JP3864355B2 - Leakage detection method in high pressure storage facilities in bedrock - Google Patents

Leakage detection method in high pressure storage facilities in bedrock Download PDF

Info

Publication number
JP3864355B2
JP3864355B2 JP08310997A JP8310997A JP3864355B2 JP 3864355 B2 JP3864355 B2 JP 3864355B2 JP 08310997 A JP08310997 A JP 08310997A JP 8310997 A JP8310997 A JP 8310997A JP 3864355 B2 JP3864355 B2 JP 3864355B2
Authority
JP
Japan
Prior art keywords
storage facility
inspection
rock
groundwater
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP08310997A
Other languages
Japanese (ja)
Other versions
JPH10278996A (en
Inventor
博夫 熊坂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimizu Corp
Original Assignee
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimizu Corp filed Critical Shimizu Corp
Priority to JP08310997A priority Critical patent/JP3864355B2/en
Publication of JPH10278996A publication Critical patent/JPH10278996A/en
Application granted granted Critical
Publication of JP3864355B2 publication Critical patent/JP3864355B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、高圧気体(天然ガス、プロパン、ブタン、水素、ヘリウム等)を貯蔵するために構築された岩盤内高圧貯蔵施設における漏洩の検知方法に関する。
【0002】
【従来の技術】
高圧気体を対象とする岩盤内高圧貯蔵施設(以下、単に貯蔵施設と称する)は、岩盤を掘削して設けられた空洞の内面に気密性をもたせるべくライニングを施して構築されたものである。
【0003】
上記のような貯蔵施設については、環境保全、施設運用上の安全性の確保等の点から、内部に貯蔵した高圧気体の漏洩に対する対策が非常に重要である。高圧気体の漏洩が起これば、貯蔵施設を設けた地域の周辺環境を著しく乱す原因となるだけでなく、貯蔵施設の爆発をも引き起こしかねないからである。
【0004】
従来、上記のような貯蔵施設について高圧気体の漏洩の有無を調査する方法としては、ガスホルダー(気体貯蔵容器)で実施されているように貯蔵施設の外部から直接検査したり、貯蔵施設内の圧力や温度の変化から状態方程式を用いて計算により漏洩を推定する方法等が採用されている。
【0005】
【発明が解決しようとする課題】
しかしながら、ガスホルダーでは貯蔵施設の外部から検査を行うが、岩盤内に構築された貯蔵施設ではガスホルダーのようにスチールライニングを外側から直接検査することができないこと、状態方程式を用いる計算法では精度が低いこと、しかも仮に漏洩を示す結果が出たとしても漏洩の箇所を特定することが不可能であること等の問題点が指摘されていた。
【0006】
本発明は上記の事情に鑑みてなされたものであり、高圧気体を対象とする岩盤内高圧貯蔵施設について、内部に貯蔵された高圧気体の外部への漏洩を正確に検知し、しかもその漏洩箇所を特定することが可能な岩盤内高圧貯蔵施設における漏洩の検知方法を提供することを目的としている。
【0007】
【課題を解決するための手段】
上記の課題を解決するための手段として、まず、高圧気体が流通可能な流路を管壁に備える検査管を、その内部に地下水を満たした状態で貯蔵施設に接してこれを包囲するように複数配設しておき、これら複数の検査管のうち、漏洩検査を実施する1本の検査管についてはその内部に満たされた地下水を排水することで空にして開放するとともに、他の検査管には地下水を満たした状態とする。もし空にした検査管が添設されている貯蔵施設の隔壁に漏洩があれば、貯蔵施設から洩れる高圧の高圧気体は、任意の時間が経過する間に低圧の当該検査管内に向けて徐々に流れ込んでくる。その後、空にした検査管内の気体を採取し、ガスクロマトグラフィ等の測定機器で高圧気体の濃度を測定する。もしその気体に高圧気体が存在、もしくは基準値以上に含まれていれば、先の検査管が添設されている貯蔵施設の隔壁に漏洩があることが確認できる。
また、上記した1本の検査管についての漏洩検知を終えた後、他の全ての検査管1本1本に対して同様の漏洩検知をそれぞれ実施する。つまり、漏洩検知を終えた検査管内を水で満たし、その後、漏洩検知を終えていない他の検査管のうち、1本の検査管についてはその内部に満たされた地下水を排水することで空にして開放し、他の検査管および漏洩検査を終えた検査管については地下水を満たした状態とし、任意の時間放置した後、空とした検査管内の気体を採取して天然ガスの濃度を測定することにより漏洩を検知する。この漏洩検知を全ての検査管1本1本に対してそれぞれ実施することにより、漏洩が起きている範囲をある程度限定することができる。
【0008】
ところで、貯蔵施設には、施工の段階において岩盤中を流れる地下水を排水するためにその周囲に排水パイプが配設されているので、このパイプを検査管として使用することも可能である。
【0009】
【発明の実施の形態】
本発明に係る岩盤内高圧貯蔵施設における漏洩の検知方法の一実施形態を図1ないし図3に示して説明する。
図1に示す岩盤内高圧貯蔵施設(以下、単に貯蔵施設と称する)1は、円形の底面を有し上部が球面状に形成されたカプセル形状のいわゆるサイロ型であり、岩盤中に設けられた空洞2内に構築されている。この空洞2は貯蔵施設1の外形に合わせてカプセル形状に掘削形成されている。
【0010】
空洞2の内壁面には全面に充填コンクリートの外殻3が形成されており、さらにこの外郭3の内側には肉薄の鋼板製のライニング4が隙間なく貼設されている。
【0011】
図2に示すように、貯蔵施設1の周囲には、岩盤中を流れる地下水を取り込んで排水し、地下水圧がライニング4に作用しないようにする排水パイプ(検査管)5が、外郭3の表面に密接した状態で、貯蔵施設1の頭頂部から底部の間に複数配設されている。これら排水パイプ5は、貯蔵施設1を上方からみたときにその頭頂部から上部の球面形状に沿って放射状に延び、貯蔵施設1を包囲するように下方へ向かって配設されている。
【0012】
排水パイプ5の管壁には、図3に示すように、岩盤中を流れる地下水を取り込むための孔(流路)6が多数設けられており、この孔6を通じて地下水が排水パイプ5内に流入するようになっている。
【0013】
各排水パイプ5の上端は、貯蔵施設1の頭頂部でそれぞれ独立したまま束ねられ、頭頂部から上方に向けて掘削された導坑7を通じて、貯蔵施設1の上方に位置する岩盤に設けられた上部アクセストンネル8にまで延ばされている。上部アクセストンネル8に達した各排水パイプ5の上端には、各排水パイプ5に給水を行う給水設備(図示せず)が上部バルブ9を介して連結されている。上部バルブ9は各排水パイプ5に個別に設置されており、この上部バルブ9を閉じることでそれに対応する排水パイプ5の上端を閉塞し、上部バルブ9を開くことで排水パイプ5内を大気中に開放するようになっている。
【0014】
一方、各排水パイプ5の下端は、貯蔵施設1の底部に達し、それぞれ独立したまま、貯蔵施設1を構築する際に岩盤に設けられた坑道を塞いだ下部プラグ10を貫通して、坑道を利用した下部アクセストンネル11にまで延ばされている。下部アクセストンネル11に達した各排水パイプ5の下端には、各排水パイプ5内に流入した地下水を処理する排水処理設備(図示せず)が下部バルブ12を介して設置されている。下部バルブ12は各排水パイプ5に個別に設置されている。
【0015】
上記のように構成されている貯蔵施設1は、通常以下のように運用される。
まず、貯蔵施設1を施工する段階においては、各排水パイプ5の下部バルブ12を開いた状態とし、岩盤中から空洞2内に流入して施工を妨げる地下水を排水パイプ5内に流入させて排水する。
【0016】
貯蔵施設1の完成後、内部に天然ガスを貯蔵した状態では、ライニング4には天然ガスの内圧が作用しており、地下水圧が岩盤側からライニング4に作用しても特に問題とはならないが、地下水が流通することでライニング4を浸食することが考慮されるので、各排水パイプ5内に地下水を満たしたうえで上下のバルブ9、12をすべて閉じた状態とし、地下水の流動を生じさせないようにする。
【0017】
天然ガスの漏洩検査は次のように実施する。
まず、地下水で満たされた各排水パイプ5のうちの1本についてその下部バルブ12を開いて内部に満たされた地下水を排水し、空になったところで下部バルブ12を閉じ、上部バルブ9を開いて排水パイプ内を大気中に開放する。もし空にした排水パイプ5を沿わせて配設している部分のライニング4に漏洩が起きていれば、貯蔵施設1から洩れる高圧の天然ガスは、時間の経過に伴って低圧(大気圧)の排水パイプ5内に向けて徐々に流れ込んでくる。
【0018】
その後、空にした排水パイプ5内の空気を採取し、ガスクロマトグラフィ等の測定機器を使用して採取した空気中の天然ガスの濃度を測定する。採取した空気中に天然ガスが存在、もしくはある一定の値以上に含まれていれば、この排水パイプ5が添設されている部分のライニング4に漏洩が起きていると判断する。
【0019】
排水パイプ5内の空気の抜き取り検査を終えたら、この排水パイプ5に上部アクセストンネル8に設置された給水設備から水を供給し、岩盤側から流入した地下水と併せて排水パイプ5内を満たす。
【0020】
以上の検査作業をすべての排水パイプ5について実施し、それぞれの排水パイプ5が添設されている各部のライニング4について漏洩の有無を調査し、漏洩があると認められた場合にその漏洩箇所を特定する。
【0021】
以上のようにして貯蔵施設の天然ガスの漏洩検査を実施すれば、ライニング4に近い貯蔵施設1の外側から直接検査することで、ガスホルダーで行われている従来の方法に比べて検査の精度を格段に向上させることができる。
【0022】
排水パイプ5内の空気を採取し、その空気中に含まれる天然ガスの濃度を直接測定して漏洩の有無を判断するので、間接的にしか従来の状態方程式を用いた方法と比べても検査の精度を格段に向上させることができる。
【0023】
排水パイプ5の1本1本に対して検査を実施することにより、漏洩が起きている範囲をある程度限定することができる。これにより、補修等の対策が立て易くなる。
【0024】
地下水の排水用にあらかじめ設けられている設備を使用して検査を行うので、貯蔵施設に検査のための設備を設ける必要がほとんどなく、検査を実施するために必要なコストを安価に済ませることができる。
【0025】
なお、上記の実施形態においては、サイロ型の貯蔵施設を検査対象として説明したが、本発明は特にサイロ型の貯蔵施設に限らずその他の形態を有する地下貯蔵施設に対して実施可能である。また、本実施形態においては天然ガスを貯蔵した施設について説明したが、本発明はこれに限らずプロパン、ブタン、水素、ヘリウム等の各種ガスの貯蔵施設についても実施可能である。
【0026】
【発明の効果】
以上説明したように、本発明に係る岩盤内高圧貯蔵施設における漏洩の検知方法によれば、ガスの漏洩を貯蔵施設の外側から直接検査するので、貯蔵施設の内側から検査する方法に比べて検査の精度を格段に向上させることができる。また、検査管内の空気を採取し、その空気中に含まれる高圧気体の濃度を直接測定して漏洩の有無を判断するので、状態方程式を用いた従来の間接的な方法と比べても検査の精度を格段に向上させることができる。さらに、貯蔵施設の周囲に配設された検査管の1本1本に対して検査を実施することにより、漏洩が起きている範囲をある程度限定することができる。これにより、補修等の対策が立て易くなる。
【0027】
また、本発明に係る岩盤内高圧貯蔵施設における漏洩の検知方法によれば、地下水の排水用にあらかじめ設けられている設備を使用して検査を行うので、貯蔵施設に検査のための設備を設ける必要がほとんどなく、検査を実施するために必要なコストを安価に済ませることができる。
【図面の簡単な説明】
【図1】 本発明に係る漏洩の検知方法を実施する岩盤内高圧貯蔵施設を示す断面斜視図である。
【図2】 同じく、岩盤内高圧貯蔵施設を示す立断面図である。
【図3】 排水パイプの設置状況を示す要部断面斜視図である。
【符号の説明】
1 岩盤内高圧貯蔵施設
4 ライニング
5 排水パイプ(検査管)
6 孔(流路)
9 上部バルブ
12 下部バルブ
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a leak detection method in a high-pressure storage facility in a rock that is constructed for storing high-pressure gas (natural gas, propane, butane, hydrogen, helium, etc.).
[0002]
[Prior art]
A high-pressure gas storage facility (hereinafter simply referred to as a storage facility) for high-pressure gas is constructed by lining the inner surface of a cavity provided by excavating the rock.
[0003]
For storage facilities such as those mentioned above, measures against leakage of high-pressure gas stored inside are very important from the viewpoints of environmental protection and safety in facility operation. This is because if a high-pressure gas leaks, it not only significantly disturbs the surrounding environment of the area where the storage facility is provided, but also may cause an explosion of the storage facility.
[0004]
Conventionally, as a method of investigating the existence of leakage of high-pressure gas in the storage facility as described above, as in the case of a gas holder (gas storage container), it is directly inspected from outside the storage facility, A method for estimating leakage by calculation using a state equation from changes in pressure and temperature is employed.
[0005]
[Problems to be solved by the invention]
However, the gas holders are inspected from outside the storage facility, but the storage facilities built in the rock cannot directly inspect the steel lining from the outside like the gas holder, and the calculation method using the state equation is accurate. However, it has been pointed out that there are problems such as being low, and even if a result indicating leakage is obtained, it is impossible to specify the location of the leakage.
[0006]
The present invention has been made in view of the above circumstances, and for a high-pressure storage facility in bedrock intended for high-pressure gas, leakage of the high-pressure gas stored inside is accurately detected, and the leakage location It aims at providing the detection method of the leak in the high-pressure storage facility in the rock which can specify.
[0007]
[Means for Solving the Problems]
As means for solving the above-mentioned problems, first, an inspection tube provided with a flow path through which high-pressure gas can flow is provided in the tube wall so as to be in contact with the storage facility and filled with groundwater. A plurality of inspection tubes are arranged, and one inspection tube for performing a leakage inspection is opened by emptying the ground water filled therein and draining other inspection tubes. It is assumed to be filled with groundwater. If there is a leak in the bulkhead of the storage facility where the emptied test tube is attached, the high-pressure high-pressure gas leaking from the storage facility will gradually move into the low-pressure test tube over a period of time. It flows in. Thereafter, the gas in the evacuated test tube is collected, and the concentration of the high-pressure gas is measured with a measuring instrument such as gas chromatography. If the gas contains high-pressure gas or exceeds the standard value, it can be confirmed that there is a leak in the partition wall of the storage facility to which the previous test tube is attached.
In addition, after the above-described leakage detection for one inspection tube is completed, the same leakage detection is performed for all the other inspection tubes one by one. In other words, the inside of the inspection tube that has finished leak detection is filled with water, and after that, of the other test tubes that have not finished leak detection, one test tube is emptied by draining the groundwater filled therein. The test tube that has been opened and the other test tubes and the leak test have been completed should be filled with groundwater, left for an arbitrary period of time, and then the gas in the emptied test tube is collected to measure the concentration of natural gas. To detect leaks. By carrying out this leak detection for all the test tubes one by one, it is possible to limit the range in which the leak occurs to some extent.
[0008]
By the way, since the drainage pipe is arrange | positioned in the storage facility in order to drain the groundwater which flows in the bedrock in the construction stage, it is also possible to use this pipe as an inspection pipe.
[0009]
DETAILED DESCRIPTION OF THE INVENTION
An embodiment of a leak detection method in a high pressure storage facility in a rock according to the present invention will be described with reference to FIGS.
1 is a so-called silo-type capsule having a circular bottom surface and a spherical upper portion, and is provided in the rock mass. It is built in the cavity 2. The cavity 2 is formed in a capsule shape in accordance with the outer shape of the storage facility 1.
[0010]
An outer shell 3 of filled concrete is formed on the entire inner wall surface of the cavity 2, and a thin steel plate lining 4 is stuck inside the outer shell 3 without a gap.
[0011]
As shown in FIG. 2, around the storage facility 1, a drain pipe (inspection pipe) 5 that takes in and drains groundwater flowing in the rock and prevents groundwater pressure from acting on the lining 4 is the surface of the outer shell 3. A plurality of storage facilities 1 are disposed between the top and bottom of the storage facility 1 in close contact with each other. These drainage pipes 5 extend radially from the top of the storage facility 1 along the upper spherical surface when viewed from above, and are disposed downward so as to surround the storage facility 1.
[0012]
As shown in FIG. 3, the pipe wall of the drain pipe 5 is provided with a number of holes (flow paths) 6 for taking in the ground water flowing through the rock, and the ground water flows into the drain pipe 5 through the holes 6. It is supposed to be.
[0013]
The upper ends of the drain pipes 5 are bundled independently at the top of the storage facility 1, and are provided on the bedrock located above the storage facility 1 through the guide shaft 7 excavated upward from the top. It extends to the upper access tunnel 8. A water supply facility (not shown) for supplying water to each drain pipe 5 is connected to the upper end of each drain pipe 5 reaching the upper access tunnel 8 via an upper valve 9. The upper valve 9 is individually installed in each drain pipe 5, the upper valve 9 is closed to close the upper end of the corresponding drain pipe 5, and the upper valve 9 is opened to open the drain pipe 5 in the atmosphere. It is supposed to be open to.
[0014]
On the other hand, the lower end of each drainage pipe 5 reaches the bottom of the storage facility 1 and passes through the lower plug 10 that closes the tunnel provided in the rock when the storage facility 1 is constructed while being independent of each other. It extends to the lower access tunnel 11 used. A drainage treatment facility (not shown) for treating groundwater flowing into each drainage pipe 5 is installed via a lower valve 12 at the lower end of each drainage pipe 5 reaching the lower access tunnel 11. The lower valve 12 is individually installed in each drain pipe 5.
[0015]
The storage facility 1 configured as described above is normally operated as follows.
First, at the stage of constructing the storage facility 1, the lower valve 12 of each drainage pipe 5 is opened, and groundwater that flows into the cavity 2 from the bedrock and impedes construction is allowed to flow into the drainage pipe 5 to drain the water. To do.
[0016]
In the state where the natural gas is stored inside after the storage facility 1 is completed, the internal pressure of the natural gas acts on the lining 4, and even if the underground water pressure acts on the lining 4 from the bedrock side, there is no particular problem. Since it is considered that the lining 4 is eroded by the circulation of the groundwater, the drainage pipes 5 are filled with the groundwater, and the upper and lower valves 9 and 12 are all closed, so that the groundwater does not flow. Like that.
[0017]
The natural gas leak inspection is carried out as follows.
First, for each of the drainage pipes 5 filled with groundwater, the lower valve 12 is opened to drain the groundwater filled in the interior. When the drainage becomes empty, the lower valve 12 is closed and the upper valve 9 is opened. Open the drain pipe to the atmosphere. If there is a leak in the lining 4 where the drainage pipe 5 is emptied, the high-pressure natural gas leaking from the storage facility 1 will become low pressure (atmospheric pressure) over time. It gradually flows into the drainage pipe 5.
[0018]
Thereafter, the air in the drainage pipe 5 that has been emptied is collected, and the concentration of natural gas in the collected air is measured using a measuring instrument such as gas chromatography. If natural gas is present in the collected air, or if it is contained above a certain value, it is determined that a leak has occurred in the lining 4 where the drain pipe 5 is attached.
[0019]
When the extraction inspection of the air in the drain pipe 5 is finished, water is supplied to the drain pipe 5 from the water supply facility installed in the upper access tunnel 8 and the drain pipe 5 is filled together with the groundwater flowing in from the rock side.
[0020]
The above inspection work is carried out for all drainage pipes 5 and the presence or absence of leakage is investigated for the lining 4 of each part to which each drainage pipe 5 is attached. Identify.
[0021]
If the natural gas leakage inspection of the storage facility is performed as described above, the inspection accuracy is higher than that of the conventional method performed by the gas holder by directly inspecting from the outside of the storage facility 1 close to the lining 4. Can be significantly improved.
[0022]
Since the air in the drain pipe 5 is sampled and the concentration of natural gas contained in the air is directly measured to determine the presence or absence of leaks, it is inspected only indirectly compared to the method using the conventional equation of state. Accuracy can be significantly improved.
[0023]
By inspecting each drain pipe 5 one by one, the range in which leakage occurs can be limited to some extent. This makes it easier to take measures such as repairs.
[0024]
Since the inspection is carried out using the equipment provided for groundwater drainage in advance, there is almost no need to provide the equipment for inspection in the storage facility, and the cost necessary for carrying out the inspection can be reduced. it can.
[0025]
In the above-described embodiment, the silo type storage facility has been described as an inspection target. However, the present invention is not limited to the silo type storage facility, and can be applied to an underground storage facility having other forms. Moreover, although the facility which stored the natural gas was demonstrated in this embodiment, this invention is not limited to this, It can implement also about the storage facility of various gas, such as propane, butane, hydrogen, helium.
[0026]
【The invention's effect】
As described above, according to the leak detection method in the high pressure storage facility in the rock according to the present invention, since the gas leakage is directly inspected from the outside of the storage facility, the inspection is compared with the method of inspecting from the inside of the storage facility. Accuracy can be significantly improved. In addition, the air inside the test tube is sampled and the concentration of the high-pressure gas contained in the air is directly measured to determine the presence or absence of leakage. The accuracy can be greatly improved. Further, by conducting an inspection on each of the inspection tubes arranged around the storage facility, it is possible to limit the extent of leakage to some extent. This makes it easier to take measures such as repairs.
[0027]
Further, according to the method for detecting leakage in a high-pressure storage facility in a rock according to the present invention, inspection is performed using equipment provided in advance for draining groundwater, so that equipment for inspection is provided in the storage facility. There is almost no need, and the cost required to carry out the inspection can be reduced.
[Brief description of the drawings]
FIG. 1 is a cross-sectional perspective view showing a high-pressure storage facility in a rock that implements a leakage detection method according to the present invention.
FIG. 2 is a vertical sectional view showing a high-pressure storage facility in a rock mass, similarly.
FIG. 3 is a cross-sectional perspective view of a main part showing a state of installation of a drain pipe.
[Explanation of symbols]
1 High pressure storage facility in bedrock 4 Lining 5 Drainage pipe (inspection pipe)
6 holes (flow path)
9 Upper valve 12 Lower valve

Claims (3)

高圧気体を貯蔵するために地下に構築された岩盤内高圧貯蔵施設において、内部に貯蔵された高圧気体の外部への漏洩を検知する方法であって、
高圧気体が流通可能な流路を管壁に備える検査管を、その内部に地下水を満たした状態で前記岩盤内高圧貯蔵施設に接してこれを包囲するように複数配設しておき、
複数の前記検査管のうち、1本の検査管についてはその内部に満たされた地下水を排水することで空にして開放するとともに、他の検査管には地下水を満たした状態とし、
任意の時間放置した後、空とした前記検査管内の気体を採取して天然ガスの濃度を測定することにより漏洩を検知する
ことを特徴とする岩盤内高圧貯蔵施設における漏洩の検知方法。
A method for detecting leakage of high-pressure gas stored inside to a high-pressure gas storage facility built underground to store high-pressure gas,
A plurality of test tubes provided with a flow path through which high-pressure gas can flow in the tube wall in a state filled with groundwater therein so as to be in contact with and surround the high-pressure storage facility in the rock,
Among the plurality of test tubes, one test tube is emptied and opened by draining the groundwater filled therein, and the other test tubes are filled with groundwater,
A method for detecting a leak in a high pressure storage facility in a rock, wherein the leak is detected by collecting the gas in the test tube that has been left empty for an arbitrary period of time and measuring the concentration of natural gas.
請求項1に記載された岩盤内高圧貯蔵施設における漏洩の検知方法において、
前記1本の検査管についての漏洩検知を終えた後、
漏洩検知を終えた検査管内を水で満たし、その後、漏洩検知を終えていない他の検査管のうち、1本の検査管についてはその内部に満たされた地下水を排水することで空にして開放し、他の検査管および漏洩検査を終えた検査管については地下水を満たした状態とし、任意の時間放置した後、空とした検査管内の気体を採取して天然ガスの濃度を測定することにより漏洩を検知し、
この漏洩検知を全ての検査管1本1本に対してそれぞれ実施することを特徴とする岩盤内高圧貯蔵施設における漏洩の検知方法。
In the detection method of the leak in the high-pressure storage facility in the rock mass described in claim 1,
After finishing leak detection for the one test tube,
Fill the inside of the inspection tube that has completed leak detection with water, and then open and empty one of the other inspection tubes that have not completed leak detection by draining the groundwater filled inside. For other inspection tubes and inspection tubes that have completed leakage inspection, fill them with groundwater, leave them for an arbitrary period of time, collect the gas in the empty inspection tubes, and measure the concentration of natural gas. Detect leaks,
A method for detecting leakage in a high pressure storage facility in a rock, wherein this leakage detection is carried out for every single inspection tube .
請求項1または2に記載された岩盤内高圧貯蔵施設における漏洩の検知方法において、
前記検査管として、岩盤中を流れる地下水を排水するために前記岩盤内高圧貯蔵施設の周囲に配設された排水パイプを使用することを特徴とする岩盤内高圧貯蔵施設における漏洩の検知方法。
In the detection method of the leak in the high-pressure storage facility in the rock mass described in claim 1 or 2,
A method for detecting leakage in a high-pressure storage facility in a rock, wherein a drainage pipe disposed around the high-pressure storage facility in a rock is used as the inspection tube to drain groundwater flowing through the rock.
JP08310997A 1997-04-01 1997-04-01 Leakage detection method in high pressure storage facilities in bedrock Expired - Fee Related JP3864355B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08310997A JP3864355B2 (en) 1997-04-01 1997-04-01 Leakage detection method in high pressure storage facilities in bedrock

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08310997A JP3864355B2 (en) 1997-04-01 1997-04-01 Leakage detection method in high pressure storage facilities in bedrock

Publications (2)

Publication Number Publication Date
JPH10278996A JPH10278996A (en) 1998-10-20
JP3864355B2 true JP3864355B2 (en) 2006-12-27

Family

ID=13793042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08310997A Expired - Fee Related JP3864355B2 (en) 1997-04-01 1997-04-01 Leakage detection method in high pressure storage facilities in bedrock

Country Status (1)

Country Link
JP (1) JP3864355B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001235098A (en) * 2000-02-22 2001-08-31 Ohbayashi Corp Method of detecting drain and air leak from storage facilities in base rock

Also Published As

Publication number Publication date
JPH10278996A (en) 1998-10-20

Similar Documents

Publication Publication Date Title
US3977233A (en) Process and apparatus for the determination of concentration profiles of liquid or gaseous substances
US4704897A (en) Locating method of and the locating unit for leaks on piping
KR20010022166A (en) Device and method for permanently controlling the tightness of closing lids of containers for radioactive materials
US5168748A (en) Leak simulation device for storage tanks
EP1846742A2 (en) Fluid containment element leak detection apparatus and method
CN109690276A (en) Spent fuel stores pond leakage monitoring system
JPS59170739A (en) Leak inspecting method of tank
JP3864355B2 (en) Leakage detection method in high pressure storage facilities in bedrock
CA2132799A1 (en) Underground drain tank
US7506688B2 (en) System and method for breach detection in petroleum wells
US10366797B2 (en) System and method for preventing and monitoring leakage of water from tank liner
CN113898412A (en) Freeze-induced expansion force monitoring method based on subway horizontal freezing
JP2006214772A (en) Leakage detection method for high-pressure gas underground storage facility, and high-pressure gas underground storage facility
JP3975437B2 (en) High pressure gas storage facility
JP2011137652A (en) Method for inspecting breakage of underground buried object
JP5699501B2 (en) Leakage gas detection apparatus and method
US20220074906A1 (en) Device and method for measuring radon release amount during rock shearing damage process
US6148854A (en) System for leak detection from underground and aboveground fuel storage tanks
CN108151972A (en) Large container end cap flange leakage detection method and its detection instrument
JP4379649B2 (en) High pressure gas storage facility and leak detection method in high pressure gas storage facility
CN113720995A (en) Centrifugal test device for reinforcing influence of side foundation pit excavation on periphery of existing tunnel hole
JP2001280594A (en) Storage facility in bedrock, method of execution of work and leakage detection method
RU2297680C1 (en) Method and device for checking fuel element cans for tightness
JP4702659B2 (en) Leakage location inspection method for high pressure gas storage facility and high pressure gas storage facility
JP4423628B2 (en) High pressure gas storage facility and leak detection method in high pressure gas storage facility

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050628

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050719

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060530

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060905

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060921

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131013

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141013

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees