiency of the entire antenna circuit can be improved.
In addition, if a mounting hole is provided in the mounting substrate between the chip antenna and the ground portion, the coupling between the chip antenna and the ground portion and the coupling between the third radiation electrode and the ground portion are weakened, and the bandwidth is widened. There is.

チップアンテナの基体11の材質は、誘電体、磁性体又はそれらの混合物である。また誘電体あるいは磁性体とプラスチック等の樹脂とガラスの混合材を用いて形成しても良い。基体11が誘電体や磁性体からなる場合、波長短縮効果によりチップアンテナ1を小型化できる。例えば比誘電率εr=8のアルミナ系誘電体を用いることができる。アルミナ系誘電体は、主成分がAl、Si、Sr及びTiの酸化物からなり、主成分の合計を100質量%として、10〜60質量%(Al2O3換算)のAl、25〜60質量%(SiO2換算)のSi、7.5〜50質量%(SrO換算)のSr、20質量%以下(TiO2換算)のTiを含有し、さらに副成分として、0.1〜10質量%(Bi2O3換算)のBi、0.1〜5質量%(Na2O換算)のNa、0.1〜5質量%(K2O換算)のK、0.1〜5質量%(CoO換算)のCoの少なくとも1種を含有しても良い。
基体11が磁性体からなる場合、インダクタンスが大きいため、さらにチップアンテナ1を小型化できるとともに、アンテナのQ値が低下し、広帯域化できる。
基体11が誘電体と磁性体の混合物からなる場合、波長短縮効果によるアンテナの小型化と、アンテナのQ値の低下による広帯域化が可能である。
この実施例では、基体11の寸法は、例えば幅3mm、長さ30 mm、厚さ3 mmである。同じ特性を有する携帯電話用アンテナを、従来技術である板金状アンテナを実現するために必要な寸法は幅12mm、長さ34mm、厚さ8mm程度となり、本発明のアンテナによる小形化を実現できた。
チップアンテナ10のインピ−ダンス整合は、給電線とチップアンテナ1の間に整合回路(図示せず)を挿入することにより調整できる。また第3の放射電極3の導体パターンの幅及び長さ、第2の放射電極3と実装基板20との距離(基板厚さ)の調整等により、インピーダンス整合をとることもできる。
線状導体パターンは印刷により形成するのが望ましいが、線の幅及び長さには制限はない。また導体パターンは線状に限られず、アンテナ装置の要求特性に応じて四角形、台形、三角形等の種々の形状とすることができる。導体パターンは板金やフレキシブル基板等で形成しても良い。板金を用いる場合、銅張り基板のエッチング工程を省略できる。フレキシブル基板を用いる場合、実装設計の自由度が高い。
The material of the substrate 11 of the chip antenna is a dielectric, a magnetic material, or a mixture thereof. Alternatively, a dielectric material or a magnetic material may be formed using a mixed material of resin such as plastic and glass. When the substrate 11 is made of a dielectric or magnetic material, the chip antenna 1 can be downsized due to the wavelength shortening effect. For example, an alumina-based dielectric having a relative dielectric constant εr = 8 can be used. The alumina-based dielectric is composed of oxides of Al, Si, Sr, and Ti as main components, and the total of the main components is 100% by mass, and 10 to 60% by mass (in terms of Al 2 O 3 ) Al, 25 to 60 It contains Si by mass% (SiO 2 equivalent), 7.5-50 mass% (SrO equivalent) Sr, 20 mass% or less (TiO 2 equivalent) Ti, and further contains 0.1-10 mass% (Bi 2 Bi of O 3 conversion), 0.1-5 mass% (Na 2 O conversion) Na, 0.1-5 mass% (K 2 O conversion) K, 0.1-5 mass% (CoO conversion) Co at least one kind May be contained.
When the substrate 11 is made of a magnetic material, the inductance is large, so that the chip antenna 1 can be further reduced in size, and the Q value of the antenna can be reduced, so that the bandwidth can be increased.
When the substrate 11 is made of a mixture of a dielectric and a magnetic material, it is possible to reduce the size of the antenna due to the wavelength shortening effect and to increase the bandwidth by reducing the Q value of the antenna.
In this embodiment, the dimensions of the base 11 are, for example, a width of 3 mm, a length of 30 mm, and a thickness of 3 mm. The cell phone antenna having the same characteristics has dimensions of about 12 mm in width, 34 mm in length, and 8 mm in thickness to realize a conventional sheet metal antenna. Thus, the antenna of the present invention can be miniaturized. .
The impedance matching of the chip antenna 10 can be adjusted by inserting a matching circuit (not shown) between the feed line and the chip antenna 1. Impedance matching can also be achieved by adjusting the width and length of the conductor pattern of the third radiation electrode 3 and the distance (substrate thickness) between the second radiation electrode 3 and the mounting substrate 20.
The linear conductor pattern is preferably formed by printing, but the width and length of the line are not limited. The conductor pattern is not limited to a linear shape, and may be various shapes such as a square, a trapezoid, and a triangle according to the required characteristics of the antenna device. The conductor pattern may be formed of a sheet metal or a flexible substrate. When sheet metal is used, the etching process of the copper-clad substrate can be omitted. When a flexible substrate is used, the degree of freedom in mounting design is high.

次に、特性評価について説明する。図1に示すアンテナ装置100のアンテナ特性として、ネットワークアナライザから入力する信号を用いて、上記実施例1について0.75〜2.2 GHzの周波数範囲でVSWR(電圧定在波比)を測定した。VSWRは、アンテナと送信機(又は受信機)との間での反射の大きさを表す指数である。最も反射が小さい場合、VSWR=1で、送信機からの供給電力は全く反射せずアンテナに送り出される。逆に最も反射が大きい場合、VSWRは無限大であり、供給電力は完全に反射され、無効電力となる。
アンテナ測定用の実装基板の一端に設けた給電端子とネットワークアナライザの入力端子とを同軸ケーブル(特性インピーダンス50Ω)を介して接続し、前記給電端子においてネットワークアナライザ側から見たアンテナの散乱パラメータ(Scattering Parameter)を測定し、VSWRを算出した。
図4は周波数とVSWR(電圧定在波比)との関係を、横軸に周波数、縦軸にVSWRで示している。点線は求められる帯域幅を表しており、VSWR=3において帯域幅を満足していれば良い。図4の結果をみるとセルラ帯域で若干劣るものの、PCS帯域、GPS帯域では十分満足しており、実質的に問題のないアンテナ特性といえる。
図5はアイソレーションの測定結果を示す。ネットワークアナライザを用いて2つのアンテナの給電電極にポート1とポート2を接続し、S21特性を測定してものである。セルラ帯域でのアイソレーションは良好であり、GPS帯域、PCS帯域でもアイソレーション10dBを満足している。そして無線装置に実装した状態で通信試験を行った結果、実用上問題ないことを確認した。
Next, characteristic evaluation will be described. As the antenna characteristics of the antenna device 100 shown in FIG. 1, a VSWR (voltage standing wave ratio) was measured in the frequency range of 0.75 to 2.2 GHz for Example 1 using a signal input from a network analyzer. VSWR is an index representing the magnitude of reflection between an antenna and a transmitter (or receiver). When reflection is the smallest, VSWR = 1 and the power supplied from the transmitter is not reflected at all and sent to the antenna. Conversely, when the reflection is the largest, the VSWR is infinite, and the supplied power is completely reflected and becomes reactive power.
Connecting the feeding terminal provided at one end of the mounting board for antenna measurement and the input terminal of the network analyzer via a coaxial cable (characteristic impedance 50Ω), the scattering parameter of the antenna as seen from the network analyzer side at the feeding terminal (Scattering Parameter) was measured and VSWR was calculated.
FIG. 4 shows the relationship between frequency and VSWR (voltage standing wave ratio) with frequency on the horizontal axis and VSWR on the vertical axis. The dotted line represents the required bandwidth, and it is sufficient that the bandwidth is satisfied at VSWR = 3. The results shown in FIG. 4 are slightly inferior in the cellular band, but are sufficiently satisfied in the PCS band and the GPS band, and can be said to have substantially no problem antenna characteristics.
FIG. 5 shows the measurement results of isolation. The port 21 and the port 2 are connected to the feeding electrodes of the two antennas using a network analyzer, and the S21 characteristic is measured. Isolation in the cellular band is good, and the GPS band and PCS band also satisfy the isolation of 10 dB. As a result of conducting a communication test in a state where it was mounted on a wireless device, it was confirmed that there was no practical problem.

