JP2006214239A - Beam-column semi-rigid connection structure and steel frame structure - Google Patents

Beam-column semi-rigid connection structure and steel frame structure Download PDF

Info

Publication number
JP2006214239A
JP2006214239A JP2005030778A JP2005030778A JP2006214239A JP 2006214239 A JP2006214239 A JP 2006214239A JP 2005030778 A JP2005030778 A JP 2005030778A JP 2005030778 A JP2005030778 A JP 2005030778A JP 2006214239 A JP2006214239 A JP 2006214239A
Authority
JP
Japan
Prior art keywords
column
steel pipe
semi
pipe column
angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005030778A
Other languages
Japanese (ja)
Inventor
Yasuhiro Uchida
保博 内田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kagoshima University NUC
Original Assignee
Kagoshima University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kagoshima University NUC filed Critical Kagoshima University NUC
Priority to JP2005030778A priority Critical patent/JP2006214239A/en
Publication of JP2006214239A publication Critical patent/JP2006214239A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Joining Of Building Structures In Genera (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a beam-column semi-rigid connection structure which is excellent in strength and rigidity, and implemented at a low cost, and to provide a steel frame structure. <P>SOLUTION: According to the beam-column semi-rigid connection structure, an end of a steel pipe column 1 is connected to a beam 3 via a connection member 2. A connection portion inclusive of the connection member 2 is constructed as a semi-rigid connection portion, and cross-sectional areas of the steel pipe column 1 and the connection member 2 are set so as to be sufficient for ensuring the elasticity of the steel pipe column 1. The steel pipe column 1 is formed of a square steel pipe column while the connection member 2 is formed of an angle, and the connection member 2, the steel pipe column 1, and the beam 3 are connected to each other by bolting or welding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、典型的には山形鋼等を用いて角形鋼管柱の両端を梁に接合する構造システム、特に柱梁半剛接合構造および鋼構造骨組に関するものである。   The present invention relates to a structural system that typically joins both ends of a square steel pipe column to a beam using angle steel or the like, and more particularly to a column beam semi-rigid joint structure and a steel structure frame.

住宅等の建築物において、柱と梁によって構成される鉄骨構造が使用される。この種の骨組構造において、たとえば特許文献1には外壁の構造躯体となる上部階の柱と下部階の柱の間に梁を貫通させ、各階の柱間の外壁の開口部の大きさに合わせて、上部階および下部階の柱が互いに梁の任意位置に配置されるようにしたものが開示されている。   In a building such as a house, a steel structure composed of columns and beams is used. In this type of frame structure, for example, in Patent Document 1, a beam is passed between a column on the upper floor and a column on the lower floor, which is the structural frame of the outer wall, so as to match the size of the opening on the outer wall between the columns on each floor. Thus, there is disclosed a structure in which columns on the upper floor and the lower floor are arranged at arbitrary positions on the beam.

特許第2992580号公報Japanese Patent No. 2992580

柱が大きな軸力と曲げを受ける従来の剛接合骨組は耐力低下が著しく、そのままでは直ぐに崩壊する等の問題がある。また、大変形時には柱を弾性に保つことができず、強度・剛性を確保するのが必ずしも容易でなかった。   A conventional rigid joint frame in which a column is subjected to a large axial force and bending has a significant decrease in yield strength, and there is a problem that the column collapses as it is. Also, the column cannot be kept elastic during large deformations, and it has not always been easy to ensure strength and rigidity.

本発明はかかる実情に鑑み、特に強度・剛性に優れ、しかもこれを低価格で実現可能な柱梁半剛接合構造および鋼構造骨組を提供することを目的とする。   In view of such circumstances, an object of the present invention is to provide a column beam semi-rigid joint structure and a steel structure frame that are particularly excellent in strength and rigidity and that can be realized at low cost.

本発明の柱梁半剛接合構造は、鋼管柱の端部を接合部材を介して梁に接合するようにした接合構造であって、前記接合部材を含む接合部を半剛接合として構成するとともに、前記鋼管柱が弾性を保つように該鋼管柱および前記接合部材の断面サイズを設定することを特徴とする。   The column beam semi-rigid joint structure of the present invention is a joint structure in which an end portion of a steel pipe column is joined to a beam via a joint member, and the joint portion including the joint member is configured as a semi-rigid joint, A cross-sectional size of the steel pipe column and the joining member is set so that the steel pipe column maintains elasticity.

また、本発明の柱梁半剛接合構造において、前記鋼管柱は角形鋼管により構成されるとともに、前記接合部材はアングルにより構成され、前記接合部材と前記鋼管柱および前記梁とをボルト締結または溶接により結合することを特徴とする。   In the column beam semi-rigid joint structure of the present invention, the steel pipe column is constituted by a square steel pipe, the joining member is constituted by an angle, and the joining member, the steel pipe column and the beam are coupled by bolt fastening or welding. It is characterized by doing.

また、本発明の柱梁半剛接合構造において、前記鋼管柱の水平耐力が、下記式を満足するように前記鋼管柱および前記接合部材の断面サイズを設定することを特徴とする。
ΣH<Hy
ここに、ΣHは安全限界時における前記鋼管柱の転倒モーメントから得る水平耐力、フランジアングル水平耐力およびウェブアングル水平耐力の総和、Hyは柱頭位置で換算した前記鋼管柱の水平耐力である。
In the column beam semi-rigid joint structure of the present invention, the steel tube column and the joining member are set to have a cross-sectional size so that a horizontal proof stress of the steel tube column satisfies the following formula.
ΣH <H y
Here, .SIGMA.H the lateral strength obtained from overturning moment of the steel column at the time of the safety limit, the sum of the flange angle Lateral Strength and Web Angle lateral strength, the H y is the lateral strength of the steel pipe column converted by stigma position.

また、本発明の鋼構造骨組は、鋼管柱を介して梁を相互に結合してなる多層複数スパンの鋼構造骨組であって、その骨組の少なくとも中柱部位に、上記いずれかの柱梁半剛接合構造を持つことを特徴とする。   Further, the steel structure frame of the present invention is a multi-span multi-span steel structure frame formed by connecting beams to each other via a steel pipe column, and any one of the above-mentioned column beam semi-rigid joints at least in the middle column part of the frame It has a structure.

本発明によれば典型的態様において、梁と鋼管柱の接合部にアングルを使用する。この接合部のアングルおよび梁の断面サイズを所定の関係式に従って決めることにより、大変形時でも柱を弾性に保つことができ、必要な強度・剛性を確保することができる。本構造システムにより柱に生じる応力を制御することができるため、柱の力学的合理性が向上するばかりか、柱を実質的に細くできるためデザイン上の利点もある。また、溶接を必要としない両端半剛接合の柱により構造物を構成することで、特に大地震時におけいても柱の損傷等がなく、低価格で性能に優れた構造物を実現することができる。   According to the present invention, in an exemplary embodiment, an angle is used at the joint between the beam and the steel pipe column. By determining the angle of the joint and the cross-sectional size of the beam according to a predetermined relational expression, the column can be kept elastic even during large deformations, and necessary strength and rigidity can be ensured. Since the structural system can control the stress generated in the column, not only the mechanical rationality of the column is improved, but also there is a design advantage because the column can be made substantially thin. In addition, by constructing the structure with pillars with semi-rigid joints on both ends that do not require welding, it is possible to realize a structure with excellent performance at a low price without damage to the pillar even in the event of a large earthquake. it can.

具体的には上式、すなわちΣH<Hyのようにフランジアングルおよびウェブアングルを設計することで、柱を弾性に保つことができる。
また、本発明による柱梁半剛接合構造を持つ鋼構造骨組では、極めて安定した弾塑性挙動を示す。
Specifically, the column can be kept elastic by designing the flange angle and the web angle as in the above formula, that is, ΣH <H y .
Moreover, the steel structure frame having the column beam semi-rigid joint structure according to the present invention exhibits extremely stable elasto-plastic behavior.

以下、本発明による好適な実施の形態について、添付図面に基づいて詳細に説明する。
図1は、本発明を適用した両端半剛接合の角形鋼管柱からなる構造システムを示している。このシステムでは山形鋼2(アングル)を用いて、角形鋼管柱1の両端が梁3に接合される。なお、各山形鋼2はこの例ではボルト4によって、角形鋼管柱1あるいは梁3に締結される。
DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, preferred embodiments of the invention will be described in detail with reference to the accompanying drawings.
FIG. 1 shows a structural system composed of a square steel pipe column semi-rigidly bonded at both ends to which the present invention is applied. In this system, angle steel pipe 2 (angle) is used to join both ends of square steel pipe column 1 to beam 3. Each angle steel 2 is fastened to the square steel pipe column 1 or the beam 3 by a bolt 4 in this example.

本発明において、接合部材である山形鋼2を含む接合部を半剛接合として構成するとともに、角形鋼管柱1が弾性を保つように該鋼管柱1および山形鋼2の断面サイズを設定する。まず、半剛接合を有する角形鋼管柱の設計するにあたり、角形鋼管柱を弾性に保つ梁接合部の設計式を導く。
図2は、角形鋼管の片持柱の柱梁接合部および柱に作用する曲げモーメント(M)分布を示している。柱を弾性に保つための方法として、安全限界(層間変形角θ=1/30)となる水平変位δ1/30における剛性・強度条件を求める。
In the present invention, the joint portion including the angle steel 2 that is a joining member is configured as a semi-rigid joint, and the cross-sectional sizes of the steel tube column 1 and the angle steel 2 are set so that the square steel tube column 1 maintains elasticity. First, in designing a square steel pipe column having a semi-rigid connection, a design formula for a beam joint that keeps the square steel pipe column elastic is derived.
FIG. 2 shows the bending moment (M) distribution acting on the beam-to-column joint of the cantilever column and the column of the square steel pipe. As a method for keeping the column elastic, a rigidity / strength condition at a horizontal displacement δ 1/30 which is a safety limit (interlayer deformation angle θ = 1/30 ) is obtained.

半剛接合柱の剛性・強度条件
半剛接合柱の剛性は、柱の転倒モーメント、フランジアングルおよびウェブアングルの初期剛性の総和ΣKで表される。強度は、安全限界時における各水平耐力の総和ΣHで評価する((1)式、(2)式参照)。
ΣK=Kc+Kf+Kw (1)
ΣH=Hc(1/30)+Hf(1/30)+Hw(1/30) (2)
ここに、
c;転倒前の柱剛性(=Ke/2、Ke;柱の弾性剛性)
f;フランジアングルの初期剛性
w;ウェブアングルの初期剛性
c(1/30);δ1/30の時に転倒モーメントから得る水平耐力
f(1/30);δ1/30の時のフランジアングル水平耐力
w(1/30);δ1/30の時のウェブアングル水平耐力
Rigidity / strength condition of semi-rigid joint column The rigidity of a semi-rigid joint column is expressed by the sum ΣK of the initial stiffness of the column overturning moment, flange angle and web angle. The strength is evaluated by the sum ΣH of each horizontal proof stress at the safety limit (see formulas (1) and (2)).
ΣK = K c + K f + K w (1)
ΣH = H c (1/30) + H f (1/30) + H w (1/30) (2)
here,
K c : column rigidity before falling (= K e / 2, K e ; elastic rigidity of the column)
K f; lateral strength H f (1/30) to obtain the overturning moment when the [delta] 1/30;; initial stiffness of the flange angle K w; initial stiffness H c (1/30) of the web angle [delta] 1/30 when Horizontal angle strength of flange angle H w (1/30) ; Web angle horizontal strength at δ 1/30

柱の強度条件
柱の水平耐力Hyは、図2(b)に示す(a)の位置での柱の降伏曲げモーメントを柱頭位置での水平耐力に換算した(3)式により与えられる。
y=My/l′ (3)
ここに、
y;柱の降伏曲げモーメント(軸力を考慮する)
l′;柱頭からアングル端部までおの距離(図2(b)参照)
Horizontal Strength H y pillar of strength conditions column is given by the indicating the yield bend moment of the column at the position of (a) was converted to the lateral strength of at stigma position (3) FIG. 2 (b).
H y = M y / l ′ (3)
here,
M y; yield bend moment of the column (consider axial force)
l ': Distance from the stigma to the end of the angle (see Fig. 2 (b))

以上から柱を弾性に保つための強度条件は、つぎの(4)式で与えられる。これは、(2)式で求めたΣHが、(3)式で求めたHyを下回るように柱およびアングルの断面サイズを設計することを意味する。
ΣH<Hy (4)
From the above, the strength condition for keeping the column elastic is given by the following equation (4). This, (2) .SIGMA.H obtained in expression it is meant that the design cross-sectional size of the column and the angle to be below the H y obtained in (3) below.
ΣH <H y (4)

つぎに、計算例として、図3は□=200×200×6(mm)の柱を用いる場合の計算結果を示す。アングル幅wf=ww=200(mm)、アングル高さhf=75(mm)で、フランジアングル厚さtfをパラメータとしてtf=8(mm)および15(mm)で計算を行った。柱軸力比(軸力/降伏軸力)は0.1で、降伏応力度をσy=320(N/mm)とした。図3において実線は(1)および(2)式で得られた柱(A)の結果を、点線は(3)式で得られた柱(B)の結果をそれぞれ示している。 Next, as a calculation example, FIG. 3 shows a calculation result when a column of □ = 200 × 200 × 6 (mm) is used. Calculation is performed with t f = 8 (mm) and 15 (mm) with angle width w f = w w = 200 (mm), angle height h f = 75 (mm), and flange angle thickness t f as a parameter. It was. The column axial force ratio (axial force / yield axial force) was 0.1, and the yield stress level was σ y = 320 (N / mm). In FIG. 3, the solid line indicates the result of the column (A) obtained by the equations (1) and (2), and the dotted line indicates the result of the column (B) obtained by the equation (3).

図3のグラフから層間変形角θ=1/30となる変位δ1/30において、柱(A)および柱(B)の水平耐力を比較する。tf=8(mm)の場合、柱(A)は柱(B)の強度を下回り、(4)式の条件を満足する。tf=15(mm)の場合には、柱(A)が柱(B)の強度を上回ることから、図2(b)の(a)位置で柱を弾性に保つことができない。 From the graph of FIG. 3, the horizontal proof stress of the column (A) and the column (B) is compared at a displacement δ 1/30 where the interlayer deformation angle θ = 1/30 . When t f = 8 (mm), the column (A) falls below the strength of the column (B) and satisfies the condition of the expression (4). In the case of t f = 15 (mm), since the column (A) exceeds the strength of the column (B), the column cannot be kept elastic at the position (a) in FIG.

つぎに、骨組安定化のために必要な半剛接合の強度および剛性について説明する。
半剛接合を用いた骨組の安定性について調べるために多層複数スパン、たとえば2層4スパンの鋼構造骨組の解析を行う。図4は、解析モデルの例を示している。解析対象は、i)全ての柱に半剛接合を用いた半剛接合骨組、ii)隅柱を剛接合とし、中柱には半剛接合を用いた混合骨組である。また、これらの骨組の解析結果との比較・検討のために、iii)全ての柱に剛接合を用いた剛接合骨組についても解析を行った。
Next, the strength and rigidity of the semi-rigid joint necessary for stabilizing the frame will be described.
In order to investigate the stability of a frame using a semi-rigid joint, an analysis of a steel structure frame with multiple multi-spans, for example two layers and four spans, is performed. FIG. 4 shows an example of an analysis model. The analysis objects are i) a semi-rigid joint frame using semi-rigid joints for all columns, and ii) a mixed frame using semi-rigid joints for corner columns and semi-rigid joints for middle columns. In addition, for comparison and examination with the analysis results of these frames, iii) analysis was also performed for rigid joint frames using rigid joints for all columns.

柱の断面は、□=400×400×9(mm)、梁の断面は、□=600×200×11×17(mm)である。比較のために各骨組の柱梁の断面は同一とした。半剛接合柱に取り付くフランジアングルの厚さは、tf=10(mm)である。
解析は2層目柱頭の変位制御で行った。隅柱には軸力比(軸力/降伏軸力)0.3の鉛直荷重Pc(0.3)を、中柱には軸力比(軸力/降伏軸力)0.6の鉛直荷重Pc(0.6)を、梁の3等分点には小梁からの荷重Pbをそれぞれ載荷した。
The cross section of the column is □ = 400 × 400 × 9 (mm), and the cross section of the beam is □ = 600 × 200 × 11 × 17 (mm). For comparison, the cross-sections of the column beams in each frame were the same. The thickness of the flange angle attached to the semi-rigid joint column is t f = 10 (mm).
The analysis was performed by controlling the displacement of the second layer stigma. Vertical load P c (0.3) with axial force ratio (axial force / yield axial force) 0.3 is applied to the corner column, and vertical load P with axial force ratio (axial force / yield axial force) 0.6 is applied to the central column. c (0.6), it is trisected point of the beam was loading each load P b from the beams.

解析結果から、1層目柱頭変位が1方向に累積しないで、安定化するための強度・剛性の条件は、次式となる。
ΣF≧0.08ΣP (5)
BEI≧P(2h)2/π2 (6)
ここに、ΣF;骨組の層の水平強度
ΣP;全鉛直荷重
BEI;柱の曲げ剛性
h;階高
From the analysis results, the conditions of strength and rigidity for stabilizing the first-layer stigma displacement without accumulating in one direction are as follows.
ΣF ≧ 0.08ΣP (5)
k B EI ≧ P (2h) 2 / π 2 (6)
Where ΣF; horizontal strength of the frame layer ΣP; total vertical load k B EI; column bending stiffness h;

図5は、各解析モデルの弾塑性挙動を示している。(5)式、(6)式を満足する解析モデルi)およびii)の挙動は極めて安定している。これに対して、解析モデルiii)では必ずしも良好な安定性が得られない。   FIG. 5 shows the elasto-plastic behavior of each analytical model. The behaviors of the analytical models i) and ii) that satisfy the expressions (5) and (6) are extremely stable. On the other hand, the analysis model iii) does not always provide good stability.

なお、本発明は、上述した実施形態にのみ限定されるものではなく、必要に応じて適宜変更、設定可能であり、上記実施形態と同様な作用効果を得ることができる。
たとえば、上記実施形態で示した寸法等の数値例は、それらに限定されることなくその他種々採用可能である。また、アングルは、溶接によっても柱梁に固定することも可能である。
In addition, this invention is not limited only to embodiment mentioned above, It can change and set suitably as needed, and can obtain the effect similar to the said embodiment.
For example, numerical examples such as dimensions shown in the above embodiment are not limited thereto, and various other examples can be adopted. The angle can also be fixed to the column beam by welding.

本発明の実施形態における両端半剛接合の角形鋼管柱からなる構造システムを示す図である。It is a figure which shows the structural system which consists of a square steel pipe column of both ends semi-rigid joining in embodiment of this invention. 本発明の実施形態における角形鋼管の片持柱の柱梁接合部および柱に作用する曲げモーメント分布を示す図である。It is a figure which shows the bending moment distribution which acts on the column beam junction part and column of the cantilever column of the square steel pipe in embodiment of this invention. 本発明の実施形態における柱の計算結果の例を示す図である。It is a figure which shows the example of the calculation result of the pillar in embodiment of this invention. 本発明に係る鋼構造骨組の例を示す図である。It is a figure which shows the example of the steel structure frame which concerns on this invention. 本発明の実施形態に係る解析モデルの弾塑性挙動を示す図である。It is a figure which shows the elastoplastic behavior of the analysis model which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1 角形鋼管柱
2 山形鋼
3 梁
1 Square steel pipe column 2 Angle steel 3 Beam

Claims (4)

鋼管柱の端部を接合部材を介して梁に接合するようにした接合構造であって、
前記接合部材を含む接合部を半剛接合として構成するとともに、前記鋼管柱が弾性を保つように該鋼管柱および前記接合部材の断面サイズを設定することを特徴とする柱梁半剛接合構造。
A joining structure in which the end of the steel pipe column is joined to the beam via a joining member,
A beam-and-beam semi-rigid joint structure characterized in that a joint portion including the joint member is configured as a semi-rigid joint, and a cross-sectional size of the steel pipe column and the joint member is set so that the steel pipe column maintains elasticity.
前記鋼管柱は角形鋼管により構成されるとともに、前記接合部材はアングルにより構成され、前記接合部材と前記鋼管柱および前記梁とをボルト締結または溶接により結合することを特徴とする請求項1に記載の柱梁半剛接合構造。   The said steel pipe column is comprised by the square steel pipe, and the said joining member is comprised by the angle, The said joining member, the said steel pipe column, and the said beam are couple | bonded by bolt fastening or welding. Column beam semi-rigid joint structure. 前記鋼管柱の水平耐力が、下記式を満足するように前記鋼管柱および前記接合部材の断面サイズを設定することを特徴とする請求項2に記載の柱梁半剛接合構造。
ΣH<Hy
ここに、ΣHは安全限界時における前記鋼管柱の転倒モーメントから得る水平耐力、フランジアングル水平耐力およびウェブアングル水平耐力の総和、Hyは柱頭位置で換算した前記鋼管柱の水平耐力である。
The column-beam semi-rigid joint structure according to claim 2, wherein a cross-sectional size of the steel pipe pillar and the joining member is set so that a horizontal proof stress of the steel pipe pillar satisfies the following formula.
ΣH <H y
Here, .SIGMA.H the lateral strength obtained from overturning moment of the steel column at the time of the safety limit, the sum of the flange angle Lateral Strength and Web Angle lateral strength, the H y is the lateral strength of the steel pipe column converted by stigma position.
鋼管柱を介して梁を相互に結合してなる多層複数スパンの鋼構造骨組であって、
その骨組の少なくとも中柱部位に、請求項1〜3のいずれか1項に記載の柱梁半剛接合構造を持つことを特徴とする鋼構造骨組。
A multi-span multi-span steel structure frame formed by connecting beams to each other via steel pipe columns,
A steel structure frame having the column beam semi-rigid joint structure according to any one of claims 1 to 3 at least in a middle column part of the frame.
JP2005030778A 2005-02-07 2005-02-07 Beam-column semi-rigid connection structure and steel frame structure Pending JP2006214239A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005030778A JP2006214239A (en) 2005-02-07 2005-02-07 Beam-column semi-rigid connection structure and steel frame structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005030778A JP2006214239A (en) 2005-02-07 2005-02-07 Beam-column semi-rigid connection structure and steel frame structure

Publications (1)

Publication Number Publication Date
JP2006214239A true JP2006214239A (en) 2006-08-17

Family

ID=36977685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005030778A Pending JP2006214239A (en) 2005-02-07 2005-02-07 Beam-column semi-rigid connection structure and steel frame structure

Country Status (1)

Country Link
JP (1) JP2006214239A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835374A (en) * 2014-01-15 2014-06-04 夏军武 Novel square steel tube column-H-shaped steel beam splicing outer sleeve type connecting method
CN105064512A (en) * 2015-08-12 2015-11-18 广州大学 Connecting structure of circular steel tube concrete column and steel beam
CN105332425A (en) * 2015-11-11 2016-02-17 河南奥斯派克科技有限公司 BIM-based ((building information modeling based) beam or column internal-cladding external-connecting connection structure
CN106703194A (en) * 2016-12-21 2017-05-24 西安建筑科技大学 Beam-column semi-rigid connection structure based on bamboo frame
CN111666616A (en) * 2020-05-21 2020-09-15 南通大学 Method for calculating yield bearing capacity of post-tensioned ribbed angle steel assembled frame node

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103835374A (en) * 2014-01-15 2014-06-04 夏军武 Novel square steel tube column-H-shaped steel beam splicing outer sleeve type connecting method
CN103835374B (en) * 2014-01-15 2019-05-03 夏军武 Quadrate steel pipe column-H-type steel beam splicing housing cartridge type connection method
CN105064512A (en) * 2015-08-12 2015-11-18 广州大学 Connecting structure of circular steel tube concrete column and steel beam
CN105332425A (en) * 2015-11-11 2016-02-17 河南奥斯派克科技有限公司 BIM-based ((building information modeling based) beam or column internal-cladding external-connecting connection structure
CN106703194A (en) * 2016-12-21 2017-05-24 西安建筑科技大学 Beam-column semi-rigid connection structure based on bamboo frame
CN106703194B (en) * 2016-12-21 2019-02-01 西安建筑科技大学 A kind of beam column semi-rigid connection structure based on raw bamboo skeleton
CN111666616A (en) * 2020-05-21 2020-09-15 南通大学 Method for calculating yield bearing capacity of post-tensioned ribbed angle steel assembled frame node

Similar Documents

Publication Publication Date Title
JP5249522B2 (en) Column reinforcement structure
JP2008002136A (en) Structure plane reinforcing structure
JP2006214239A (en) Beam-column semi-rigid connection structure and steel frame structure
JP5478864B2 (en) Connection structure, unit type building, construction method
JP5005606B2 (en) Building unit and unit building using the same
JP5827805B2 (en) Structure
JP5400283B2 (en) Building unit connection structure and unit building
JP2008208612A (en) External aseismatic reinforcing structure
JP5280769B2 (en) Beam-column joint structure
JP5096979B2 (en) Reinforcement structure of ramen structure
JP2008297750A (en) Column-beam joint portion structure on highest story of reinforced concrete structure
JP5142575B2 (en) Seismic reinforcement method for wooden buildings and wooden buildings
JP5503200B2 (en) Unit building
JP5004434B2 (en) Steel house
JP6783038B2 (en) Building structure
JP2015105478A (en) Aseismic reinforcement structure
JP3526977B2 (en) building
JP4994191B2 (en) Structure
JP2006083584A (en) Unit building and its construction method
JP6854117B2 (en) Peripheral column reinforcement structure
JP2020090863A (en) Column-beam frame and framework
JP6951851B2 (en) High-rise earthquake-resistant building
JP2010018964A (en) Balcony equipment and unit building equipped with the same
JP2008063898A (en) Unit building and vibration control device for unit building
JP2003253760A (en) Bearing wall structure of building

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20070529

Free format text: JAPANESE INTERMEDIATE CODE: A621

A977 Report on retrieval

Effective date: 20090820

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090908

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100112