JP2006214772A - Leakage detection method for high-pressure gas underground storage facility, and high-pressure gas underground storage facility - Google Patents

Leakage detection method for high-pressure gas underground storage facility, and high-pressure gas underground storage facility Download PDF

Info

Publication number
JP2006214772A
JP2006214772A JP2005025586A JP2005025586A JP2006214772A JP 2006214772 A JP2006214772 A JP 2006214772A JP 2005025586 A JP2005025586 A JP 2005025586A JP 2005025586 A JP2005025586 A JP 2005025586A JP 2006214772 A JP2006214772 A JP 2006214772A
Authority
JP
Japan
Prior art keywords
pressure gas
storage tank
temperature
optical fiber
ground
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005025586A
Other languages
Japanese (ja)
Other versions
JP4461432B2 (en
Inventor
Tetsuo Okuno
哲夫 奥野
Shigeki Wakabayashi
成樹 若林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Construction Co Ltd
Shimizu Corp
Original Assignee
Shimizu Construction Co Ltd
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Construction Co Ltd, Shimizu Corp filed Critical Shimizu Construction Co Ltd
Priority to JP2005025586A priority Critical patent/JP4461432B2/en
Publication of JP2006214772A publication Critical patent/JP2006214772A/en
Application granted granted Critical
Publication of JP4461432B2 publication Critical patent/JP4461432B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Examining Or Testing Airtightness (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a leakage detection method which can perform leakage detection for the entire storage tank, embedded in the ground comprehensively and detect leakage of wide-ranging high-pressure gas, without being limited to specific kinds of high-pressure gases, and to provide a high-pressure gas underground storage facility. <P>SOLUTION: A perforated drainpipe 8 for collecting groundwater in the ground is installed reticulately on the entire periphery of the storage tank 21, which is embedded in the ground to store high-pressure gas therewithin. The storage tank 21 comprises an airtight material 5 for ensuring the airtightness of the inside of the storage tank 21 and a back-filling material 6, which is interposed between the airtight material 5 and the ground and in which cracks crossing the perforated drainpipe 8 occur comprehensively and separately. The temperature within the perforated drainpipe 8 is measured continuously, and the temperature distribution within the perforated drainpipe 8 is observed in a time series manner, to detect drop in the temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、地下に構築されて内部に高圧気体を貯蔵する高圧気体地下貯蔵施設の漏洩検知方法と、その漏洩検知方法を行うための設備が備えられた高圧気体地下貯蔵施設に関する。   The present invention relates to a leak detection method for a high-pressure gas underground storage facility that is constructed underground and stores high-pressure gas therein, and a high-pressure gas underground storage facility that includes equipment for performing the leak detection method.

従来から、ガスホルダー、液化天然ガス(LNG)タンクなどのエネルギー貯蔵施設や、ガス導管、パイプライン等の流体流通管路における漏洩検知方法として、種々の方法が用いられている。例えば、直接的な方法としてガス検知器等のガス濃度計測や非破壊検査による方法がある。また、漏洩位置の検知として気体漏れ試験や液体漏れ試験等の方法があり、さらに漏洩個所の音響特性計測による方法もある。   Conventionally, various methods have been used as leak detection methods in energy storage facilities such as gas holders and liquefied natural gas (LNG) tanks, and fluid flow conduits such as gas conduits and pipelines. For example, as a direct method, there are a gas concentration measurement method such as a gas detector or a non-destructive inspection method. Further, there are methods such as a gas leak test and a liquid leak test as detection of the leak position, and there is also a method based on acoustic characteristic measurement of the leak location.

また、近年では、温度測定及び位置測定を行って温度分布を測定するOTDR(Optical Time Domain Reflectometry)形温度計やOFDR(Optical Frequency Domain Reflectometry)形温度計等の光ファイバを用いた測定装置が提供されている。例えば、光ファイバに近接するように配置させた発熱体や冷却体を配置し、予め測定対象の基準温度分布を測定し、環境変化に伴う光ファイバからの奪熱或いは与熱によって生じる温度変化を測定するものである。この測定装置を漏洩検知手段として用いる場合、例えば、筒形状の発熱体内に光ファイバが挿装された構成からなる検出部を流体が流通する管体内に挿入し、基準となる光ファイバの熱放散分布を測定するとともに、光ファイバの温度を常時測定する。管体に破損が生じて管内流体が漏洩すると、漏洩箇所よりも上流側では、流体の流速が速くなり、光ファイバの温度が低下し、漏洩箇所よりも下流側では、流体の流速が遅くなり、光ファイバの温度が上昇する。よって、光ファイバの熱放散分布を測定すれば、何れの箇所で漏洩しているかを検知することができる(例えば、特許文献1参照。)。   In recent years, measuring devices using optical fibers such as OTDR (Optical Time Domain Reflectometry) type thermometers and OFDR (Optical Frequency Domain Reflectometry) type thermometers that measure temperature distribution by measuring temperature and position are provided. Has been. For example, a heating element or cooling element arranged close to the optical fiber is arranged, a reference temperature distribution of the measurement target is measured in advance, and a temperature change caused by heat absorption or heating from the optical fiber accompanying an environmental change is detected. Measure. When this measuring apparatus is used as a leakage detection means, for example, a detection unit having a configuration in which an optical fiber is inserted into a cylindrical heating element is inserted into a pipe through which a fluid flows, and heat dissipation of the reference optical fiber is performed. The distribution is measured and the temperature of the optical fiber is constantly measured. When the pipe body breaks and the fluid in the pipe leaks, the fluid flow speed increases at the upstream side of the leaked part, the temperature of the optical fiber decreases, and the fluid flow speed decreases at the downstream side of the leaked part. The temperature of the optical fiber rises. Therefore, if the heat dissipation distribution of the optical fiber is measured, it is possible to detect at which location the leakage occurs (see, for example, Patent Document 1).

また、LNG貯蔵施設などでは、LNGの低温特性を利用した漏洩検知方法があり、例えば、貯蔵タンクの外側に設置された断熱材の中に光ファイバを設置し、この光ファイバの温度低下を検知することで漏洩を検知する方法がある。これは、貯蔵タンクから低温のLNGが漏洩すると、貯蔵タンク周囲の温度が低下するため、貯蔵タンク周囲の温度低下を検知することで漏洩を検知するものである(例えば、特許文献2参照。)。
特開平5−107121号公報 特開平9−323784号公報
Also, in LNG storage facilities, etc., there is a leak detection method that uses the low temperature characteristics of LNG. For example, an optical fiber is installed in a heat insulating material installed outside the storage tank, and the temperature drop of this optical fiber is detected. There is a way to detect leaks. This is to detect the leakage by detecting the temperature drop around the storage tank because the temperature around the storage tank is lowered when the low temperature LNG leaks from the storage tank (see, for example, Patent Document 2). .
JP-A-5-107121 JP-A-9-323784

しかしながら、上記した従来の漏洩検知方法によると、ガス濃度計測による方法では、ガス検知器等の設置可能な空間(例えばアクセストンネル等)が限られるため、漏洩発生箇所(例えば貯槽等)の近辺に設置することができず、早期検知が困難になる場合がある。
また、非破壊検査や気体漏れ試験、液体漏れ試験等では、漏洩発生の可能性がある位置で直接検査する必要があり、検査員が進入できる範囲に検査位置が限定されるため、地下貯槽の外周の検査を行うことができず、また常時検査することも困難になる。
また、音響特性に基づいてガス漏洩を検知する方法では、貯槽内部壁面にセンサーを設置することになるが、センサーから離れた位置での漏洩の検知が困難であるため、貯槽全体を網羅した検知ができない。さらに、貯槽内部壁面にセンサーを設置すると、貯槽の開放点検時を利用してセンサーのメンテナンスを行うことになるため、メンテナンスの機会が限られ、また、センサーを埋め込み式にすると、メンテナンスは困難となる。
However, according to the conventional leak detection method described above, the gas concentration measurement method limits the space in which a gas detector or the like can be installed (for example, an access tunnel). It cannot be installed, and early detection may be difficult.
Also, in non-destructive inspection, gas leak test, liquid leak test, etc., it is necessary to inspect directly at the position where there is a possibility of leakage, and the inspection position is limited to the range where the inspector can enter, so the underground storage tank The outer periphery cannot be inspected, and it is difficult to always inspect.
In addition, in the method of detecting gas leakage based on acoustic characteristics, a sensor is installed on the inner wall surface of the storage tank, but it is difficult to detect leakage at a position away from the sensor, so detection covering the entire storage tank I can't. Furthermore, if a sensor is installed on the inner wall of the storage tank, the maintenance of the sensor will be performed using the time when the storage tank is opened, so maintenance opportunities are limited, and if the sensor is embedded, maintenance will be difficult. Become.

また、特許文献1に記載されたような光ファイバを用いた漏洩検知方法によると、高圧気体を貯蔵する貯槽内部は、気密性を確保させる必要があるため、頻繁に開放することはできず、一旦内部に検出部を設置した後のメンテナンスは容易に行うことはできないという問題が存在する。   Moreover, according to the leak detection method using the optical fiber as described in Patent Document 1, the inside of the storage tank for storing the high-pressure gas needs to ensure airtightness, and therefore cannot be frequently opened. There is a problem that the maintenance after the detection unit is once installed cannot be easily performed.

また、特許文献2に記載されたような光ファイバを用いた漏洩検知方法によると、地下貯槽の外部は岩盤等の地盤に囲まれているため、光ファイバの設置空間が限られ、貯槽全体を網羅して漏洩検知を行うことは困難であるという問題が存在する。
また、低温等の温度特性をもつ気体の漏洩検知に限定されており、様々な高圧気体を検知することはできないという問題が存在する。
Moreover, according to the leak detection method using the optical fiber as described in Patent Document 2, the outside of the underground storage tank is surrounded by the ground such as the rock, so the installation space of the optical fiber is limited, and the entire storage tank is There is a problem that it is difficult to comprehensively detect leakage.
Moreover, it is limited to gas leak detection having temperature characteristics such as low temperature, and there is a problem that various high-pressure gases cannot be detected.

本発明は、上記した従来の問題が考慮されたものであり、高圧気体の漏洩を継続的に検知するとともに、漏洩が生じた場合に早期に発見することができ、且つ、地中に埋設された貯槽全体を網羅して漏洩検知を行うことができるとともに、特定の種類の高圧気体に限定されることなく、広範囲の高圧気体の漏洩を検知することができる高圧気体地下貯蔵施設の漏洩検知方法と高圧気体地下貯蔵施設を提供することを目的としている。また、漏洩検知する箇所のメンテナンスを容易に行うことができる高圧気体地下貯蔵施設を提供することを目的としている。   The present invention has been made in consideration of the above-described conventional problems, and continuously detects the leakage of high-pressure gas, can be detected early when leakage occurs, and is buried in the ground. Leak detection method for high-pressure gas underground storage facilities that can detect leaks covering the entire storage tank and can detect a wide range of high-pressure gas leaks without being limited to a specific type of high-pressure gas It aims to provide a high-pressure gas underground storage facility. Moreover, it aims at providing the high pressure gas underground storage facility which can perform the maintenance of the location which detects leak easily.

請求項1記載の発明は、地盤中に埋設されて内部に高圧気体を貯蔵する貯槽の外周全体に、地盤中の地下水を集水する有孔排水管が網目状に設置され、且つ、貯槽が、少なくとも、貯槽内部の気密性を確保する気密材と、気密材と地盤との間に介在されているとともに有孔排水管と交差するひび割れが全体的に分散して発生している裏込め材とから構成されている高圧気体地下貯蔵施設の漏洩検知方法において、有孔排水管内の温度を継続して測定し、有孔排水管内の温度分布を時系列的に観測して温度低下を検知することを特徴としている。   According to the first aspect of the present invention, a perforated drainage pipe for collecting groundwater in the ground is installed in a mesh pattern on the entire outer periphery of a storage tank embedded in the ground and storing high-pressure gas therein, and the storage tank At least an airtight material that secures airtightness inside the storage tank, and a backfilling material that is interposed between the airtight material and the ground and cracks that intersect with the perforated drainage pipes are dispersed throughout. In the leak detection method of the high-pressure gas underground storage facility that consists of the above, the temperature in the perforated drain pipe is continuously measured, and the temperature distribution in the perforated drain pipe is observed in time series to detect the temperature drop It is characterized by that.

このような特徴により、貯槽から高圧気体が漏洩した場合、気密材の漏洩箇所から漏出した高圧気体は、裏込め材に発生したひび割れ内に流入する。ひび割れと交差する有孔排水管内の圧力は、高圧気体を貯蔵する貯槽の内圧に比べて低くなるため、ひび割れ内に漏出した高圧気体は、貯槽の内圧より低圧の有孔排水管内に流入する。高圧気体が、低圧の有孔排水管内に流入すると、断熱膨張的な現象を起し、気体の体積が膨張するとともに気体の温度が低下し、有孔排水管内の温度が低下する。つまり、有孔排水管内の温度低下を検知することで漏洩の有無が検知され、また、温度低下の位置を検出することで漏洩位置が検知される。   Due to such characteristics, when high-pressure gas leaks from the storage tank, the high-pressure gas leaked from the leaked portion of the airtight material flows into the cracks generated in the backfill material. Since the pressure in the perforated drain pipe intersecting with the crack is lower than the internal pressure of the storage tank for storing the high-pressure gas, the high-pressure gas leaking into the crack flows into the perforated drain pipe having a pressure lower than the internal pressure of the storage tank. When the high-pressure gas flows into the low-pressure perforated drain pipe, an adiabatic expansion phenomenon occurs, the gas volume expands, the gas temperature decreases, and the perforated drain pipe temperature decreases. That is, the presence or absence of leakage is detected by detecting a temperature drop in the perforated drain pipe, and the leak position is detected by detecting the position of the temperature drop.

請求項2記載の発明は、地盤中に埋設されて内部に高圧気体を貯蔵する貯槽の外周全体に、地盤中の地下水を集水する有孔排水管が網目状に設置され、且つ、貯槽が、少なくとも、貯槽内部の気密性を確保する気密材と、気密材と地盤との間に介在されているとともに有孔排水管と交差するひび割れが全体的に分散して発生している裏込め材とから構成されている高圧気体地下貯蔵施設において、少なくとも、有孔排水管内に配設された光ファイバ検温部と、光ファイバ検温部の設置箇所の温度を継続的に測定して有孔排水管内の温度分布を時系列的に観測する測定部とからなる光ファイバ温度計が備えられ、光ファイバ温度計によって有孔排水管内の温度変化を検知することを特徴としている。   In the invention of claim 2, a perforated drainage pipe for collecting groundwater in the ground is installed in a mesh pattern on the entire outer periphery of the storage tank embedded in the ground and storing high-pressure gas therein, and the storage tank At least an airtight material that secures airtightness inside the storage tank, and a backfilling material that is interposed between the airtight material and the ground and cracks that intersect with the perforated drainage pipes are dispersed throughout. In a high-pressure gas underground storage facility consisting of: and at least the optical fiber temperature sensor installed in the perforated drainage pipe and the temperature of the installation location of the optical fiber temperature sensor to continuously measure the temperature in the perforated drainage pipe An optical fiber thermometer comprising a measurement unit for observing the temperature distribution in a time series is provided, and a temperature change in the perforated drain pipe is detected by the optical fiber thermometer.

このような特徴により、貯槽から高圧気体が漏洩した場合、請求項1の場合と同様に、断熱膨張的な現象によって有孔排水管内の温度が低下する。この温度低下を測定部で検出することで気体の漏洩の有無を検知するとともに、漏洩位置を検知する。また、有孔排水管内の温度と温度差がある高圧気体については、貯槽から高圧気体が漏洩した際に、断熱膨張的な現象による温度低下が顕著でなくても温度変化が生じ、漏洩の有無および漏洩位置がそれぞれ検知される。   Due to such characteristics, when high-pressure gas leaks from the storage tank, the temperature in the perforated drainage pipe is lowered by an adiabatic expansion phenomenon as in the case of claim 1. By detecting this temperature drop by the measuring unit, the presence or absence of gas leakage is detected, and the leakage position is detected. For high-pressure gas that has a temperature difference from the temperature in the perforated drainage pipe, when the high-pressure gas leaks from the storage tank, the temperature changes even if the temperature drop due to adiabatic expansion is not significant, and whether there is leakage And the leak position are detected respectively.

請求項3記載の発明は、請求項2記載の高圧気体地下貯蔵施設において、光ファイバ検温部はケーブル状に形成されていることを特徴としている。   According to a third aspect of the present invention, in the high-pressure gas underground storage facility according to the second aspect, the optical fiber temperature measuring section is formed in a cable shape.

このような特徴により、光ファイバ検温部のメンテナンスを行うとき、ケーブル状の光ファイバ検温部は有孔排水管の端部から引き抜かれて有孔排水管外でメンテナンスされ、メンテナンス終了後は適当な位置の有孔排水管内に再び挿入される。   Due to these features, when performing maintenance on the optical fiber temperature sensing unit, the cable-shaped optical fiber temperature sensing unit is pulled out from the end of the perforated drainage pipe and maintained outside the perforated drainage pipe. Reinserted into the perforated drainage pipe at the location.

本発明に係る高圧気体地下貯蔵施設の漏洩検知方法および高圧気体地下貯蔵施設によれば、光ファイバ検温部の設置箇所の温度分布を時系列的に測定するため、高圧気体の漏洩を継続的に検知することができる。また、有孔排水管内の温度変化は直ちに測定部で検出されるため、漏洩が生じた場合には早期に発見することができる。また、貯槽外周全体に網目状に設置された有孔排水管内に光ファイバ検温部が適宜配設されるため、貯槽全体を網羅して漏洩検知を行うことができる。また、漏洩した気体が高圧気体であれば、如何なる高圧気体でも断熱膨張的な現象が生じて温度低下が起こるため、広範囲の高圧気体の漏洩を検知することができる。   According to the high pressure gas underground storage facility leakage detection method and high pressure gas underground storage facility according to the present invention, in order to measure the temperature distribution of the installation location of the optical fiber temperature sensing portion in time series, the high pressure gas leakage is continuously detected. Can be detected. Moreover, since the temperature change in the perforated drain pipe is immediately detected by the measuring section, it can be detected at an early stage when leakage occurs. In addition, since the optical fiber temperature detection unit is appropriately disposed in a perforated drain pipe installed in a mesh shape around the entire outer periphery of the storage tank, leakage detection can be performed covering the entire storage tank. Further, if the leaked gas is a high-pressure gas, any high-pressure gas causes an adiabatic expansion phenomenon and a temperature drop occurs, so that a wide range of high-pressure gas leaks can be detected.

さらに、光ファイバ検温部はケーブル状に形成することで、光ファイバ検温部のメンテナンスを行うとき、光ファイバ検温部は引き差し自在であるため、点検作業、或いは故障時の交換や修理などのメンテナンスを容易に行うことができる。   Furthermore, the optical fiber temperature detector is formed in a cable shape so that when performing maintenance of the optical fiber temperature detector, the optical fiber temperature detector can be pulled out, so maintenance work such as inspection work or replacement or repair in the event of a failure. Can be easily performed.

以下、本発明に係る高圧気体地下貯蔵施設の漏洩検知方法および高圧気体地下貯蔵施設の実施の形態について、図面に基いて説明する。   Hereinafter, embodiments of a leak detection method for a high-pressure gas underground storage facility and a high-pressure gas underground storage facility according to the present invention will be described with reference to the drawings.

まず、高圧気体地下貯蔵施設の構成について説明する。
図1は高圧気体地下貯蔵施設の断面図である。図1に示すように、岩盤Aを掘削することにより空洞部1が形成されている。空洞部1はアクセストンネル2を介して地表と接続されている。アクセストンネル2は、空洞部1の上部に接続されている上部アクセストンネル2aと空洞部1の下部に接続されている下部アクセストンネル2bとが途中で合流して構成されている。空洞部1の上方には、頂部トンネル3が岩盤A内に形成されており、空洞部1と頂部トンネル3は立坑4を介して接続されている。頂部トンネル3は、アクセストンネル2と接続されている。
First, the configuration of the high-pressure gas underground storage facility will be described.
FIG. 1 is a cross-sectional view of a high-pressure gas underground storage facility. As shown in FIG. 1, the cavity 1 is formed by excavating the rock mass A. The cavity 1 is connected to the ground surface via an access tunnel 2. The access tunnel 2 is configured such that an upper access tunnel 2 a connected to the upper portion of the cavity portion 1 and a lower access tunnel 2 b connected to the lower portion of the cavity portion 1 are joined on the way. Above the cavity 1, a top tunnel 3 is formed in the rock mass A, and the cavity 1 and the top tunnel 3 are connected via a shaft 4. The top tunnel 3 is connected to the access tunnel 2.

岩盤A内の空洞部1内には、高圧気体を貯蔵するための貯槽21が構築されている。貯槽21は、空洞部1の内壁1aに沿って設置されたライニング材5と、ライニング材5外周面と空洞部1の内壁1aの間に介在された裏込めコンクリート材6と、ライニング材5外周面と裏込めコンクリート材6内周面との間に介在された緩衝材7とから構成されている。   A storage tank 21 for storing high-pressure gas is constructed in the cavity 1 in the rock mass A. The storage tank 21 includes a lining material 5 installed along the inner wall 1 a of the cavity portion 1, a backfilled concrete material 6 interposed between the outer peripheral surface of the lining material 5 and the inner wall 1 a of the cavity portion 1, and the outer periphery of the lining material 5. It is comprised from the buffer material 7 interposed between the surface and the back-filled concrete material 6 inner peripheral surface.

ライニング材5は、貯槽21の内部空間の気密性を確保する板状部材であり、例えば鋼製ライニング材等が使用される。無論、気密性を確保できるものであれば鋼製以外のライニング材でもよく、例えばコンクリート製の内側面に樹脂膜を被膜させたものでもよい。   The lining material 5 is a plate-like member that ensures the airtightness of the internal space of the storage tank 21. For example, a steel lining material or the like is used. Needless to say, a lining material other than steel may be used as long as airtightness can be ensured, for example, a resin film may be coated on a concrete inner surface.

裏込めコンクリート材6は、貯槽21の内圧を岩盤Aに伝達するための鉄筋コンクリート体であり、空洞部1内壁1aに沿って鉄筋を配筋するとともに、空洞部1内壁1aとの間に所定間隔をあけてライニング材5を配設させた後、ライニング材5と空洞部1内壁1aとの間にコンクリートを打設することで構築される。なお、貯槽21の内圧は高圧であるため、裏込めコンクリート材6には引張応力によるひび割れ6aが発生する。このひび割れ6aが過度に集中すると、ライニング材5の局部的な変形が大きくなり、貯槽21の気密性に悪影響を与えることになるため、裏込めコンクリート材6のひび割れ6aが、適切な間隔を保って形成されて全体的に分散して発生するように、裏込めコンクリート材6内の鉄筋が配筋される。   The backfill concrete material 6 is a reinforced concrete body for transmitting the internal pressure of the storage tank 21 to the bedrock A, arranges the reinforcing bars along the inner wall 1a of the cavity 1 and has a predetermined interval between the inner wall 1a of the cavity 1 After the lining material 5 is disposed by opening, concrete is placed between the lining material 5 and the inner wall 1a of the cavity 1. Since the internal pressure of the storage tank 21 is high, cracks 6a due to tensile stress occur in the backfilled concrete material 6. If the cracks 6a are excessively concentrated, local deformation of the lining material 5 is increased and the airtightness of the storage tank 21 is adversely affected. Therefore, the cracks 6a of the backfilled concrete material 6 are kept at an appropriate interval. The reinforcing bars in the back-filled concrete material 6 are arranged so that they are formed and dispersed throughout.

緩衝材7は、裏込めコンクリート材6のコンクリート打設時に、ライニング材5が変形や損傷しないようにコンクリート打設時の衝撃や圧力を緩和するものである。   The buffer material 7 relieves the impact and pressure at the time of concrete placement so that the lining material 5 is not deformed or damaged at the time of concrete placement of the backfill concrete material 6.

図2は貯槽21の斜視図である。図2で示すように、貯槽21の外周には、貯槽21に内圧が作用しない高圧気体地下貯蔵施設の建設時や、開放点検時などの運用時における内圧低下時に、岩盤Aの亀裂Cからの地下水圧(外水圧)が作用しないように、岩盤A中の地下水を集水する複数の有孔排水管8が網目状に設置されている。有孔排水管8は、外周面全体に亘って張り巡らされており、複数の有孔排水管8は、貯槽21の外周に沿って配管された集水管9に接続されている。   FIG. 2 is a perspective view of the storage tank 21. As shown in FIG. 2, the outer periphery of the storage tank 21 has a crack C in the bedrock A when the internal pressure decreases during construction of a high-pressure gas underground storage facility where the internal pressure does not act on the storage tank 21 or during open inspection. A plurality of perforated drainage pipes 8 that collect groundwater in the bedrock A are installed in a mesh shape so that groundwater pressure (external water pressure) does not act. The perforated drainage pipe 8 is stretched over the entire outer peripheral surface, and the plurality of perforated drainage pipes 8 are connected to a water collecting pipe 9 piped along the outer circumference of the storage tank 21.

図3は貯槽21の部分拡大断面図である。図3に示すように、有孔排水管8は貯槽21の外周全体に張り巡らされているため、有孔排水管8と裏込めコンクリート材6に全体的に分散されて発生したひび割れ6aとは互いに交差した状態になっている。   FIG. 3 is a partially enlarged sectional view of the storage tank 21. As shown in FIG. 3, the perforated drainage pipe 8 is stretched over the entire outer periphery of the storage tank 21, and therefore the crack 6 a generated by being dispersed throughout the perforated drainage pipe 8 and the backfill concrete material 6 is described. They are crossing each other.

図4は有孔排水管8の拡大図である。図3に示すように、有孔排水管8は、外周面に地下水を取り入れるための孔が複数設けられたパイプ材からなっている。なお、有孔排水管8は、周面がメッシュ状に成形された網状管を用いてもよく、周面に複数の孔8aを有する構成の管体であれば、何れを用いても良い。   FIG. 4 is an enlarged view of the perforated drain pipe 8. As shown in FIG. 3, the perforated drain pipe 8 is made of a pipe material in which a plurality of holes for taking in groundwater are provided on the outer peripheral surface. The perforated drainage pipe 8 may be a mesh pipe whose peripheral surface is formed in a mesh shape, and any pipe body having a configuration having a plurality of holes 8a on the peripheral surface may be used.

図5は高圧気体地下貯蔵施設における高圧気体の漏洩を検知するための光ファイバ温度計10を表す図である。図1,図4,図5に示すように、光ファイバ温度計10は、複数の有孔排水管8内にそれぞれ配設された複数の光ファイバ検温部11と、光ファイバ検温部11の設置箇所の温度分布を時系列的に測定する測定部12と、光ファイバ検温部11と測定部12とを繋ぐ光ファイバ接続部13とから構成されている。   FIG. 5 is a diagram illustrating an optical fiber thermometer 10 for detecting leakage of high-pressure gas in a high-pressure gas underground storage facility. As shown in FIGS. 1, 4, and 5, the optical fiber thermometer 10 includes a plurality of optical fiber temperature detectors 11 disposed in a plurality of perforated drain pipes 8, and an installation of the optical fiber temperature detectors 11. It comprises a measuring unit 12 that measures the temperature distribution of the place in time series, and an optical fiber connecting unit 13 that connects the optical fiber temperature measuring unit 11 and the measuring unit 12.

光ファイバ検温部11は、周知の光ファイバ14からなるものであり、貯槽21の外周面全体に網目状に張り巡らせるように、複数の有孔排水管8のうち、所定位置の有孔排水管8の中に挿装されている。光ファイバ14は、引っ張った際に破断しない程度の引張強度を有するとともに熱伝導性に優れた被膜材14aで被覆されたケーブル状のものである。測定部12は、頂部トンネル3内に配置されており、測定部12と貯槽21頂部側の集水管9との間には、立坑4内から頂部トンネル3内にかけて延在された接続管15が配管されている。光ファイバ接続部13は、貯槽21の頂部側で光ファイバ検温部11を構成する光ファイバ14を束ねた構成からなっており、集水管9及び接続管15内に挿装されている。なお、接続管15及び光ファイバ接続部13を地上まで延在させ、測定部12を地上に設置してもよい。   The optical fiber temperature measuring unit 11 is composed of a well-known optical fiber 14, and a perforated drainage pipe at a predetermined position among the plurality of perforated drainage pipes 8 so as to be stretched around the entire outer peripheral surface of the storage tank 21. 8 is inserted. The optical fiber 14 is a cable having a tensile strength that does not break when pulled, and is coated with a coating material 14a having excellent thermal conductivity. The measuring unit 12 is arranged in the top tunnel 3, and a connecting pipe 15 extending from the shaft 4 to the top tunnel 3 is provided between the measuring unit 12 and the water collecting pipe 9 on the top side of the storage tank 21. It is piped. The optical fiber connecting portion 13 has a configuration in which the optical fibers 14 constituting the optical fiber temperature detecting portion 11 are bundled on the top side of the storage tank 21, and is inserted into the water collecting pipe 9 and the connecting pipe 15. In addition, the connection pipe 15 and the optical fiber connection part 13 may be extended to the ground, and the measurement part 12 may be installed on the ground.

なお、有孔排水管8の孔8aの形状、分布、設置方法等は、裏込めコンクリート内への施工性を考慮して排水機能および漏洩高圧気体の流入・収集に支障がないように設計する。例えば、ひび割れ6aと交差する箇所に孔8aがなければ、漏洩高圧気体が有孔排水管8内に流入されないため、孔8aは、ひび割れ6aと交差する箇所に必ず形成されるように、有孔排水管8の外周に満遍無く複数形成されていることが必要であり、どの断面を切っても孔8aと交わるように形成することが好ましい。   In addition, the shape, distribution, installation method, etc. of the hole 8a of the perforated drainage pipe 8 are designed so as not to hinder the drainage function and inflow / collection of leaked high-pressure gas in consideration of workability in the backfilled concrete. . For example, if there is no hole 8a at a location intersecting with the crack 6a, the leaked high-pressure gas will not flow into the perforated drain pipe 8, so that the hole 8a is always formed at a location intersecting with the crack 6a. It is necessary that a plurality of the drain pipes 8 are uniformly formed on the outer periphery of the drain pipe 8, and it is preferable that the drain pipe 8 be formed so as to intersect with the holes 8a regardless of the cross section.

一方、図1に示すように、下部アクセストンネル2b内には、有孔排水管8内に流入して集水管9内に集水された地下水を、下部アクセストンネル2b内に設置された集水ピット18内に送水する第1の排水本管16が配管されている。第1の排水本管16の一端は貯槽21底部側の集水管9に接続され、他端は集水ピット18内に配置されており、第1の排水本管16の中間部には排水弁17が介装されている。   On the other hand, as shown in FIG. 1, in the lower access tunnel 2b, groundwater that has flowed into the perforated drain pipe 8 and collected in the water collection pipe 9 is collected into the water collection installed in the lower access tunnel 2b. A first drain main pipe 16 that feeds water into the pit 18 is provided. One end of the first drain main pipe 16 is connected to the water collecting pipe 9 on the bottom side of the storage tank 21, and the other end is disposed in the water collecting pit 18. 17 is interposed.

また、アクセストンネル2内には、集水ピット18内に集められた地下水を地上に排出する第2の排水本管19が配管されている。第2の排水本管19は、集水ピット18内からアクセストンネル2内を経由し、地表に至るまで配管されており、第2の排水本管19には、集水ピット18内の地下水を汲み上げる排水ポンプ20が介装されている。   Further, a second drain main 19 for discharging the groundwater collected in the water collecting pit 18 to the ground is provided in the access tunnel 2. The second drain main 19 is routed from the water collection pit 18 through the access tunnel 2 to the surface of the ground, and the second drain main 19 receives the groundwater in the water collection pit 18. A drainage pump 20 for pumping is interposed.

次に、上記した構成からなる高圧気体地下貯蔵施設における高圧気体の漏洩検知方法について説明する。   Next, a method for detecting leakage of high-pressure gas in the high-pressure gas underground storage facility having the above-described configuration will be described.

まず、高圧気体地下貯蔵施設が、建設時や内圧低下時以外の通常の運用期間中においては、排水ポンプ20を停止させ、岩盤Aからの湧水(地下水)を排出する排水機能は稼動させない。これによって、貯槽21の外周全体に張り巡らされた有孔排水管8内は、地下水流動がほとんどなく、熱流も定常状態に近く、一定温度状態に保たれる。
また、有孔排水管8内に配設される光ファイバ検温部11の設置経路を事前に定めて設置し、適当に定めて基準位置からの距離により貯槽21外周の位置特定を可能にしておく。
First, during the normal operation period when the high-pressure gas underground storage facility is not under construction or when the internal pressure is reduced, the drainage pump 20 is stopped and the drainage function for discharging spring water (groundwater) from the rock mass A is not operated. As a result, the inside of the perforated drainage pipe 8 stretched around the entire outer periphery of the storage tank 21 has almost no groundwater flow, the heat flow is close to a steady state, and is maintained at a constant temperature state.
In addition, the installation path of the optical fiber temperature measuring part 11 disposed in the perforated drain pipe 8 is determined in advance and installed, and the position of the outer periphery of the storage tank 21 can be specified by appropriately determining the distance from the reference position. .

次いで、高圧気体地下貯蔵施設の運用期間中、有孔排水管8内の温度を継続して測定し、測定部12で有孔排水管8内の温度分布を時系列的に観測する。前述したように、平常時の有孔排水管8内の温度は一定に保たれるため、高圧気体が漏洩していないときは、測定部12で測定される温度分布は一定となり、このときの温度分布の値が基準温度分布となる。   Next, during the operation period of the high-pressure gas underground storage facility, the temperature in the perforated drain pipe 8 is continuously measured, and the temperature distribution in the perforated drain pipe 8 is observed in time series by the measuring unit 12. As described above, since the temperature inside the perforated drainage pipe 8 is kept constant, when the high-pressure gas is not leaked, the temperature distribution measured by the measuring unit 12 is constant. The value of the temperature distribution becomes the reference temperature distribution.

貯槽21から高圧気体が漏洩した場合、ライニング材5の漏洩箇所から漏出した高圧気体は、裏込めコンクリート材6に発生したひび割れ6a内に流入する。ひび割れ6aと交差する有孔排水管8内の圧力は、高圧気体を貯蔵する貯槽21の内圧に比べて著しく低くなるため、ひび割れ6a内に漏出した高圧気体は、貯槽21の内圧より低圧の有孔排水管8内に流入する。高圧気体が、低圧の有孔排水管8内に流入すると、断熱膨張的な現象を起し、気体の体積が膨張するとともに気体の温度が低下し、有孔排水管8内の温度が低下する。この温度低下を、有孔排水管8内の温度分布を時系列的に観測する測定部12で検知し、漏洩の有無を検知する。また、適当に定めて基準位置からの距離により、貯槽21外周における温度低下箇所の位置を特定し、漏洩位置を3次元的に特定する。   When the high-pressure gas leaks from the storage tank 21, the high-pressure gas leaked from the leakage portion of the lining material 5 flows into the crack 6 a generated in the backfilled concrete material 6. Since the pressure in the perforated drain pipe 8 intersecting with the crack 6a is significantly lower than the internal pressure of the storage tank 21 for storing the high-pressure gas, the high-pressure gas leaked into the crack 6a is lower than the internal pressure of the storage tank 21. It flows into the hole drain pipe 8. When the high-pressure gas flows into the low-pressure perforated drain pipe 8, a phenomenon of adiabatic expansion occurs, the gas volume expands and the temperature of the gas decreases, and the temperature inside the perforated drain pipe 8 decreases. . This temperature drop is detected by the measurement unit 12 that observes the temperature distribution in the perforated drain pipe 8 in time series, and the presence or absence of leakage is detected. Moreover, the position of the temperature fall part in the outer periphery of the storage tank 21 is specified according to the distance from the reference position determined appropriately, and the leakage position is specified three-dimensionally.

上記した構成からなる高圧気体地下貯蔵施設の漏洩検知方法および高圧気体地下貯蔵施設によれば、光ファイバ検温部11の設置箇所の温度分布を時系列的に測定するため、高圧気体の漏洩を継続的に検知することができる。また、有孔排水管8内の温度変化は直ちに測定部12で検知されるため、高圧気体の漏洩が生じた場合には早期に発見することができる。また、貯槽21外周全体に網目状に設置された有孔排水管8内に光ファイバ検温部が適宜配設されるため、貯槽全体を網羅して漏洩検知を行うことができる。また、漏洩した気体が高圧気体であれば、如何なる高圧気体でも断熱膨張的な現象が生じて温度低下が起こるため、広範囲の高圧気体の漏洩を検知することができる。   According to the leakage detection method and the high-pressure gas underground storage facility having the above-described configuration, the high-pressure gas leakage is continuously measured in order to measure the temperature distribution at the installation location of the optical fiber temperature detection unit 11 in time series. Can be detected automatically. Moreover, since the temperature change in the perforated drainage pipe 8 is immediately detected by the measuring unit 12, it can be detected at an early stage when leakage of high-pressure gas occurs. In addition, since the optical fiber temperature detector is appropriately disposed in the perforated drain pipe 8 installed in a mesh shape around the entire outer periphery of the storage tank 21, leakage detection can be performed covering the entire storage tank. Further, if the leaked gas is a high-pressure gas, any high-pressure gas causes an adiabatic expansion phenomenon and a temperature drop occurs, so that a wide range of high-pressure gas leaks can be detected.

さらに、光ファイバ検温部11はケーブル状に形成されているため、光ファイバ検温部11のメンテナンスを行うとき、光ファイバ検温部11を有孔排水管8から引き抜いて点検作業、或いは故障時の交換や修理などを行うことができ、また、点検等が終了したあとは、再び有孔排水管8内に挿入させることができ、光ファイバ温度計10のメンテナンスを容易に行うことができる。   Furthermore, since the optical fiber temperature detection unit 11 is formed in a cable shape, when performing maintenance on the optical fiber temperature detection unit 11, the optical fiber temperature detection unit 11 is pulled out from the perforated drainage pipe 8 for inspection work or replacement at the time of failure. Can be inserted into the perforated drain pipe 8 after the inspection or the like is completed, and the maintenance of the optical fiber thermometer 10 can be easily performed.

また、断熱膨張的な現象による温度低下が顕著でない場合にも、貯槽21内に貯蔵された高圧気体の貯蔵温度と平常時の有孔排水管8内の温度との間に温度差があれば、温度変化を検知することができ、漏洩を検知することができる。
また、光ファイバ検温部11を設置する有孔排水管8の間隔、光ファイバ14の側線の設置数および設置経路を調整することで、漏洩位置の特定精度を向上させることができる。
Even if the temperature drop due to the adiabatic expansion phenomenon is not significant, if there is a temperature difference between the storage temperature of the high-pressure gas stored in the storage tank 21 and the temperature in the perforated drainage pipe 8 at normal times Temperature change can be detected, and leakage can be detected.
Further, by adjusting the interval between the perforated drainage pipes 8 where the optical fiber temperature measuring unit 11 is installed, the number of installed side lines of the optical fiber 14, and the installation route, the accuracy of specifying the leakage position can be improved.

以上、本発明に係る高圧気体地下貯蔵施設の漏洩検知方法および高圧気体地下貯蔵施設の実施の形態について説明したが、本発明は上記した実施の形態に限定されるものではなく、その趣旨を逸脱しない範囲で適宜変更可能である。例えば、上記した実施の形態では、光ファイバ検温部11は、貯槽21の外周面全体に網目状に張り巡らせるように、全体的に均等に配設されているが、本発明は、特に漏洩の虞がある箇所に光ファイバ検温部を密に配設させてもよい。   As mentioned above, although the leak detection method of the high-pressure gas underground storage facility and the embodiment of the high-pressure gas underground storage facility according to the present invention have been described, the present invention is not limited to the above-described embodiment, and departs from the gist thereof. It is possible to change appropriately within the range not to be. For example, in the above-described embodiment, the optical fiber temperature detection unit 11 is disposed uniformly on the whole so as to be stretched around the entire outer peripheral surface of the storage tank 21, but the present invention is particularly effective for leakage. You may arrange | position an optical fiber temperature-sensing part densely in the place with a possibility.

また、上記した実施の形態では、岩盤A内に構築される高圧気体地下貯蔵施設について説明しているが、本発明は、無論、その他の地盤内に構築される高圧気体地下貯蔵施設であってもよい。
また、上記した実施の形態では、光ファイバ14を用いて有孔排水管8内の温度を測定しているが、本発明に係る高圧気体地下貯蔵施設の漏洩検知方法は、光ファイバによる温度測定以外の方法で有孔排水管内の温度を測定してもよい。
また、上記した実施の形態では、光ファイバ検温部11はケーブル状に形成されているが、本発明は、光ファイバ検温部11を引き抜かないことを前提に、ケーブル状の光ファイバ検温部以外の検温部でもよく、例えば、棒状の光ファイバ検温部でもよい。
In the above-described embodiment, the high-pressure gas underground storage facility constructed in the bedrock A is described. However, the present invention is, of course, a high-pressure gas underground storage facility constructed in other ground. Also good.
In the above-described embodiment, the temperature in the perforated drain pipe 8 is measured using the optical fiber 14, but the leak detection method for the high-pressure gas underground storage facility according to the present invention measures the temperature using the optical fiber. You may measure the temperature in a perforated drain pipe by methods other than.
In the above-described embodiment, the optical fiber temperature detector 11 is formed in the shape of a cable. However, the present invention is based on the assumption that the optical fiber temperature detector 11 is not pulled out, except for the cable-shaped optical fiber temperature detector. For example, a bar-shaped optical fiber temperature detector may be used.

本発明に係る実施の形態を説明するための高圧気体地下貯蔵施設の断面図である。It is sectional drawing of the high pressure gas underground storage facility for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための貯槽の斜視図である。It is a perspective view of the storage tank for demonstrating embodiment which concerns on this invention. 本発明に係る実施の形態を説明するための部分断面図である。It is a fragmentary sectional view for describing an embodiment concerning the present invention. 本発明に係る実施の形態を説明するための有孔排水管の斜視図である。It is a perspective view of a perforated drain pipe for explaining an embodiment concerning the present invention. 本発明に係る実施の形態を説明するための光ファイバ温度計を表す図である。It is a figure showing the optical fiber thermometer for demonstrating embodiment which concerns on this invention.

符号の説明Explanation of symbols

5 ライニング材(気密材)
6a ひび割れ
6 裏込めコンクリート材(裏込め材)
8 有孔排水管
10 光ファイバ温度計
11 光ファイバ検温部
12 測定部
21 貯槽
A 岩盤(地盤)

5 Lining material (airtight material)
6a Crack 6 Backfilling concrete material (backfilling material)
8 Perforated drain pipe 10 Optical fiber thermometer 11 Optical fiber thermometer 12 Measuring unit 21 Storage tank A Rock (ground)

Claims (3)

地盤中に埋設されて内部に高圧気体を貯蔵する貯槽の外周全体に、地盤中の地下水を集水する有孔排水管が網目状に設置され、且つ、貯槽が、少なくとも、貯槽内部の気密性を確保する気密材と、気密材と地盤との間に介在されているとともに有孔排水管と交差するひび割れが全体的に分散して発生している裏込め材とから構成されている高圧気体地下貯蔵施設の漏洩検知方法において、
有孔排水管内の温度を継続して測定し、有孔排水管内の温度分布を時系列的に観測して温度低下を検知することを特徴とする高圧気体地下貯蔵施設の漏洩検知方法。
A perforated drain pipe that collects groundwater in the ground is installed in a mesh pattern on the entire outer periphery of the storage tank that is buried in the ground and stores high pressure gas inside, and the storage tank is at least airtight inside the storage tank. A high-pressure gas composed of an air-tight material that secures water and a back-filling material that is interposed between the air-tight material and the ground and that has cracks that intersect with the perforated drainage pipe as a whole. In the leak detection method for underground storage facilities,
A leak detection method for a high-pressure gas underground storage facility, wherein the temperature in a perforated drain pipe is continuously measured, and the temperature distribution in the perforated drain pipe is observed in time series to detect a temperature drop.
地盤中に埋設されて内部に高圧気体を貯蔵する貯槽の外周全体に、地盤中の地下水を集水する有孔排水管が網目状に設置され、且つ、貯槽が、少なくとも、貯槽内部の気密性を確保する気密材と、気密材と地盤との間に介在されているとともに有孔排水管と交差するひび割れが全体的に分散して発生している裏込め材とから構成されている高圧気体地下貯蔵施設において、
少なくとも、有孔排水管内に配設された光ファイバ検温部と、光ファイバ検温部の設置箇所の温度を継続的に測定して有孔排水管内の温度分布を時系列的に観測する測定部とからなる光ファイバ温度計が備えられ、
光ファイバ温度計によって有孔排水管内の温度変化を検知することを特徴とする高圧気体地下貯蔵施設。
A perforated drain pipe that collects groundwater in the ground is installed in a mesh pattern on the entire outer periphery of the storage tank that is buried in the ground and stores high pressure gas inside, and the storage tank is at least airtight inside the storage tank. A high-pressure gas composed of an air-tight material that secures water and a back-filling material that is interposed between the air-tight material and the ground and that has cracks that intersect with the perforated drainage pipe as a whole. In underground storage facilities,
At least an optical fiber thermometer disposed in the perforated drain pipe, and a measuring section that continuously measures the temperature of the installation location of the optical fiber thermometer and observes the temperature distribution in the perforated drain pipe in time series An optical fiber thermometer consisting of
A high-pressure gas underground storage facility that detects temperature changes in perforated drain pipes using an optical fiber thermometer.
請求項2記載の高圧気体地下貯蔵施設において、
光ファイバ検温部はケーブル状に形成されていることを特徴とする高圧気体地下貯蔵施設。

In the high-pressure gas underground storage facility according to claim 2,
A high-pressure gas underground storage facility characterized in that the optical fiber temperature measuring part is formed in a cable shape.

JP2005025586A 2005-02-01 2005-02-01 High pressure gas underground storage facility Active JP4461432B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005025586A JP4461432B2 (en) 2005-02-01 2005-02-01 High pressure gas underground storage facility

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005025586A JP4461432B2 (en) 2005-02-01 2005-02-01 High pressure gas underground storage facility

Publications (2)

Publication Number Publication Date
JP2006214772A true JP2006214772A (en) 2006-08-17
JP4461432B2 JP4461432B2 (en) 2010-05-12

Family

ID=36978136

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005025586A Active JP4461432B2 (en) 2005-02-01 2005-02-01 High pressure gas underground storage facility

Country Status (1)

Country Link
JP (1) JP4461432B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052971A (en) * 2007-08-24 2009-03-12 Shimizu Corp Hermeticity evaluation method for high-pressure fluid storage facility
JP2010164536A (en) * 2009-01-19 2010-07-29 Japan Oil Gas & Metals National Corp Flow detection method of underground gas
CN106679888A (en) * 2015-11-06 2017-05-17 中国航空工业第六八研究所 Quick detection method for sealing property of actuator
CN106968714A (en) * 2017-05-03 2017-07-21 四川鼎胜能源设备科技有限公司 High pressure underground gas well emits supervising device and monitoring method on sinking

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105115675A (en) * 2015-09-11 2015-12-02 中国石油化工股份有限公司 Leakage detection system for buried double-layer oil tank interlayer

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009052971A (en) * 2007-08-24 2009-03-12 Shimizu Corp Hermeticity evaluation method for high-pressure fluid storage facility
JP2010164536A (en) * 2009-01-19 2010-07-29 Japan Oil Gas & Metals National Corp Flow detection method of underground gas
CN106679888A (en) * 2015-11-06 2017-05-17 中国航空工业第六八研究所 Quick detection method for sealing property of actuator
CN106968714A (en) * 2017-05-03 2017-07-21 四川鼎胜能源设备科技有限公司 High pressure underground gas well emits supervising device and monitoring method on sinking

Also Published As

Publication number Publication date
JP4461432B2 (en) 2010-05-12

Similar Documents

Publication Publication Date Title
Ren et al. Pipeline corrosion and leakage monitoring based on the distributed optical fiber sensing technology
US8520195B2 (en) Method and system for estimating fluid leak flow rates using distributed optical fiber sensors
JP5930427B2 (en) Nondestructive inspection of pipes
Kishawy et al. Review of pipeline integrity management practices
US6547435B1 (en) Device for monitoring temperature distribution on the basis of distributed fiber-optic sensing, and use of same
WO2009158630A1 (en) Method and system for estimating fluid leak flow rates using distributed optical fiber sensors
JP4461432B2 (en) High pressure gas underground storage facility
JP6946978B2 (en) Information presentation system, repair plan presentation device, information presentation method and program
JP2008267089A (en) Underground gas detection device and underground gas detection method
Paolacci et al. Bolted flange joints equipped with FBG sensors in industrial piping systems subjected to seismic loads
KR101762614B1 (en) Monitoring Equipment for water supply pipe
CN101122994A (en) Pipe inspection maintenance and fee determination method
Wong et al. Leak detection and quantification of leak size along water pipe using optical fibre sensors package
JP2002236115A (en) Method and device for degradation diagnosis of conduit
JP2011137652A (en) Method for inspecting breakage of underground buried object
RU2473063C2 (en) Testing method of pipeline for safe internal operating pressure with evaluation of hazard of existing defects in pipeline, and device for its implementation
JP2014035321A (en) Optical fiber application liquid level measurement device
Thodi et al. Real-time Arctic pipeline integrity and leak monitoring
Wong et al. Water pipe condition assessment using submersible quasi-distributed optical fibre based pressure transducers
JP4394520B2 (en) Method and apparatus for detecting leakage of fluid flowing through a pipeline
JP3272651B2 (en) Inspection method of buried piping
Li et al. Research on active thermal based distributed fiber optic temperature sensing for leakage detection in water pipeline
Williams et al. Condition Assessment and Repair Prioritization of a Large Diameter Pipeline System
JP3864355B2 (en) Leakage detection method in high pressure storage facilities in bedrock
JP5022194B2 (en) Piping leak detection method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070607

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100204

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4461432

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130226

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140226

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150226

Year of fee payment: 5