次に、アンテナ装置を折り畳み携帯電話に実装する場合、液晶ディスプレイ側の実装基板に配置することも可能であるし、スピーカの周辺部、あるいはマイクの周辺部に実装することも可能である。しかし、どちらにしても実装基板の裏側に配置することが望ましい。その方が人体頭部からの距離も遠くなるし、また、携帯電話を閉じている場合と開いた場合との両方の場合で、液晶ディスプレイ、スピーカ、マイク等の干渉部品から遠ざかって配置することが出来るのでアンテナ特性に与える影響が少なくなる。
また、携帯電話から放射される電磁波(高周波の電界強度)から人体頭部が近接した状態では一部の電磁波が人体に吸収される。この人体での吸収された電磁波の影響により、頭部方向の空間に放射される電磁波が弱められることから、この方向で利得の低下が起こるといった問題がある。さらに人体の電磁波吸収により、最近では健康への悪影響が懸念されており、比吸収率(SAR)の法的規制が行われている。人体の電磁波吸収効果による利得低下を抑止すると共にSAR値の低減を図るためには、チップアンテナで発生する電界を人体頭部から出来る限り離すことが最も効果的な手段であり、これにはチップアンテナを人体頭部と反対面に実装することが好ましい。
Next, when the antenna device is folded and mounted on a mobile phone, it can be placed on a mounting substrate on the liquid crystal display side, or can be mounted on the periphery of a speaker or the periphery of a microphone. However, in any case, it is desirable to dispose on the back side of the mounting substrate. The distance from the head of the human body will be far away, and the mobile phone should be placed away from interference components such as liquid crystal displays, speakers, and microphones, both when the phone is closed and when it is opened. Can reduce the influence on the antenna characteristics.
Further, a part of the electromagnetic wave is absorbed by the human body when the human head is close to the electromagnetic wave (high-frequency electric field strength) radiated from the mobile phone. Due to the influence of the electromagnetic waves absorbed by the human body, the electromagnetic waves radiated to the space in the head direction are weakened, and there is a problem that the gain decreases in this direction. Furthermore, due to the absorption of electromagnetic waves by the human body, there has recently been a concern about adverse health effects, and a specific regulation of specific absorption rate (SAR) has been implemented. In order to suppress the gain reduction due to the electromagnetic wave absorption effect of the human body and reduce the SAR value, it is the most effective means to separate the electric field generated by the chip antenna from the human head as much as possible. It is preferable to mount the antenna on the surface opposite to the human head.

本発明に係るアンテナ装置によれば、帯域幅の広いアンテナ装置を得ることができマルチバンド化することが容易である。例えば、GSM(0.9GHz帯)+GPS+PCS(1.8GHz帯)+DCS(1.9GHz帯)、セルラ(0.8GHz帯)+PCS(1.9GHz帯)+GPS(1.5GHz帯)+W−CDMA(2GHz帯)などの携帯電話や、広帯域CDMA(Code Division Multiple access 2GHz帯)、802.11a(5GHz帯)+802.11b(2.4GHz帯)の無線LAN、あるいはデジタルTV放送、UWB(Ultra Wide Band)などの通信機器に使用することができる。   According to the antenna device of the present invention, an antenna device with a wide bandwidth can be obtained, and it is easy to make a multiband. For example, mobile phones such as GSM (0.9 GHz band) + GPS + PCS (1.8 GHz band) + DCS (1.9 GHz band), cellular (0.8 GHz band) + PCS (1.9 GHz band) + GPS (1.5 GHz band) + W-CDMA (2 GHz band) And broadband CDMA (Code Division Multiple access 2 GHz band), 802.11a (5 GHz band) + 802.11b (2.4 GHz band) wireless LAN, digital TV broadcasting, UWB (Ultra Wide Band) and other communication equipment can do.

本発明に係るアンテナ装置によると、帯域幅の広いものを得ることができる。従って、このアンテナ装置を携帯電話に限らず、携帯端末、パソコン、自動車等の内部に搭載するGPS機器や無線LAN他、あらゆる無線通信機器への利用が可能である。   With the antenna device according to the present invention, a device with a wide bandwidth can be obtained. Therefore, this antenna device can be used not only for mobile phones but also for various wireless communication devices such as GPS devices and wireless LANs installed in mobile terminals, personal computers, automobiles and the like.

本発明に係るアンテナ装置の1実施例を示す斜視図である。It is a perspective view which shows one Example of the antenna device which concerns on this invention. 本発明に係るアンテナ装置を示す図1の平面図である。It is a top view of FIG. 1 which shows the antenna apparatus which concerns on this invention. 本発明に係るアンテナ装置に用いるチップアンテナの他の例を示す斜視図である。It is a perspective view which shows the other example of the chip antenna used for the antenna apparatus which concerns on this invention. 本発明に係るアンテナ装置の1実施例における周波数‐VSWR特性曲線図である。It is a frequency-VSWR characteristic curve figure in one Example of the antenna apparatus which concerns on this invention. 本発明に係るアンテナ装置の1実施例におけるアイソレーション特性図である。It is an isolation characteristic figure in one Example of the antenna device which concerns on this invention. 従来のアンテナ装置の一例を示す斜視図である。It is a perspective view which shows an example of the conventional antenna device.

符号の説明Explanation of symbols

1:チップアンテナ、2:実装基板、3:第3の放射電極、10:アイソレーション確保部、11:基体、12:第1の放射電極、13:第1の給電用電極、14:端子電極、15、18、30:開放端、16:第2の放射電極、17:第2の給電電極、21a、21b:実装基板のグランド部、22a、22b:実装基板の非グランド部、43:グランド電極、41、42:接続用電極、51:第1の供給電源、52:第2の供給電源、100:アンテナ装置 1: chip antenna, 2: mounting substrate, 3: third radiation electrode, 10: isolation securing part, 11: base, 12: first radiation electrode, 13: first feeding electrode, 14: terminal electrode 15, 18, 30: open end, 16: second radiation electrode, 17: second power supply electrode, 21a, 21b: ground portion of the mounting board, 22a, 22b: non-ground portion of the mounting board, 43: ground Electrode, 41, 42: Connection electrode, 51: First power supply, 52: Second power supply, 100: Antenna device

Claims (6)

グランド部及び非グランド部を有する実装基板と、
基体の一方側に形成された第1の放射電極と、前記第1の放射電極の一端に接続又は非接続にされた第1の給電電極と、前記基体の他方側に形成された第2の放射電極と、前記第2の放射電極の一端に接続又は非接続にされた第2の給電電極と、を有するチップアンテナと、
前記実装基板の非グランド部に導体パターンで形成された少なくとも1つの第3の放射電極とを有し、
前記第3の放射電極は、その一端が前記非グランド部に搭載された前記チップアンテナの第1の放射電極又は第2の放射電極の他端に接続又は非接続とされ、他端が開放端であることを特徴とするアンテナ装置。
A mounting substrate having a ground part and a non-ground part;
A first radiation electrode formed on one side of the substrate; a first power supply electrode connected to or disconnected from one end of the first radiation electrode; and a second electrode formed on the other side of the substrate. A chip antenna having a radiation electrode and a second feeding electrode connected or disconnected to one end of the second radiation electrode;
Having at least one third radiation electrode formed in a conductor pattern on a non-ground portion of the mounting substrate;
The third radiating electrode has one end connected to or disconnected from the other end of the first radiating electrode or the second radiating electrode of the chip antenna mounted on the non-ground portion, and the other end being an open end. An antenna device characterized by the above.
前記第1の放射電極と第2の放射電極との間にアイソレーションを確保するための間隔を設けたことを特徴とする請求項1に記載のアンテナ装置。 The antenna device according to claim 1, wherein an interval for ensuring isolation is provided between the first radiating electrode and the second radiating electrode. 前記第3の放射電極は、前記実装基板のチップアンテナ搭載面と対向する面の非グランド部に形成されてなることを特徴とする請求項1又は2に記載のアンテナ装置。 3. The antenna device according to claim 1, wherein the third radiation electrode is formed on a non-ground portion of a surface of the mounting substrate that faces the chip antenna mounting surface. 前記チップアンテナ搭載面と前記対向する面のそれぞれ非グランド部に形成されてなる第1または第2の放射電極と第3の放射電極との接続をスルーホールで行うことを特徴とする請求項3に記載のアンテナ装置。 4. The through-hole is used to connect the first or second radiation electrode formed on the non-ground portion of each of the chip antenna mounting surface and the opposing surface and the third radiation electrode. The antenna device according to 1. 前記第1の給電電極と第2の給電電極のそれぞれに電源回路を設けたことを特徴とする請求項1〜4の何れかに記載のアンテナ装置。 The antenna device according to claim 1, wherein a power supply circuit is provided for each of the first feeding electrode and the second feeding electrode. 請求項1〜5の何れかに記載のアンテナ装置を搭載したことを特徴とする通信機器。
A communication device comprising the antenna device according to claim 1.
JP2005025051A 2005-02-01 2005-02-01 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME Expired - Fee Related JP4534199B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025051A JP4534199B2 (en) 2005-02-01 2005-02-01 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025051A JP4534199B2 (en) 2005-02-01 2005-02-01 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2009162715A Division JP4968598B2 (en) 2009-07-09 2009-07-09 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME

Publications (2)

Publication Number Publication Date
JP2006217026A true JP2006217026A (en) 2006-08-17
JP4534199B2 JP4534199B2 (en) 2010-09-01

Family

ID=36979905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025051A Expired - Fee Related JP4534199B2 (en) 2005-02-01 2005-02-01 ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME

Country Status (1)

Country Link
JP (1) JP4534199B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836536B1 (en) 2006-12-21 2008-06-10 한국과학기술원 Sip(system-in-package) having reduced effect on antenna by conductor and method for designing sip thereof
JP2008160469A (en) * 2006-12-22 2008-07-10 Tdk Corp Antenna system, its mounting method and antenna mounting board
JP2008252506A (en) * 2007-03-30 2008-10-16 Murata Mfg Co Ltd Antenna and radio communication equipment
JP2008252507A (en) * 2007-03-30 2008-10-16 Murata Mfg Co Ltd Antenna and wireless communication device
WO2010073421A1 (en) * 2008-12-25 2010-07-01 パナソニック株式会社 Portable wireless device
JP2011018999A (en) * 2009-07-07 2011-01-27 Furukawa Electric Co Ltd:The Radio communication device
JP2011188020A (en) * 2010-03-04 2011-09-22 Tdk Corp Helical antenna
JP2012182791A (en) * 2011-03-01 2012-09-20 Apple Inc Multi-element antenna structure with wrapped substrate
WO2014129147A1 (en) * 2013-02-20 2014-08-28 Necアクセステクニカ株式会社 Antenna device and method for designing same
US9093745B2 (en) 2012-05-10 2015-07-28 Apple Inc. Antenna and proximity sensor structures having printed circuit and dielectric carrier layers
CN112531343A (en) * 2020-12-01 2021-03-19 维沃移动通信有限公司 Antenna system and electronic equipment

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162624A (en) * 1995-12-06 1997-06-20 Murata Mfg Co Ltd Chip antenna
JPH11127014A (en) * 1997-10-23 1999-05-11 Mitsubishi Materials Corp Antenna system
JPH11330830A (en) * 1998-03-18 1999-11-30 Murata Mfg Co Ltd Antenna device and portable radio equipment using the device
JP2001077619A (en) * 1999-09-01 2001-03-23 Mitsubishi Electric Corp Active antenna
JP2004304783A (en) * 2003-03-20 2004-10-28 Hitachi Metals Ltd Surface mount type chip antenna, antenna system, and communication device mounted with the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09162624A (en) * 1995-12-06 1997-06-20 Murata Mfg Co Ltd Chip antenna
JPH11127014A (en) * 1997-10-23 1999-05-11 Mitsubishi Materials Corp Antenna system
JPH11330830A (en) * 1998-03-18 1999-11-30 Murata Mfg Co Ltd Antenna device and portable radio equipment using the device
JP2001077619A (en) * 1999-09-01 2001-03-23 Mitsubishi Electric Corp Active antenna
JP2004304783A (en) * 2003-03-20 2004-10-28 Hitachi Metals Ltd Surface mount type chip antenna, antenna system, and communication device mounted with the same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100836536B1 (en) 2006-12-21 2008-06-10 한국과학기술원 Sip(system-in-package) having reduced effect on antenna by conductor and method for designing sip thereof
JP2008160469A (en) * 2006-12-22 2008-07-10 Tdk Corp Antenna system, its mounting method and antenna mounting board
JP2008252506A (en) * 2007-03-30 2008-10-16 Murata Mfg Co Ltd Antenna and radio communication equipment
JP2008252507A (en) * 2007-03-30 2008-10-16 Murata Mfg Co Ltd Antenna and wireless communication device
JP4661816B2 (en) * 2007-03-30 2011-03-30 株式会社村田製作所 Antenna and wireless communication device
WO2010073421A1 (en) * 2008-12-25 2010-07-01 パナソニック株式会社 Portable wireless device
JP2011018999A (en) * 2009-07-07 2011-01-27 Furukawa Electric Co Ltd:The Radio communication device
JP4676545B2 (en) * 2009-07-07 2011-04-27 古河電気工業株式会社 Wireless communication device
JP2011188020A (en) * 2010-03-04 2011-09-22 Tdk Corp Helical antenna
JP2012182791A (en) * 2011-03-01 2012-09-20 Apple Inc Multi-element antenna structure with wrapped substrate
US8896488B2 (en) 2011-03-01 2014-11-25 Apple Inc. Multi-element antenna structure with wrapped substrate
US9093745B2 (en) 2012-05-10 2015-07-28 Apple Inc. Antenna and proximity sensor structures having printed circuit and dielectric carrier layers
WO2014129147A1 (en) * 2013-02-20 2014-08-28 Necアクセステクニカ株式会社 Antenna device and method for designing same
JP6010213B2 (en) * 2013-02-20 2016-10-19 Necプラットフォームズ株式会社 Antenna device and design method thereof
US9748641B2 (en) 2013-02-20 2017-08-29 Nec Platforms, Ltd. Antenna device and method for designing same
CN112531343A (en) * 2020-12-01 2021-03-19 维沃移动通信有限公司 Antenna system and electronic equipment
CN112531343B (en) * 2020-12-01 2023-12-05 维沃移动通信有限公司 Antenna system and electronic device

Also Published As

Publication number Publication date
JP4534199B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4534199B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
KR101071621B1 (en) Antenna device and communications apparatus comprising same
US9583824B2 (en) Multi-band wireless terminals with a hybrid antenna along an end portion, and related multi-band antenna systems
EP2648277B1 (en) Penta-band and bluetooth internal antenna and mobile communication terminal thereof
EP2575208B1 (en) Multi-band wireless terminal
US6894649B2 (en) Antenna arrangement and portable radio communication device
JP4391716B2 (en) Communication device having patch antenna
US7058434B2 (en) Mobile communication
EP1361623B1 (en) Multiple frequency bands switchable antenna for portable terminals
JP4232158B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
EP2731194A1 (en) Wireless electronic devices with a metal perimeter including a plurality of antennas
US9825352B2 (en) Wireless electronic devices including a feed structure connected to a plurality of antennas
GB2349982A (en) Antenna
KR20090033373A (en) Multiband multimode compact antenna system
JP2005528012A (en) Balanced multiband antenna device
JP2005020691A (en) Built-in antenna of mobile communications terminal
WO2014059629A1 (en) Multimode wideband antenna module and wireless terminal
JP4126664B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
JP2005535239A (en) Dual band antenna system
US20090167616A1 (en) Antenna Module, Speaker and Portable Electronic Device
JP2003283238A (en) Antenna device, communication device and method for designing the antenna device
JP4968598B2 (en) ANTENNA DEVICE AND COMMUNICATION DEVICE USING THE SAME
WO2008150760A1 (en) Adjusting the electrical ground length of a communication device
US20080129628A1 (en) Wideband antenna for mobile devices
JP2005094743A (en) Antenna system and communications apparatus using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080112

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090416

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090710

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091120

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100115

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100521

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100603

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4534199

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees