JP2006213961A - alpha-beta TYPE TITANIUM ALLOY WHICH GIVES TOOL LONG LIFE AND CHIPS PARTIBILITY - Google Patents

alpha-beta TYPE TITANIUM ALLOY WHICH GIVES TOOL LONG LIFE AND CHIPS PARTIBILITY Download PDF

Info

Publication number
JP2006213961A
JP2006213961A JP2005027503A JP2005027503A JP2006213961A JP 2006213961 A JP2006213961 A JP 2006213961A JP 2005027503 A JP2005027503 A JP 2005027503A JP 2005027503 A JP2005027503 A JP 2005027503A JP 2006213961 A JP2006213961 A JP 2006213961A
Authority
JP
Japan
Prior art keywords
less
titanium alloy
type titanium
rem
chips
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005027503A
Other languages
Japanese (ja)
Other versions
JP4459832B2 (en
Inventor
Shogo Murakami
昌吾 村上
Yoshio Henmi
義男 逸見
Katsuhiko Ozaki
勝彦 尾崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2005027503A priority Critical patent/JP4459832B2/en
Publication of JP2006213961A publication Critical patent/JP2006213961A/en
Application granted granted Critical
Publication of JP4459832B2 publication Critical patent/JP4459832B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an α-β type titanium alloy which is easily hot-worked, and not only has superior machinability but also gives a tool the long life and excellent chips partibility. <P>SOLUTION: The α-β titanium alloy includes 0.01-0.5 mass% REM and 0.08-0.25 mass% C as essential components. The titanium alloy with the superior balance of strength and ductility further comprises 2.0-7.0% Al; 2.0-10% one or more elements among 5.0% or less V, 6.0% or less Cr, 2.5% or less Fe and 5.0% or less Mo, in total; and the balance Ti with impurities. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は鍛造性、被削性のみならず、工具寿命及び切屑分断性に優れたα−β型チタン合金に関する。   The present invention relates to an α-β type titanium alloy excellent not only in forgeability and machinability but also in tool life and chip breaking property.

α−β型チタン合金は、六方晶HCP構造をもつα相と、体心立方晶BCC構造をもつβ相を併存させることによって、強度・延性、破壊靭性、疲労強度などの特性を調整することかできるため、機械構造部品の素材として広く使用されている。特にコンロッド、吸排気バルブ、懸架ばね、マフラー等の自動車部品では軽量化・燃費向上の観点からチタン合金の使用が有望視されている。しかし、チタンの特性上、被削性が悪く、被削性の改善が望まれている。   α-β type titanium alloy is to adjust properties such as strength, ductility, fracture toughness and fatigue strength by coexisting α phase with hexagonal HCP structure and β phase with body centered cubic BCC structure. However, it is widely used as a material for machine structural parts. In particular, automotive parts such as connecting rods, intake / exhaust valves, suspension springs, and mufflers are promising to use titanium alloys from the viewpoint of weight reduction and fuel efficiency improvement. However, due to the characteristics of titanium, machinability is poor, and improvement of machinability is desired.

このような課題に対して、被削性を改善したチタン合金として、例えば特公平6−99764号公報(特許文献1)には、Sc,Yなどの希土類元素(REM)とS,Se,Teなどの元素を複合添加して、粒状の化合物を形成することによって靭性・延性の低下を抑制しつつ、被削性を向上させたコンロッド用チタン合金が、また特公平6−53902号公報(特許文献2)には、REM添加によって被削性を向上させ、熱間加工性を改善するためにBを添加した快削チタン合金が、また特許2626344号公報(特許文献3)には快削成分として、P及びS、P及びNi、P,S及びNi等を添加し、マトリックスの延性低下と介在物の微細化により、快削性を改善しつつ、熱間加工性や疲労強度の低下を抑制したチタン合金が記載されている。
特公平6−99764号公報 特公平6−53902号公報 特許2626344号公報
As a titanium alloy with improved machinability, for example, Japanese Patent Publication No. 6-99764 (Patent Document 1) discloses rare earth elements (REM) such as Sc and Y and S, Se, Te. A titanium alloy for connecting rods with improved machinability while suppressing deterioration of toughness and ductility by forming a granular compound by compounding elements such as JP-B-6-53902 (patent) Reference 2) describes a free-cutting titanium alloy to which B is added in order to improve machinability by adding REM and improve hot workability, and patent 2626344 (Patent Document 3) discloses a free-cutting component. As P and S, P and Ni, P, S and Ni, etc. are added, the machinability is reduced and the inclusions are refined, thereby improving the free machinability and reducing the hot workability and fatigue strength. Suppressed titanium alloy is described To have.
Japanese Patent Publication No. 6-99764 Japanese Patent Publication No. 6-53902 Japanese Patent No. 2626344

しかしながら、REM化合物やP化合物で被削性を向上させる手法は、溶解−鍛造工程における温度や冷却速度によって被削性が影響を受け易く、目的の介在物を得るには製造工程上厳密な管理か必要であり、また素材形状やサイズによってバラツキも大きい。また、REMと共にSやBなどの特殊元素を複合添加すると、総じて切屑分断性が低下し、工具寿命も必ずしも向上せず、また切削加工中に切屑が工具にからみついて、被削材の加工表面性状を悪化させる、という問題がある。
本発明はかかる問題に鑑みなされたもので、製造が容易で、熱間加工性を損なうことなく、被削性のみならず、工具寿命や切屑分断性に優れたα−β型チタン合金を提供することを目的とする。
However, the method of improving the machinability with the REM compound or the P compound, the machinability is easily affected by the temperature and the cooling rate in the melting-forging process, and in order to obtain the desired inclusions, strict management in the manufacturing process In addition, the variation varies depending on the material shape and size. In addition, when a special element such as S or B is added in combination with REM, the chip cutting property generally decreases and the tool life is not necessarily improved, and chips are entangled with the tool during the cutting process, and the work surface of the work material There is a problem of deteriorating properties.
The present invention has been made in view of such a problem, and provides an α-β type titanium alloy that is easy to manufacture and has excellent tool life and chip breaking properties as well as machinability without impairing hot workability. The purpose is to do.

従来、REMを単独添加した場合に被削性は顕著に改善するものの熱間加工性が極めて悪化するため、これを防止すべくBやSなどの特殊元素を添加する手法が採られていたが、上記のとおり、切屑分断性が低下し、必ずしも工具寿命の向上が期待できず、また切屑が工具にからみ付き、被削材の加工表面性状を悪化させる原因になっていた。本発明者は、SやBなどの特殊元素を添加することなく、REM単独添加による熱間加工性の悪化原因を子細に調査したところ、熱間加工時のβ温度域でβ相の結晶粒が粗大化していることを知見した。本発明は係る知見に基づきなされたもので、熱間加工の際に、β温度域でTiCを微細に析出させ、β粒の粗大化を抑制することによって熱間加工性を確保し、REMのみの作用によって被削性を向上させると共に工具寿命、切屑分断性の向上を図ったものである。   Conventionally, when REM is added alone, machinability is remarkably improved, but hot workability is extremely deteriorated. Therefore, a technique of adding special elements such as B and S has been employed to prevent this. As described above, the chip breaking property is reduced, and the improvement of the tool life cannot always be expected, and the chips are entangled with the tool, which causes the processing surface properties of the work material to deteriorate. The present inventor made a detailed investigation of the cause of deterioration of hot workability by adding REM alone without adding special elements such as S and B. As a result, β-phase crystal grains in the β temperature range during hot working. Was found to be coarse. The present invention has been made on the basis of such knowledge, and during hot working, TiC is finely precipitated in the β temperature range, and the hot workability is ensured by suppressing the coarsening of β grains, and only REM. This improves the machinability and improves the tool life and the chip breaking property.

すなわち、本発明のα−β型チタン合金は、0.01〜0.5mass%のREM及び0.08〜0.25mass%のCを必須成分として含有させたものである。以下、成分単位は単に「%」と表示する場合がある。
Cを0.08〜0.25%添加することで、β温度域での熱間加工の際にTiCが微細に析出し、これによってβ相結晶粒が微細化され、熱間加工性の劣化を防止することができる。さらに、REMの作用により、被削性を向上させることができ、しかも固溶したREMがチタンの切削温度域(600〜800℃)でのマトリックスを脆化させるためか、あるいは微量のREM酸化物(サブミクロン〜数ミクロン)が切削部の歪集中を向上させるためかは明確ではないが、REMは切屑の生成、分断を容易にする効果があり、工具寿命も向上する。
That is, the α-β type titanium alloy of the present invention contains 0.01 to 0.5 mass% REM and 0.08 to 0.25 mass% C as essential components. Hereinafter, the component unit may be simply indicated as “%”.
By adding 0.08 to 0.25% of C, TiC is finely precipitated during hot working in the β temperature range, thereby making the β phase crystal grains finer and deteriorating hot workability. Can be prevented. Further, the machinability can be improved by the action of REM, and the solid solution REM embrittles the matrix in the cutting temperature range (600 to 800 ° C.) of titanium, or a small amount of REM oxide. Although it is not clear whether (submicron to several microns) improves the strain concentration in the cutting part, REM has an effect of facilitating the generation and division of chips, and also improves the tool life.

前記α−β型チタン合金において、合金成分をmass%で0.01〜0.5%のREM、0.08〜0.25%のC、2.0〜7.0%のAlを含み、5.0%以下のV、6.0%以下のCr、2.5%以下のFe、5.0%以下のMoの1種又は2種以上を合計で2.0〜10%含み、残部Ti及び不純物からなる組成とすることが好ましい。このような成分とすることにより、優れた機械的性質を兼ね備えることができる。
前記合金成分は、Tiの一部に代えて、さらに1.0%以下のSiを含み、あるいはさらに5.0%以下のZr、5.0%以下のSnの1種又は2種を合計で6.0%以下含む組成とすることができる。
In the α-β type titanium alloy, the alloy components include 0.01 to 0.5% REM, 0.08 to 0.25% C, and 2.0 to 7.0% Al in mass%. 5.0% or less of V, 6.0% or less of Cr, 2.5% or less of Fe, 5.0% or less of Mo or less of Mo or less of 5.0% in total, containing 2.0 to 10% in total, the balance A composition comprising Ti and impurities is preferable. By setting it as such a component, it can have the outstanding mechanical property.
The alloy component contains 1.0% or less of Si in place of a part of Ti, or further includes one or two of Zr of 5.0% or less and Sn of 5.0% or less in total. The composition may be 6.0% or less.

本発明のα−β型チタン合金は、0.01〜0.5mass%のREM及び0.08〜0.25mass%のCを含有するので、熱間加工性を損なうことなく、被削性に優れ、しかも切削条件に拘わらず工具寿命や切屑分断性にも優れる。しかも、熱間加工をβ温度域で行えばよく、製造容易である。   Since the α-β type titanium alloy of the present invention contains 0.01 to 0.5 mass% REM and 0.08 to 0.25 mass% C, the machinability can be reduced without impairing hot workability. Excellent, and excellent tool life and chip separation regardless of cutting conditions. Moreover, it is sufficient to perform hot working in the β temperature range, and manufacturing is easy.

以下、本発明のα−β型チタン合金の組成について説明する。
本発明のα−β型チタン合金は、必須成分として0.01〜0.5mass%のREM及び0.08〜0.25mass%のCを含有し、室温でβ相とα相からなる組織を有するものである。
Hereinafter, the composition of the α-β type titanium alloy of the present invention will be described.
The α-β type titanium alloy of the present invention contains 0.01 to 0.5 mass% REM and 0.08 to 0.25 mass% C as essential components, and has a structure composed of a β phase and an α phase at room temperature. It is what you have.

Cは、強度の向上に効果があり、またβ温度域でTiCとして微細析出するため、β相結晶粒を微細化し、これによって熱間加工性を向上させる。0.08%未満ではかかる作用が不足する。一方、0.25%を超えると、室温でα相中に固溶されない粗大なTiCが残留するようになり、機械的特性が劣化するようになる。このため、C量の下限を0.08%、好ましくは0.10%とし、その上限を0.25%、好ましくは0.20%とする。   C is effective in improving the strength and finely precipitates as TiC in the β temperature range, so that the β phase crystal grains are refined, thereby improving the hot workability. If it is less than 0.08%, such an action is insufficient. On the other hand, if it exceeds 0.25%, coarse TiC that does not dissolve in the α phase at room temperature remains, and the mechanical characteristics deteriorate. For this reason, the lower limit of the C amount is 0.08%, preferably 0.10%, and the upper limit is 0.25%, preferably 0.20%.

REMは、被削性の改善に効果があり、このため、0.01%以上添加されるが、0.5%を超えて添加すると、TiC析出によりβ相結晶粒を微細化しても熱間加工性が劣化するようになる。このため、本発明ではREMの下限を0.01%、好ましくは0.05%とし、その上限を0.5%、好ましくは0.45%とする。   REM is effective in improving machinability. For this reason, REM is added in an amount of 0.01% or more, but if added over 0.5%, it is hot even if the β-phase crystal grains are refined by TiC precipitation. Workability deteriorates. Therefore, in the present invention, the lower limit of REM is set to 0.01%, preferably 0.05%, and the upper limit is set to 0.5%, preferably 0.45%.

本発明のα−β型チタン合金は、基本的に上記範囲のC、REMを必須成分として含有しておればよいが、S,Se,TeやBなどの、REMと安定な化合物を形成し易い元素は可及的に含まないようにすることが望ましい。これらの元素を複合添加すると、REMがこれらの元素と結合して安定な化合物を形成するために、REMによる上記作用効果が消失するようになるからである。   The α-β type titanium alloy of the present invention basically contains C and REM in the above ranges as essential components, but forms stable compounds with REM such as S, Se, Te and B. It is desirable not to include easily facile elements as much as possible. This is because, when these elements are added in combination, the REM bonds with these elements to form a stable compound, and thus the above-described effects of REM disappear.

本発明のα−β型チタン合金の好適な組成として、前記所定量のC、REMのほか、Al:2.0〜7.0%を含み、かつV:5.0%以下、Cr:6.0%以下、Fe:2.0%以下、Mo:3.0%以下の1種または2種以上を合計で2.0〜10%含み、残部Tiおよび不可避的不純物からなるものを挙げることができる。このチタン合金は、引張強さ(TS)が740MPa以上、伸び(El)が10%以上有するものであり、各種機械構造用材として好適なものである。以下、成分限定理由について説明する。   As a preferable composition of the α-β type titanium alloy of the present invention, in addition to the predetermined amounts of C and REM, Al: 2.0 to 7.0% is included, and V: 5.0% or less, Cr: 6 0,0% or less, Fe: 2.0% or less, Mo: 3.0% or less, or a total of 2.0 to 10%, with the remainder consisting of Ti and inevitable impurities Can do. This titanium alloy has a tensile strength (TS) of 740 MPa or more and an elongation (El) of 10% or more, and is suitable as a material for various mechanical structures. Hereinafter, the reason for component limitation will be described.

Al:2.0〜7.0%
Alはα安定化元素であり、α相を生成させるために添加される。Alが2.0%未満ではα相の生成が過少になり、また十分な強度が発現せず、前記目標のTSを満足することができないようになる。このため、Alの下限を2.0%、好ましくは2.2%とする。一方、Al量が7.0%と超えて過多になると、延性が劣化し、Elが目標値を下回るようになる。このため、Alの上限を7.0%、好ましくは6.0%とする。
Al: 2.0 to 7.0%
Al is an α stabilizing element and is added to generate an α phase. If the Al content is less than 2.0%, the α-phase is generated too little, and sufficient strength is not exhibited, so that the target TS cannot be satisfied. For this reason, the lower limit of Al is set to 2.0%, preferably 2.2%. On the other hand, if the Al content exceeds 7.0% and becomes excessive, the ductility deteriorates and El becomes lower than the target value. Therefore, the upper limit of Al is set to 7.0%, preferably 6.0%.

V:5.0%以下、Cr:6.0%以下、Fe:2.0%以下、Mo:3.0%以下の1種または2種以上を合計で2.0〜10%
これらの元素はβ安定化元素であり、β相を生成させるために合計量で2.0%以上、好ましくは3.0%以上添加される。これらの元素も強度を向上させる作用があり、それぞれの元素の上限を超えて添加すると、また合計量で10%を超えて添加するとElの劣化を招来する。特に、Fe量が過多になると絞りも低下するようになる。このため、各元素の上限を上記のとおり規定し、また合計量の上限を10%とする。
V: 5.0% or less, Cr: 6.0% or less, Fe: 2.0% or less, Mo: 3.0% or less, or a total of 2.0 to 10%
These elements are β-stabilizing elements, and are added in a total amount of 2.0% or more, preferably 3.0% or more in order to form a β phase. These elements also have the effect of improving the strength, and if they are added in excess of the upper limit of each element or added in a total amount exceeding 10%, the deterioration of El is caused. In particular, when the amount of Fe becomes excessive, the aperture also decreases. For this reason, the upper limit of each element is prescribed as described above, and the upper limit of the total amount is 10%.

上記基本元素の他は、残部Tiおよび不可避的不純物で構成されるが、さらに強度を向上させるために、Tiの一部に代えて(1) Si:1.0%以下、(2) Zr:5.0%以下、Sn:5.0%以下の1種または2種を合計で6.0%以下、の各群から選択される元素を単独で、あるいは複合して含有することができる。
Siが1.0%超、Zr及びSnが各々単独で、あるいは合計で6.0%超になると、延性が劣化し、10%以上のElを得ることができないようになる。このため、Si、Zr及びSnの各元素の上限、Zr及びSnの合計量を上記のように規制する。
In addition to the basic element, the balance is composed of the remainder Ti and unavoidable impurities. In order to further improve the strength, (1) Si: 1.0% or less, (2) Zr: An element selected from each group of 5.0% or less and Sn: 5.0% or less in total of 6.0% or less can be contained alone or in combination.
If Si exceeds 1.0% and Zr and Sn each alone or in total exceeds 6.0%, the ductility deteriorates and El of 10% or more cannot be obtained. For this reason, the upper limit of each element of Si, Zr, and Sn and the total amount of Zr and Sn are regulated as described above.

上記実施形態のチタン合金は、一般的には、鋳片を主にβ温度域で熱間鍛造を実施し、目的形状に加工した後、焼鈍を実施する。すなわち、970℃程度以上の温度域で所望の形状にするか、鍛造割れが発生しにくい形状の場合はそれ以下のα−β二相温度域まで熱間鍛造を実施し、それに引き続いて、あるいは一旦冷却した後、β相域(970℃程度以上)あるいはα−β二相域(700〜970℃程度)の温度で、15〜120分程度の焼鈍を行なう。この焼鈍によって、残留応力を除去するとともに、α相の量ならびに結晶粒径など組織形態を整える。焼鈍後の冷却は特に限定されず、放冷や空冷(0.5〜2℃/sec 程度)してもよく、あるいは水冷(5℃/sec 以上)してもよいが、残留応力が特に問題になる場合においては、水冷は避けた方が好ましい。
以下、本発明のα−β型チタン合金の実施例を挙げてより具体的に説明するが、本発明はかかる実施例により限定的に解釈されるものではない。
In general, the titanium alloy of the above embodiment is subjected to hot forging mainly in the β temperature range and processed into a target shape, and then annealed. That is, a desired shape is formed in a temperature range of about 970 ° C. or higher, or in the case of a shape in which forging cracking is difficult to occur, hot forging is performed up to an α-β two-phase temperature range below that, After cooling once, annealing is performed for about 15 to 120 minutes at a temperature in the β phase region (about 970 ° C. or higher) or the α-β two phase region (about 700 to 970 ° C.). By this annealing, residual stress is removed and the morphology of the α phase and the grain size are adjusted. Cooling after annealing is not particularly limited, and may be allowed to cool, air cool (about 0.5 to 2 ° C./sec), or water cooled (5 ° C./sec or more), but residual stress is particularly problematic. In such a case, it is preferable to avoid water cooling.
Hereinafter, although the example of the α-β type titanium alloy of the present invention will be described more specifically, the present invention is not construed as being limited by the example.

下記表1に示した種々の成分のチタン合金を真空溶解し、120g程度のインゴットを製造した。このインゴットを1200℃に加熱して熱間鍛造し、さらに1000℃を下限としてβ温度域(β変態点(Tβ)以上)で25mmφの丸棒に鍛造により成形した。続いて、1050℃×2hr保持の焼鈍を行い、放冷した。なお、β相域内の1050℃で焼鈍を施した理由は、成分によって一次α相の量が変化することを避け、被削性に及ぼす合金元素の影響のみを抽出するためである。   Titanium alloys having various components shown in Table 1 below were melted in vacuum to produce about 120 g of ingot. This ingot was heated to 1200 ° C. and hot forged, and further formed into a 25 mmφ round bar in the β temperature range (more than the β transformation point (Tβ)) with 1000 ° C. as the lower limit. Subsequently, annealing was carried out at 1050 ° C. × 2 hr, and allowed to cool. The reason why the annealing was performed at 1050 ° C. in the β phase region is to avoid the change of the amount of the primary α phase depending on the component and extract only the influence of the alloy element on the machinability.

このようにして得られた試料から被削性試験片を採取し、これを下記の切削条件で切削し、工具摩耗性及び切屑分断性を調べた。工具摩耗性は、工具逃げ面の摩耗量(μm )を測定し、これによって評価した。切屑分断性は、切削試験終了後の切屑を無作為に抽出して電子天秤にて秤量し、切屑1g当たりの個数を求め、これによって評価した。これらの試験結果を表2に示す。
・切削条件
(1) 工具:H13Aチップ(サンドビック製)
(2) 切削速度:100m/min
(3) 切削送りと切り込み量
条件A:0.10mm/rev、0.5mm
条件B:0.15mm/rev、1.0mm
(4) 切削長さ:50m
(5) 切削油:無し
A machinability test piece was collected from the sample thus obtained and cut under the following cutting conditions to examine the tool wearability and chip breaking property. Tool wear was evaluated by measuring the amount of wear (μm) on the tool flank. The chip breaking property was evaluated by randomly extracting chips after the cutting test and weighing them with an electronic balance to determine the number per 1 g of chips. These test results are shown in Table 2.
・ Cutting conditions
(1) Tool: H13A tip (made by Sandvik)
(2) Cutting speed: 100m / min
(3) Cutting feed and depth of cut Condition A: 0.10mm / rev, 0.5mm
Condition B: 0.15 mm / rev, 1.0 mm
(4) Cutting length: 50m
(5) Cutting oil: None

表2より、C量及びREM量が本発明範囲内の発明例(試料No. 2,6〜8,10〜15)では、工具摩耗性については、切削送り・切り込み量条件が条件Aでは合格レベルの50μm 以下であり、また条件Bでも合格レベルの70μm 以下であり、工具の耐摩耗に優れ、工具寿命に優れる。また、切屑分断性についても、条件Aで合格レベルの60個/g以上であり、条件Bでも合格レベルの80個/g以上であり、切削条件の如何に拘わらず優れた切屑分断性が得られている。一方、REMを適量添加した場合においても、Sを複合添加した試料No. 3では、工具摩耗性、切屑分断性について、条件Bでは合格レベルにあるものの、条件Aでは合格レベルに達せず、切削条件によって満足な結果が得られていない。また、Bを複合添加した試料No. 4では、工具耐摩耗性及び切屑分断性のいずれも、満足な結果が得られていない。   From Table 2, in the invention examples (Sample Nos. 2, 6-8, 10-15) in which the C amount and the REM amount are within the scope of the present invention, the tool feedability is acceptable when the cutting feed / cutting amount condition is Condition A. The level is not more than 50 μm, and even in Condition B, the acceptable level is not more than 70 μm, so that the wear resistance of the tool is excellent and the tool life is excellent. In addition, the chip breaking property is 60 / g or more, which is an acceptable level in the condition A, and 80 pieces / g or more, which is also the acceptable level in the condition B, and an excellent chip dividing property is obtained regardless of the cutting conditions. It has been. On the other hand, even when an appropriate amount of REM is added, Sample No. 3 to which S has been added in combination has a tool wear property and chip breaking property that are acceptable in Condition B, but do not reach the acceptable level in Condition A, and cutting. Satisfactory results are not obtained depending on the conditions. In Sample No. 4 to which B was added in combination, satisfactory results were not obtained in both tool wear resistance and chip breaking property.

Figure 2006213961
Figure 2006213961

Figure 2006213961
Figure 2006213961

Claims (4)

α−β型チタン合金であって、0.01〜0.5mass%の希土類元素及び0.08〜0.25mass%のCを必須成分として含有する、工具寿命及び切屑分断性に優れたα−β型チタン合金。   α-β type titanium alloy, which contains 0.01 to 0.5 mass% rare earth element and 0.08 to 0.25 mass% C as essential components, and is excellent in tool life and chip breaking properties. β-type titanium alloy. mass%で、
0.01〜0.5%の希土類元素、
0.08〜0.25%のC、
2.0〜7.0%のAlを含み、
5.0%以下のV、6.0%以下のCr、2.5%以下のFe、5.0%以下のMoの1種又は2種以上を合計で2.0〜10%含み、
残部Ti及び不純物からなる請求項1に記載したα−β型チタン合金。
mass%
0.01-0.5% rare earth element,
0.08-0.25% C,
Containing 2.0-7.0% Al,
5.0% or less of V, 6.0% or less of Cr, 2.5% or less of Fe, and 5.0% or less of Mo or less of Mo or less of 5.0% in total, including 2.0 to 10% in total,
The α-β type titanium alloy according to claim 1, comprising the balance Ti and impurities.
さらに、1.0%以下のSiを含む請求項2に記載したα−β型チタン合金。   The α-β titanium alloy according to claim 2, further comprising 1.0% or less of Si. さらに、5.0%以下のZr、5.0%以下のSnの1種又は2種を合計で6.0%以下含む請求項2又は3に記載したα−β型チタン合金。

The α-β type titanium alloy according to claim 2 or 3, further comprising 6.0% or less of 5.0% or less of Zr and 5.0% or less of Sn or 2 kinds in total.

JP2005027503A 2005-02-03 2005-02-03 Α-β type titanium alloy with excellent tool life and chip separation Expired - Fee Related JP4459832B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005027503A JP4459832B2 (en) 2005-02-03 2005-02-03 Α-β type titanium alloy with excellent tool life and chip separation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005027503A JP4459832B2 (en) 2005-02-03 2005-02-03 Α-β type titanium alloy with excellent tool life and chip separation

Publications (2)

Publication Number Publication Date
JP2006213961A true JP2006213961A (en) 2006-08-17
JP4459832B2 JP4459832B2 (en) 2010-04-28

Family

ID=36977428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005027503A Expired - Fee Related JP4459832B2 (en) 2005-02-03 2005-02-03 Α-β type titanium alloy with excellent tool life and chip separation

Country Status (1)

Country Link
JP (1) JP4459832B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP2008266773A (en) * 2007-04-17 2008-11-06 Shiqiong Li Alpha-plus-beta type titanium alloy
CN109295342A (en) * 2018-08-22 2019-02-01 北京理工大学 A kind of Ti-Al-Mo-Sn-Zr-Si-V alloy and preparation method thereof
CN111020289A (en) * 2019-12-18 2020-04-17 佛山科学技术学院 Heat-resistant titanium alloy
RU2744837C2 (en) * 2017-10-19 2021-03-16 Зе Боинг Компани Titanium-based alloy and method for producing titanium-based alloy component through additive manufacturing technologies
CN115369286A (en) * 2022-08-29 2022-11-22 沈阳中核舰航特材科技有限公司 Alpha + beta type titanium alloy for fastener, preparation method and preparation method of bar thereof

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007084865A (en) * 2005-09-21 2007-04-05 Kobe Steel Ltd alpha-beta TYPE TITANIUM ALLOY SUPERIOR IN MACHINABILITY AND HOT WORKABILITY
JP4493029B2 (en) * 2005-09-21 2010-06-30 株式会社神戸製鋼所 Α-β type titanium alloy with excellent machinability and hot workability
JP2008266773A (en) * 2007-04-17 2008-11-06 Shiqiong Li Alpha-plus-beta type titanium alloy
RU2744837C2 (en) * 2017-10-19 2021-03-16 Зе Боинг Компани Titanium-based alloy and method for producing titanium-based alloy component through additive manufacturing technologies
US11486025B2 (en) 2017-10-19 2022-11-01 The Boeing Company Titanium-based alloy and method for manufacturing a titanium-based alloy component by an additive manufacturing process
CN109295342A (en) * 2018-08-22 2019-02-01 北京理工大学 A kind of Ti-Al-Mo-Sn-Zr-Si-V alloy and preparation method thereof
CN111020289A (en) * 2019-12-18 2020-04-17 佛山科学技术学院 Heat-resistant titanium alloy
CN115369286A (en) * 2022-08-29 2022-11-22 沈阳中核舰航特材科技有限公司 Alpha + beta type titanium alloy for fastener, preparation method and preparation method of bar thereof

Also Published As

Publication number Publication date
JP4459832B2 (en) 2010-04-28

Similar Documents

Publication Publication Date Title
JP4493029B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP4493028B2 (en) Α-β type titanium alloy with excellent machinability and hot workability
JP5582532B2 (en) Co-based alloy
JP4548652B2 (en) Α-β type titanium alloy with excellent machinability
JP6393993B2 (en) Ni-base superalloy with high temperature strength and capable of hot forging
WO2009151031A1 (en) α-β TYPE TITANIUM ALLOY
JPWO2009154161A1 (en) Austenitic heat-resistant alloy, heat-resistant pressure-resistant member made of this alloy, and manufacturing method thereof
CN101386932A (en) Low density titanium alloy, golf club head, and process for prouducing low density titanium alloy part
JP4459832B2 (en) Α-β type titanium alloy with excellent tool life and chip separation
KR20130134014A (en) Beta type titanium alloy with low elastic modulus and high strength
RU2695852C2 (en) α-β TITANIUM ALLOY
JP2011122180A (en) Extruded material of heat-resistant aluminum alloy superior in high-temperature strength and high-temperature fatigue characteristic
WO2020179912A9 (en) Bar
JP5589861B2 (en) Α + β type titanium alloy member having high strength and low Young&#39;s modulus and method for producing the same
JP2022502568A (en) Titanium alloy with medium strength and high ductility
JP6690359B2 (en) Austenitic heat-resistant alloy member and method for manufacturing the same
KR102332018B1 (en) High temperature titanium alloy and method for manufacturing the same
JP2012184505A (en) Aluminum alloy hollow shaped member excellent in fatigue strength and method for manufacturing the same, and swing arm for motorcycle
JP2006219734A (en) ULTRAHIGH-STRENGTH alpha-beta TYPE TITANIUM ALLOY HAVING ADEQUATE DUCTILITY
JP2010261061A (en) METHOD FOR PRODUCING Al ALLOY FORGED PRODUCT
JP2006034414A (en) Spike for shoe
JP2010053419A (en) Titanium alloy for heat resistant member having excellent creep resistance and high temperature fatigue strength
JP4263987B2 (en) High-strength β-type titanium alloy
JP6337514B2 (en) Precipitation hardening type Fe-Ni alloy and manufacturing method thereof
JP2009167500A (en) METHOD FOR PRODUCING Ni BASED HEAT RESISTANT ALLOY

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070928

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100119

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100209

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100210

R150 Certificate of patent or registration of utility model

Ref document number: 4459832

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130219

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140219

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees