JP2006216442A - Separator for fuel cell - Google Patents

Separator for fuel cell Download PDF

Info

Publication number
JP2006216442A
JP2006216442A JP2005029055A JP2005029055A JP2006216442A JP 2006216442 A JP2006216442 A JP 2006216442A JP 2005029055 A JP2005029055 A JP 2005029055A JP 2005029055 A JP2005029055 A JP 2005029055A JP 2006216442 A JP2006216442 A JP 2006216442A
Authority
JP
Japan
Prior art keywords
flow path
width
flow
fuel cell
channel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005029055A
Other languages
Japanese (ja)
Other versions
JP4736453B2 (en
Inventor
Kenji Hamaogi
健司 濱荻
Yoshio Taruya
芳男 樽谷
Akira Seki
彰 関
Norifumi Doi
教史 土井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2005029055A priority Critical patent/JP4736453B2/en
Publication of JP2006216442A publication Critical patent/JP2006216442A/en
Application granted granted Critical
Publication of JP4736453B2 publication Critical patent/JP4736453B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To prevent the ununiformity of gas flow rate in a unit cell. <P>SOLUTION: In a separator for a fuel cell equipped with two or more parallel passage group inverting gas flow direction and a passage inverting part (length L, width W), when the number of parallel grooves on the upstream side (downstream side) of a gas flow joining point is represented by N (M), the width of the groove by W<SB>1</SB>-W<SB>N</SB>(W'<SB>1</SB>-W'<SB>M</SB>), the width of a crest by w<SB>1</SB>-w<SB>N</SB>(w'<SB>1</SB>-w'<SB>M-1</SB>), the length L and the width H satisfy the formula (wherein Re is Reynolds number of gas measured in a flow passage). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池用(ガス)セパレータに関する。より詳しくは、本発明は、固体高分子型燃料電池などの燃料電池のセパレータにおいて、燃料ガスや酸化剤ガスが流れる流路構成に改良を加えたものである。   The present invention relates to a fuel cell (gas) separator. More specifically, the present invention is an improvement of the flow path configuration in which fuel gas and oxidant gas flow in a separator of a fuel cell such as a solid polymer fuel cell.

燃料電池とは、水素を供給するアノード極側で発生するH→2H+2eと、酸素を供給するカソード極側で発生する (1/2)O2+2H+2e→HO という電気化学反応を利用して電力を取り出す装置である。燃料電池の電解質として固体高分子を用いた固体高分子型燃料電池は、低温で作動し、簡単なシステムで高出力密度が実現できるため、注目されている。 The fuel cell, hydrogen H 22H + + 2e that occurs at the anode electrode side is supplied - as occurs at oxygen supplying cathode side (1/2) O 2 + 2H + + 2e - → of H 2 O It is a device that takes out electric power using an electrochemical reaction. 2. Description of the Related Art A polymer electrolyte fuel cell using a solid polymer as an electrolyte of a fuel cell is attracting attention because it operates at a low temperature and can realize a high output density with a simple system.

燃料電池の基本構造である単セルに関して、図1を参照しながら説明する。単セルは、パーフルオロカーボンスルホン酸膜等の陽イオン伝導性のある高分子電解質膜1の両面を白金等の触媒を担持したカーボン繊維膜2で挟むことにより構成されるMEA(Membrane Electrode Assembly) を中心とする。このMEAを両側から挟み込むように多孔質体の電極3 (カソード極とアノード極) が配置されている。これらの電極は、電気化学反応により発生した電子を集める役割だけではなく、触媒層まで燃料ガス又は酸化剤ガスを拡散させる役割も持つ。従って、電極は拡散層とも呼ばれ、カーボンペーパーやカーボンクロスが用いられている。この電極の外側には、隣接するセルとのガスの流通を防ぐために、セパレータ4がそれぞれ両側に配される。   A single cell, which is the basic structure of a fuel cell, will be described with reference to FIG. The single cell comprises a MEA (Membrane Electrode Assembly) constructed by sandwiching both surfaces of a cation-conductive polymer electrolyte membrane 1 such as a perfluorocarbon sulfonic acid membrane with a carbon fiber membrane 2 carrying a catalyst such as platinum. The center. Porous electrodes 3 (cathode electrode and anode electrode) are arranged so as to sandwich the MEA from both sides. These electrodes have not only a role of collecting electrons generated by an electrochemical reaction but also a role of diffusing fuel gas or oxidant gas to the catalyst layer. Therefore, the electrode is also called a diffusion layer, and carbon paper or carbon cloth is used. On the outside of the electrode, separators 4 are arranged on both sides in order to prevent gas from flowing to adjacent cells.

一般に、セパレータは金属又はカーボン材から構成され、セパレータの電極と接する側の表面には、燃料又は酸化剤ガスを流通させるための流路5が溝状に形成されている。このセパレータ4上に形成された流路5には、図2(A)に示すような、独立した多数の直線流路からなり、全ての流路でガスが同じ方向に流れるストレート流路方式と、図2(B)に示すような、一本の流路を蛇行させ、ガス流れが交互に180°反転するのを繰り返す、サーペンタイン流路方式とがある。   In general, the separator is made of a metal or a carbon material, and a flow path 5 for flowing fuel or oxidant gas is formed in a groove shape on the surface of the separator in contact with the electrode. The flow path 5 formed on the separator 4 is composed of a number of independent straight flow paths as shown in FIG. 2A, and a straight flow path system in which gas flows in the same direction in all flow paths. As shown in FIG. 2B, there is a serpentine channel method in which a single channel is meandered and the gas flow is alternately inverted by 180 °.

ストレート流路方式は、ガス流量が多くなる高電流密度での運転時でも流路内での圧力損失はサーペンタイン流路方式に比べて小さいので、アノード側流路とカソード側流路との圧力差を小さく抑えることが可能であり、単セルの保護、電池効率の面で有利である。しかし、低電流密度での運転では、流路毎の流量が低下するため、電気化学反応に伴って発生する水を確実に除去することが困難となる。   In the straight channel method, the pressure loss in the channel is small compared to the serpentine channel method even when operating at high current density where the gas flow rate increases, so the pressure difference between the anode side channel and the cathode side channel This is advantageous in terms of protection of single cells and battery efficiency. However, in the operation at a low current density, the flow rate of each flow path is reduced, so that it is difficult to reliably remove water generated due to the electrochemical reaction.

一方、サーペンタイン流路方式では、ガス流量が少なくなる低電流密度での運転時でも、流路毎の流量が維持できるため、生成水を確実に除去することが可能であり、また、内部流速が速くなるため、内部の拡散が促進され、優れた電池特性が実現できる。しかし、高電流密度の運転時には、流量が増大するため圧力損失が大きくなり、アノード側流路とカソード側流路の圧力差を大きくなって、MEAの保護の面、ガス供給の面から問題を抱えることとなる。   On the other hand, with the serpentine channel method, the flow rate of each channel can be maintained even during operation at a low current density at which the gas flow rate is reduced, so that the generated water can be removed reliably and the internal flow rate can be reduced. Since it becomes faster, internal diffusion is promoted, and excellent battery characteristics can be realized. However, when operating at a high current density, the flow rate increases, so the pressure loss increases and the pressure difference between the anode-side channel and the cathode-side channel increases, which causes problems in terms of MEA protection and gas supply. It will be held.

このように、ストレート方式とサーペンタイン方式のいずれか単一の流路方式では、広い電池運転範囲において優れた電池特性を実現するのは困難である。そのため、上記両方式の長所を取り込むべく、図2(C)に示すような、複数の直線流路が分岐・合流を繰り返す、ストレート方式とサーペンタイン方式をミックスした流路方式(以下、ミックス流路方式とも呼ぶ)が提案されてきた。このミックス流路方式では、セパレータの一端に導入されたガスは、複数の流路に分岐してセパレータの他端に流れ (この点ではストレート方式と同じ)、そこで合流した後、サーペンタイン方式と同様に180°反転し、また複数の流れに分岐して流れるのを繰り返す。1つの流れから分岐して同じ方向にセパレータを横断して流れ、セパレータの他端で合流する複数の流路からなる群を、本発明では並行流路群と呼ぶ。従って、ミックス流路方式は、並行流路群の単位で流れが反転して蛇行を繰り返す方式であると言える。   As described above, it is difficult to realize excellent battery characteristics in a wide battery operation range by using any one of the straight type and the serpentine type. Therefore, in order to incorporate the advantages of both the above-mentioned methods, as shown in Fig. 2 (C), a plurality of straight channels repeat branching and merging, and a channel method that mixes a straight method and a serpentine method (hereinafter, mixed channel) Has also been proposed. In this mixed channel method, the gas introduced into one end of the separator branches into a plurality of channels and flows to the other end of the separator (this is the same as the straight method). Inverted 180 °, and branched into multiple flows and repeated. A group consisting of a plurality of flow paths branching from one flow and flowing across the separator in the same direction and joining at the other end of the separator is referred to as a parallel flow path group in the present invention. Therefore, it can be said that the mixed flow channel method is a method in which the flow is reversed and the meandering is repeated in units of parallel flow channel groups.

しかし、このミックス流路方式では、流路が分岐および/または合流する位置 (図2(C)にaで示す部分) において流量のバラツキが発生する可能性が高く、電池性能に影響を及ぼすおそれがある。その対策として、例えば、特開2003−77497号公報には流路が合流・分岐する部分に稠密な突起を設けた形状が、特開2000−100458号公報には直線流路を繋ぐ端部の空間をスタック方向全体に貫通させて大きな溜まり部分を設けた形式が、それぞれ提案されている。しかし、前者においては多数の突起を必要とし、この部分での圧力損失が大きくなる上、生成水の排水性の低下を招く。後者においては、マニホールド (溜り部分) に挟まれた直線流路 (並行流路群を構成する流路) の一カ所が生成水により閉塞した場合、ガスが容易に他の流路へバイパスされてしまい、閉塞した直線流路での圧力上昇が小さく、閉塞した流路の再生が極めて困難となるという欠点があった。   However, in this mixed channel method, there is a high possibility that the flow rate will vary at the position where the channel branches and / or merges (the part indicated by a in FIG. 2C), which may affect the battery performance. There is. As a countermeasure, for example, Japanese Patent Laid-Open No. 2003-77497 has a shape in which dense protrusions are provided at a portion where flow paths merge and branch, and Japanese Patent Laid-Open No. 2000-100458 has an end portion that connects straight flow paths. Each type has been proposed in which a large reservoir portion is provided by penetrating the entire space in the stacking direction. However, the former requires a large number of protrusions, and the pressure loss at this portion increases, and the drainage of the generated water is reduced. In the latter case, if one part of the straight flow path (flow path constituting the parallel flow path group) sandwiched between the manifolds (reservoir parts) is blocked by the generated water, the gas is easily bypassed to other flow paths. In other words, the pressure increase in the closed linear flow path is small, and the closed flow path is extremely difficult to regenerate.

特開2003−77497号公報JP 2003-77497 A 特開2000−100458号公報JP 2000-100458 A

本発明は、燃料電池用セパレータの上述した問題点を解決し、単セル内を通過するガスの流量が不均一となって電池性能が低下するのを防止できるセパレータを提供することを課題とする。   An object of the present invention is to provide a separator that solves the above-described problems of the separator for a fuel cell and prevents the battery performance from deteriorating due to the non-uniform flow rate of gas passing through the single cell. .

本発明によれば、ミックス流路方式の燃料電池用セパレータにおいて、並行流路群からの複数の流路が合流し、流れが反転し、複数の流路に分岐する部分の流路 (本発明では流路反転部と称する) の長さおよび幅を、並行流路群を構成する流路の溝部と山部の幅、下流側並行流路群の本数、および流路を流れるガスのレイノルズ数を変数とする関数によって決めることにより、上記課題を解決することができる。   According to the present invention, in the mixed flow path type fuel cell separator, a plurality of flow paths from the parallel flow path group merge, the flow is reversed, and the flow path is branched into the multiple flow paths (the present invention) (Referred to as the channel reversal section), the width of the grooves and peaks of the parallel flow path group, the number of downstream parallel flow path groups, and the Reynolds number of the gas flowing through the flow path The above-mentioned problem can be solved by determining by a function having a variable.

本発明は、内部にガスが流れる溝部と電極に接する山部とから構成された、燃料または酸化剤のガスを流すための複数のガス流路を有する燃料電池用セパレータに関し、該ガス流路は、ガス流動方向が交互に反転する2以上の並行流路群と、隣接する二つの並行流路群の各流路に接続している流路反転部とを備えている。本発明の燃料電池用セパレータは、該流路反転部においてガス流が合流する上流側の並行流路群の溝数をN本、その溝部の幅をW〜WN、その山部の幅をw〜wNとし、該流路反転部からガス流が分岐する下流側の並行流路群の溝数をM本、その溝部の幅をW'〜W'M、その山部の幅をw'〜w'M−1として、該流路反転部の長さLおよび幅Hが次式を満たすことを特徴とする。 The present invention relates to a fuel cell separator having a plurality of gas flow paths for flowing a fuel or oxidant gas, which are composed of a groove part through which gas flows and a peak part in contact with an electrode. And two or more parallel flow path groups in which the gas flow directions are alternately reversed, and a flow path inversion portion connected to each flow path of two adjacent parallel flow path groups. The separator for a fuel cell of the present invention has N number of grooves in the upstream parallel flow path group where the gas flows merge at the flow path inversion part, the width of the groove part is W 1 to W N , and the width of the peak part. W 1 to w N , the number of grooves in the downstream parallel flow path group from which the gas flow branches from the flow reversal part is M, the width of the groove part is W ′ 1 to W ′ M , The width is w ′ 1 to w ′ M−1 , and the length L and the width H of the flow path inversion portion satisfy the following expressions.

Figure 2006216442
Figure 2006216442

ここで、H> max(Wmean, f(M,Re)×Wmean)とは、Hが、Wmeanと(M,Re)×Wmeanのいずれか大きい方より大であることを意味する。つまり、
f(M,Re)>1.0の場合にはH>f(M,Re)×Wmeanであり、
f(M,Re)<1.0の場合にはH>Wmeanである。
Here, H> max (Wmean, f (M, Re) × Wmean) means that H is larger than Wmean or (M, Re) × Wmean, whichever is larger. That means
If f (M, Re)> 1.0, then H> f (M, Re) × Wmean,
When f (M, Re) <1.0, H> Wmean.

流路反転部の幅Hが長さL方向において変動する(例えば、上流側と下流側とで異なる)場合には、Hの最大値が上の式を満たしていればよい。
流路反転部の幅Hは、好ましくは次式を満たす。
When the width H of the channel reversal part varies in the length L direction (for example, different between the upstream side and the downstream side), the maximum value of H only needs to satisfy the above equation.
The width H of the channel inversion part preferably satisfies the following equation.

Figure 2006216442
Figure 2006216442

式中、A,B,C,Dはそれぞれ定数であり、好ましくはA=1.7、B=0.0194、C=7.621×10−4、D=−5.321×10−7 である。つまり、f(M,Re)の値は、M(下流側の並行流路群の本数)に依存する。従って、Mが大きくなって、f(M,Re)>1.0になると、Hの下限はf(M,Re)×Wmeanとなり、Mが小さく、f(M,Re)<1.0となる場合には、Hの下限はWmean (つまり、流路幅の平均値) となる。このように、Mの値に応じて、流路反転部の幅Hを設定するが、最低でも流路幅の平均値より大きくなるようにする。 In the formula, A, B, C, and D are constants, respectively, preferably A = 1.7, B = 0.0194, C = 7.621 × 10 −4 , and D = −5.321 × 10 −7 . That is, the value of f (M, Re) depends on M (the number of parallel flow path groups on the downstream side). Therefore, when M is large and f (M, Re)> 1.0, the lower limit of H is f (M, Re) × Wmean, and when M is small and f (M, Re) <1.0 , H is the lower limit Wmean (that is, the average value of the channel width). In this way, the width H of the channel inversion portion is set according to the value of M, but it is set to be at least larger than the average value of the channel width.

上流側の並行流路群に接続する部分の流路反転部である上流側流路反転部の幅Hと下流側の並行流路群に接続する部分の流路反転部である下流側流路反転部の幅Hとが次式を満たすことが好ましい。 The width HA of the upstream flow channel reversal portion that is the flow channel reversal portion of the portion connected to the upstream parallel flow channel group and the downstream flow that is the flow channel reversal portion of the portion connected to the downstream parallel flow channel group It is preferable that the width H B of the path reversal part satisfies the following formula.

Figure 2006216442
Figure 2006216442

流量のバラツキをより均一にするために、流路反転部の下流側 (即ち、下流側の並行流路群に分岐する前の流れの部分、本発明では下流側流路反転部という) に1または2以上の突起を設けてもよい。また、流路反転部の少なくとも1つのコーナー部分を、曲面および/または平面により面取りしてもよい。   In order to make the variation in the flow rate more uniform, 1 is provided on the downstream side of the flow channel inversion portion (that is, the portion of the flow before branching to the parallel flow channel group on the downstream side, referred to as the downstream flow channel reversal portion in the present invention). Alternatively, two or more protrusions may be provided. Moreover, you may chamfer the at least 1 corner part of a flow path inversion part by a curved surface and / or a plane.

本発明のセパレータの材質は、従来と同様、金属またはカーボンとすることができる。
本発明において、各並行流路群は、ガス流動方向が同一で、分岐および合流地点が共通する2以上の直線流路から構成されるが、一部の並行流路群については、1つの直線流路から構成することも可能である。
The material of the separator of the present invention can be metal or carbon as in the conventional case.
In the present invention, each parallel flow path group is composed of two or more straight flow paths having the same gas flow direction and having a common branching and merging point. It is also possible to configure from a flow path.

また、流路反転部が2以上ある場合、少なくとも1つの流路反転部が本発明に従っていればよい。もちろん、全ての流路反転部が本発明に従う方が好ましい。
本発明のセパレータは、特に固体高分子型燃料電池のセパレータに適している。但し、他の種類の燃料電池用のセパレータに適用することも本発明の範囲内である。
Moreover, when there are two or more flow path inversion parts, it is sufficient that at least one flow path inversion part conforms to the present invention. Of course, it is preferable that all the channel reversal sections follow the present invention.
The separator of the present invention is particularly suitable for a separator of a polymer electrolyte fuel cell. However, application to separators for other types of fuel cells is also within the scope of the present invention.

ミックス流路方式の燃料電池用セパレータにおいて、複数の流路が合流して分岐する部分である流路反転部の幅Hを、本発明に従って広くすることにより、流路反転部における流量のバラツキを最小限に抑え、かつ並行流路群を構成するいずれかの直線流路の流量が不均一になり、それに伴って生成水が滞留しても、この部分の圧力上昇により水が押し出されて、流路閉塞が避けられる。従って、本発明の燃料電池用セパレータは、発電量の大きい条件下でも効率的にガスを触媒層へ供給でき、かつ時間経過による電池性能の劣化を抑制することができる。   In the fuel cell separator of the mixed flow channel system, the flow rate in the flow channel inversion portion is varied by widening the width H of the flow channel inversion portion, which is a portion where a plurality of flow channels merge and branch, in accordance with the present invention. Even if the flow rate of any of the straight flow paths constituting the parallel flow path group is minimized and the generated water stays therewith, the water is pushed out by the pressure increase in this part, Blockage of the flow path is avoided. Therefore, the fuel cell separator of the present invention can efficiently supply gas to the catalyst layer even under conditions where the amount of power generation is large, and can suppress deterioration in battery performance over time.

次に、添付図面を参照しながら、本発明をより具体的に説明する。
本発明の燃料電池用セパレータは、ミックス流路方式である。従って、図2(C)に示すように、並行流路群を単位として反転を繰り返す流動方式であり、各流路反転部では、上流側の並行流路群から流れてきたガスが合流した後、流れの向きが反転して、下流側の並行流路群に分岐して流れていく。
Next, the present invention will be described more specifically with reference to the accompanying drawings.
The fuel cell separator of the present invention is a mixed channel system. Therefore, as shown in FIG. 2 (C), it is a flow system that repeats reversal in units of parallel flow channel groups, and in each flow channel reversal unit, after the gas flowing from the upstream parallel flow channel groups merges The flow direction is reversed, and the flow is branched into the parallel flow path group on the downstream side.

図3は1つの流路反転部近傍の説明図である。溝部W1、W2・・・WNと拡散層 (電極) に接する山部w1、w2・・・wNとから構成される上流側の並行流路群6の各流路 (即ち、溝部)内を矢印のように流れてきたガス (気体) は、流路合流部7で合流して、セパレータ端部の流路反転部10を混ざり合いながら流れ、次いでやはり矢印で示すように、流路分岐部9を経て、溝部W'1、W'2・・・WMと拡散層に接する山部w'1、w'2・・・wM-1とから構成される下流側の並行流路群8の各流路に分岐して流れていく。 FIG. 3 is an explanatory view of the vicinity of one flow path inversion portion. Groove W 1, W 2 ··· W N diffusion layer crests w 1 in contact with the (electrode), w 2 each flow path · · · w N and the upstream side of the parallel flow path group consisting of 6 (i.e. The gas (gas) flowing in the groove portion) as shown by the arrows joins at the flow path merging portion 7 and flows while mixing in the flow path reversing portion 10 at the end of the separator, and then again as indicated by the arrows. , through the flow path branching portion 9, the groove portions W '1, W' 2 ··· W M and ridges w in contact with the diffusion layer '1, w' downstream consists 2 · · · w M-1 Metropolitan The parallel flow path group 8 branches into each flow path and flows.

本発明においては、上流側の並行流路群6に接続する部分と下流側の並行流路群8に接続する部分とを含む流路反転部10全体の幅Hを、上記(数4)に示すように、流路を通るガスのレイノルズ数 (Re) と下流側並行流路群8の流路 (溝部) の本数 (M) および流路幅 (溝部の幅) の平均値 (Wmean) の関数として導出されるある最小値以上に拡大する。また、流路反転部の長さLを、上記(数4)に示すように、溝部と山部の幅の総和以上の大きさにする。   In the present invention, the width H of the entire flow channel inversion section 10 including the portion connected to the upstream parallel flow channel group 6 and the portion connected to the downstream parallel flow channel group 8 is expressed by the above (Equation 4). As shown, the Reynolds number (Re) of the gas passing through the flow path, the number of flow paths (grooves) in the downstream parallel flow path group 8 (M), and the average value (Wmean) of the flow path width (groove width) Expand beyond a certain minimum value derived as a function. Further, the length L of the flow path inversion portion is set to be equal to or larger than the sum of the widths of the groove portion and the peak portion as shown in the above (Equation 4).

それにより、この領域での過度の流速上昇を抑制し、流路合流部7における圧力降下を適性値に維持することが可能となる。その結果、上流側の並行流路群6から流路合流部7を経て流路反転部10に至った気体は、合流することによって発生した著しい偏流を伴ったまま流路分岐部9に到達するのではなく、複数の上流側並行流路群6からの気体が一度混合された状況となり、その後で複数の下流側の並行流路群8に分配されることになる。このため、複数の下流側並行流路群8に分配された気体は、その成分及び流量のいずれについても偏差の発生が抑制されることとなる。こうして、流路反転部での気体成分の混合が促進され、電池性能の向上をもたらす共に、分岐後の下流側並行流路群8での流速を均一に保ち、低流速流路の発生を防ぎ、低流量流路内での生成水の滞留及び流路の閉塞を防ぐことが可能となる。   Thereby, an excessive increase in flow velocity in this region can be suppressed, and the pressure drop in the flow path merging portion 7 can be maintained at an appropriate value. As a result, the gas from the upstream parallel flow channel group 6 to the flow channel reversing unit 10 via the flow channel merge unit 7 reaches the flow channel branching unit 9 with significant drift generated by the merge. Instead, the gas from the plurality of upstream parallel flow path groups 6 is once mixed and then distributed to the plurality of downstream parallel flow path groups 8. For this reason, generation | occurrence | production of deviation will be suppressed about the gas distributed to the some downstream parallel flow path group 8 about both the component and flow volume. In this way, mixing of gas components in the flow path reversal part is promoted, and the battery performance is improved, and the flow speed in the downstream parallel flow path group 8 after branching is kept uniform to prevent the occurrence of a low flow speed flow path. This makes it possible to prevent the product water from staying in the low flow channel and blocking the channel.

ただし、流路反転部10の幅Hの拡大は、流動特性改善につながるものの、過度に拡大すると、セパレータの山部と拡散層 (電極) の接触面積の減少、生成水の滞留を招く過度の低流速領域の発生の原因となる。本発明では、流路内のレイノルズ数、下流側並行流路群8の流路本数及び平均流路幅の関数として、分岐後の流量均一化に要求される流路反転部10の幅Hの最小値を導出するが、流路反転部10の幅Hは、こうして導出される最小値の3倍以内とすることが好ましく、より好ましくは1.5倍以内である。   However, although the expansion of the width H of the channel reversing part 10 leads to improvement of the flow characteristics, if it is excessively enlarged, the contact area between the separator peak and the diffusion layer (electrode) is decreased, and excessive generation of water is caused. It causes the low flow velocity region. In the present invention, as a function of the Reynolds number in the flow path, the number of flow paths in the downstream parallel flow path group 8 and the average flow path width, the width H of the flow channel reversing unit 10 required for flow equalization after branching is obtained. Although the minimum value is derived, the width H of the flow path inversion unit 10 is preferably within 3 times the minimum value thus derived, and more preferably within 1.5 times.

なお、流路反転部の幅Hは、その全長Lにわたって同一である必要性はない。流路反転部の幅Hが長さ方向に変動する場合、Hの値は最小値、即ち、幅が最小となる部分のHの値である。但し、流路反転部のコーナーを面取りした場合の面取り部分の幅は、この最小値から除外する。   Note that the width H of the channel inversion portion need not be the same over the entire length L thereof. When the width H of the flow path inversion portion varies in the length direction, the value of H is the minimum value, that is, the value of H of the portion where the width is minimum. However, the width of the chamfered portion when the corner of the flow path inversion portion is chamfered is excluded from this minimum value.

また、各並行流路群において直線流路を構成する溝部と山部は、図1に示すように、両者を区切る壁面が電極に対して垂直であってもよく、あるいはこの壁面が傾斜していてもよい。壁面が傾斜あるいは湾曲している場合、溝部や山部の幅W、W'、w、w'は、いずれも、幅の最小値と最大値の中間値(通常は、溝または山の半分の深さまたは高さで測定した幅の値に等しい)とする。   In addition, as shown in FIG. 1, the wall and the ridge that constitute the straight flow path in each parallel flow path group may have a wall surface that divides both of them perpendicular to the electrode, or the wall surface is inclined. May be. When the wall surface is inclined or curved, the widths W, W ′, w, w ′ of the grooves and peaks are all intermediate values between the minimum and maximum widths (usually half the width of the grooves or peaks). Equal to the width measured in depth or height).

より具体的には、分岐後の流量均一化に要求される流路反転部10の最小幅Hを導出する流路内の気体のレイノルズ数、下流側の並行流路群8の流路本数M及び平均流路幅W’の関数を上記(数5)の通りとする。   More specifically, the Reynolds number of the gas in the flow channel for deriving the minimum width H of the flow channel reversing unit 10 required for equalizing the flow rate after branching, the flow channel number M of the parallel flow channel group 8 on the downstream side. The function of the average flow path width W ′ is as shown in the above (Equation 5).

この関数形を用いることにより、セパレータ内の流路反転部の位置と分岐後の流路本数および流路幅とによらず、分岐後の各流路の流動状況を適正化できる流路反転部10の最小幅Hを決めることが可能となる。   By using this function form, the channel inversion unit can optimize the flow status of each channel after branching regardless of the position of the channel inversion unit in the separator, the number of channels after branching, and the channel width. A minimum width H of 10 can be determined.

分岐後の流量均一化に要求される流路反転部10の最小幅Hを導出する、上記(数5)で規定する流路内のレイノルズ数、下流側の並行流路群の本数及び平均流路幅の関数中の定数を、A=1.7、B=0.0194、C=7.621×10−4、D=−5.321×10−7とすることにより、下流側の並行流路群8の流量偏差を±20%以下に抑制することが可能となる。 Deriving the minimum width H of the flow channel inversion unit 10 required for flow equalization after branching, the Reynolds number in the flow channel defined by (Equation 5), the number of parallel flow channel groups on the downstream side, and the average flow By setting constants in the function of the path width as A = 1.7, B = 0.0194, C = 7.621 × 10 −4 , D = −5.321 × 10 −7 , the flow rate deviation of the downstream parallel flow path group 8 can be reduced. It can be suppressed to ± 20% or less.

図4に示すように、上流側の並行流路群6に接続する部分の流路反転部である上流側流路反転部10Aの幅Hと、下流側の並行流路群8に接続する部分の流路反転部である下流側流路反転部10Bの幅Hを、H<Hとすることが好ましい。それにより、流路反転部10の幅が上流側と下流側との境でステップ状に変化し、上流側の断面積の小さい流路合流部7で一度ガスの流れをまとめ、流路分岐部9へ至る前に断面積を拡大させることにより、合流部で発生した偏流の影響が、流路分岐部9に影響することが避けられる。また、流路反転部10の全幅にわたり長さを拡大する場合に比べて、流量均一化効果を維持したまま、セパレータ/拡散層 (電極) 間の接触面積の減少を抑制することが可能である。 As shown in FIG. 4, the width HA of the upstream-side channel reversing unit 10 </ b> A , which is the channel-inverting unit of the portion connected to the upstream parallel channel group 6, and the downstream parallel channel group 8 are connected. It is preferable that the width H B of the downstream flow channel inversion unit 10B, which is the partial flow channel inversion unit, satisfies H A <H B. As a result, the width of the flow path inversion portion 10 changes in a stepped manner at the boundary between the upstream side and the downstream side, and the gas flow is once collected at the flow path merging portion 7 having a small cross-sectional area on the upstream side. By enlarging the cross-sectional area before reaching 9, it is possible to avoid the influence of the drift generated at the joining portion from affecting the flow path branching portion 9. In addition, it is possible to suppress a decrease in the contact area between the separator / diffusion layer (electrode) while maintaining a uniform flow rate as compared with the case where the length is extended over the entire width of the flow path inversion unit 10. .

このように、流路合流部7に続く上流側流路反転部10Aの幅Hより流路分岐部9に続く下流側流路反転部10Bの幅Hが大きくなるように、流路反転部の幅を長さ方向に変化させた場合、下流側流路反転部10Bには、1または2以上の整流作用のある突起を設置してもよい。突起の設置場所は、図5(a)に矢印で示すガス流の主流11が通過する部分とすることが好ましい。突起は図5(b)に示すように1個の突起12でもよく、あるいは図5(c)に示すように、適当な間隔で2個以上並べた突起列13でもよい。 In this way, the flow path reversal is performed such that the width H B of the downstream flow path reversing part 10B following the flow path branching part 9 is larger than the width HA of the upstream flow reversing part 10A following the flow path joining part 7. When the width of the portion is changed in the length direction, one or two or more protrusions having a rectifying action may be provided in the downstream-side channel reversing portion 10B. The location of the protrusion is preferably a portion through which the main flow 11 of the gas flow indicated by an arrow in FIG. The protrusions may be one protrusion 12 as shown in FIG. 5 (b), or two or more protrusion rows 13 arranged at an appropriate interval as shown in FIG. 5 (c).

この突起の設置によって、偏流の影響が拡大するレイノルズ数の高い領域においても、分岐後の流路間の流量偏差の発生を抑制することが可能となる。更に、設置した突起の頂部を拡散層に接触させると、セパレータ/拡散層間の接触面積の増大が実現できると共に、流路に面した拡散層及びMEAの保持に貢献することとなる。   By installing this protrusion, it is possible to suppress the occurrence of a flow deviation between the flow paths after branching even in a region with a high Reynolds number where the influence of drift increases. Furthermore, when the top portion of the installed protrusion is brought into contact with the diffusion layer, an increase in the contact area between the separator / diffusion layer can be realized and the diffusion layer facing the flow path and the MEA can be held.

突起の個数をさらに増やして、2列以上に設置する場合には、図5(d)に示すように、下流側流路反転部10B内に設けた突起列13を千鳥配置にすることが好ましい。このように突起列13を千鳥配置とすると、高レイノルズ数条件下での突起による整流効果を更に高めることが可能となる。   When the number of protrusions is further increased and installed in two or more rows, as shown in FIG. 5 (d), it is preferable that the protrusion rows 13 provided in the downstream-side flow path inversion portion 10B are arranged in a staggered manner. . When the protrusion rows 13 are arranged in a staggered manner in this way, it is possible to further enhance the rectification effect due to the protrusions under a high Reynolds number condition.

突起12または突起列13の各突起の形状は、円柱、円錐、円錐台、多角柱、多角錐、多角錐台、球の一部 (例、半球) から選んだ形状とすることができる。突起を成形する際、そのセパレータの材質及び加工方法から突起形状に種々の制約が加わるが、前記した形状の何れにおいても、同様の流量均一化の効果を得ることが可能である。突起は、セパレータの材質と同じであることが好ましいが、別材質であってもよい。   The shape of each protrusion of the protrusion 12 or the protrusion row 13 may be a shape selected from a cylinder, a cone, a truncated cone, a polygonal column, a polygonal pyramid, a polygonal frustum, and a part of a sphere (eg, a hemisphere). When forming the protrusion, various restrictions are imposed on the shape of the protrusion due to the material of the separator and the processing method. In any of the above-described shapes, it is possible to obtain the same effect of uniform flow rate. The protrusion is preferably the same as the material of the separator, but may be a different material.

図6に示すように、流路反転部10の角になるコーナー部分の少なくとも一方、好ましくは両方を、セパレータの平面 (溝部の底面または山部の頂面の面)において、直線および/または曲線により面取りしてもよい。図6(a)は曲線 (円弧) により、図6(b)は直線により、それぞれ面取りした例を示す。面取りは、セパレータの厚み方向 (溝部の深さ方向または山部の高さ方向) においては垂直面でよい。但し、厚み方向の上端と下端は多少の丸みをつけることもできる。セパレータ端部 (即ち、流路反転部の端部) の厚み方向の上端と下端も同様に、多少の丸みをつけてもよい。   As shown in FIG. 6, at least one of corner portions that are corners of the channel inversion portion 10, preferably both, are straight and / or curved on the plane of the separator (the bottom surface of the groove or the top surface of the crest). May be chamfered. FIG. 6A shows an example of chamfering with a curved line (arc) and FIG. 6B with a straight line. The chamfering may be a vertical surface in the thickness direction of the separator (the depth direction of the groove or the height direction of the crest). However, the upper and lower ends in the thickness direction can be slightly rounded. Similarly, the upper end and the lower end in the thickness direction of the end portion of the separator (that is, the end portion of the flow path inversion portion) may be slightly rounded.

このように、流路反転部10のコーナー部分を面取りして、図6(c)に示す低流速領域14が発生すると予想される部分を流路から排除すると、流路のコーナー部分に発生する低流速領域は小さくなり、流路内で発生した水の滞留を抑制でき電池性能の低下を防ぐことができる。   In this way, when the corner portion of the flow channel reversing unit 10 is chamfered and a portion where the low flow velocity region 14 shown in FIG. 6C is expected to be generated is excluded from the flow channel, the corner portion of the flow channel is generated. The low flow rate region becomes small, and the retention of water generated in the flow path can be suppressed, so that the battery performance can be prevented from deteriorating.

本発明の燃料電池用セパレータの材質は、金属またはカーボン素材のいずれかであることが好ましい。適当な金属の例としては、ステンレス鋼、チタン、アルミニウムなどがある。カーボン素材は、導電性の面からグラファイト(黒鉛)が好ましい。材質が異なると、流路を形成するための加工方法は違ってくるが、適当な加工方法は、当業者であれば容易に決めることができる。例えば、カーボン素材の場合には、一般に切削により加工が行われる。金属の場合は、切削以外に、プレス成形も利用可能となる。加工方法がいずれであっても、本発明に係るセパレータによる電池性能改善効果を得ることができる。   The material for the fuel cell separator of the present invention is preferably either a metal or a carbon material. Examples of suitable metals include stainless steel, titanium, aluminum and the like. The carbon material is preferably graphite (graphite) in terms of conductivity. If the material is different, the processing method for forming the flow path is different, but an appropriate processing method can be easily determined by those skilled in the art. For example, in the case of a carbon material, processing is generally performed by cutting. In the case of a metal, press molding can be used in addition to cutting. Regardless of the processing method, the battery performance improvement effect by the separator according to the present invention can be obtained.

固体高分子膜には、パーフルオロカーボンスルホン酸製の50μm厚さの膜 (Dupont社製、Nafion) を用い、拡散層には、300μm厚さのカーボンペーパーを用いて、固体高分子型燃料電池の単セルを作製した。本例で用いた単セルの電極面積は70 mm×100 mmとし、表1及び図7Aおよび7Bに示す多様な流路構成を持つセパレータについて比較した。   The solid polymer membrane is a perfluorocarbon sulfonic acid 50 μm thick membrane (Dupont, Nafion), and the diffusion layer is 300 μm thick carbon paper. A single cell was produced. The electrode area of the single cell used in this example was 70 mm × 100 mm, and separators having various flow path configurations shown in Table 1 and FIGS. 7A and 7B were compared.

評価に供したセパレータ中、例A〜Eが本発明に基づく流路、例F〜Hは比較例の流路である。例FおよびGは、流路反転部の幅Hが本発明で規定する要件を満たさない比較例であり、例Hは、流路反転部の幅Hは本発明で規定する要件を満たしているが、その長さLが本発明で規定する要件を満たさない比較例である。流路構成を単純化するために、各並行流路群の流路 (溝部) の本数は全例において3本に統一したが、並行流路群ごとに流路の本数を変動させてもよいことは当然である。   Among the separators used for evaluation, Examples A to E are flow paths based on the present invention, and Examples F to H are flow paths of comparative examples. Examples F and G are comparative examples in which the width H of the channel reversal part does not satisfy the requirements defined in the present invention. In Example H, the width H of the channel reversal part satisfies the requirements defined in the present invention. However, this is a comparative example whose length L does not satisfy the requirements defined in the present invention. In order to simplify the channel configuration, the number of channels (grooves) in each parallel channel group has been unified to three in all examples, but the number of channels may be varied for each parallel channel group. It is natural.

セパレータの材質は、例A〜D及びF、Hでは、グラファイト板に切削加工により流路を設けたものであり、例E、Gでは、ステンレス鋼板をプレス成形した後、接触抵抗低減のために金メッキを施したものであった。   In Examples A to D, F, and H, the separator material is a graphite plate provided with a flow path by cutting. In Examples E and G, after press forming a stainless steel plate, the contact resistance is reduced. It was gold plated.

例Eではセパレータの下流側流路反転部に突起を形成した。突起は、セパレータの溝を形成する際のプレス成形において、溝と同時に形成した半球形状のもので、サイズおよび配置は直径0.8 mmで2.5 mm間隔であった。いずれのセパレータにおいても、流路反転部のコーナー部の面取りは行わなかった。   In Example E, protrusions were formed on the downstream-side channel inversion part of the separator. The protrusions had a hemispherical shape formed simultaneously with the grooves in press forming when the grooves of the separator were formed, and the size and arrangement were 0.8 mm in diameter and 2.5 mm apart. In any of the separators, chamfering of the corner portion of the flow path inversion portion was not performed.

以上の各セパレータの流路に、アノード極側燃料用ガスとしては99.9999%の水素ガスを用い、カソード側酸化剤ガスとしては空気を用い、流量は水素ガスは3.5×10-4 mol/s、空気は10.0×10-3 mol/sの一定値とした。アノード側とカソード側で、同じ流路構成のセパレータを用いた。 In the flow path of each separator, 99.9999% hydrogen gas is used as the anode-side fuel gas, air is used as the cathode-side oxidant gas, and the flow rate is 3.5 × 10 −4 mol / s for hydrogen gas. The air was a constant value of 10.0 × 10 −3 mol / s. Separators having the same flow path configuration were used on the anode side and the cathode side.

表1には、溝部と山部の幅の総和、直線流路で測定されたガスのレイノルズ数(Re)(空気で測定)、およびf(M,Re)×Wmean (表1にはf×Wmeanと表示)の値も示す。
評価中は電池本体の温度を78±2℃に保持すると共に、湿度制御はセル入口で行い、アノード側を飽和状態にまで加湿し、電池内部の圧力は1気圧とした。図8に電流密度を変化させた場合のセル電圧の変化を示す。この図からわかるように、本発明の流路を持つセパレータでは、流路分岐部での流量偏差が発生し難いため、燃料及び酸化剤の消費量が増大し、流量偏差の影響が大きく現れる高電流領域において性能の劣化が見られず、高い電池電圧を保っている。一方、比較例として示した流路では、電流密度の増大に伴う燃料及び酸化剤の消費量が増大により、流路分岐部での発生した流量偏差が局所的な電流密度偏差発生へとつながると予想され、これによる著しい性能劣化が現れている。
Table 1 shows the sum of the widths of the grooves and the peaks, the Reynolds number (Re) of the gas measured in the straight channel (measured with air), and f (M, Re) × Wmean (in Table 1, f × The value of Wmean is also shown.
During the evaluation, the temperature of the battery body was maintained at 78 ± 2 ° C., humidity control was performed at the cell inlet, the anode side was humidified to saturation, and the pressure inside the battery was 1 atm. FIG. 8 shows changes in cell voltage when the current density is changed. As can be seen from this figure, in the separator having the flow path of the present invention, the flow rate deviation at the flow path branching portion hardly occurs, so the consumption of fuel and oxidant increases, and the influence of the flow rate deviation appears greatly. There is no performance degradation in the current region, and a high battery voltage is maintained. On the other hand, in the flow path shown as a comparative example, the flow rate deviation generated in the flow path branching part leads to the occurrence of local current density deviation due to the increase in consumption of fuel and oxidant accompanying the increase in current density. As expected, significant performance degradation has emerged.

別の性能試験として、表1に示した各形状の流路を持つセパレータについて、電池性能の経時劣化の評価を実施した。評価に用いた単セルの構成は上記と同じであり、単セル状態において燃料及び酸化剤の消費率を調整することにより、初期の電池の発電状態を0.5 A/cm2、0.62 Vとし、電流を一定に維持したまま50時間経過後の電圧降下率、
電圧降下率=1−50時間後のセル電圧/初期電圧
により評価した。
As another performance test, battery performance was evaluated for deterioration over time for separators having flow paths having the shapes shown in Table 1. The configuration of the single cell used for the evaluation is the same as above, and by adjusting the consumption rate of fuel and oxidant in the single cell state, the initial power generation state of the battery is 0.5 A / cm 2 , 0.62 V, and the current Voltage drop rate after 50 hours,
The voltage drop rate was evaluated by the cell voltage after 1-50 hours / the initial voltage.

この評価の間も、電池本体の温度を78±2℃に保持すると共に、湿度制御はセル入口で行い、アノード側を飽和状態にまで加湿し、電池内部の圧力は1気圧とした。また、アノード極側燃料用ガスとしては99.9999%の水素ガスを用い、カソード側酸化剤ガスとしては空気を用いた。この結果も表1に併記する。   Also during this evaluation, the temperature of the battery body was maintained at 78 ± 2 ° C., humidity control was performed at the cell inlet, the anode side was humidified to saturation, and the pressure inside the battery was 1 atm. Further, 99.9999% hydrogen gas was used as the anode-side fuel gas, and air was used as the cathode-side oxidant gas. The results are also shown in Table 1.

表1に示すように、発明例である例A〜Eでは、電圧降下率は0.03以下で、時間経過による電池性能劣化は観察されなかった。一方、流路反転部の幅Hまたは長さLの値が本発明の範囲外であるために比較例となった例F〜Hでは、生成水の滞留が原因であると思われる著しい性能の劣化が見られ、電圧降下率は0.1以上となった。   As shown in Table 1, in Examples A to E which are invention examples, the voltage drop rate was 0.03 or less, and no battery performance deterioration was observed over time. On the other hand, in Examples F to H, which are comparative examples because the value of the width H or the length L of the channel reversal part is outside the range of the present invention, the remarkable performance that seems to be caused by the retention of the generated water is considered. Deterioration was observed, and the voltage drop rate was 0.1 or more.

Figure 2006216442
Figure 2006216442

高分子電解質膜型燃料電池の単セルの構成を示す概略説明図である。It is a schematic explanatory drawing which shows the structure of the single cell of a polymer electrolyte membrane type fuel cell. 図2(A)〜(C)は、燃料電池 (セパレータ) 内の典型的なガス流路の構造を説明する図である。FIGS. 2A to 2C are diagrams for explaining the structure of a typical gas flow path in the fuel cell (separator). 本発明の燃料電池用セパレータの1態様の流路反転部付近の流路構成を示す流路説明図である。It is channel explanatory drawing which shows the flow-path structure of the flow-path inversion part vicinity of 1 aspect of the separator for fuel cells of this invention. 本発明の燃料電池用セパレータの別の態様の上と同様の流路説明図である。It is flow path explanatory drawing similar to the top of another aspect of the separator for fuel cells of this invention. 図5(a)〜(d)は、下流側の流路反転部に突起がない場合とある場合の上と同様の流路説明図である。FIGS. 5A to 5D are flow charts similar to those in the case where there are no protrusions and no protrusions in the flow path inversion part on the downstream side. 図6(a)〜(c)は流路反転部のコーナー部を面取りした態様を示す、上と同様の流路説明図である。6 (a) to 6 (c) are channel explanatory views similar to the above, showing an aspect in which the corner portion of the channel inversion portion is chamfered. 実施例で採用したセパレータの流路の構成を示す説明図である。It is explanatory drawing which shows the structure of the flow path of the separator employ | adopted in the Example. 実施例における電池性能の比較を示す図である。It is a figure which shows the comparison of the battery performance in an Example.

符号の説明Explanation of symbols

1.高分子電解質膜、2.触媒担持カーボン繊維膜、3.多孔質電極 (拡散層)、4.セパレータ、5.流路、6.上流側の並行流路群、7.流路合流部、8.下流側の並行流路群、9.流路分岐部、10.流路反転部、10A.上流側の流路反転部、10B.下流側の流路反転部、11.流路反転部内での気体流れの主流部、12.突起、13.突起列、14.低流速部 1. 1. polymer electrolyte membrane; 2. catalyst-supported carbon fiber membrane; 3. porous electrode (diffusion layer); Separator, 5. Flow path, 6. 6. upstream parallel flow path group; Flow path confluence, 8. 8. downstream parallel flow path group; Flow path branch, 10. Channel inversion section, 10A. Upstream channel inversion section, 10B. 10. downstream channel inversion section; 11. The main flow part of the gas flow in the channel inversion part, Protrusion, 13. Protrusion row, 14. Low flow area

Claims (9)

内部にガスが流れる溝部と電極に接する山部とから構成された、燃料または酸化剤のガスを流すための複数のガス流路を有する燃料電池用セパレータであって、該ガス流路は、ガス流動方向が交互に反転する2以上の並行流路群と、隣接する二つの並行流路群の各流路に接続している流路反転部とを備え、該流路反転部においてガス流が合流する上流側の並行流路群の溝数をN本、その溝部の幅をW〜WN、その山部の幅をw〜wNとし、該流路反転部からガス流が分岐する下流側の並行流路群の溝数をM本、その溝部の幅をW'〜W'M、その山部の幅をw'〜w'M−1として、該流路反転部の長さLおよび幅Hが次式を満たすことを特徴とする、燃料電池用セパレータ。
Figure 2006216442
A separator for a fuel cell having a plurality of gas passages for flowing a fuel or oxidant gas, which is composed of a groove portion through which a gas flows and a peak portion in contact with an electrode, Two or more parallel flow path groups whose flow directions are alternately reversed, and a flow path reversal portion connected to each flow path of two adjacent parallel flow path groups, in which the gas flow is The number of grooves in the upstream parallel flow path group to be merged is N, the width of the groove is W 1 to W N , and the width of the peak is w 1 to w N, and the gas flow branches from the flow path inversion part The number of grooves in the downstream parallel flow path group is M, the width of the groove is W ′ 1 to W ′ M , and the width of the peak is w ′ 1 to w ′ M−1. The fuel cell separator is characterized in that the length L and the width H of the fuel cell satisfy the following formula.
Figure 2006216442
流路反転部の幅Hが次式を満たす、請求項1に記載の燃料電池用セパレータ。
Figure 2006216442
式中、A,B,C,Dはそれぞれ定数である。
The fuel cell separator according to claim 1, wherein the width H of the flow path inversion portion satisfies the following expression.
Figure 2006216442
In the formula, A, B, C, and D are constants.
A=1.7、B=0.0194、C=7.621×10−4、D=−5.321×10−7 である、請求項2に記載の燃料電池用セパレータ。 The fuel cell separator according to claim 2, wherein A = 1.7, B = 0.0194, C = 7.621 × 10 −4 , and D = −5.321 × 10 −7 . 上流側の並行流路群に接続する部分の流路反転部である上流側流路反転部の幅Hと下流側の並行流路群に接続する部分の流路反転部である下流側流路反転部の幅Hとが次式を満たす、請求項1〜3のいずれかに記載の燃料電池用セパレータ。
Figure 2006216442
The width HA of the upstream flow channel reversal portion that is the flow channel reversal portion of the portion connected to the upstream parallel flow channel group and the downstream flow that is the flow channel reversal portion of the portion connected to the downstream parallel flow channel group the width H B of the road-inverting portion satisfies the following equation, the fuel cell separator according to claim 1.
Figure 2006216442
下流側流路反転部に1または2以上の突起を有する、請求項4記載の燃料電池用セパレータ。   The fuel cell separator according to claim 4, wherein the downstream channel inversion portion has one or more protrusions. 突起が千鳥配置された複数列をなしている、請求項5に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 5, wherein the protrusions form a plurality of rows arranged in a staggered manner. 突起が、円柱、円錐、円錐台、多角柱、多角錐、多角錐台、球の一部、よりなる群から選ばれた形状を有する、請求項5または6に記載の燃料電池用セパレータ。   The fuel cell separator according to claim 5 or 6, wherein the protrusion has a shape selected from the group consisting of a cylinder, a cone, a truncated cone, a polygonal column, a polygonal pyramid, a polygonal truncated cone, and a part of a sphere. 流路反転部の少なくとも1つのコーナー部分が曲面および/または平面により面取りされている請求項1〜7のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 1 to 7, wherein at least one corner portion of the flow path reversing portion is chamfered by a curved surface and / or a flat surface. 材質が金属またはカーボンである請求項1〜8のいずれか1項に記載の燃料電池用セパレータ。   The fuel cell separator according to any one of claims 1 to 8, wherein the material is metal or carbon.
JP2005029055A 2005-02-04 2005-02-04 Fuel cell separator Expired - Fee Related JP4736453B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005029055A JP4736453B2 (en) 2005-02-04 2005-02-04 Fuel cell separator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005029055A JP4736453B2 (en) 2005-02-04 2005-02-04 Fuel cell separator

Publications (2)

Publication Number Publication Date
JP2006216442A true JP2006216442A (en) 2006-08-17
JP4736453B2 JP4736453B2 (en) 2011-07-27

Family

ID=36979472

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005029055A Expired - Fee Related JP4736453B2 (en) 2005-02-04 2005-02-04 Fuel cell separator

Country Status (1)

Country Link
JP (1) JP4736453B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093099A (en) * 2011-10-24 2013-05-16 Panasonic Corp Fuel cell separator forming material, fuel cell separator and fuel cell

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106594A (en) * 1996-08-08 1998-04-24 Aisin Seiki Co Ltd Gas passage plate of fuel cell
JP2000164230A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Separator for fuel cell, and fuel cell
JP2002151097A (en) * 2000-11-15 2002-05-24 Suncall Corp Separator for fuel cell
JP2004014446A (en) * 2002-06-11 2004-01-15 Honda Motor Co Ltd Fuel cell
JP2004342442A (en) * 2003-05-15 2004-12-02 Toyota Motor Corp Fuel cell separator

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10106594A (en) * 1996-08-08 1998-04-24 Aisin Seiki Co Ltd Gas passage plate of fuel cell
JP2000164230A (en) * 1998-11-27 2000-06-16 Aisin Seiki Co Ltd Separator for fuel cell, and fuel cell
JP2002151097A (en) * 2000-11-15 2002-05-24 Suncall Corp Separator for fuel cell
JP2004014446A (en) * 2002-06-11 2004-01-15 Honda Motor Co Ltd Fuel cell
JP2004342442A (en) * 2003-05-15 2004-12-02 Toyota Motor Corp Fuel cell separator

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013093099A (en) * 2011-10-24 2013-05-16 Panasonic Corp Fuel cell separator forming material, fuel cell separator and fuel cell

Also Published As

Publication number Publication date
JP4736453B2 (en) 2011-07-27

Similar Documents

Publication Publication Date Title
JP5500254B2 (en) Fuel cell
US7524575B2 (en) Flow field plate for use in fuel cells
JP5408263B2 (en) Fuel cell
US20070298311A1 (en) Fuel cell separator
US20110274999A1 (en) Fuel cell stack
JP2006134866A (en) Flow field structure of fuel cell of high fuel utilization rate
WO2011099399A1 (en) Fuel cell
US10714780B2 (en) Separator having a plurality of riblet elements connected by a plurality of connecting bars, and fuel cell stack comprising the same
JP2009026476A (en) Unit cell of fuel cell
JP5501237B2 (en) POLYMER ELECTROLYTE FUEL CELL AND FUEL CELL STACK HAVING THE SAME
JP4736453B2 (en) Fuel cell separator
JP2005190714A (en) Fluid flow field plate for fuel cell and fuel cell
JP2008282821A (en) Separator of fuel cell
JP2007504601A (en) Gas supply panel for fuel cell and fuel cell having gas supply panel
JP2014175237A (en) Fuel cell
JP7048254B2 (en) Fuel cell
JP2010003541A (en) Fuel cell stack
JP2020107397A (en) Fuel battery cell
JP2010034005A (en) Fuel cell
WO2021199500A1 (en) Fuel cell separator
JP2010153157A (en) Fuel cell separator
KR102540924B1 (en) Fuel cell stack
JP5604977B2 (en) Fuel cell
CN112771700B (en) Fluid guide channel and fuel cell provided with same
JP2004103456A (en) Solid polymer fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100430

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110405

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110418

R150 Certificate of patent or registration of utility model

Ref document number: 4736453

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140513

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees